code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def UpperCAmelCase_ (__a : Union[str, Any] , __a : List[Any] = 0 ): """simple docstring""" _a : Tuple = length or len(__SCREAMING_SNAKE_CASE ) _a : Dict = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _a : str = list_data[i + 1], list_data[i] _a : Union[str, Any] = True return list_data if not swapped else bubble_sort(__SCREAMING_SNAKE_CASE , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
271
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class snake_case ( unittest.TestCase ): def lowercase_ ( self : Optional[int])-> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self : int)-> str: '''simple docstring''' __lowerCAmelCase: str = 1 __lowerCAmelCase: Union[str, Any] = 3 __lowerCAmelCase: Union[str, Any] = (3_2, 3_2) __lowerCAmelCase: Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCamelCase__) return image @property def lowercase_ ( self : Tuple)-> str: '''simple docstring''' torch.manual_seed(0) __lowerCAmelCase: Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=UpperCamelCase__ , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def lowercase_ ( self : Any)-> Optional[Any]: '''simple docstring''' torch.manual_seed(0) __lowerCAmelCase: Tuple = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowercase_ ( self : Any)-> Optional[Any]: '''simple docstring''' torch.manual_seed(0) __lowerCAmelCase: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) return CLIPTextModel(UpperCamelCase__) def lowercase_ ( self : List[str])-> Dict: '''simple docstring''' __lowerCAmelCase: Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase: int = self.dummy_cond_unet_upscale __lowerCAmelCase: int = DDPMScheduler() __lowerCAmelCase: List[str] = DDIMScheduler(prediction_type="v_prediction") __lowerCAmelCase: Tuple = self.dummy_vae __lowerCAmelCase: Optional[Any] = self.dummy_text_encoder __lowerCAmelCase: Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") __lowerCAmelCase: Tuple = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] __lowerCAmelCase: List[Any] = Image.fromarray(np.uinta(UpperCamelCase__)).convert("RGB").resize((6_4, 6_4)) # make sure here that pndm scheduler skips prk __lowerCAmelCase: Optional[int] = StableDiffusionUpscalePipeline( unet=UpperCamelCase__ , low_res_scheduler=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , max_noise_level=3_5_0 , ) __lowerCAmelCase: Tuple = sd_pipe.to(UpperCamelCase__) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__) __lowerCAmelCase: Any = "A painting of a squirrel eating a burger" __lowerCAmelCase: str = torch.Generator(device=UpperCamelCase__).manual_seed(0) __lowerCAmelCase: Optional[int] = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase: List[str] = output.images __lowerCAmelCase: Union[str, Any] = torch.Generator(device=UpperCamelCase__).manual_seed(0) __lowerCAmelCase: List[str] = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , return_dict=UpperCamelCase__ , )[0] __lowerCAmelCase: int = image[0, -3:, -3:, -1] __lowerCAmelCase: Dict = image_from_tuple[0, -3:, -3:, -1] __lowerCAmelCase: Dict = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __lowerCAmelCase: List[Any] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def lowercase_ ( self : List[str])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase: Dict = self.dummy_cond_unet_upscale __lowerCAmelCase: List[str] = DDPMScheduler() __lowerCAmelCase: Union[str, Any] = DDIMScheduler(prediction_type="v_prediction") __lowerCAmelCase: Optional[int] = self.dummy_vae __lowerCAmelCase: List[Any] = self.dummy_text_encoder __lowerCAmelCase: Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") __lowerCAmelCase: List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] __lowerCAmelCase: str = Image.fromarray(np.uinta(UpperCamelCase__)).convert("RGB").resize((6_4, 6_4)) # make sure here that pndm scheduler skips prk __lowerCAmelCase: Optional[int] = StableDiffusionUpscalePipeline( unet=UpperCamelCase__ , low_res_scheduler=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , max_noise_level=3_5_0 , ) __lowerCAmelCase: Optional[int] = sd_pipe.to(UpperCamelCase__) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__) __lowerCAmelCase: List[str] = "A painting of a squirrel eating a burger" __lowerCAmelCase: List[Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase: List[Any] = output.images assert image.shape[0] == 2 __lowerCAmelCase: Dict = torch.Generator(device=UpperCamelCase__).manual_seed(0) __lowerCAmelCase: Optional[Any] = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase: List[Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU") def lowercase_ ( self : Tuple)-> Any: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = self.dummy_cond_unet_upscale __lowerCAmelCase: int = DDPMScheduler() __lowerCAmelCase: int = DDIMScheduler(prediction_type="v_prediction") __lowerCAmelCase: Dict = self.dummy_vae __lowerCAmelCase: int = self.dummy_text_encoder __lowerCAmelCase: List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") __lowerCAmelCase: List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] __lowerCAmelCase: Optional[int] = Image.fromarray(np.uinta(UpperCamelCase__)).convert("RGB").resize((6_4, 6_4)) # put models in fp16, except vae as it overflows in fp16 __lowerCAmelCase: List[Any] = unet.half() __lowerCAmelCase: List[str] = text_encoder.half() # make sure here that pndm scheduler skips prk __lowerCAmelCase: List[Any] = StableDiffusionUpscalePipeline( unet=UpperCamelCase__ , low_res_scheduler=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , max_noise_level=3_5_0 , ) __lowerCAmelCase: str = sd_pipe.to(UpperCamelCase__) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__) __lowerCAmelCase: Optional[Any] = "A painting of a squirrel eating a burger" __lowerCAmelCase: str = torch.manual_seed(0) __lowerCAmelCase: Dict = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=2 , output_type="np" , ).images __lowerCAmelCase: Optional[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def lowercase_ ( self : Tuple)-> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : List[Any])-> Tuple: '''simple docstring''' __lowerCAmelCase: Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png") __lowerCAmelCase: Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy") __lowerCAmelCase: str = "stabilityai/stable-diffusion-x4-upscaler" __lowerCAmelCase: Optional[int] = StableDiffusionUpscalePipeline.from_pretrained(UpperCamelCase__) pipe.to(UpperCamelCase__) pipe.set_progress_bar_config(disable=UpperCamelCase__) pipe.enable_attention_slicing() __lowerCAmelCase: Tuple = "a cat sitting on a park bench" __lowerCAmelCase: int = torch.manual_seed(0) __lowerCAmelCase: List[Any] = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , generator=UpperCamelCase__ , output_type="np" , ) __lowerCAmelCase: Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 1e-3 def lowercase_ ( self : Optional[int])-> Any: '''simple docstring''' __lowerCAmelCase: Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png") __lowerCAmelCase: Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy") __lowerCAmelCase: Optional[Any] = "stabilityai/stable-diffusion-x4-upscaler" __lowerCAmelCase: Tuple = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase__ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase__) pipe.set_progress_bar_config(disable=UpperCamelCase__) pipe.enable_attention_slicing() __lowerCAmelCase: str = "a cat sitting on a park bench" __lowerCAmelCase: List[str] = torch.manual_seed(0) __lowerCAmelCase: Optional[Any] = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , generator=UpperCamelCase__ , output_type="np" , ) __lowerCAmelCase: Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def lowercase_ ( self : Optional[int])-> Dict: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCAmelCase: Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png") __lowerCAmelCase: Union[str, Any] = "stabilityai/stable-diffusion-x4-upscaler" __lowerCAmelCase: Any = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase__ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase__) pipe.set_progress_bar_config(disable=UpperCamelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() __lowerCAmelCase: int = "a cat sitting on a park bench" __lowerCAmelCase: Dict = torch.manual_seed(0) __lowerCAmelCase: Dict = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=5 , output_type="np" , ) __lowerCAmelCase: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
217
0
"""simple docstring""" def lowercase__ ( _UpperCAmelCase ) -> int: '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowercase : str = f'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCAmelCase ) if number < 1: lowercase : Optional[Any] = f'''Input value of [number={number}] must be > 0''' raise ValueError(__UpperCAmelCase ) lowercase : Any = 1 for i in range(1 , __UpperCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
355
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a__ ( SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = PhobertTokenizer _lowerCamelCase = False def lowercase ( self : Optional[Any] ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase : Optional[Any] = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] lowercase : Any = dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowercase : int = ['#version: 0.2', 'l à</w>'] lowercase : Tuple = {'unk_token': '<unk>'} lowercase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) lowercase : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase ) ) def lowercase ( self : List[str], **lowerCAmelCase : Optional[Any] ) -> Tuple: kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase ( self : Union[str, Any], lowerCAmelCase : Dict ) -> Optional[int]: lowercase : List[Any] = 'Tôi là VinAI Research' lowercase : Any = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def lowercase ( self : int ) -> Tuple: lowercase : List[Any] = PhobertTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) lowercase : List[str] = 'Tôi là VinAI Research' lowercase : Dict = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() lowercase : int = tokenizer.tokenize(lowerCAmelCase ) print(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) lowercase : str = tokens + [tokenizer.unk_token] lowercase : Tuple = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ), lowerCAmelCase )
53
0
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowercase_ = logging.getLogger(__name__) def lowerCamelCase ( ) ->List[str]: _SCREAMING_SNAKE_CASE = argparse.ArgumentParser( description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" ) parser.add_argument("""--file_path""" , type=UpperCamelCase__ , default="""data/dump.txt""" , help="""The path to the data.""" ) parser.add_argument("""--tokenizer_type""" , type=UpperCamelCase__ , default="""bert""" , choices=["""bert""", """roberta""", """gpt2"""] ) parser.add_argument("""--tokenizer_name""" , type=UpperCamelCase__ , default="""bert-base-uncased""" , help="""The tokenizer to use.""" ) parser.add_argument("""--dump_file""" , type=UpperCamelCase__ , default="""data/dump""" , help="""The dump file prefix.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": _SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained(args.tokenizer_name ) _SCREAMING_SNAKE_CASE = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` _SCREAMING_SNAKE_CASE = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": _SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained(args.tokenizer_name ) _SCREAMING_SNAKE_CASE = tokenizer.special_tokens_map["""cls_token"""] # `<s>` _SCREAMING_SNAKE_CASE = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": _SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(args.tokenizer_name ) _SCREAMING_SNAKE_CASE = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` _SCREAMING_SNAKE_CASE = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , """r""" , encoding="""utf8""" ) as fp: _SCREAMING_SNAKE_CASE = fp.readlines() logger.info("""Start encoding""" ) logger.info(F'{len(UpperCamelCase__ )} examples to process.' ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 1_0000 _SCREAMING_SNAKE_CASE = time.time() for text in data: _SCREAMING_SNAKE_CASE = F'{bos} {text.strip()} {sep}' _SCREAMING_SNAKE_CASE = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) rslt.append(UpperCamelCase__ ) iter += 1 if iter % interval == 0: _SCREAMING_SNAKE_CASE = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) _SCREAMING_SNAKE_CASE = time.time() logger.info("""Finished binarization""" ) logger.info(F'{len(UpperCamelCase__ )} examples processed.' ) _SCREAMING_SNAKE_CASE = F'{args.dump_file}.{args.tokenizer_name}.pickle' _SCREAMING_SNAKE_CASE = tokenizer.vocab_size if vocab_size < (1 << 16): _SCREAMING_SNAKE_CASE = [np.uintaa(UpperCamelCase__ ) for d in rslt] else: _SCREAMING_SNAKE_CASE = [np.intaa(UpperCamelCase__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(UpperCamelCase__ , """wb""" ) as handle: pickle.dump(rslt_ , UpperCamelCase__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
58
from math import pi, sqrt, tan def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) __lowerCamelCase = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(UpperCamelCase__ , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) __lowerCamelCase = (sidea + sidea + sidea) / 2 __lowerCamelCase = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : float ) -> float: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f'''Rectangle: {area_rectangle(10, 20) = }''') print(f'''Square: {area_square(10) = }''') print(f'''Triangle: {area_triangle(10, 10) = }''') print(f'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(f'''Parallelogram: {area_parallelogram(10, 20) = }''') print(f'''Rhombus: {area_rhombus(10, 20) = }''') print(f'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(f'''Circle: {area_circle(20) = }''') print(f'''Ellipse: {area_ellipse(10, 20) = }''') print("\nSurface Areas of various geometric shapes: \n") print(f'''Cube: {surface_area_cube(20) = }''') print(f'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(f'''Sphere: {surface_area_sphere(20) = }''') print(f'''Hemisphere: {surface_area_hemisphere(20) = }''') print(f'''Cone: {surface_area_cone(10, 20) = }''') print(f'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(f'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(f'''Torus: {surface_area_torus(20, 10) = }''') print(f'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(f'''Square: {area_reg_polygon(4, 10) = }''') print(f'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
90
0
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig snake_case__ = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } snake_case__ = logging.get_logger(__name__) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'maskformer' _lowerCAmelCase = {'hidden_size': 'mask_feature_size'} _lowerCAmelCase = ['resnet', 'swin'] _lowerCAmelCase = ['detr'] def __init__( self : Optional[int] , _lowerCamelCase : int = 256 , _lowerCamelCase : int = 256 , _lowerCamelCase : float = 0.1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[Dict] = None , _lowerCamelCase : Optional[Dict] = None , _lowerCamelCase : float = 0.02 , _lowerCamelCase : float = 1.0 , _lowerCamelCase : float = 1.0 , _lowerCamelCase : float = 1.0 , _lowerCamelCase : float = 20.0 , _lowerCamelCase : Optional[bool] = None , **_lowerCamelCase : Optional[int] , ): """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k A_ : List[Any] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : Union[str, Any] = backbone_config.pop('''model_type''' ) A_ : Dict = CONFIG_MAPPING[backbone_model_type] A_ : Any = config_class.from_dict(_lowerCamelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' f'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 A_ : List[Any] = DetrConfig() else: # verify that the decoder is supported A_ : Optional[int] = ( decoder_config.pop('''model_type''' ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'Transformer Decoder {decoder_type} not supported, please use one of' f' {",".join(self.decoders_supported )}' ) if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : Any = CONFIG_MAPPING[decoder_type] A_ : str = config_class.from_dict(_lowerCamelCase ) A_ : Any = backbone_config A_ : List[str] = decoder_config # main feature dimension for the model A_ : Union[str, Any] = fpn_feature_size A_ : Dict = mask_feature_size # initializer A_ : str = init_std A_ : List[str] = init_xavier_std # Hungarian matcher && loss A_ : Union[str, Any] = cross_entropy_weight A_ : Dict = dice_weight A_ : Union[str, Any] = mask_weight A_ : Optional[Any] = use_auxiliary_loss A_ : Optional[int] = no_object_weight A_ : Any = output_auxiliary_logits A_ : Optional[int] = self.decoder_config.encoder_attention_heads A_ : Any = self.decoder_config.num_hidden_layers super().__init__(**_lowerCamelCase ) @classmethod def _a ( cls : Any , _lowerCamelCase : PretrainedConfig , _lowerCamelCase : PretrainedConfig , **_lowerCamelCase : Optional[Any] ): """simple docstring""" return cls( backbone_config=_lowerCamelCase , decoder_config=_lowerCamelCase , **_lowerCamelCase , ) def _a ( self : int ): """simple docstring""" A_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) A_ : int = self.backbone_config.to_dict() A_ : Optional[Any] = self.decoder_config.to_dict() A_ : List[str] = self.__class__.model_type return output
4
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline snake_case__ = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ (datasets.BuilderConfig ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = "utf-8" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = True # deprecated _lowerCAmelCase = None # deprecated _lowerCAmelCase = 1_0 << 2_0 # 10MB _lowerCAmelCase = None class UpperCamelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" _lowerCAmelCase = JsonConfig def _a ( self : int ): """simple docstring""" if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) A_ : List[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _a ( self : Any , _lowerCamelCase : List[str] ): """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) A_ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): A_ : Union[str, Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[str] = [files] A_ : List[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A_ : Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : int = [files] A_ : Union[str, Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def _a ( self : int , _lowerCamelCase : pa.Table ): """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): A_ : Optional[int] = self.config.features.arrow_schema.field(_lowerCamelCase ).type A_ : Optional[int] = pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A_ : str = table_cast(_lowerCamelCase , self.config.features.arrow_schema ) return pa_table def _a ( self : List[str] , _lowerCamelCase : int ): """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : int = json.load(_lowerCamelCase ) # We keep only the field we are interested in A_ : List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCamelCase , (list, tuple) ): A_ : int = set().union(*[row.keys() for row in dataset] ) A_ : List[str] = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} else: A_ : Tuple = dataset A_ : Dict = pa.Table.from_pydict(_lowerCamelCase ) yield file_idx, self._cast_table(_lowerCamelCase ) # If the file has one json object per line else: with open(_lowerCamelCase , '''rb''' ) as f: A_ : int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A_ : int = max(self.config.chunksize // 32 , 16 << 10 ) A_ : int = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A_ : Any = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A_ : Optional[Any] = batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode('''utf-8''' ) try: while True: try: A_ : List[Any] = paj.read_json( io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCamelCase ) or block_size > len(_lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'Batch of {len(_lowerCamelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : Optional[Any] = json.load(_lowerCamelCase ) except json.JSONDecodeError: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON try: A_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) A_ : Tuple = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} A_ : int = pa.Table.from_pydict(_lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError(f'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(_lowerCamelCase ) break else: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError( f'Not able to read records in the JSON file at {file}. ' f'You should probably indicate the field of the JSON file containing your records. ' f'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' f'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) batch_idx += 1
4
1
"""simple docstring""" def _A ( UpperCamelCase_ : Any) -> List[str]: '''simple docstring''' __lowercase ,__lowercase = [], [] while len(UpperCamelCase_) > 1: __lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_) start.append(UpperCamelCase_) end.append(UpperCamelCase_) collection.remove(UpperCamelCase_) collection.remove(UpperCamelCase_) end.reverse() return start + collection + end if __name__ == "__main__": _a = input('Enter numbers separated by a comma:\n').strip() _a = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
17
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Dict = filter(lambda __lowerCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase : Optional[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCamelCase__ = logging.getLogger(__name__) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if metric == "rouge2": _UpperCAmelCase : List[str] = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _UpperCAmelCase : int = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _UpperCAmelCase : str = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": _UpperCAmelCase : List[Any] = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) _UpperCAmelCase : Any = ModelCheckpoint( dirpath=__lowerCAmelCase , filename=__lowerCAmelCase , monitor=F"""val_{metric}""" , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return EarlyStopping( monitor=F"""val_{metric}""" , mode="min" if "loss" in metric else "max" , patience=__lowerCAmelCase , verbose=__lowerCAmelCase , ) class lowerCAmelCase__ ( pl.Callback ): def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = {F"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCamelCase__ ) @rank_zero_only def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : pl.LightningModule , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any]=True ) ->None: '''simple docstring''' logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _UpperCAmelCase : str = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _UpperCAmelCase : Any = Path(pl_module.hparams.output_dir ) if type_path == "test": _UpperCAmelCase : List[Any] = od / "test_results.txt" _UpperCAmelCase : Union[str, Any] = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase : Optional[Any] = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" _UpperCAmelCase : Dict = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowerCamelCase__ ) generations_file.parent.mkdir(exist_ok=lowerCamelCase__ ) with open(lowerCamelCase__ , "a+" ) as writer: for key in sorted(lowerCamelCase__ ): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase : Dict = metrics[key] if isinstance(lowerCamelCase__ , torch.Tensor ): _UpperCAmelCase : Tuple = val.item() _UpperCAmelCase : str = F"""{key}: {val:.6f}\n""" writer.write(lowerCamelCase__ ) if not save_generations: return if "preds" in metrics: _UpperCAmelCase : Optional[int] = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(lowerCamelCase__ ) @rank_zero_only def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) ->Any: '''simple docstring''' try: _UpperCAmelCase : Tuple = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase : int = pl_module.model.num_parameters() _UpperCAmelCase : int = count_trainable_parameters(lowerCamelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : pl.LightningModule ) ->int: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCamelCase__ , lowerCamelCase__ , "test" ) @rank_zero_only def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
234
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor UpperCAmelCase : Dict = logging.get_logger(__name__) class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : int , *UpperCamelCase : Any , **UpperCamelCase : List[str] ): '''simple docstring''' warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
320
"""simple docstring""" from collections.abc import Sequence def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCamelCase ) ) def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' __UpperCAmelCase : Dict = 0.0 for coeff in reversed(_UpperCamelCase ): __UpperCAmelCase : Any = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase : str = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
320
1
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : str,lowercase_ : NestedDataStructureLike[PathLike],lowercase_ : Optional[NamedSplit] = None,lowercase_ : Optional[Features] = None,lowercase_ : str = None,lowercase_ : bool = False,lowercase_ : bool = False,lowercase_ : Optional[str] = None,lowercase_ : Optional[int] = None,**lowercase_ : int,)-> Any: '''simple docstring''' super().__init__( lowercase_,split=lowercase_,features=lowercase_,cache_dir=lowercase_,keep_in_memory=lowercase_,streaming=lowercase_,num_proc=lowercase_,**lowercase_,) A__ = field A__ = path_or_paths if isinstance(lowercase_,lowercase_ ) else {self.split: path_or_paths} A__ = Json( cache_dir=lowercase_,data_files=lowercase_,features=lowercase_,field=lowercase_,**lowercase_,) def snake_case__ ( self : Any )-> str: '''simple docstring''' if self.streaming: A__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A__ = None A__ = None A__ = None A__ = None self.builder.download_and_prepare( download_config=lowercase_,download_mode=lowercase_,verification_mode=lowercase_,base_path=lowercase_,num_proc=self.num_proc,) A__ = self.builder.as_dataset( split=self.split,verification_mode=lowercase_,in_memory=self.keep_in_memory ) return dataset class A : """simple docstring""" def __init__( self : Tuple,lowercase_ : Dataset,lowercase_ : Union[PathLike, BinaryIO],lowercase_ : Optional[int] = None,lowercase_ : Optional[int] = None,**lowercase_ : Tuple,)-> Union[str, Any]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) A__ = dataset A__ = path_or_buf A__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A__ = num_proc A__ = 'utf-8' A__ = to_json_kwargs def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' A__ = self.to_json_kwargs.pop('path_or_buf',lowercase_ ) A__ = self.to_json_kwargs.pop('orient','records' ) A__ = self.to_json_kwargs.pop('lines',True if orient == 'records' else False ) A__ = self.to_json_kwargs.pop('index',False if orient in ['split', 'table'] else True ) A__ = self.to_json_kwargs.pop('compression',lowercase_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf,(str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf,'wb',compression=lowercase_ ) as buffer: A__ = self._write(file_obj=lowercase_,orient=lowercase_,lines=lowercase_,index=lowercase_,**self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' ' was passed. Please provide a local path instead.' ) A__ = self._write( file_obj=self.path_or_buf,orient=lowercase_,lines=lowercase_,index=lowercase_,**self.to_json_kwargs ) return written def snake_case__ ( self : List[Any],lowercase_ : int )-> Dict: '''simple docstring''' A__ , A__ , A__ , A__ , A__ = args A__ = query_table( table=self.dataset.data,key=slice(lowercase_,offset + self.batch_size ),indices=self.dataset._indices,) A__ = batch.to_pandas().to_json( path_or_buf=lowercase_,orient=lowercase_,lines=lowercase_,index=lowercase_,**lowercase_ ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def snake_case__ ( self : Any,lowercase_ : BinaryIO,lowercase_ : Optional[Any],lowercase_ : Optional[int],lowercase_ : Optional[Any],**lowercase_ : Optional[Any],)-> int: '''simple docstring''' A__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0,len(self.dataset ),self.batch_size ),unit='ba',disable=not logging.is_progress_bar_enabled(),desc='Creating json from Arrow format',): A__ = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowercase_ ) else: A__ , A__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json,[(offset, orient, lines, index, to_json_kwargs) for offset in range(0,lowercase_,lowercase_ )],),total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size,unit='ba',disable=not logging.is_progress_bar_enabled(),desc='Creating json from Arrow format',): written += file_obj.write(lowercase_ ) return written
7
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a =[False] * len(_snake_case ) __a =[-1] * len(_snake_case ) def dfs(_snake_case : Dict , _snake_case : Any ): __a =True __a =c for u in graph[v]: if not visited[u]: dfs(_snake_case , 1 - c ) for i in range(len(_snake_case ) ): if not visited[i]: dfs(_snake_case , 0 ) for i in range(len(_snake_case ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _lowerCAmelCase : int = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
218
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
217
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Union[List[PIL.Image.Image], np.ndarray] a : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
217
1
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig A__ : List[str] ={ '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } A__ : List[str] =logging.get_logger(__name__) class UpperCAmelCase ( snake_case_ ): _lowercase: Tuple = '''maskformer''' _lowercase: List[Any] = {'''hidden_size''': '''mask_feature_size'''} _lowercase: List[str] = ['''resnet''', '''swin'''] _lowercase: int = ['''detr'''] def __init__( self : List[str] , __snake_case : int = 2_56 , __snake_case : int = 2_56 , __snake_case : float = 0.1 , __snake_case : bool = False , __snake_case : Optional[Dict] = None , __snake_case : Optional[Dict] = None , __snake_case : float = 0.02 , __snake_case : float = 1.0 , __snake_case : float = 1.0 , __snake_case : float = 1.0 , __snake_case : float = 20.0 , __snake_case : Optional[bool] = None , **__snake_case : List[Any] , ) -> int: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _lowerCAmelCase = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__snake_case , __snake_case ): _lowerCAmelCase = backbone_config.pop("""model_type""" ) _lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase = config_class.from_dict(__snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " f"Supported model types: {','.join(self.backbones_supported )}" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _lowerCAmelCase = DetrConfig() else: # verify that the decoder is supported _lowerCAmelCase = ( decoder_config.pop("""model_type""" ) if isinstance(__snake_case , __snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"Transformer Decoder {decoder_type} not supported, please use one of" f" {','.join(self.decoders_supported )}" ) if isinstance(__snake_case , __snake_case ): _lowerCAmelCase = CONFIG_MAPPING[decoder_type] _lowerCAmelCase = config_class.from_dict(__snake_case ) _lowerCAmelCase = backbone_config _lowerCAmelCase = decoder_config # main feature dimension for the model _lowerCAmelCase = fpn_feature_size _lowerCAmelCase = mask_feature_size # initializer _lowerCAmelCase = init_std _lowerCAmelCase = init_xavier_std # Hungarian matcher && loss _lowerCAmelCase = cross_entropy_weight _lowerCAmelCase = dice_weight _lowerCAmelCase = mask_weight _lowerCAmelCase = use_auxiliary_loss _lowerCAmelCase = no_object_weight _lowerCAmelCase = output_auxiliary_logits _lowerCAmelCase = self.decoder_config.encoder_attention_heads _lowerCAmelCase = self.decoder_config.num_hidden_layers super().__init__(**__snake_case ) @classmethod def lowercase__ ( cls : Optional[int] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : int ) -> Union[str, Any]: return cls( backbone_config=__snake_case , decoder_config=__snake_case , **__snake_case , ) def lowercase__ ( self : Union[str, Any] ) -> Dict[str, any]: _lowerCAmelCase = copy.deepcopy(self.__dict__ ) _lowerCAmelCase = self.backbone_config.to_dict() _lowerCAmelCase = self.decoder_config.to_dict() _lowerCAmelCase = self.__class__.model_type return output
70
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : List[Any] =logging.get_logger(__name__) a__ : List[Any] ={ '''BAAI/AltCLIP''': '''https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json''', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple ="altclip_text_model" def __init__( self : str , __A : List[Any]=2_5_0_0_0_2 , __A : Any=1_0_2_4 , __A : int=2_4 , __A : Dict=1_6 , __A : Optional[Any]=4_0_9_6 , __A : Union[str, Any]="gelu" , __A : Dict=0.1 , __A : Dict=0.1 , __A : List[str]=5_1_4 , __A : Optional[int]=1 , __A : int=0.02 , __A : Optional[Any]=0.02 , __A : Optional[Any]=1e-05 , __A : Dict=1 , __A : List[Any]=0 , __A : int=2 , __A : Tuple="absolute" , __A : Optional[Any]=True , __A : Optional[int]=7_6_8 , **__A : List[str] , ): super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = initializer_factor __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = project_dim class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple ="altclip_vision_model" def __init__( self : List[Any] , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=3_0_7_2 , __A : Optional[Any]=5_1_2 , __A : Tuple=1_2 , __A : Union[str, Any]=1_2 , __A : Optional[int]=3 , __A : Dict=2_2_4 , __A : Tuple=3_2 , __A : str="quick_gelu" , __A : Dict=1e-5 , __A : Optional[int]=0.0 , __A : List[Any]=0.02 , __A : int=1.0 , **__A : Optional[int] , ): super().__init__(**__A ) __UpperCamelCase = hidden_size __UpperCamelCase = intermediate_size __UpperCamelCase = projection_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = num_channels __UpperCamelCase = patch_size __UpperCamelCase = image_size __UpperCamelCase = initializer_range __UpperCamelCase = initializer_factor __UpperCamelCase = attention_dropout __UpperCamelCase = layer_norm_eps __UpperCamelCase = hidden_act @classmethod def _lowerCamelCase ( cls : Optional[Any] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ): cls._set_token_in_kwargs(__A ) __UpperCamelCase , __UpperCamelCase = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('model_type' ) == "altclip": __UpperCamelCase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] ="altclip" SCREAMING_SNAKE_CASE_ : Optional[int] =True def __init__( self : Any , __A : List[str]=None , __A : List[Any]=None , __A : List[str]=7_6_8 , __A : List[str]=2.6592 , **__A : Dict ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). __UpperCamelCase = kwargs.pop('text_config_dict' , __A ) __UpperCamelCase = kwargs.pop('vision_config_dict' , __A ) super().__init__(**__A ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: __UpperCamelCase = {} # This is the complete result when using `text_config_dict`. __UpperCamelCase = AltCLIPTextConfig(**__A ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: __UpperCamelCase = ( f'''`{key}` is found in both `text_config_dict` and `text_config` but with different values. ''' f'''The value `text_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: __UpperCamelCase = ( f'''`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ''' f'''value `text_config["{key}"]` will be overriden.''' ) logger.warning(__A ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: __UpperCamelCase = {} # This is the complete result when using `vision_config_dict`. __UpperCamelCase = AltCLIPVisionConfig(**__A ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: __UpperCamelCase = { str(__A ): value for key, value in _vision_config_dict['id2label'].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: __UpperCamelCase = ( f'''`{key}` is found in both `vision_config_dict` and `vision_config` but with different ''' f'''values. The value `vision_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: __UpperCamelCase = ( f'''`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ''' f'''The value `vision_config["{key}"]` will be overriden.''' ) logger.warning(__A ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: __UpperCamelCase = {} logger.info('`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.' ) if vision_config is None: __UpperCamelCase = {} logger.info('`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.' ) __UpperCamelCase = AltCLIPTextConfig(**__A ) __UpperCamelCase = AltCLIPVisionConfig(**__A ) __UpperCamelCase = projection_dim __UpperCamelCase = logit_scale_init_value __UpperCamelCase = 1.0 @classmethod def _lowerCamelCase ( cls : Union[str, Any] , __A : AltCLIPTextConfig , __A : AltCLIPVisionConfig , **__A : Optional[Any] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__A ) def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.text_config.to_dict() __UpperCamelCase = self.vision_config.to_dict() __UpperCamelCase = self.__class__.model_type return output
53
0
import heapq def lowerCAmelCase__ ( lowerCamelCase_ : dict): '''simple docstring''' lowerCAmelCase__ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase_ ,[-1 * len(lowerCamelCase_), (key, value)]) # chosen_vertices = set of chosen vertices lowerCAmelCase__ : int = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowerCAmelCase__ : str = heapq.heappop(lowerCamelCase_)[1][0] chosen_vertices.add(lowerCamelCase_) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowerCAmelCase__ : Optional[int] = elem[1][1].index(lowerCamelCase_) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase_) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __snake_case : List[str] ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
94
def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : int): '''simple docstring''' while b: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = b, a % b return a def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : int): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase_ ,a % b) def lowerCAmelCase__ ( ): '''simple docstring''' print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 ,5)}""") print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 ,3)}""") print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 ,3)}""") print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 ,6)}""") print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 ,3)}""") print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 ,5)}""") print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 ,3)}""") print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 ,3)}""") print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 ,6)}""") print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 ,3)}""") if __name__ == "__main__": main()
94
1
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __snake_case ={ """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Any = '''maskformer''' lowerCamelCase : List[Any] = {'''hidden_size''': '''mask_feature_size'''} lowerCamelCase : Tuple = ['''resnet''', '''swin'''] lowerCamelCase : Any = ['''detr'''] def __init__( self : Optional[Any] , UpperCAmelCase__ : int = 2_5_6 , UpperCAmelCase__ : int = 2_5_6 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[Dict] = None , UpperCAmelCase__ : Optional[Dict] = None , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : float = 1.0 , UpperCAmelCase__ : float = 1.0 , UpperCAmelCase__ : float = 1.0 , UpperCAmelCase__ : float = 20.0 , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Tuple , ) -> Tuple: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowerCAmelCase = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = backbone_config.pop('model_type' ) lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase = config_class.from_dict(UpperCAmelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' F'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowerCAmelCase = DetrConfig() else: # verify that the decoder is supported lowerCAmelCase = ( decoder_config.pop('model_type' ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'''Transformer Decoder {decoder_type} not supported, please use one of''' F''' {','.join(self.decoders_supported )}''' ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = CONFIG_MAPPING[decoder_type] lowerCAmelCase = config_class.from_dict(UpperCAmelCase__ ) lowerCAmelCase = backbone_config lowerCAmelCase = decoder_config # main feature dimension for the model lowerCAmelCase = fpn_feature_size lowerCAmelCase = mask_feature_size # initializer lowerCAmelCase = init_std lowerCAmelCase = init_xavier_std # Hungarian matcher && loss lowerCAmelCase = cross_entropy_weight lowerCAmelCase = dice_weight lowerCAmelCase = mask_weight lowerCAmelCase = use_auxiliary_loss lowerCAmelCase = no_object_weight lowerCAmelCase = output_auxiliary_logits lowerCAmelCase = self.decoder_config.encoder_attention_heads lowerCAmelCase = self.decoder_config.num_hidden_layers super().__init__(**UpperCAmelCase__ ) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : str ) -> str: return cls( backbone_config=UpperCAmelCase__ , decoder_config=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __UpperCAmelCase ( self : List[str] ) -> Dict[str, any]: lowerCAmelCase = copy.deepcopy(self.__dict__ ) lowerCAmelCase = self.backbone_config.to_dict() lowerCAmelCase = self.decoder_config.to_dict() lowerCAmelCase = self.__class__.model_type return output
4
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __snake_case ="""\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ __snake_case ="""\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ __snake_case =""" Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : Tuple ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=False ) -> int: lowerCAmelCase = compute_bleu( reference_corpus=UpperCAmelCase__ , translation_corpus=UpperCAmelCase__ , max_order=UpperCAmelCase__ , smooth=UpperCAmelCase__ ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
4
1
'''simple docstring''' def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if b == 0: return 1 if (b % 2) == 0: return actual_power(__UpperCAmelCase , int(b / 2 ) ) * actual_power(__UpperCAmelCase , int(b / 2 ) ) else: return a * actual_power(__UpperCAmelCase , int(b / 2 ) ) * actual_power(__UpperCAmelCase , int(b / 2 ) ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if b < 0: return 1 / actual_power(__UpperCAmelCase , __UpperCAmelCase ) return actual_power(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
356
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase : def __init__(self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=128 , lowercase=32 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): A_ : Union[str, Any] = parent A_ : Optional[int] = batch_size A_ : Any = seq_length A_ : int = is_training A_ : List[str] = use_input_mask A_ : Any = use_token_type_ids A_ : List[Any] = use_labels A_ : Dict = vocab_size A_ : Optional[int] = hidden_size A_ : int = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Dict = intermediate_size A_ : List[str] = hidden_act A_ : List[str] = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : List[Any] = type_sequence_label_size A_ : Tuple = initializer_range A_ : List[Any] = num_labels A_ : str = num_choices A_ : Tuple = scope def _a (self ): A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Tuple = None if self.use_input_mask: A_ : str = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Any = None if self.use_token_type_ids: A_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Dict = None A_ : Any = None A_ : List[Any] = None if self.use_labels: A_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : int = ids_tensor([self.batch_size] , self.num_choices ) A_ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a (self ): return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) def _a (self ): ( ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ) : Union[str, Any] = self.prepare_config_and_inputs() A_ : Union[str, Any] = True A_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : Union[str, Any] = NezhaModel(config=lowercase ) model.to(lowercase ) model.eval() A_ : int = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) A_ : Optional[Any] = model(lowercase , token_type_ids=lowercase ) A_ : str = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): A_ : Optional[int] = True A_ : Optional[Any] = NezhaModel(lowercase ) model.to(lowercase ) model.eval() A_ : Optional[int] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , encoder_hidden_states=lowercase , encoder_attention_mask=lowercase , ) A_ : str = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , encoder_hidden_states=lowercase , ) A_ : Tuple = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : Optional[Any] = NezhaForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() A_ : List[str] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : Tuple = NezhaForNextSentencePrediction(config=lowercase ) model.to(lowercase ) model.eval() A_ : Union[str, Any] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : int = NezhaForPreTraining(config=lowercase ) model.to(lowercase ) model.eval() A_ : str = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , next_sentence_label=lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : Any = NezhaForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() A_ : Optional[int] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : Optional[Any] = self.num_labels A_ : int = NezhaForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() A_ : List[Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : List[str] = self.num_labels A_ : Optional[int] = NezhaForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() A_ : int = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : int = self.num_choices A_ : int = NezhaForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() A_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : Optional[int] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a (self ): A_ : Tuple = self.prepare_config_and_inputs() ( ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ) : int = config_and_inputs A_ : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : str = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : List[Any] = True def _a (self , lowercase , lowercase , lowercase=False ): A_ : Optional[Any] = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class in get_values(lowercase ): A_ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase ) A_ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def _a (self ): A_ : Optional[int] = NezhaModelTester(self ) A_ : Any = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def _a (self ): self.config_tester.run_common_tests() def _a (self ): A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def _a (self ): A_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase ) def _a (self ): # This regression test was failing with PyTorch < 1.3 ( ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ) : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() A_ : str = None self.model_tester.create_and_check_model_as_decoder( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) def _a (self ): A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def _a (self ): A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase ) def _a (self ): A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase ) def _a (self ): A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase ) def _a (self ): A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase ) def _a (self ): A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase ) def _a (self ): A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def _a (self ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Any = NezhaModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @slow @require_torch_gpu def _a (self ): A_, A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return A_ : Optional[int] = True A_ : str = model_class(config=lowercase ) A_ : str = self._prepare_for_class(lowercase , lowercase ) A_ : Tuple = torch.jit.trace( lowercase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase , os.path.join(lowercase , """bert.pt""" ) ) A_ : List[str] = torch.jit.load(os.path.join(lowercase , """bert.pt""" ) , map_location=lowercase ) loaded(inputs_dict["""input_ids"""].to(lowercase ) , inputs_dict["""attention_mask"""].to(lowercase ) ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): @slow def _a (self ): A_ : Dict = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) A_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A_ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A_ : Optional[int] = model(lowercase , attention_mask=lowercase )[0] A_ : Optional[int] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , lowercase ) A_ : List[Any] = torch.tensor([[[0.06_85, 0.24_41, 0.11_02], [0.06_00, 0.19_06, 0.13_49], [0.02_21, 0.08_19, 0.05_86]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) ) @slow def _a (self ): A_ : str = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) A_ : Union[str, Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A_ : str = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A_ : Tuple = model(lowercase , attention_mask=lowercase )[0] A_ : str = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape , lowercase ) A_ : List[Any] = torch.tensor( [[-2.79_39, -1.79_02, -2.21_89], [-2.85_85, -1.89_08, -2.37_23], [-2.64_99, -1.77_50, -2.25_58]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) )
135
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
320
"""simple docstring""" from __future__ import annotations def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ): """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
320
1
"""simple docstring""" import os def lowerCamelCase (a_ :List[str]) -> int: lowercase :int = len(grid[0]) lowercase :Dict = len(a_) lowercase :List[str] = 0 lowercase :List[str] = 0 lowercase :Optional[int] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(a_): for j in range(n_rows - 3): lowercase :Tuple = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowercase :int = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowercase :List[str] = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowercase :List[Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowercase :Any = max( a_ , a_ , a_ , a_) if max_product > largest: lowercase :str = max_product return largest def lowerCamelCase () -> List[str]: lowercase :Dict = [] with open(os.path.dirname(a_) + '''/grid.txt''') as file: for line in file: grid.append(line.strip('''\n''').split(''' ''')) lowercase :Any = [[int(a_) for i in grid[j]] for j in range(len(a_))] return largest_product(a_) if __name__ == "__main__": print(solution())
172
"""simple docstring""" def lowerCamelCase (a_ :list , a_ :list , a_ :int , a_ :int , a_ :int) -> int: if index == number_of_items: return 0 lowercase :Optional[int] = 0 lowercase :str = 0 lowercase :List[str] = knapsack(a_ , a_ , a_ , a_ , index + 1) if weights[index] <= max_weight: lowercase :Any = values[index] + knapsack( a_ , a_ , a_ , max_weight - weights[index] , index + 1) return max(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
172
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class snake_case ( unittest.TestCase ): @slow def lowercase_ ( self : Any)-> List[str]: '''simple docstring''' __lowerCAmelCase: Tuple = FlaxXLMRobertaModel.from_pretrained("xlm-roberta-base") __lowerCAmelCase: Optional[Any] = AutoTokenizer.from_pretrained("xlm-roberta-base") __lowerCAmelCase: int = "The dog is cute and lives in the garden house" __lowerCAmelCase: Union[str, Any] = jnp.array([tokenizer.encode(UpperCamelCase__)]) __lowerCAmelCase: Union[str, Any] = (1, 1_2, 7_6_8) # batch_size, sequence_length, embedding_vector_dim __lowerCAmelCase: int = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]]) __lowerCAmelCase: str = model(UpperCamelCase__)["last_hidden_state"] self.assertEqual(output.shape , UpperCamelCase__) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCamelCase__ , atol=1e-3))
217
"""simple docstring""" from __future__ import annotations def a__ ( __SCREAMING_SNAKE_CASE ) -> bool: __lowerCAmelCase: Tuple = str(__SCREAMING_SNAKE_CASE ) return len(__SCREAMING_SNAKE_CASE ) == 9 and set(__SCREAMING_SNAKE_CASE ) == set("123456789" ) def a__ ( ) -> int | None: for base_num in range(9_9_9_9 , 4_9_9_9 , -1 ): __lowerCAmelCase: Tuple = 1_0_0_0_0_2 * base_num if is_9_pandigital(__SCREAMING_SNAKE_CASE ): return candidate for base_num in range(3_3_3 , 9_9 , -1 ): __lowerCAmelCase: int = 1_0_0_2_0_0_3 * base_num if is_9_pandigital(__SCREAMING_SNAKE_CASE ): return candidate return None if __name__ == "__main__": print(F'''{solution() = }''')
217
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
361
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : List[str] = {"""tokenizer_file""": """tokenizer.json"""} _lowercase : Optional[Any] = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = VOCAB_FILES_NAMES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = ["input_ids", "attention_mask"] __magic_name__ : Optional[int] = None def __init__( self : List[Any] , lowerCAmelCase : str=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : int="<s>" , lowerCAmelCase : Dict="</s>" , lowerCAmelCase : Union[str, Any]="<pad>" , lowerCAmelCase : int=False , lowerCAmelCase : Optional[int]=False , **lowerCAmelCase : Optional[int] , )-> Union[str, Any]: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase ) != add_prefix_space: UpperCAmelCase = getattr(lowerCAmelCase , pre_tok_state.pop('''type''' ) ) UpperCAmelCase = add_prefix_space UpperCAmelCase = pre_tok_class(**lowerCAmelCase ) UpperCAmelCase = add_prefix_space def a__( self : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str] )-> BatchEncoding: """simple docstring""" UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any] )-> BatchEncoding: """simple docstring""" UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def a__( self : List[Any] , lowerCAmelCase : "Conversation" )-> List[int]: """simple docstring""" UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [self.eos_token_id] ) if len(lowerCAmelCase ) > self.model_max_length: UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
91
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging a_ = logging.get_logger(__name__) def __lowercase ( snake_case_ : Union[tf.Tensor, np.ndarray] ) ->Optional[int]: '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE ,np.ndarray ): return list(tensor.shape ) __A : str = tf.shape(__SCREAMING_SNAKE_CASE ) if tensor.shape == tf.TensorShape(__SCREAMING_SNAKE_CASE ): return dynamic __A : Dict = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__SCREAMING_SNAKE_CASE )] def __lowercase ( snake_case_ : tf.Tensor ,snake_case_ : Optional[int] = None ,snake_case_ : Optional[str] = None ) ->List[Any]: '''simple docstring''' return tf.nn.softmax(logits=logits + 1e-9 ,axis=__SCREAMING_SNAKE_CASE ,name=__SCREAMING_SNAKE_CASE ) def __lowercase ( snake_case_ : str ,snake_case_ : Any ,snake_case_ : int ,snake_case_ : Optional[Any]=1e-5 ,snake_case_ : Dict=-1 ) ->Union[str, Any]: '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized __A : Any = tf.nn.moments(__SCREAMING_SNAKE_CASE ,axes=[axis] ,keepdims=__SCREAMING_SNAKE_CASE ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __A : Union[str, Any] = [1] * inputs.shape.rank __A : Dict = shape_list(__SCREAMING_SNAKE_CASE )[axis] __A : List[Any] = tf.reshape(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) __A : str = tf.reshape(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) # Compute layer normalization using the batch_normalization # function. __A : List[Any] = tf.nn.batch_normalization( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,offset=__SCREAMING_SNAKE_CASE ,scale=__SCREAMING_SNAKE_CASE ,variance_epsilon=__SCREAMING_SNAKE_CASE ,) return outputs def __lowercase ( snake_case_ : int ,snake_case_ : int=0 ,snake_case_ : List[str]=-1 ) ->Tuple: '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __A : int = tf.shape(__SCREAMING_SNAKE_CASE ) __A : List[str] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __A : List[Any] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] ,axis=0 ) return tf.reshape(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) def __lowercase ( snake_case_ : tf.Tensor ) ->List[str]: '''simple docstring''' if not isinstance(__SCREAMING_SNAKE_CASE ,tf.Tensor ): __A : str = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __A : Optional[int] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __A : Optional[int] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __A : Dict = ( tf.cast(1 ,encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __lowercase ( snake_case_ : tf.Tensor ,snake_case_ : int ,snake_case_ : str = "input_ids" ) ->List[Any]: '''simple docstring''' tf.debugging.assert_less( __SCREAMING_SNAKE_CASE ,tf.cast(__SCREAMING_SNAKE_CASE ,dtype=tensor.dtype ) ,message=( F"""The maximum value of {tensor_name} ({tf.math.reduce_max(__SCREAMING_SNAKE_CASE )}) must be smaller than the embedding """ F"""layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) ,) def __lowercase ( snake_case_ : Dict ,snake_case_ : Union[str, Any] ,snake_case_ : List[str] ) ->Optional[Any]: '''simple docstring''' __A : List[str] = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __A : List[str] = [x for x in data if len(__SCREAMING_SNAKE_CASE ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ F"""bytes: {bad_attributes}""" ) __A : Dict = np.asarray(__SCREAMING_SNAKE_CASE ) __A : Tuple = 1 __A : Optional[Any] = np.array_split(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __A : Optional[int] = np.array_split(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__SCREAMING_SNAKE_CASE ): __A : Tuple = chunk_data else: __A : int = data def __lowercase ( snake_case_ : Dict ,snake_case_ : List[str] ) ->List[str]: '''simple docstring''' if name in group.attrs: __A : List[Any] = [n.decode('''utf8''' ) if hasattr(__SCREAMING_SNAKE_CASE ,'''decode''' ) else n for n in group.attrs[name]] else: __A : Dict = [] __A : Dict = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(__SCREAMING_SNAKE_CASE ,'''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def __lowercase ( snake_case_ : Tuple ) ->Any: '''simple docstring''' def _expand_single_ad_tensor(snake_case_ : Any ): if isinstance(__SCREAMING_SNAKE_CASE ,tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__SCREAMING_SNAKE_CASE ,axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor ,__SCREAMING_SNAKE_CASE )
179
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : List[str] = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''pix2struct_text_model''' lowerCAmelCase_ = ['''past_key_values'''] lowerCAmelCase_ = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , __SCREAMING_SNAKE_CASE=5_02_44 , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=20_48 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=1_28 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1E-6 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE="gelu_new" , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Any = vocab_size lowercase_ : Tuple = hidden_size lowercase_ : Optional[Any] = d_kv lowercase_ : List[str] = d_ff lowercase_ : List[str] = num_layers lowercase_ : Optional[Any] = num_heads lowercase_ : Union[str, Any] = relative_attention_num_buckets lowercase_ : Optional[int] = relative_attention_max_distance lowercase_ : Union[str, Any] = dropout_rate lowercase_ : Dict = layer_norm_epsilon lowercase_ : Dict = initializer_factor lowercase_ : List[Any] = use_cache lowercase_ : Optional[int] = eos_token_id lowercase_ : Optional[int] = decoder_start_token_id # for backwards compatibility lowercase_ : Any = dense_act_fn super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , tie_word_embeddings=__SCREAMING_SNAKE_CASE , is_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) @classmethod def _snake_case ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : Optional[int] = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": lowercase_ : List[Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''pix2struct_vision_model''' def __init__( self , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=20_48 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE="gelu_new" , __SCREAMING_SNAKE_CASE=1E-6 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=1E-1_0 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=40_96 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=1_28 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = hidden_size lowercase_ : Any = patch_embed_hidden_size lowercase_ : List[Any] = d_ff lowercase_ : Dict = dropout_rate lowercase_ : Any = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : int = initializer_range lowercase_ : Dict = initializer_factor lowercase_ : Dict = attention_dropout lowercase_ : Optional[Any] = layer_norm_eps lowercase_ : str = dense_act_fn lowercase_ : Dict = seq_len lowercase_ : List[Any] = relative_attention_num_buckets lowercase_ : int = relative_attention_max_distance lowercase_ : Optional[int] = d_kv @classmethod def _snake_case ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : str = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": lowercase_ : Optional[int] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''pix2struct''' lowerCAmelCase_ = True def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(tie_word_embeddings=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if text_config is None: lowercase_ : Optional[Any] = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: lowercase_ : Dict = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) lowercase_ : str = PixaStructTextConfig(**__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = PixaStructVisionConfig(**__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = self.text_config.decoder_start_token_id lowercase_ : Union[str, Any] = self.text_config.pad_token_id lowercase_ : Union[str, Any] = self.text_config.eos_token_id lowercase_ : int = initializer_factor lowercase_ : Any = initializer_range lowercase_ : str = self.initializer_range lowercase_ : str = self.initializer_range lowercase_ : int = is_vqa @classmethod def _snake_case ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = copy.deepcopy(self.__dict__ ) lowercase_ : Any = self.text_config.to_dict() lowercase_ : Optional[Any] = self.vision_config.to_dict() lowercase_ : Optional[int] = self.__class__.model_type return output
93
0
"""simple docstring""" UpperCamelCase : Union[str, Any] = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def A ( snake_case :Dict , snake_case :Tuple , snake_case :str , snake_case :Optional[int] ) -> Union[str, Any]: # Return True if there is node that has not iterated. __UpperCamelCase = [False] * len(snake_case ) __UpperCamelCase = [s] __UpperCamelCase = True while queue: __UpperCamelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(snake_case ) __UpperCamelCase = True __UpperCamelCase = u return visited[t] def A ( snake_case :int , snake_case :Any , snake_case :Union[str, Any] ) -> Optional[int]: __UpperCamelCase = [-1] * (len(snake_case )) __UpperCamelCase = 0 __UpperCamelCase = [] __UpperCamelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(snake_case , snake_case , snake_case , snake_case ): __UpperCamelCase = float('Inf' ) __UpperCamelCase = sink while s != source: # Find the minimum value in select path __UpperCamelCase = min(snake_case , graph[parent[s]][s] ) __UpperCamelCase = parent[s] max_flow += path_flow __UpperCamelCase = sink while v != source: __UpperCamelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __UpperCamelCase = parent[v] for i in range(len(snake_case ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
263
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def A ( snake_case :str , snake_case :str = "cpu" , snake_case :Union[str, None] = None ) -> None: __UpperCamelCase = torch.load(snake_case , map_location=snake_case ) for k, v in tqdm(state_dict.items() ): if not isinstance(snake_case , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) __UpperCamelCase = v.half() if save_path is None: # overwrite src_path __UpperCamelCase = src_path torch.save(snake_case , snake_case ) if __name__ == "__main__": fire.Fire(convert)
263
1
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase ) -> Dict: snake_case_ = len(UpperCAmelCase ) snake_case_ = sum(UpperCAmelCase ) snake_case_ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): snake_case_ = True for i in range(1 , s + 1 ): snake_case_ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): snake_case_ = dp[i][j - 1] if arr[i - 1] <= j: snake_case_ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: snake_case_ = s - 2 * j break return diff
69
"""simple docstring""" import re def lowercase_ ( _lowerCamelCase: str ) -> bool: '''simple docstring''' __lowerCamelCase : Union[str, Any] = re.compile( r"^(?:0|94|\+94|0{2}94)" r"7(0|1|2|4|5|6|7|8)" r"(-| |)" r"\d{7}$" ) return bool(re.search(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": __A = '''0094702343221''' print(is_sri_lankan_phone_number(phone))
135
0
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ) -> Optional[int]: if attention_mask is None: lowerCamelCase__ : Optional[int] = tf.cast(tf.math.not_equal(UpperCamelCase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase : UpperCAmelCase__ = OPTConfig UpperCAmelCase__ = {} UpperCAmelCase__ = """gelu""" def __init__( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : str=13 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Any=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : Union[str, Any]=16 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=20 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : Optional[int]=16 , ) -> Tuple: lowerCamelCase__ : str = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : Optional[Any] = seq_length lowerCamelCase__ : Union[str, Any] = is_training lowerCamelCase__ : List[str] = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : int = num_hidden_layers lowerCamelCase__ : Union[str, Any] = num_attention_heads lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : List[str] = eos_token_id lowerCamelCase__ : int = pad_token_id lowerCamelCase__ : List[Any] = bos_token_id lowerCamelCase__ : Optional[Any] = embed_dim lowerCamelCase__ : List[Any] = word_embed_proj_dim lowerCamelCase__ : int = False def A_ ( self : List[str] ) -> Any: lowerCamelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase__ : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase__ : Optional[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase__ : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__lowerCamelCase , **self.config_updates , ) lowerCamelCase__ : List[str] = prepare_opt_inputs_dict(__lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def A_ ( self : Any , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> Union[str, Any]: lowerCamelCase__ : int = TFOPTModel(config=__lowerCamelCase ) lowerCamelCase__ : List[Any] = inputs_dict['input_ids'] lowerCamelCase__ : List[str] = input_ids[:1, :] lowerCamelCase__ : List[str] = inputs_dict['attention_mask'][:1, :] lowerCamelCase__ : Optional[int] = 1 # first forward pass lowerCamelCase__ : Dict = model(__lowerCamelCase , attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase__ : Dict = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase__ : str = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase__ : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] lowerCamelCase__ : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase__ : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1e-3 ) @require_tf class lowerCAmelCase ( UpperCamelCase__, UpperCamelCase__, unittest.TestCase ): UpperCAmelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () UpperCAmelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () UpperCAmelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = 10 def A_ ( self : Optional[int] ) -> List[Any]: lowerCamelCase__ : List[Any] = TFOPTModelTester(self ) lowerCamelCase__ : str = ConfigTester(self , config_class=__lowerCamelCase ) def A_ ( self : Optional[int] ) -> str: self.config_tester.run_common_tests() def A_ ( self : int ) -> str: lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) def A_ ( self : str ) -> int: lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ): if hasattr(__lowerCamelCase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__lowerCamelCase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings lowerCamelCase__ : Union[str, Any] = model_class(config=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = _get_word_embedding_weight(__lowerCamelCase , model.get_input_embeddings() ) lowerCamelCase__ : List[str] = _get_word_embedding_weight(__lowerCamelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__lowerCamelCase ) lowerCamelCase__ : int = _get_word_embedding_weight(__lowerCamelCase , model.get_input_embeddings() ) lowerCamelCase__ : List[Any] = _get_word_embedding_weight(__lowerCamelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCamelCase__ : Dict = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __lowerCamelCase ) # check that weights remain the same after resizing lowerCamelCase__ : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase__ : str = False self.assertTrue(__lowerCamelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase__ : Union[str, Any] = False self.assertTrue(__lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[int]: return tf.constant(UpperCamelCase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase ( unittest.TestCase ): UpperCAmelCase__ = 99 def A_ ( self : Optional[Any] ) -> Optional[Any]: lowerCamelCase__ : List[str] = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCamelCase__ : List[str] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCamelCase__ : Optional[Any] = input_ids.shape[0] lowerCamelCase__ : Optional[int] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase ( unittest.TestCase ): @slow def A_ ( self : Any ) -> Dict: lowerCamelCase__ : str = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCamelCase__ : Optional[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) lowerCamelCase__ : Tuple = tf.not_equal(__lowerCamelCase , model.config.pad_token_id ) with tf.GradientTape(): lowerCamelCase__ : Dict = model(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase ).last_hidden_state lowerCamelCase__ : List[Any] = (1, 11, 512) self.assertEqual(output.shape , __lowerCamelCase ) lowerCamelCase__ : Dict = tf.constant( [[-0.2_8_7_3, -1.9_2_1_8, -0.3_0_3_3], [-1.2_7_1_0, -0.1_3_3_8, -0.1_9_0_2], [0.4_0_9_5, 0.1_2_1_4, -1.3_1_2_1]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __lowerCamelCase , atol=4e-3 ) ) lowerCamelCase__ : Any = tf.function(__lowerCamelCase , jit_compile=__lowerCamelCase ) lowerCamelCase__ : List[Any] = xla_generate(__lowerCamelCase , __lowerCamelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __lowerCamelCase , atol=4e-2 ) ) @require_tf @slow class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : int ) -> str: super().setUp() lowerCamelCase__ : Tuple = 'facebook/opt-350m' def A_ ( self : Optional[int] ) -> Optional[Any]: lowerCamelCase__ : int = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCamelCase__ : str = GPTaTokenizer.from_pretrained(self.path_model ) lowerCamelCase__ : str = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCamelCase__ : Union[str, Any] = tokenizer(__lowerCamelCase , return_tensors='tf' , padding=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) lowerCamelCase__ : Any = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCamelCase__ : Dict = tf.constant( [ [1.3_8_5_1, -1_3.8_9_2_3, -1_0.5_2_2_9, -1_0.7_5_3_3, -0.2_3_0_9, -1_0.2_3_8_4, -0.5_3_6_5, -9.0_9_4_7, -5.1_6_7_0], [-4.7_0_7_3, -1_0.6_2_7_6, -3.9_4_1_5, -2_1.5_2_4_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2], [0.6_2_4_7, -3.4_2_2_9, -8.9_1_7_9, -1.4_2_9_7, -1_4.1_6_5_0, 1.4_1_4_6, -9.0_2_1_8, -0.2_7_0_3, -0.2_7_0_3], [6.4_7_8_3, -1.9_9_1_3, -1_0.7_9_2_6, -2.3_3_3_6, 1.5_0_9_2, -0.9_9_7_4, -6.8_2_1_3, 1.3_4_7_7, 1.3_4_7_7], ] ) self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-4 ) ) lowerCamelCase__ : Dict = tf.function(__lowerCamelCase , jit_compile=__lowerCamelCase ) lowerCamelCase__ : str = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-4 ) ) @require_tf @slow class lowerCAmelCase ( unittest.TestCase ): @property def A_ ( self : Any ) -> List[Any]: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self : Dict ) -> Optional[int]: lowerCamelCase__ : int = 'facebook/opt-125m' lowerCamelCase__ : str = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCamelCase__ : int = [] lowerCamelCase__ : Union[str, Any] = GPTaTokenizer.from_pretrained(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = TFOPTForCausalLM.from_pretrained(__lowerCamelCase ) for prompt in self.prompts: lowerCamelCase__ : Tuple = tokenizer(__lowerCamelCase , return_tensors='tf' ).input_ids lowerCamelCase__ : Tuple = model.generate(__lowerCamelCase , max_length=10 ) lowerCamelCase__ : Dict = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def A_ ( self : List[Any] ) -> str: lowerCamelCase__ : List[Any] = 'facebook/opt-350m' lowerCamelCase__ : Tuple = GPTaTokenizer.from_pretrained(__lowerCamelCase ) lowerCamelCase__ : List[Any] = TFOPTForCausalLM.from_pretrained(__lowerCamelCase ) lowerCamelCase__ : Dict = 'left' # use different length sentences to test batching lowerCamelCase__ : List[Any] = [ 'Hello, my dog is a little', 'Today, I', ] lowerCamelCase__ : List[Any] = tokenizer(__lowerCamelCase , return_tensors='tf' , padding=__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = inputs['input_ids'] lowerCamelCase__ : Tuple = model.generate(input_ids=__lowerCamelCase , attention_mask=inputs['attention_mask'] ) lowerCamelCase__ : Tuple = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCamelCase__ : Optional[int] = model.generate(input_ids=__lowerCamelCase ) lowerCamelCase__ : int = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) lowerCamelCase__ : Tuple = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCamelCase__ : int = model.generate(input_ids=__lowerCamelCase , max_length=model.config.max_length - num_paddings ) lowerCamelCase__ : List[str] = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) lowerCamelCase__ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , [non_padded_sentence, padded_sentence] ) def A_ ( self : Optional[Any] ) -> List[str]: lowerCamelCase__ : Any = 'facebook/opt-350m' lowerCamelCase__ : Tuple = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : Tuple = GPTaTokenizer.from_pretrained(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = TFOPTForCausalLM.from_pretrained(__lowerCamelCase ) for prompt in self.prompts: lowerCamelCase__ : str = tokenizer(__lowerCamelCase , return_tensors='tf' ).input_ids lowerCamelCase__ : List[Any] = model.generate(__lowerCamelCase , max_length=10 ) lowerCamelCase__ : List[str] = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
367
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder _UpperCAmelCase : Any = datasets.utils.logging.get_logger(__name__) class lowerCAmelCase ( folder_based_builder.FolderBasedBuilderConfig ): UpperCAmelCase__ = None UpperCAmelCase__ = None class lowerCAmelCase ( folder_based_builder.FolderBasedBuilder ): UpperCAmelCase__ = datasets.Audio() UpperCAmelCase__ = """audio""" UpperCAmelCase__ = AudioFolderConfig UpperCAmelCase__ = 42 # definition at the bottom of the script UpperCAmelCase__ = AudioClassification(audio_column="""audio""", label_column="""label""" ) _UpperCAmelCase : Union[str, Any] = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] _UpperCAmelCase : Union[str, Any] = AUDIO_EXTENSIONS
45
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : int= logging.get_logger(__name__) _a : Optional[Any]= { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class UpperCamelCase ( lowercase ): UpperCAmelCase : List[Any] = """lilt""" def __init__(self : Dict , _A : Any=3_05_22 , _A : Union[str, Any]=7_68 , _A : Any=12 , _A : Tuple=12 , _A : Optional[int]=30_72 , _A : Tuple="gelu" , _A : str=0.1 , _A : List[Any]=0.1 , _A : Union[str, Any]=5_12 , _A : Any=2 , _A : Tuple=0.02 , _A : List[str]=1E-12 , _A : Optional[int]=0 , _A : Optional[Any]="absolute" , _A : Any=None , _A : List[Any]=4 , _A : Optional[int]=10_24 , **_A : Union[str, Any] , ) -> Tuple: super().__init__(pad_token_id=_A , **_A) __snake_case : Optional[int] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : Any = num_hidden_layers __snake_case : Optional[int] = num_attention_heads __snake_case : Optional[int] = hidden_act __snake_case : List[str] = intermediate_size __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = position_embedding_type __snake_case : Any = classifier_dropout __snake_case : Optional[int] = channel_shrink_ratio __snake_case : Tuple = max_ad_position_embeddings
172
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : def __init__(self : Optional[Any] , _A : Optional[Any] , _A : str=13 , _A : List[Any]=3 , _A : Tuple=True , _A : List[str]=True , _A : Any=0.1 , _A : str=0.1 , _A : Union[str, Any]=2_24 , _A : Dict=10_00 , _A : Optional[int]=[3, 3, 6, 4] , _A : Optional[Any]=[48, 56, 1_12, 2_20] , ) -> List[str]: __snake_case : int = parent __snake_case : str = batch_size __snake_case : int = num_channels __snake_case : Optional[Any] = is_training __snake_case : Tuple = use_labels __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Dict = num_labels __snake_case : Union[str, Any] = image_size __snake_case : int = layer_depths __snake_case : List[str] = embed_dims def _lowercase (self : List[Any]) -> Dict: __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __snake_case : int = None if self.use_labels: __snake_case : Tuple = ids_tensor([self.batch_size] , self.num_labels) __snake_case : Optional[int] = self.get_config() return config, pixel_values, labels def _lowercase (self : Union[str, Any]) -> List[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_A , layer_scale_init_value=1E-5 , ) def _lowercase (self : int , _A : Union[str, Any] , _A : Tuple , _A : List[str]) -> Optional[int]: __snake_case : str = SwiftFormerModel(config=_A) model.to(_A) model.eval() __snake_case : Union[str, Any] = model(_A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7)) def _lowercase (self : Optional[int] , _A : List[str] , _A : Union[str, Any] , _A : Union[str, Any]) -> int: __snake_case : Optional[int] = self.num_labels __snake_case : Dict = SwiftFormerForImageClassification(_A) model.to(_A) model.eval() __snake_case : List[Any] = model(_A , labels=_A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) __snake_case : List[str] = SwiftFormerForImageClassification(_A) model.to(_A) model.eval() __snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __snake_case : Union[str, Any] = model(_A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowercase (self : Optional[int]) -> int: ((__snake_case) , (__snake_case) , (__snake_case)) : List[Any] = self.prepare_config_and_inputs() __snake_case : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase , lowercase , unittest.TestCase ): UpperCAmelCase : Union[str, Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase : Union[str, Any] = ( {"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase : Any = False UpperCAmelCase : Any = False UpperCAmelCase : Tuple = False UpperCAmelCase : Tuple = False UpperCAmelCase : Tuple = False def _lowercase (self : int) -> Optional[int]: __snake_case : Dict = SwiftFormerModelTester(self) __snake_case : List[Any] = ConfigTester( self , config_class=_A , has_text_modality=_A , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _lowercase (self : Dict) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds') def _lowercase (self : Optional[int]) -> Optional[int]: pass def _lowercase (self : Dict) -> Optional[int]: __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(_A) __snake_case : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear)) def _lowercase (self : str) -> Any: __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(_A) __snake_case : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : int = [*signature.parameters.keys()] __snake_case : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A) def _lowercase (self : List[Any]) -> List[str]: __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A) def _lowercase (self : Optional[int]) -> int: __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A) @slow def _lowercase (self : Union[str, Any]) -> Dict: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Dict = SwiftFormerModel.from_pretrained(_A) self.assertIsNotNone(_A) @unittest.skip(reason='SwiftFormer does not output attentions') def _lowercase (self : Dict) -> int: pass def _lowercase (self : Union[str, Any]) -> List[Any]: def check_hidden_states_output(_A : str , _A : int , _A : str): __snake_case : Optional[int] = model_class(_A) model.to(_A) model.eval() with torch.no_grad(): __snake_case : Optional[int] = model(**self._prepare_for_class(_A , _A)) __snake_case : Optional[int] = outputs.hidden_states __snake_case : Any = 8 self.assertEqual(len(_A) , _A) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_A)): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ]) , ) __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = True check_hidden_states_output(_A , _A , _A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Any = True check_hidden_states_output(_A , _A , _A) def _lowercase (self : List[Any]) -> int: def _config_zero_init(_A : Union[str, Any]): __snake_case : Optional[int] = copy.deepcopy(_A) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_A , _A , 1E-10) if isinstance(getattr(_A , _A , _A) , _A): __snake_case : Optional[int] = _config_zero_init(getattr(_A , _A)) setattr(_A , _A , _A) return configs_no_init __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = _config_zero_init(_A) for model_class in self.all_model_classes: __snake_case : Tuple = model_class(config=_A) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def _lowercase (self : List[str]) -> List[Any]: pass def __UpperCAmelCase ( ) -> List[str]: '''simple docstring''' __snake_case : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def _lowercase (self : Dict) -> List[str]: return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs') if is_vision_available() else None @slow def _lowercase (self : Any) -> List[Any]: __snake_case : Any = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs').to(_A) __snake_case : Any = self.default_image_processor __snake_case : Optional[int] = prepare_img() __snake_case : Optional[int] = image_processor(images=_A , return_tensors='pt').to(_A) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**_A) # verify the logits __snake_case : Optional[Any] = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , _A) __snake_case : Optional[int] = torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]]).to(_A) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4))
172
1
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True ) -> Optional[Any]: model.train() _a : Tuple = model(lowerCAmelCase_ ) _a : Tuple = F.mse_loss(lowerCAmelCase_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=False ) -> Union[str, Any]: set_seed(42 ) _a : List[str] = RegressionModel() _a : Any = deepcopy(lowerCAmelCase_ ) _a : Any = RegressionDataset(length=80 ) _a : Tuple = DataLoader(lowerCAmelCase_ , batch_size=16 ) model.to(accelerator.device ) if sched: _a : str = AdamW(params=model.parameters() , lr=1E-3 ) _a : List[Any] = AdamW(params=ddp_model.parameters() , lr=1E-3 ) _a : Dict = LambdaLR(lowerCAmelCase_ , lr_lambda=lambda lowerCAmelCase_ : epoch**0.65 ) _a : Any = LambdaLR(lowerCAmelCase_ , lr_lambda=lambda lowerCAmelCase_ : epoch**0.65 ) # Make a copy of `model` if sched: _a , _a , _a , _a : Optional[int] = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: _a , _a : Optional[Any] = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __lowerCamelCase ( lowerCAmelCase_ ) -> Tuple: # Test when on a single CPU or GPU that the context manager does nothing _a , _a , _a : str = get_training_setup(lowerCAmelCase_ ) # Use a single batch _a , _a : int = next(iter(lowerCAmelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _a , _a : int = accelerator.gather((ddp_input, ddp_target) ) _a , _a : Any = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: # Sync grads step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) _a : Dict = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] def __lowerCamelCase ( lowerCAmelCase_ ) -> str: # Test on distributed setup that context manager behaves properly _a , _a , _a : Tuple = get_training_setup(lowerCAmelCase_ ) # Use a single batch _a , _a : Union[str, Any] = next(iter(lowerCAmelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _a , _a : str = accelerator.gather((ddp_input, ddp_target) ) _a , _a : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: # Sync grads step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) _a : Dict = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] def __lowerCamelCase ( lowerCAmelCase_=False , lowerCAmelCase_=False ) -> List[Any]: _a : str = Accelerator( split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _a , _a , _a : List[str] = get_training_setup(lowerCAmelCase_ ) for iteration, batch in enumerate(lowerCAmelCase_ ): _a , _a : Union[str, Any] = batch.values() # Gather the distributed inputs and targs for the base model _a , _a : Optional[Any] = accelerator.gather((ddp_input, ddp_target) ) _a , _a : Union[str, Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCAmelCase_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) _a : Union[str, Any] = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] GradientState._reset_state() def __lowerCamelCase ( lowerCAmelCase_=False , lowerCAmelCase_=False ) -> Union[str, Any]: _a : List[Any] = Accelerator( split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _a , _a , _a , _a , _a , _a , _a : Tuple = get_training_setup(lowerCAmelCase_ , lowerCAmelCase_ ) for iteration, batch in enumerate(lowerCAmelCase_ ): _a , _a : List[str] = batch.values() # Gather the distributed inputs and targs for the base model _a , _a : Dict = accelerator.gather((ddp_input, ddp_target) ) _a , _a : str = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCAmelCase_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" _a : int = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCAmelCase_ )) if accelerator.num_processes > 1: check_model_parameters(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def __lowerCamelCase ( ) -> Tuple: _a : List[str] = Accelerator() _a : Union[str, Any] = RegressionDataset(length=80 ) _a : str = DataLoader(lowerCAmelCase_ , batch_size=16 ) _a : Any = RegressionDataset(length=96 ) _a : Union[str, Any] = DataLoader(lowerCAmelCase_ , batch_size=16 ) _a , _a : str = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCAmelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase_ ) if iteration < len(lowerCAmelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCAmelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase_ ) if batch_num < len(lowerCAmelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __lowerCamelCase ( ) -> Tuple: _a : Union[str, Any] = Accelerator() _a : Dict = accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**' ) test_noop_sync(lowerCAmelCase_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**' ) test_distributed_sync(lowerCAmelCase_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(lowerCAmelCase_ , lowerCAmelCase_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Any: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
107
'''simple docstring''' __lowerCAmelCase = range(2, 20 + 1) __lowerCAmelCase = [10**k for k in range(ks[-1] + 1)] __lowerCAmelCase = {} def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _a : Optional[int] = sum(a_i[j] for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) ) _a : List[str] = sum(a_i[j] * base[j] for j in range(min(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) ) ) _a , _a : Any = 0, 0 _a : Any = n - i _a : List[Any] = memo.get(lowerCAmelCase_ ) if sub_memo is not None: _a : Tuple = sub_memo.get(lowerCAmelCase_ ) if jumps is not None and len(lowerCAmelCase_ ) > 0: # find and make the largest jump without going over _a : Any = -1 for _k in range(len(lowerCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _a : Any = _k break if max_jump >= 0: _a , _a , _a : Tuple = jumps[max_jump] # since the difference between jumps is cached, add c _a : Union[str, Any] = diff + c for j in range(min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) ): _a , _a : Dict = divmod(lowerCAmelCase_ , 10 ) if new_c > 0: add(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: _a : Tuple = [] else: _a : Any = {c: []} _a : Optional[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _a , _a : Dict = next_term(lowerCAmelCase_ , k - 1 , i + dn , lowerCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _a , _a : Any = compute(lowerCAmelCase_ , lowerCAmelCase_ , i + dn , lowerCAmelCase_ ) diff += _diff dn += terms_jumped _a : Tuple = sub_memo[c] # keep jumps sorted by # of terms skipped _a : Any = 0 while j < len(lowerCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCAmelCase_ , (diff, dn, k) ) return (diff, dn) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: if i >= n: return 0, i if k > len(lowerCAmelCase_ ): a_i.extend([0 for _ in range(k - len(lowerCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _a : Any = i _a , _a , _a : Optional[int] = 0, 0, 0 for j in range(len(lowerCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _a : Any = ds_c + ds_b diff += addend _a : int = 0 for j in range(lowerCAmelCase_ ): _a : Optional[Any] = a_i[j] + addend _a , _a : Tuple = divmod(lowerCAmelCase_ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return diff, i - start_i def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): _a : Optional[Any] = digits[j] + addend if s >= 10: _a , _a : List[str] = divmod(lowerCAmelCase_ , 10 ) _a : List[str] = addend // 10 + quotient else: _a : Optional[Any] = s _a : Optional[Any] = addend // 10 if addend == 0: break while addend > 0: _a , _a : List[str] = divmod(lowerCAmelCase_ , 10 ) digits.append(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ = 10**15 ) -> int: _a : Dict = [1] _a : int = 1 _a : Tuple = 0 while True: _a , _a : str = next_term(lowerCAmelCase_ , 20 , i + dn , lowerCAmelCase_ ) dn += terms_jumped if dn == n - i: break _a : Union[str, Any] = 0 for j in range(len(lowerCAmelCase_ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
107
1
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _UpperCAmelCase : str = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def A ( lowercase , lowercase , lowercase=None ) -> str: '''simple docstring''' if rng is None: UpperCamelCase = random.Random() UpperCamelCase = 1 for dim in shape: total_dims *= dim UpperCamelCase = [] for _ in range(__a ): values.append(rng.randint(0 , vocab_size - 1 ) ) UpperCamelCase = np.array(__a , dtype=jnp.intaa ).reshape(__a ) return output def A ( lowercase , lowercase=None ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = ids_tensor(__a , vocab_size=2 , rng=__a ) # make sure that at least one token is attended to for each batch UpperCamelCase = 1 return attn_mask @require_flax class lowercase : __lowercase : Tuple = None __lowercase : Optional[Any] = () def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 UpperCamelCase = 2 UpperCamelCase = inputs['''input_ids'''].shape[-1] // 2 UpperCamelCase = inputs['''input_ids'''][:max_batch_size, :sequence_length] UpperCamelCase = jnp.ones_like(lowercase_ ) UpperCamelCase = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens UpperCamelCase = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` UpperCamelCase = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = False UpperCamelCase = max_length UpperCamelCase = 0 for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowercase_ ) UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase = getattr(lowercase_ , lowercase_ ) UpperCamelCase = pt_model_class(lowercase_ ).eval() UpperCamelCase = load_flax_weights_in_pytorch_model(lowercase_ , flax_model.params ) UpperCamelCase = flax_model.generate(lowercase_ ).sequences UpperCamelCase = pt_model.generate(torch.tensor(lowercase_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: UpperCamelCase = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = False UpperCamelCase = max_length for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowercase_ ) UpperCamelCase = model.generate(lowercase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowercase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = True UpperCamelCase = max_length for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowercase_ ) UpperCamelCase = model.generate(lowercase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowercase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = False UpperCamelCase = max_length UpperCamelCase = 2 for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowercase_ ) UpperCamelCase = model.generate(lowercase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowercase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = False UpperCamelCase = max_length UpperCamelCase = 2 UpperCamelCase = 2 for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowercase_ ) UpperCamelCase = model.generate(lowercase_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = True UpperCamelCase = max_length UpperCamelCase = 0.8 UpperCamelCase = 10 UpperCamelCase = 0.3 UpperCamelCase = 1 UpperCamelCase = 8 UpperCamelCase = 9 for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowercase_ ) UpperCamelCase = model.generate(lowercase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowercase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = max_length UpperCamelCase = 1 UpperCamelCase = 8 UpperCamelCase = 9 for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowercase_ ) UpperCamelCase = model.generate(lowercase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowercase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = max_length UpperCamelCase = 2 UpperCamelCase = 1 UpperCamelCase = 8 UpperCamelCase = 9 for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowercase_ ) UpperCamelCase = model.generate(lowercase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowercase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCamelCase = attention_mask.at[(0, 0)].set(0 ) UpperCamelCase = False UpperCamelCase = max_length for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowercase_ ) UpperCamelCase = model.generate(lowercase_ , attention_mask=lowercase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowercase_ , attention_mask=lowercase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCamelCase = attention_mask.at[(0, 0)].set(0 ) UpperCamelCase = True UpperCamelCase = max_length for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowercase_ ) UpperCamelCase = model.generate(lowercase_ , attention_mask=lowercase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowercase_ , attention_mask=lowercase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCamelCase = attention_mask.at[(0, 0)].set(0 ) UpperCamelCase = 2 UpperCamelCase = max_length for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowercase_ ) UpperCamelCase = model.generate(lowercase_ , attention_mask=lowercase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowercase_ , attention_mask=lowercase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) UpperCamelCase = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) UpperCamelCase = '''Hello world''' UpperCamelCase = tokenizer(lowercase_ , return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowercase_ , 'do_samples' ): model.generate(lowercase_ , do_samples=lowercase_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowercase_ , 'foo' ): UpperCamelCase = {'''foo''': '''bar'''} model.generate(lowercase_ , **lowercase_ )
222
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Any , lowercase_ : List[Any] , lowercase_ : List[str]=13 , lowercase_ : int=7 , lowercase_ : Any=True , lowercase_ : str=True , lowercase_ : List[Any]=True , lowercase_ : List[Any]=True , lowercase_ : Dict=99 , lowercase_ : Union[str, Any]=24 , lowercase_ : int=2 , lowercase_ : List[str]=6 , lowercase_ : Any=37 , lowercase_ : Dict="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Dict=0.1 , lowercase_ : Union[str, Any]=512 , lowercase_ : List[str]=16 , lowercase_ : Any=2 , lowercase_ : Any=0.02 , lowercase_ : List[Any]=3 , lowercase_ : Optional[int]=None , lowercase_ : str=1000 , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = parent SCREAMING_SNAKE_CASE_ : Optional[Any] = batch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = seq_length SCREAMING_SNAKE_CASE_ : List[Any] = is_training SCREAMING_SNAKE_CASE_ : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE_ : Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE_ : int = use_labels SCREAMING_SNAKE_CASE_ : List[Any] = vocab_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_act SCREAMING_SNAKE_CASE_ : int = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = num_labels SCREAMING_SNAKE_CASE_ : Tuple = scope SCREAMING_SNAKE_CASE_ : Optional[int] = range_bbox def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE_ : Optional[int] = bbox[i, j, 3] SCREAMING_SNAKE_CASE_ : Optional[int] = bbox[i, j, 1] SCREAMING_SNAKE_CASE_ : str = t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE_ : List[str] = bbox[i, j, 2] SCREAMING_SNAKE_CASE_ : Optional[int] = bbox[i, j, 0] SCREAMING_SNAKE_CASE_ : List[str] = t SCREAMING_SNAKE_CASE_ : Tuple = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) SCREAMING_SNAKE_CASE_ : Union[str, Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE_ : Any = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = LiltModel(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_ , bbox=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_ , bbox=lowercase_ , token_type_ids=lowercase_) SCREAMING_SNAKE_CASE_ : int = model(lowercase_ , bbox=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = LiltForTokenClassification(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model( lowercase_ , bbox=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : str , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = LiltForQuestionAnswering(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model( lowercase_ , bbox=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE_ : str = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __UpperCamelCase = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : str): '''simple docstring''' return True def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = LiltModelTester(self) SCREAMING_SNAKE_CASE_ : Optional[int] = ConfigTester(self , config_class=lowercase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Dict = type self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Optional[int] = LiltModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) @require_torch @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''').to(lowercase_) SCREAMING_SNAKE_CASE_ : str = torch.tensor([[1, 2]] , device=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowercase_) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict = model(input_ids=lowercase_ , bbox=lowercase_) SCREAMING_SNAKE_CASE_ : str = torch.Size([1, 2, 768]) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor( [[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] , device=lowercase_ , ) self.assertTrue(outputs.last_hidden_state.shape , lowercase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowercase_ , atol=1e-3))
91
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = ["image_processor", "tokenizer"] lowerCAmelCase__ = "AutoImageProcessor" lowerCAmelCase__ = "AutoTokenizer" def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' super().__init__(UpperCAmelCase , UpperCAmelCase ) lowercase_ = self.image_processor def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: lowercase_ = self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if images is not None: lowercase_ = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: lowercase_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self ) -> int: '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
297
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=6 , UpperCAmelCase=17 , UpperCAmelCase=23 , UpperCAmelCase=11 , UpperCAmelCase=True , ) -> Tuple: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = act_dim lowercase_ = state_dim lowercase_ = hidden_size lowercase_ = max_length lowercase_ = is_training def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) lowercase_ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A__ ( self ) -> Optional[int]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = DecisionTransformerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase__ = () lowerCAmelCase__ = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = DecisionTransformerModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DecisionTransformerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = 2 # number of steps of autoregressive prediction we will perform lowercase_ = 10 # defined by the RL environment, may be normalized lowercase_ = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) lowercase_ = model.to(UpperCAmelCase ) lowercase_ = model.config torch.manual_seed(0 ) lowercase_ = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ) # env.reset() lowercase_ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=UpperCAmelCase ) lowercase_ = torch.tensor(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase_ = state lowercase_ = torch.zeros(1 , 0 , config.act_dim , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.zeros(1 , 0 , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.tensor(0 , device=UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCAmelCase ): lowercase_ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ = model( states=UpperCAmelCase , actions=UpperCAmelCase , rewards=UpperCAmelCase , returns_to_go=UpperCAmelCase , timesteps=UpperCAmelCase , attention_mask=UpperCAmelCase , return_dict=UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ = action_pred[0, -1] lowercase_ = torch.cat([states, state] , dim=1 ) lowercase_ = returns_to_go[0, -1] - reward lowercase_ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase_ = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
297
1
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase :Tuple = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( a ,unittest.TestCase ): '''simple docstring''' a__ =XLNetTokenizer a__ =XLNetTokenizerFast a__ =True a__ =True def __lowerCAmelCase ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : List[Any] = XLNetTokenizer(A , keep_accents=A ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : List[str] = '''<s>''' _UpperCAmelCase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<eod>''' ) self.assertEqual(len(A ) , 1_0_0_6 ) def __lowerCAmelCase ( self ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : str = XLNetTokenizer(A , keep_accents=A ) _UpperCAmelCase : Tuple = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] ) _UpperCAmelCase : Optional[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCAmelCase : int = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] ) _UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : Any = XLNetTokenizer(A , do_lower_case=A ) _UpperCAmelCase : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] ) def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase : int = XLNetTokenizer(A , do_lower_case=A ) _UpperCAmelCase : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : List[Any] = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' ) _UpperCAmelCase : Any = tokenizer.encode('''sequence builders''' , add_special_tokens=A ) _UpperCAmelCase : List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A ) _UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(A ) _UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def __lowerCAmelCase ( self ) -> str: # fmt: off _UpperCAmelCase : Union[str, Any] = {'''input_ids''': [[1_7, 2_1_4_4_2, 2_7_0, 1_7, 1_0, 1_4_6_4_5, 3_1_8, 3_4, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 7_7_5_2, 2_2_0_1_8, 2_3, 2_1, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 3_3_5_2, 1_4_4_3_1, 1_3, 5_5_0_0, 1_1, 1_1_7_6, 5_8_0, 1_3, 1_6_8_1_9, 4_7_9_7, 2_3, 1_7, 1_0, 1_7_1_3_5, 6_5_8, 1_9, 4_5_7, 7_9_3_2, 1_3, 1_8_4, 1_9, 3_1_5_4, 1_7_1_3_5, 6_4_6_8, 1_9, 1_4_0_4, 1_2_2_6_9, 1_9, 4_2_2_9, 5_3_5_6, 1_6_2_6_4, 4_6, 1_9, 1_7, 2_0_5_4_5, 1_0_3_9_5, 9, 9, 9, 1_1, 2_8, 6_4_2_1, 9_5_3_1, 2_0_7_2_9, 1_7, 1_0, 3_5_3, 1_7_0_2_2, 1_1, 2_1, 6_4_2_1, 9_5_3_1, 1_6_9_4_9, 1_7, 1_0, 1_1_5_0_9, 7_5_3, 1_1, 3_3, 9_5, 2_4_2_1, 7_3_8_5, 9_5_6, 1_4_4_3_1, 2_6_2_6, 2_5, 8_4_2, 7_3_8_5, 4_8_3_6, 2_1, 1_4_2_9, 2_2_7_2, 9_8_5_5, 3_1_2_0, 1_6_1, 2_4_7_3_8, 1_9, 1_3_2_0_3, 6_5_8, 2_1_8, 7_8_7, 2_1, 4_3_0, 1_8_4_8_2, 8_4_7, 2_6_3_7, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2_2, 2_2_1_7_8, 2_7, 1_0_6_4, 2_2, 9_5_6, 1_3, 1_1_1_0_1, 1_4_2_9, 5_8_5_4, 2_4_3_1_3, 1_8_9_5_3, 4_0, 4_2_2, 2_4_3_6_6, 6_8, 1_7_5_8, 3_7, 1_0_4_8_3, 1_4_2_5_7, 3_1, 2_0_7, 2_6_3, 2_1, 2_0_3, 3_7_7_3, 2_5, 7_1, 9_7_3_5, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2, 2_0_4_9, 3_4_4_2, 1_7, 1_3_8_9_4, 3_3_8_0, 2_3, 9_5, 1_8, 1_7_6_3_4, 2_2_8_8, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
263
"""simple docstring""" from __future__ import annotations import math def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : bool , UpperCamelCase__ : list[int] , UpperCamelCase__ : float ): if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(UpperCamelCase__ ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , ) def lowerCamelCase_ (): _UpperCAmelCase : Any = [90, 23, 6, 33, 21, 65, 123, 3_4423] _UpperCAmelCase : Any = math.log(len(UpperCamelCase__ ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
263
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a : def __init__( self : Tuple , lowercase_ : Any , lowercase_ : List[str]=13 , lowercase_ : List[Any]=7 , lowercase_ : Dict=True , lowercase_ : Optional[int]=True , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=99 , lowercase_ : str=32 , lowercase_ : Dict=5 , lowercase_ : Dict=4 , lowercase_ : Union[str, Any]=37 , lowercase_ : Any="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : Dict=512 , lowercase_ : List[Any]=16 , lowercase_ : Optional[int]=2 , lowercase_ : List[Any]=0.02 , lowercase_ : Any=3 , lowercase_ : Any=4 , lowercase_ : Optional[Any]=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope snake_case_ = self.vocab_size - 1 def A_ ( self : Optional[int] ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) snake_case_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def A_ ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : Tuple , lowercase_ : List[str] , *lowercase_ : Union[str, Any] ): snake_case_ = OpenAIGPTModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , token_type_ids=lowercase_ , head_mask=lowercase_ ) snake_case_ = model(lowercase_ , token_type_ids=lowercase_ ) snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : Dict , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : Optional[int] , *lowercase_ : Any ): snake_case_ = OpenAIGPTLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Dict , lowercase_ : Dict , *lowercase_ : List[Any] ): snake_case_ = OpenAIGPTDoubleHeadsModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : Dict , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : List[Any] , *lowercase_ : Optional[int] ): snake_case_ = self.num_labels snake_case_ = OpenAIGPTForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : List[Any] ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) , ) = config_and_inputs snake_case_ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case_ = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def A_ ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Any , lowercase_ : Dict , lowercase_ : Union[str, Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def A_ ( self : Optional[Any] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any]=False ): snake_case_ = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": snake_case_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowercase_ , ) snake_case_ = inputs_dict['''labels'''] snake_case_ = inputs_dict['''labels'''] snake_case_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowercase_ , ) snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def A_ ( self : List[Any] ): snake_case_ = OpenAIGPTModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowercase_ , n_embd=37 ) def A_ ( self : List[Any] ): self.config_tester.run_common_tests() def A_ ( self : List[Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowercase_ ) def A_ ( self : Dict ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase_ ) def A_ ( self : Optional[int] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowercase_ ) def A_ ( self : int ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowercase_ ) @slow def A_ ( self : str ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = OpenAIGPTModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch class a ( unittest.TestCase ): @slow def A_ ( self : Any ): snake_case_ = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowercase_ ) snake_case_ = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=lowercase_ ) # the president is snake_case_ = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the snake_case_ = model.generate(lowercase_ , do_sample=lowercase_ ) self.assertListEqual(output_ids[0].tolist() , lowercase_ )
350
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins a : int = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Tuple: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line('''markers''', '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> List[Any]: '''simple docstring''' snake_case_ = tmp_path_factory.getbasetemp() / '''cache''' snake_case_ = test_hf_cache_home / '''datasets''' snake_case_ = test_hf_cache_home / '''metrics''' snake_case_ = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''', str(__UpperCAmelCase ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''', str(__UpperCAmelCase ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''', str(__UpperCAmelCase ) ) snake_case_ = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''', str(__UpperCAmelCase ) ) snake_case_ = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''', str(__UpperCAmelCase ) ) @pytest.fixture(autouse=__UpperCAmelCase, scope='''session''' ) def __magic_name__ ( ) -> List[Any]: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''', __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''', __UpperCAmelCase )
72
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: """simple docstring""" UpperCamelCase :Tuple = ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=__magic_name__ ) UpperCamelCase :Union[str, Any] = parser.add_subparsers(help="""datasets-cli command helpers""" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__magic_name__ ) EnvironmentCommand.register_subcommand(__magic_name__ ) TestCommand.register_subcommand(__magic_name__ ) RunBeamCommand.register_subcommand(__magic_name__ ) DummyDataCommand.register_subcommand(__magic_name__ ) # Parse args UpperCamelCase , UpperCamelCase :List[str] = parser.parse_known_args() if not hasattr(__magic_name__ , """func""" ): parser.print_help() exit(1 ) UpperCamelCase :Tuple = parse_unknown_args(__magic_name__ ) # Run UpperCamelCase :str = args.func(__magic_name__ , **__magic_name__ ) service.run() if __name__ == "__main__": main()
38
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : int ) -> int: __a = len(lowerCAmelCase__ ) __a = int(math.floor(math.sqrt(lowerCAmelCase__ ) ) ) __a = 0 while arr[min(lowerCAmelCase__ , lowerCAmelCase__ ) - 1] < x: __a = step step += int(math.floor(math.sqrt(lowerCAmelCase__ ) ) ) if prev >= n: return -1 while arr[prev] < x: __a = prev + 1 if prev == min(lowerCAmelCase__ , lowerCAmelCase__ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() lowercase_ = [int(item) for item in user_input.split(",")] lowercase_ = int(input("Enter the number to be searched:\n")) lowercase_ = jump_search(arr, x) if res == -1: print("Number not found!") else: print(F'''Number {x} is at index {res}''')
45
0
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCAmelCase_ : List[Any] = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCAmelCase_ : List[Any] = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') lowerCAmelCase_ : List[str] = parser.parse_args() if args.check_lib: lowerCAmelCase_ : int = importlib.import_module('transformers') lowerCAmelCase_ : Tuple = Path(transformers_module.__file__).parent else: lowerCAmelCase_ : str = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
361
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : str = '▁' lowerCAmelCase_ : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =BertGenerationTokenizer __a =False __a =True def UpperCamelCase__ ( self : Optional[Any] ): super().setUp() _a = BertGenerationTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self : Tuple ): _a = "<s>" _a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def UpperCamelCase__ ( self : List[str] ): _a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(__a ) , 10_02 ) def UpperCamelCase__ ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def UpperCamelCase__ ( self : Tuple ): _a = BertGenerationTokenizer(__a , keep_accents=__a ) _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [2_85, 46, 10, 1_70, 3_82] , ) _a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _a = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _a = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def UpperCamelCase__ ( self : Any ): return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def UpperCamelCase__ ( self : List[str] ): _a = "Hello World!" _a = [1_85_36, 22_60, 1_01] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def UpperCamelCase__ ( self : Optional[int] ): _a = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) _a = [ 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, ] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @require_torch @slow def UpperCamelCase__ ( self : Tuple ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _a = list(self.big_tokenizer.get_vocab().keys() )[:10] _a = " ".join(__a ) _a = self.big_tokenizer.encode_plus(__a , return_tensors="pt" , return_token_type_ids=__a ) _a = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=__a ) _a = BertGenerationConfig() _a = BertGenerationEncoder(__a ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__a ) model(**__a ) @slow def UpperCamelCase__ ( self : Optional[int] ): # fmt: off _a = {"input_ids": [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
346
0
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : Dict , __lowerCamelCase : Callable , __lowerCamelCase : Optional[Features] = None , __lowerCamelCase : str = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[dict] = None , __lowerCamelCase : Optional[int] = None , **__lowerCamelCase : int , ) -> Optional[Any]: super().__init__( features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) a = Generator( cache_dir=__lowerCamelCase , features=__lowerCamelCase , generator=__lowerCamelCase , gen_kwargs=__lowerCamelCase , **__lowerCamelCase , ) def __UpperCAmelCase ( self : str ) -> str: # Build iterable dataset if self.streaming: a = self.builder.as_streaming_dataset(split="train" ) # Build regular (map-style) dataset else: a = None a = None a = None a = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) a = self.builder.as_dataset( split="train" , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
107
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
107
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging snake_case_ = logging.get_logger(__name__) snake_case_ = {"""vocab_file""": """spiece.model"""} snake_case_ = { """vocab_file""": { """TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""", } } class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Union[str, Any] , lowercase_ :List[str] , lowercase_ :str=False , lowercase_ :List[str]=True , lowercase_ :Optional[int]=False , lowercase_ :List[Any]="<s>" , lowercase_ :List[Any]="</s>" , lowercase_ :List[Any]="<unk>" , lowercase_ :Union[str, Any]="<sep>" , lowercase_ :Union[str, Any]="<pad>" , lowercase_ :Any="<cls>" , lowercase_ :Union[str, Any]="<mask>" , lowercase_ :int=["<eop>", "<eod>"] , lowercase_ :Optional[Dict[str, Any]] = None , **lowercase_ :Union[str, Any] , ) -> None: UpperCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase = 3 UpperCAmelCase = do_lower_case UpperCAmelCase = remove_space UpperCAmelCase = keep_accents UpperCAmelCase = vocab_file UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( 'You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ' 'See https://pypi.org/project/jieba/ for installation.' ) UpperCAmelCase = jieba UpperCAmelCase = str.maketrans(' \n' , '\u2582\u2583' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCAmelCase__ ( self :Any ) -> Optional[Any]: return len(self.sp_model ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> str: UpperCAmelCase = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Union[str, Any] ) -> Tuple: UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self :Union[str, Any] , lowercase_ :Optional[Any] ) -> Any: UpperCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self :Any , lowercase_ :Tuple ) -> Optional[Any]: if self.remove_space: UpperCAmelCase = ' '.join(inputs.strip().split() ) else: UpperCAmelCase = inputs UpperCAmelCase = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: UpperCAmelCase = unicodedata.normalize('NFKD' , lowercase_ ) UpperCAmelCase = ''.join([c for c in outputs if not unicodedata.combining(lowercase_ )] ) if self.do_lower_case: UpperCAmelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :str ) -> List[str]: UpperCAmelCase = self.preprocess_text(lowercase_ ) UpperCAmelCase = self.sp_model.encode(lowercase_ , out_type=lowercase_ ) UpperCAmelCase = [] for piece in pieces: if len(lowercase_ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): UpperCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase_ , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCAmelCase = cur_pieces[1:] else: UpperCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowercase_ ) else: new_pieces.append(lowercase_ ) return new_pieces def UpperCAmelCase__ ( self :Tuple , lowercase_ :Optional[Any] ) -> Optional[int]: return self.sp_model.PieceToId(lowercase_ ) def UpperCAmelCase__ ( self :Tuple , lowercase_ :Optional[Any] ) -> Union[str, Any]: return self.sp_model.IdToPiece(lowercase_ ) def UpperCAmelCase__ ( self :Any , lowercase_ :List[str] ) -> Optional[Any]: UpperCAmelCase = ''.join(lowercase_ ).replace(lowercase_ , ' ' ).strip() return out_string def UpperCAmelCase__ ( self :Tuple , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None ) -> List[int]: UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self :int , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None , lowercase_ :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is not None: return ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1, 1] return ([0] * len(lowercase_ )) + [1, 1] def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None ) -> List[int]: UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase__ ( self :int , lowercase_ :str , lowercase_ :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,) def UpperCAmelCase__ ( self :Optional[Any] , *lowercase_ :Optional[Any] , **lowercase_ :int ) -> Union[str, Any]: UpperCAmelCase = super()._decode(*lowercase_ , **lowercase_ ) UpperCAmelCase = text.replace(' ' , '' ).replace('\u2582' , ' ' ).replace('\u2583' , '\n' ) return text
355
"""simple docstring""" import math def _lowerCAmelCase ( lowercase_ ): assert isinstance(lowercase_ , lowercase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase = range(3 , int(math.sqrt(lowercase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowercase_ , lowercase_=1 , **lowercase_ ): UpperCAmelCase = factor * value UpperCAmelCase = value while not is_prime(lowercase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowercase_ ) return value
181
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( _A , _A , _A , _A , _A , ): a : List[str] = len(_A ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_A ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _A , _A , ) def lowerCamelCase__ ( _A ): a : list[list[str]] = [] depth_first_search([] , [] , [] , _A , _A ) # Print all the boards for board in boards: for column in board: print(_A ) print('' ) print(len(_A ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
297
'''simple docstring''' from __future__ import annotations import math class a__: def __init__( self : List[str] , __snake_case : int ): a : str = size # approximate the overall size of segment tree with given value a : Optional[int] = [0 for i in range(0 , 4 * size )] # create array to store lazy update a : Any = [0 for i in range(0 , 4 * size )] a : Dict = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowercase_ ( self : int , __snake_case : int ): return idx * 2 def lowercase_ ( self : Dict , __snake_case : int ): return idx * 2 + 1 def lowercase_ ( self : Dict , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : list[int] ): if left_element == right_element: a : Tuple = a[left_element - 1] else: a : Tuple = (left_element + right_element) // 2 self.build(self.left(__snake_case ) , __snake_case , __snake_case , __snake_case ) self.build(self.right(__snake_case ) , mid + 1 , __snake_case , __snake_case ) a : Union[str, Any] = max( self.segment_tree[self.left(__snake_case )] , self.segment_tree[self.right(__snake_case )] ) def lowercase_ ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int ): if self.flag[idx] is True: a : int = self.lazy[idx] a : Union[str, Any] = False if left_element != right_element: a : Dict = self.lazy[idx] a : int = self.lazy[idx] a : Tuple = True a : Optional[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: a : int = val if left_element != right_element: a : int = val a : Dict = val a : List[str] = True a : List[str] = True return True a : Tuple = (left_element + right_element) // 2 self.update(self.left(__snake_case ) , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) self.update(self.right(__snake_case ) , mid + 1 , __snake_case , __snake_case , __snake_case , __snake_case ) a : Optional[int] = max( self.segment_tree[self.left(__snake_case )] , self.segment_tree[self.right(__snake_case )] ) return True def lowercase_ ( self : Union[str, Any] , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int ): if self.flag[idx] is True: a : str = self.lazy[idx] a : Optional[Any] = False if left_element != right_element: a : Dict = self.lazy[idx] a : Union[str, Any] = self.lazy[idx] a : Dict = True a : int = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] a : Dict = (left_element + right_element) // 2 a : Optional[int] = self.query(self.left(__snake_case ) , __snake_case , __snake_case , __snake_case , __snake_case ) a : Union[str, Any] = self.query(self.right(__snake_case ) , mid + 1 , __snake_case , __snake_case , __snake_case ) return max(__snake_case , __snake_case ) def __str__( self : Any ): return str([self.query(1 , 1 , self.size , __snake_case , __snake_case ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": lowerCAmelCase: Optional[int] = [1, 2, -4, 7, 3, -5, 6, 1_1, -2_0, 9, 1_4, 1_5, 5, 2, -8] lowerCAmelCase: int = 1_5 lowerCAmelCase: Optional[int] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 1_1)) print(segt.query(1, 1, size, 7, 1_2)) segt.update(1, 1, size, 1, 3, 1_1_1) print(segt.query(1, 1, size, 1, 1_5)) segt.update(1, 1, size, 7, 8, 2_3_5) print(segt)
297
1
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case ): def __init__( self :Union[str, Any] , *_lowercase :str , **_lowercase :Any) -> None: warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , _lowercase , ) super().__init__(*_lowercase , **_lowercase)
368
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } UpperCamelCase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 UpperCamelCase_ = 4 class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any ="left" def __init__( self :Optional[int] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any]=False , _lowercase :Optional[int]=True , _lowercase :Union[str, Any]=False , _lowercase :Tuple="<s>" , _lowercase :Any="</s>" , _lowercase :Dict="<unk>" , _lowercase :str="<sep>" , _lowercase :Tuple="<pad>" , _lowercase :Any="<cls>" , _lowercase :List[str]="<mask>" , _lowercase :Union[str, Any]=["<eop>", "<eod>"] , _lowercase :Optional[Dict[str, Any]] = None , **_lowercase :Union[str, Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase) if isinstance(_lowercase , _lowercase) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase_ = 3 UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) @property def __a ( self :int) -> List[Any]: return len(self.sp_model) def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :Optional[Any] , _lowercase :Optional[Any]) -> List[Any]: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __a ( self :List[str] , _lowercase :Tuple) -> Optional[int]: if self.remove_space: UpperCAmelCase_ = ''' '''.join(inputs.strip().split()) else: UpperCAmelCase_ = inputs UpperCAmelCase_ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCAmelCase_ = unicodedata.normalize('''NFKD''' , _lowercase) UpperCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(_lowercase)]) if self.do_lower_case: UpperCAmelCase_ = outputs.lower() return outputs def __a ( self :str , _lowercase :str) -> List[str]: UpperCAmelCase_ = self.preprocess_text(_lowercase) UpperCAmelCase_ = self.sp_model.encode(_lowercase , out_type=_lowercase) UpperCAmelCase_ = [] for piece in pieces: if len(_lowercase) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase_ = cur_pieces[1:] else: UpperCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowercase) else: new_pieces.append(_lowercase) return new_pieces def __a ( self :Optional[Any] , _lowercase :Union[str, Any]) -> Tuple: return self.sp_model.PieceToId(_lowercase) def __a ( self :Optional[int] , _lowercase :Optional[Any]) -> List[str]: return self.sp_model.IdToPiece(_lowercase) def __a ( self :List[Any] , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = ''''''.join(_lowercase).replace(_lowercase , ''' ''').strip() return out_string def __a ( self :Union[str, Any] , _lowercase :List[int] , _lowercase :bool = False , _lowercase :bool = None , _lowercase :bool = True , **_lowercase :Tuple , ) -> str: UpperCAmelCase_ = kwargs.pop('''use_source_tokenizer''' , _lowercase) UpperCAmelCase_ = self.convert_ids_to_tokens(_lowercase , skip_special_tokens=_lowercase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) UpperCAmelCase_ = [] sub_texts.append(_lowercase) else: current_sub_text.append(_lowercase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase_ = ''''''.join(_lowercase) UpperCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ = self.clean_up_tokenization(_lowercase) return clean_text else: return text def __a ( self :str , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) if token_ids_a is not None: return ([0] * len(_lowercase)) + [1] + ([0] * len(_lowercase)) + [1, 1] return ([0] * len(_lowercase)) + [1, 1] def __a ( self :Optional[int] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __a ( self :str , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,)
344
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ : int = [False] * len(A_ ) lowerCAmelCase__ : Union[str, Any] = [] queue.append(A_ ) lowerCAmelCase__ : str = True while queue: lowerCAmelCase__ : List[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(A_ ) lowerCAmelCase__ : int = True lowerCAmelCase__ : Union[str, Any] = u return visited[t] def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : Optional[Any] = [-1] * (len(A_ )) lowerCAmelCase__ : Optional[Any] = 0 while bfs(A_ , A_ , A_ , A_ ): lowerCAmelCase__ : Optional[Any] = float('''Inf''' ) lowerCAmelCase__ : Union[str, Any] = sink while s != source: # Find the minimum value in select path lowerCAmelCase__ : Union[str, Any] = min(A_ , graph[parent[s]][s] ) lowerCAmelCase__ : List[str] = parent[s] max_flow += path_flow lowerCAmelCase__ : List[str] = sink while v != source: lowerCAmelCase__ : Union[str, Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCAmelCase__ : Optional[Any] = parent[v] return max_flow __UpperCamelCase : Dict = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __UpperCamelCase , __UpperCamelCase : List[str] = 0, 5 print(ford_fulkerson(graph, source, sink))
106
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ = logging.get_logger(__name__) # TODO: upload to AWS lowerCAmelCase__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __snake_case ( _lowercase): snake_case__ : int = "retribert" def __init__( self : Optional[int] , __lowerCAmelCase : str=3_0_5_2_2 , __lowerCAmelCase : Tuple=7_6_8 , __lowerCAmelCase : Union[str, Any]=8 , __lowerCAmelCase : Any=1_2 , __lowerCAmelCase : Optional[int]=3_0_7_2 , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Tuple=5_1_2 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Tuple=0.02 , __lowerCAmelCase : Optional[Any]=1E-12 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Any=1_2_8 , __lowerCAmelCase : Optional[int]=0 , **__lowerCAmelCase : str , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) _lowerCamelCase : Dict = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : int = hidden_act _lowerCamelCase : str = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = max_position_embeddings _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : Any = initializer_range _lowerCamelCase : Optional[int] = layer_norm_eps _lowerCamelCase : int = share_encoders _lowerCamelCase : Optional[Any] = projection_dim
72
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE_ = 1_6 SCREAMING_SNAKE_CASE_ = 3_2 def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = "bert-base-cased" ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=_SCREAMING_SNAKE_CASE ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["""train"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["""validation"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE = config["""lr"""] SCREAMING_SNAKE_CASE = int(config["""num_epochs"""] ) SCREAMING_SNAKE_CASE = int(config["""seed"""] ) SCREAMING_SNAKE_CASE = int(config["""batch_size"""] ) SCREAMING_SNAKE_CASE = args.model_name_or_path set_seed(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) # Instantiate optimizer SCREAMING_SNAKE_CASE = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) SCREAMING_SNAKE_CASE = optimizer_cls(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) if accelerator.state.deepspeed_plugin is not None: SCREAMING_SNAKE_CASE = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = (len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=_SCREAMING_SNAKE_CASE , ) else: SCREAMING_SNAKE_CASE = DummyScheduler(_SCREAMING_SNAKE_CASE , total_num_steps=_SCREAMING_SNAKE_CASE , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over SCREAMING_SNAKE_CASE = 0 # We also need to keep track of the stating epoch so files are named properly SCREAMING_SNAKE_CASE = 0 # Now we train the model SCREAMING_SNAKE_CASE = evaluate.load("""glue""" , """mrpc""" ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = {} for epoch in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = outputs.loss SCREAMING_SNAKE_CASE = loss / gradient_accumulation_steps accelerator.backward(_SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() SCREAMING_SNAKE_CASE = 0 for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_SCREAMING_SNAKE_CASE ) - 1: SCREAMING_SNAKE_CASE = predictions[: len(eval_dataloader.dataset ) - samples_seen] SCREAMING_SNAKE_CASE = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: SCREAMING_SNAKE_CASE = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowercase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=_SCREAMING_SNAKE_CASE , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_SCREAMING_SNAKE_CASE , ) parser.add_argument( """--output_dir""" , type=_SCREAMING_SNAKE_CASE , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=_SCREAMING_SNAKE_CASE , default=3 , help="""Number of train epochs.""" , ) SCREAMING_SNAKE_CASE = parser.parse_args() SCREAMING_SNAKE_CASE = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
193
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : str = AltDiffusionPipeline __snake_case : int = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS __snake_case : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS __snake_case : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=lowerCamelCase__ ,set_alpha_to_one=lowerCamelCase__ ,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=5002 ,) SCREAMING_SNAKE_CASE = CLIPTextModel(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) SCREAMING_SNAKE_CASE = 77 SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : Dict ,lowerCamelCase__ : int=0 ) -> Any: '''simple docstring''' if str(lowerCamelCase__ ).startswith("""mps""" ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=5002 ,) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE = RobertaSeriesModelWithTransformation(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = text_encoder SCREAMING_SNAKE_CASE = AltDiffusionPipeline(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """A photo of an astronaut""" SCREAMING_SNAKE_CASE = alt_pipe(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=5002 ,) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE = RobertaSeriesModelWithTransformation(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = text_encoder SCREAMING_SNAKE_CASE = AltDiffusionPipeline(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = alt_pipe(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" ,safety_checker=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = alt_pipe([prompt] ,generator=lowerCamelCase__ ,guidance_scale=6.0 ,num_inference_steps=20 ,output_type="""np""" ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" ,subfolder="""scheduler""" ) SCREAMING_SNAKE_CASE = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" ,scheduler=lowerCamelCase__ ,safety_checker=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = alt_pipe([prompt] ,generator=lowerCamelCase__ ,num_inference_steps=2 ,output_type="""numpy""" ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
193
1
"""simple docstring""" _UpperCamelCase : Union[str, Any] = 8.3_1_4_4_5_9_8 def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): '''simple docstring''' if temperature < 0: raise Exception('Temperature cannot be less than 0 K' ) if molar_mass <= 0: raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _UpperCamelCase : List[Any] = 3_00 _UpperCamelCase : Tuple = 28 _UpperCamelCase : Any = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
77
'''simple docstring''' from timeit import timeit UpperCAmelCase_ = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) // 2 UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) <= 2: return True if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return s == s[::-1] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = F'''all({name}(key) is value for key, value in test_data.items())''' UpperCAmelCase__ = F'''from __main__ import test_data, {name}''' UpperCAmelCase__ = 500000 UpperCAmelCase__ = timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"{key:21} {value}") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
346
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Tuple = inspect.getfile(accelerate.test_utils) _lowercase : int = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['scripts', 'test_script.py']) _lowercase : List[str] = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ['scripts', 'test_distributed_data_loop.py']) _lowercase : Any = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['scripts', 'test_ops.py']) @require_multi_gpu def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" print(F'''Found {torch.cuda.device_count()} devices.''') _lowercase : Optional[Any] = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(lowerCamelCase, env=os.environ.copy()) @require_multi_gpu def UpperCamelCase ( self) -> Dict: """simple docstring""" print(F'''Found {torch.cuda.device_count()} devices.''') _lowercase : Union[str, Any] = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''') with patch_environment(omp_num_threads=1): execute_subprocess_async(lowerCamelCase, env=os.environ.copy()) @require_multi_gpu def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(lowerCamelCase, env=os.environ.copy()) @require_multi_gpu def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''') _lowercase : Dict = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1, cuda_visible_devices='0,1'): execute_subprocess_async(lowerCamelCase, env=os.environ.copy()) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = Accelerator() SCREAMING_SNAKE_CASE : Optional[int] = (accelerator.state.process_index + 2, 10) SCREAMING_SNAKE_CASE : Optional[int] = torch.randint(0, 10, shape).to(accelerator.device) SCREAMING_SNAKE_CASE : Tuple = "" SCREAMING_SNAKE_CASE : Optional[int] = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." SCREAMING_SNAKE_CASE : Any = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
84
from collections import defaultdict def UpperCamelCase_( lowerCamelCase_ ) -> int: _lowercase : Optional[Any] = 1 _lowercase : Union[str, Any] = True for v in tree[start]: if v not in visited: ret += dfs(lowerCamelCase_ ) if ret % 2 == 0: cuts.append(lowerCamelCase_ ) return ret def UpperCamelCase_( ) -> Optional[Any]: dfs(1 ) if __name__ == "__main__": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = 10, 9 SCREAMING_SNAKE_CASE : List[Any] = defaultdict(list) SCREAMING_SNAKE_CASE : dict[int, bool] = {} SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
84
1
def UpperCAmelCase ( ) -> Tuple: """simple docstring""" for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = 1 __A = 2 while i * i <= n: __A = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(lowerCAmelCase__ ) > 5_0_0 ) if __name__ == "__main__": print(solution())
15
'''simple docstring''' import pprint import requests UpperCamelCase__ = '''https://zenquotes.io/api''' def a__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def a__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": UpperCamelCase__ = random_quotes() pprint.pprint(response)
181
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _UpperCAmelCase : Optional[Any] = 25_6047 _UpperCAmelCase : List[Any] = 25_6145 @require_sentencepiece @require_tokenizers class lowercase ( lowerCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = NllbTokenizer __SCREAMING_SNAKE_CASE : Tuple = NllbTokenizerFast __SCREAMING_SNAKE_CASE : Optional[Any] = True __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : str = {} def a ( self ): super().setUp() # We have a SentencePiece fixture for testing snake_case_ = NllbTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self ): snake_case_ = NllbTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) snake_case_ = tokenizer.tokenize('This is a test' ) self.assertListEqual(__lowerCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) snake_case_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) snake_case_ = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) snake_case_ = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def a ( self ): snake_case_ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case_ = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) snake_case_ = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) snake_case_ = tempfile.mkdtemp() snake_case_ = tokenizer_r.save_pretrained(__lowerCamelCase ) snake_case_ = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) snake_case_ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way snake_case_ = tokenizer_r.from_pretrained(__lowerCamelCase ) snake_case_ = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=True snake_case_ = tempfile.mkdtemp() snake_case_ = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) snake_case_ = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way snake_case_ = tokenizer_r.from_pretrained(__lowerCamelCase ) snake_case_ = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=False snake_case_ = tempfile.mkdtemp() snake_case_ = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) snake_case_ = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case_ = tokenizer_r.from_pretrained(__lowerCamelCase ) snake_case_ = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) @require_torch def a ( self ): if not self.test_seqaseq: return snake_case_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Longer text that will definitely require truncation. snake_case_ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] snake_case_ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: snake_case_ = tokenizer.prepare_seqaseq_batch( src_texts=__lowerCamelCase , tgt_texts=__lowerCamelCase , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified snake_case_ = tokenizer.prepare_seqaseq_batch( __lowerCamelCase , tgt_texts=__lowerCamelCase , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) snake_case_ = tokenizer.prepare_seqaseq_batch( src_texts=__lowerCamelCase , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __lowerCamelCase ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def a ( self ): pass def a ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case_ = [AddedToken('<special>' , lstrip=__lowerCamelCase )] snake_case_ = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase ) snake_case_ = tokenizer_r.encode('Hey this is a <special> token' ) snake_case_ = tokenizer_r.encode('<special>' , add_special_tokens=__lowerCamelCase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: snake_case_ = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) snake_case_ = self.tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase ) snake_case_ = tokenizer_p.encode('Hey this is a <special> token' ) snake_case_ = tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = '''facebook/nllb-200-distilled-600M''' __SCREAMING_SNAKE_CASE : str = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] __SCREAMING_SNAKE_CASE : int = [ 256_047, 16_297, 134_408, 8_165, 248_066, 14_734, 950, 1_135, 105_721, 3_573, 83, 27_352, 108, 49_486, 2, ] @classmethod def a ( cls ): snake_case_ = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) snake_case_ = 1 return cls def a ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def a ( self ): snake_case_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase ) def a ( self ): self.assertIn(__lowerCamelCase , self.tokenizer.all_special_ids ) # fmt: off snake_case_ = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on snake_case_ = self.tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) snake_case_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token , __lowerCamelCase ) def a ( self ): snake_case_ = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , __lowerCamelCase ) snake_case_ = 10 snake_case_ = self.tokenizer(__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) def a ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def a ( self ): snake_case_ = tempfile.mkdtemp() snake_case_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowerCamelCase ) snake_case_ = NllbTokenizer.from_pretrained(__lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowerCamelCase ) @require_torch def a ( self ): snake_case_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) snake_case_ = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) snake_case_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self ): snake_case_ = self.tokenizer(self.src_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=3 , return_tensors='pt' ) snake_case_ = self.tokenizer( text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=10 , return_tensors='pt' ) snake_case_ = targets['''input_ids'''] snake_case_ = shift_tokens_right( __lowerCamelCase , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self ): snake_case_ = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def a ( self ): snake_case_ = True snake_case_ = self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) snake_case_ = False snake_case_ = self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
356
import requests _UpperCAmelCase : Union[str, Any] = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F'''{i}.) {article["title"]}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
200
0
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class __A ( __A ): def __lt__( self : Any , UpperCAmelCase_ : Optional[int] ): return self[-1] < other[-1] def __eq__( self : Any , UpperCAmelCase_ : Dict ): return self[-1] == other[-1] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> list: '''simple docstring''' lowerCAmelCase : list[Stack] = [] # sort into stacks for element in collection: lowerCAmelCase : Any = Stack([element] ) lowerCAmelCase : Optional[int] = bisect_left(a_, a_ ) if i != len(a_ ): stacks[i].append(a_ ) else: stacks.append(a_ ) # use a heap-based merge to merge stack efficiently lowerCAmelCase : Any = merge(*(reversed(a_ ) for stack in stacks) ) return collection if __name__ == "__main__": __A : Union[str, Any] = input('''Enter numbers separated by a comma:\n''').strip() __A : List[str] = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
138
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase__ : int = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' UpperCamelCase__ : Any = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' UpperCamelCase__ : Optional[Any] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: A_ : Optional[Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A_ : List[Any] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A_ : int = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
344
0
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase=7 ,__lowerCamelCase=3 ,__lowerCamelCase=18 ,__lowerCamelCase=30 ,__lowerCamelCase=4_00 ,__lowerCamelCase=True ,__lowerCamelCase=None ,__lowerCamelCase=True ,__lowerCamelCase=[0.5, 0.5, 0.5] ,__lowerCamelCase=[0.5, 0.5, 0.5] ,) -> int: """simple docstring""" lowerCAmelCase__ : str = size if size is not None else {'''height''': 18, '''width''': 18} lowerCAmelCase__ : Any = parent lowerCAmelCase__ : List[str] = batch_size lowerCAmelCase__ : Optional[Any] = num_channels lowerCAmelCase__ : List[str] = image_size lowerCAmelCase__ : List[str] = min_resolution lowerCAmelCase__ : Optional[int] = max_resolution lowerCAmelCase__ : Optional[int] = do_resize lowerCAmelCase__ : List[str] = size lowerCAmelCase__ : Any = do_normalize lowerCAmelCase__ : str = image_mean lowerCAmelCase__ : Dict = image_std def lowerCAmelCase__ (self ) -> int: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =DPTImageProcessor if is_vision_available() else None def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Tuple = DPTImageProcessingTester(self ) @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''size''' ) ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''height''': 18, '''width''': 18} ) lowerCAmelCase__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'''height''': 42, '''width''': 42} ) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,Image.Image ) # Test not batched input lowerCAmelCase__ : int = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched lowerCAmelCase__ : int = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,np.ndarray ) # Test not batched input lowerCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Dict = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,torch.Tensor ) # Test not batched input lowerCAmelCase__ : int = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Union[str, Any] = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,)
94
def lowerCAmelCase__ ( lowerCamelCase_ : int = 1000000): '''simple docstring''' lowerCAmelCase__ : int = set(range(3 ,lowerCamelCase_ ,2)) primes.add(2) for p in range(3 ,lowerCamelCase_ ,2): if p not in primes: continue primes.difference_update(set(range(p * p ,lowerCamelCase_ ,lowerCamelCase_))) lowerCAmelCase__ : int = [float(lowerCamelCase_) for n in range(limit + 1)] for p in primes: for n in range(lowerCamelCase_ ,limit + 1 ,lowerCamelCase_): phi[n] *= 1 - 1 / p return int(sum(phi[2:])) if __name__ == "__main__": print(f"""{solution() = }""")
94
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a__: Tuple = 16 a__: str = 32 def UpperCamelCase__( UpperCamelCase__ : Accelerator , UpperCamelCase__ : int = 16 )->Optional[int]: A__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(UpperCamelCase__ : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(UpperCamelCase__ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( UpperCamelCase__ , padding='''longest''' , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets['''train'''] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) A__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a__: List[Any] = mocked_dataloaders # noqa: F811 def UpperCamelCase__( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] )->str: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , UpperCamelCase__ ) == "1": A__ = 2 # Initialize accelerator A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config['''lr'''] A__ = int(config['''num_epochs'''] ) A__ = int(config['''seed'''] ) A__ = int(config['''batch_size'''] ) A__ = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=UpperCamelCase__ ) def inner_training_loop(UpperCamelCase__ : Tuple ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) A__ , A__ = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**UpperCamelCase__ ) A__ = outputs.loss accelerator.backward(UpperCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**UpperCamelCase__ ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , UpperCamelCase__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCamelCase__( )->Optional[int]: A__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ = parser.parse_args() A__ = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
193
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer a__: Dict = logging.get_logger(__name__) a__: str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__: Any = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } a__: Any = { 'distilbert-base-uncased': 512, 'distilbert-base-uncased-distilled-squad': 512, 'distilbert-base-cased': 512, 'distilbert-base-cased-distilled-squad': 512, 'distilbert-base-german-cased': 512, 'distilbert-base-multilingual-cased': 512, } a__: Optional[Any] = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] __SCREAMING_SNAKE_CASE = DistilBertTokenizer def __init__( self,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=True,__lowerCamelCase="[UNK]",__lowerCamelCase="[SEP]",__lowerCamelCase="[PAD]",__lowerCamelCase="[CLS]",__lowerCamelCase="[MASK]",__lowerCamelCase=True,__lowerCamelCase=None,**__lowerCamelCase,): super().__init__( __lowerCamelCase,tokenizer_file=__lowerCamelCase,do_lower_case=__lowerCamelCase,unk_token=__lowerCamelCase,sep_token=__lowerCamelCase,pad_token=__lowerCamelCase,cls_token=__lowerCamelCase,mask_token=__lowerCamelCase,tokenize_chinese_chars=__lowerCamelCase,strip_accents=__lowerCamelCase,**__lowerCamelCase,) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''',__lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''',__lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''',__lowerCamelCase ) != tokenize_chinese_chars ): A__ = getattr(__lowerCamelCase,normalizer_state.pop('''type''' ) ) A__ = do_lower_case A__ = strip_accents A__ = tokenize_chinese_chars A__ = normalizer_class(**__lowerCamelCase ) A__ = do_lower_case def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=None ): A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = self._tokenizer.model.save(__lowerCamelCase,name=__lowerCamelCase ) return tuple(__lowerCamelCase )
193
1
'''simple docstring''' import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def _A ( A__ , A__ , A__ , A__=None , A__=None , A__=None , A__=None , A__=None , ): """simple docstring""" if attention_mask is None: __lowercase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowercase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowercase = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=A__ ) if decoder_head_mask is None: __lowercase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=A__ ) if cross_attn_head_mask is None: __lowercase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=A__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : str ,lowercase__ : Dict=1_3 ,lowercase__ : Dict=7 ,lowercase__ : Optional[int]=True ,lowercase__ : Dict=False ,lowercase__ : int=9_9 ,lowercase__ : Tuple=1_6 ,lowercase__ : str=2 ,lowercase__ : List[str]=4 ,lowercase__ : Dict=4 ,lowercase__ : Optional[Any]="relu" ,lowercase__ : str=0.1 ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : int=0.0 ,lowercase__ : Dict=0.0 ,lowercase__ : str=2_0 ,lowercase__ : Union[str, Any]=2 ,lowercase__ : Tuple=1 ,lowercase__ : List[str]=0 ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = self.eos_token_id # Eos Token __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowercase = input_ids.clamp(self.pad_token_id + 1 ) __lowercase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowercase = self.get_config() __lowercase = prepare_mam_aaa_inputs_dict(lowercase__ ,lowercase__ ,lowercase__ ) return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return MaMaaaConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,encoder_layerdrop=self.encoder_layerdrop ,decoder_layerdrop=self.decoder_layerdrop ,max_position_embeddings=self.max_position_embeddings ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : Any ): __lowercase = MaMaaaModel(config=lowercase__ ).get_decoder().to(lowercase__ ).eval() __lowercase = inputs_dict['''input_ids'''] __lowercase = inputs_dict['''attention_mask'''] __lowercase = inputs_dict['''head_mask'''] # first forward pass __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,head_mask=lowercase__ ,use_cache=lowercase__ ) __lowercase , __lowercase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) ,config.vocab_size ) __lowercase = ids_tensor((self.batch_size, 3) ,2 ) # append to next input_ids and __lowercase = torch.cat([input_ids, next_tokens] ,dim=-1 ) __lowercase = torch.cat([attention_mask, next_attn_mask] ,dim=-1 ) __lowercase = model(lowercase__ ,attention_mask=lowercase__ )['''last_hidden_state'''] __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,past_key_values=lowercase__ )[ '''last_hidden_state''' ] # select random slice __lowercase = ids_tensor((1,) ,output_from_past.shape[-1] ).item() __lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ ,lowercase__ ,atol=1e-2 ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = MaMaaaModel(config=lowercase__ ).to(lowercase__ ).eval() __lowercase = model(**lowercase__ ) __lowercase = outputs.encoder_last_hidden_state __lowercase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = model.get_encoder() encoder.save_pretrained(lowercase__ ) __lowercase = MaMaaaEncoder.from_pretrained(lowercase__ ).to(lowercase__ ) __lowercase = encoder(inputs_dict['''input_ids'''] ,attention_mask=inputs_dict['''attention_mask'''] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = model.get_decoder() decoder.save_pretrained(lowercase__ ) __lowercase = MaMaaaDecoder.from_pretrained(lowercase__ ).to(lowercase__ ) __lowercase = decoder( input_ids=inputs_dict['''decoder_input_ids'''] ,attention_mask=inputs_dict['''decoder_attention_mask'''] ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=inputs_dict['''attention_mask'''] ,)[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Union[str, Any] = (MaMaaaForConditionalGeneration,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[int] = ( { 'conversational': MaMaaaForConditionalGeneration, 'feature-extraction': MaMaaaModel, 'summarization': MaMaaaForConditionalGeneration, 'text2text-generation': MaMaaaForConditionalGeneration, 'translation': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Dict = False def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Optional[int] ,lowercase__ : str ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = MaMaaaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase__ ) __lowercase , __lowercase = model_class.from_pretrained(lowercase__ ,output_loading_info=lowercase__ ) self.assertEqual(info['''missing_keys'''] ,[] ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): __lowercase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = copy.deepcopy(self._prepare_for_class(lowercase__ ,lowercase__ ) ) if not self.is_encoder_decoder: __lowercase = inputs['''input_ids'''] del inputs["input_ids"] else: __lowercase = inputs['''input_ids'''] __lowercase = inputs.get('''decoder_input_ids''' ,lowercase__ ) del inputs["input_ids"] inputs.pop('''decoder_input_ids''' ,lowercase__ ) __lowercase = model.get_input_embeddings() if not self.is_encoder_decoder: __lowercase = wte(lowercase__ ) else: __lowercase = wte(lowercase__ ) __lowercase = wte(lowercase__ ) with torch.no_grad(): model(**lowercase__ )[0] def SCREAMING_SNAKE_CASE ( self : int ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs() __lowercase = input_dict['''input_ids'''] __lowercase = input_ids.ne(1 ).to(lowercase__ ) __lowercase = MaMaaaForConditionalGeneration(lowercase__ ).eval().to(lowercase__ ) if torch_device == "cuda": model.half() model.generate(lowercase__ ,attention_mask=lowercase__ ) model.generate(num_beams=4 ,do_sample=lowercase__ ,early_stopping=lowercase__ ,num_return_sequences=3 ) def _A ( A__ ): """simple docstring""" return torch.tensor(A__ , dtype=torch.long , device=A__ ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class lowercase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self : List[Any] ): return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''' ).to(lowercase__ ) __lowercase = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) __lowercase = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) __lowercase = prepare_mam_aaa_inputs_dict(model.config ,lowercase__ ,lowercase__ ) with torch.no_grad(): __lowercase = model(**lowercase__ )[0] __lowercase = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape ,lowercase__ ) # change to expected output here __lowercase = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] ,device=lowercase__ ) self.assertTrue(torch.allclose(output[:, :3, :3] ,lowercase__ ,atol=lowercase__ ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(lowercase__ ) # change to intended input __lowercase = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) __lowercase = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) __lowercase = prepare_mam_aaa_inputs_dict(model.config ,lowercase__ ,lowercase__ ) with torch.no_grad(): __lowercase = model(**lowercase__ )[0] __lowercase = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape ,lowercase__ ) # change to expected output here __lowercase = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] ,device=lowercase__ ) self.assertTrue(torch.allclose(output[:, :3, :3] ,lowercase__ ,atol=lowercase__ ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(lowercase__ ) __lowercase = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' ,src_lang='''fr''' ,tgt_lang='''en''' ) __lowercase = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams __lowercase = tokenizer(lowercase__ ,padding=lowercase__ ,return_tensors='''pt''' ) __lowercase = model.generate( input_ids=dct['''input_ids'''].to(lowercase__ ) ,attention_mask=dct['''attention_mask'''].to(lowercase__ ) ,num_beams=5 ,forced_bos_token_id=tokenizer.get_lang_id('''en''' ) ,) __lowercase = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] __lowercase = tokenizer.batch_decode( hypotheses_batch.tolist() ,clean_up_tokenization_spaces=lowercase__ ,skip_special_tokens=lowercase__ ) assert generated == expected_en
52
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = [1_0, 2_0, 3_0, 4_0, 5_0, 6_0] __lowercase = [2, 4, 6, 8, 1_0, 1_2] __lowercase = 1_0_0 self.assertEqual(kp.calc_profit(lowercase__ ,lowercase__ ,lowercase__ ) ,2_1_0 ) def SCREAMING_SNAKE_CASE ( self : List[str] ): self.assertRaisesRegex(lowercase__ ,'''max_weight must greater than zero.''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): self.assertRaisesRegex(lowercase__ ,'''Weight can not be negative.''' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.assertRaisesRegex(lowercase__ ,'''Profit can not be negative.''' ) def SCREAMING_SNAKE_CASE ( self : int ): self.assertRaisesRegex(lowercase__ ,'''max_weight must greater than zero.''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): self.assertRaisesRegex( lowercase__ ,'''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
1
"""simple docstring""" def _snake_case ( lowercase__ : dict ) -> set: '''simple docstring''' lowerCAmelCase_ :Any = set() # edges = list of graph's edges lowerCAmelCase_ :List[Any] = get_edges(lowercase__ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = edges.pop() chosen_vertices.add(lowercase__ ) chosen_vertices.add(lowercase__ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowercase__ ) return chosen_vertices def _snake_case ( lowercase__ : dict ) -> set: '''simple docstring''' lowerCAmelCase_ :Dict = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
84
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Dict: if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=__A , ) assert hasattr(self , """env""" ) def __lowerCAmelCase ( self , __A ) -> Any: # configuration for running training on smdistributed Model Parallel lowerCAmelCase_ :Union[str, Any] = { """enabled""": True, """processes_per_host""": 8, } lowerCAmelCase_ :Tuple = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCAmelCase_ :Any = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCAmelCase_ :Any = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=__A , instance_type=self.instance_type , debugger_hook_config=__A , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=__A , py_version="""py36""" , ) def __lowerCAmelCase ( self , __A ) -> List[Any]: TrainingJobAnalytics(__A ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def __lowerCAmelCase ( self , __A ) -> List[str]: # create estimator lowerCAmelCase_ :Any = self.create_estimator(__A ) # run training estimator.fit() # result dataframe lowerCAmelCase_ :Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase_ :List[str] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase_ :Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase_ :Optional[int] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , __A )
84
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } lowercase__ = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } lowercase__ = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = VOCAB_FILES_NAMES UpperCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = SqueezeBertTokenizer def __init__( self : Any , lowercase_ : Dict=None , lowercase_ : Union[str, Any]=None , lowercase_ : Optional[int]=True , lowercase_ : str="[UNK]" , lowercase_ : List[Any]="[SEP]" , lowercase_ : List[str]="[PAD]" , lowercase_ : Optional[Any]="[CLS]" , lowercase_ : str="[MASK]" , lowercase_ : Tuple=True , lowercase_ : List[str]=None , **lowercase_ : int , ) -> Any: super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , ) UpperCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowercase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowercase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowercase_ ) != tokenize_chinese_chars ): UpperCAmelCase : Any = getattr(lowercase_ , normalizer_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = do_lower_case UpperCAmelCase : Optional[int] = strip_accents UpperCAmelCase : Dict = tokenize_chinese_chars UpperCAmelCase : List[str] = normalizer_class(**lowercase_ ) UpperCAmelCase : Optional[int] = do_lower_case def UpperCAmelCase_ ( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : Any=None ) -> List[str]: UpperCAmelCase : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : int , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : List[str] = [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : int , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ )
356
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = tmp_path / 'cache' UpperCAmelCase : List[str] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Tuple = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = tmp_path / 'cache' UpperCAmelCase : List[str] = {'text': 'string'} UpperCAmelCase : Optional[int] = features.copy() if features else default_expected_features UpperCAmelCase : int = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Union[str, Any] = TextDatasetReader(UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = tmp_path / 'cache' UpperCAmelCase : Tuple = {'text': 'string'} UpperCAmelCase : List[str] = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , split=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = text_path elif issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = [text_path] UpperCAmelCase : List[Any] = tmp_path / 'cache' UpperCAmelCase : Union[str, Any] = {'text': 'string'} UpperCAmelCase : List[Any] = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=("train",) ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for split in splits: UpperCAmelCase : Union[str, Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = tmp_path / 'cache' UpperCAmelCase : List[str] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : int = TextDatasetReader({'train': text_path} , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" UpperCAmelCase : Tuple = {'text': 'string'} UpperCAmelCase : Union[str, Any] = features.copy() if features else default_expected_features UpperCAmelCase : int = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : List[Any] = TextDatasetReader({'train': text_path} , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if split: UpperCAmelCase : int = {split: text_path} else: UpperCAmelCase : int = 'train' UpperCAmelCase : Any = {'train': text_path, 'test': text_path} UpperCAmelCase : Dict = tmp_path / 'cache' UpperCAmelCase : Any = {'text': 'string'} UpperCAmelCase : List[str] = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
280
0
from __future__ import annotations import time import numpy as np __A = [8, 5, 9, 7] __A = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __A = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> None: '''simple docstring''' __lowerCamelCase = claim_vector __lowerCamelCase = allocated_resources_table __lowerCamelCase = maximum_claim_table def lowercase_ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowercase_ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowercase_ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(lowerCamelCase__ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowercase_ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(lowerCamelCase__ ): i for i in self.__need()} def lowercase_ ( self , **lowerCamelCase__ ) -> None: '''simple docstring''' __lowerCamelCase = self.__need() __lowerCamelCase = self.__allocated_resources_table __lowerCamelCase = self.__available_resources() __lowerCamelCase = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __lowerCamelCase = False for each_need in need_list: __lowerCamelCase = True for index, need in enumerate(lowerCamelCase__ ): if need > available_resources[index]: __lowerCamelCase = False break if execution: __lowerCamelCase = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __lowerCamelCase = original_need_index print(f"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(lowerCamelCase__ ) # update available/freed resources stack __lowerCamelCase = np.array(lowerCamelCase__ ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(lowerCamelCase__ ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def lowercase_ ( self ) -> List[Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f"""P{self.__allocated_resources_table.index(lowerCamelCase__ ) + 1}""" + ' '.join(f"""{it:>8}""" for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f"""P{self.__maximum_claim_table.index(lowerCamelCase__ ) + 1}""" + ' '.join(f"""{it:>8}""" for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(lowerCamelCase__ ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(lowerCamelCase__ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
90
'''simple docstring''' class lowercase__ : '''simple docstring''' def __init__( self , __snake_case = "" , __snake_case = False ): # Mapping from the first character of the prefix of the node _SCREAMING_SNAKE_CASE : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word _SCREAMING_SNAKE_CASE : List[Any] = is_leaf _SCREAMING_SNAKE_CASE : Optional[Any] = prefix def UpperCAmelCase_ ( self , __snake_case ): _SCREAMING_SNAKE_CASE : Optional[int] = 0 for q, w in zip(self.prefix , __snake_case ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self , __snake_case ): for word in words: self.insert(__snake_case ) def UpperCAmelCase_ ( self , __snake_case ): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: _SCREAMING_SNAKE_CASE : List[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _SCREAMING_SNAKE_CASE : List[str] = RadixNode(prefix=__snake_case , is_leaf=__snake_case ) else: _SCREAMING_SNAKE_CASE : int = self.nodes[word[0]] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = incoming_node.match( __snake_case ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(__snake_case ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _SCREAMING_SNAKE_CASE : Optional[Any] = remaining_prefix _SCREAMING_SNAKE_CASE : Union[str, Any] = self.nodes[matching_string[0]] _SCREAMING_SNAKE_CASE : List[Any] = RadixNode(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : Union[str, Any] = aux_node if remaining_word == "": _SCREAMING_SNAKE_CASE : Union[str, Any] = True else: self.nodes[matching_string[0]].insert(__snake_case ) def UpperCAmelCase_ ( self , __snake_case ): _SCREAMING_SNAKE_CASE : Union[str, Any] = self.nodes.get(word[0] , __snake_case ) if not incoming_node: return False else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Tuple = incoming_node.match( __snake_case ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(__snake_case ) def UpperCAmelCase_ ( self , __snake_case ): _SCREAMING_SNAKE_CASE : Tuple = self.nodes.get(word[0] , __snake_case ) if not incoming_node: return False else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = incoming_node.match( __snake_case ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(__snake_case ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _SCREAMING_SNAKE_CASE : Optional[Any] = list(self.nodes.values() )[0] _SCREAMING_SNAKE_CASE : Optional[Any] = merging_node.is_leaf self.prefix += merging_node.prefix _SCREAMING_SNAKE_CASE : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _SCREAMING_SNAKE_CASE : List[str] = False # If there is 1 edge, we merge it with its child else: _SCREAMING_SNAKE_CASE : int = list(incoming_node.nodes.values() )[0] _SCREAMING_SNAKE_CASE : Tuple = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _SCREAMING_SNAKE_CASE : str = merging_node.nodes return True def UpperCAmelCase_ ( self , __snake_case = 0 ): if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = """banana bananas bandana band apple all beast""".split() _SCREAMING_SNAKE_CASE : Optional[Any] = RadixNode() root.insert_many(SCREAMING_SNAKE_CASE__ ) assert all(root.find(SCREAMING_SNAKE_CASE__ ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def snake_case_ ( ): """simple docstring""" assert test_trie() def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = RadixNode() _SCREAMING_SNAKE_CASE : Optional[int] = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(SCREAMING_SNAKE_CASE__ ) print("""Words:""" , SCREAMING_SNAKE_CASE__ ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
200
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Optional[int] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0]) a : Dict = get_activation('gelu') self.assertTrue(torch.allclose(gelu_python(UpperCAmelCase_) , torch_builtin(UpperCAmelCase_))) self.assertFalse(torch.allclose(gelu_python(UpperCAmelCase_) , gelu_new(UpperCAmelCase_))) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0]) a : str = get_activation('gelu') a : Optional[int] = get_activation('gelu_10') a : Optional[int] = torch_builtin(UpperCAmelCase_) a : List[str] = geluaa(UpperCAmelCase_) a : List[Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0) self.assertTrue(torch.max(UpperCAmelCase_).item() == 10.0) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask)) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" get_activation('gelu') get_activation('gelu_10') get_activation('gelu_fast') get_activation('gelu_new') get_activation('gelu_python') get_activation('gelu_pytorch_tanh') get_activation('linear') get_activation('mish') get_activation('quick_gelu') get_activation('relu') get_activation('sigmoid') get_activation('silu') get_activation('swish') get_activation('tanh') with self.assertRaises(UpperCAmelCase_): get_activation('bogus') with self.assertRaises(UpperCAmelCase_): get_activation(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Optional[int] = get_activation('gelu') a : Dict = 1 a : Dict = get_activation('gelu') self.assertEqual(acta.a , 1) with self.assertRaises(UpperCAmelCase_): a : str = acta.a
360
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=1_3 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[Any]=9_9 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : int=3_2 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=5_1_2 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : int="last" , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=0 , ): """simple docstring""" a : Tuple = parent a : Optional[Any] = batch_size a : Tuple = seq_length a : Union[str, Any] = is_training a : List[str] = use_input_lengths a : Union[str, Any] = use_token_type_ids a : Optional[int] = use_labels a : int = gelu_activation a : Dict = sinusoidal_embeddings a : Any = causal a : Optional[int] = asm a : int = n_langs a : List[str] = vocab_size a : List[str] = n_special a : List[str] = hidden_size a : Any = num_hidden_layers a : Union[str, Any] = num_attention_heads a : Optional[Any] = hidden_dropout_prob a : str = attention_probs_dropout_prob a : Dict = max_position_embeddings a : Union[str, Any] = type_sequence_label_size a : str = initializer_range a : List[Any] = num_labels a : Union[str, Any] = num_choices a : Optional[Any] = summary_type a : Optional[Any] = use_proj a : Optional[Any] = scope a : Dict = bos_token_id def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) a : Optional[int] = None if self.use_input_lengths: a : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length a : int = None if self.use_token_type_ids: a : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) a : Optional[Any] = None a : Tuple = None a : Optional[Any] = None if self.use_labels: a : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : Optional[Any] = ids_tensor([self.batch_size] , 2).float() a : Dict = ids_tensor([self.batch_size] , self.num_choices) a : Any = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : Any = XLMModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_ , lengths=UpperCAmelCase_ , langs=UpperCAmelCase_) a : str = model(UpperCAmelCase_ , langs=UpperCAmelCase_) a : int = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , ): """simple docstring""" a : Optional[Any] = XLMWithLMHeadModel(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : Union[str, Any] = XLMForQuestionAnsweringSimple(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = model(UpperCAmelCase_) a : Tuple = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) a : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , ): """simple docstring""" a : Any = XLMForQuestionAnswering(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_) a : Dict = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , p_mask=UpperCAmelCase_ , ) a : int = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , ) ((a) , ) : Union[str, Any] = result_with_labels.to_tuple() a : int = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) ((a) , ) : Union[str, Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , ): """simple docstring""" a : Dict = XLMForSequenceClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = model(UpperCAmelCase_) a : Union[str, Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , ): """simple docstring""" a : Dict = self.num_labels a : int = XLMForTokenClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , ): """simple docstring""" a : str = self.num_choices a : Dict = XLMForMultipleChoice(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : str = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Optional[int] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Any = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : int = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Union[str, Any] = config_and_inputs a : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" A : int = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A : Optional[Any] = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=False): """simple docstring""" a : List[Any] = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": a : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) a : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[Any] = XLMModelTester(self) a : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , emb_dim=3_7) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1): """simple docstring""" self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual( [isinstance(UpperCAmelCase_ , UpperCAmelCase_) for iter_attentions in attentions] , [True] * len(UpperCAmelCase_)) self.assertEqual(len(UpperCAmelCase_) , (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(UpperCAmelCase_): # adds PAD dummy token a : List[str] = min_length + idx + 1 a : Optional[Any] = min_length + idx + 1 a : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Union[str, Any]=1): """simple docstring""" self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual( [isinstance(UpperCAmelCase_ , UpperCAmelCase_) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase_) , ) self.assertEqual(len(UpperCAmelCase_) , (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(UpperCAmelCase_): # adds PAD dummy token a : int = min_length + idx + 1 a : Any = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase_) , ) pass @slow def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Union[str, Any] = XLMModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Dict = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') model.to(UpperCAmelCase_) a : List[Any] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase_) # the president a : Dict = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference a : Optional[Any] = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase_)
345
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : List[str] = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys snake_case : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
94
from maths.prime_factors import prime_factors def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): a :Dict = F'''Input value of [number={number}] must be an integer''' raise TypeError(UpperCAmelCase_ ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(UpperCAmelCase_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
94
1
from __future__ import annotations from random import random class lowercase_ : def __init__( self : str , A__ : int | None = None ) -> Tuple: _snake_case = value _snake_case = random() _snake_case = None _snake_case = None def __repr__( self : Tuple ) -> str: from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : List[str] ) -> str: _snake_case = str(self.value ) + ''' ''' _snake_case = str(self.left or '''''' ) _snake_case = str(self.right or '''''' ) return value + left + right def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> tuple[Node | None, Node | None]: """simple docstring""" if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case, _snake_case = split(root.left , _UpperCamelCase ) return left, root else: _snake_case, _snake_case = split(root.right , _UpperCamelCase ) return root, right def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> Node | None: """simple docstring""" if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case = merge(left.right , _UpperCamelCase ) return left else: _snake_case = merge(_UpperCamelCase , right.left ) return right def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> Node | None: """simple docstring""" _snake_case = Node(_UpperCamelCase ) _snake_case, _snake_case = split(_UpperCamelCase , _UpperCamelCase ) return merge(merge(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> Node | None: """simple docstring""" _snake_case, _snake_case = split(_UpperCamelCase , value - 1 ) _snake_case, _snake_case = split(_UpperCamelCase , _UpperCamelCase ) return merge(_UpperCamelCase , _UpperCamelCase ) def snake_case_(_UpperCamelCase ) -> None: """simple docstring""" if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> Node | None: """simple docstring""" for arg in args.split(): if arg[0] == "+": _snake_case = insert(_UpperCamelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case = erase(_UpperCamelCase , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def snake_case_() -> None: """simple docstring""" _snake_case = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) _snake_case = input() while args != "q": _snake_case = interact_treap(_UpperCamelCase , _UpperCamelCase ) print(_UpperCamelCase ) _snake_case = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
370
__A = { '''Pillow''': '''Pillow<10.0.0''', '''accelerate''': '''accelerate>=0.20.3''', '''av''': '''av==9.2.0''', '''beautifulsoup4''': '''beautifulsoup4''', '''black''': '''black~=23.1''', '''codecarbon''': '''codecarbon==1.2.0''', '''cookiecutter''': '''cookiecutter==1.7.3''', '''dataclasses''': '''dataclasses''', '''datasets''': '''datasets!=2.5.0''', '''decord''': '''decord==0.6.0''', '''deepspeed''': '''deepspeed>=0.9.3''', '''diffusers''': '''diffusers''', '''dill''': '''dill<0.3.5''', '''evaluate''': '''evaluate>=0.2.0''', '''fairscale''': '''fairscale>0.3''', '''faiss-cpu''': '''faiss-cpu''', '''fastapi''': '''fastapi''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1,<=0.7.0''', '''ftfy''': '''ftfy''', '''fugashi''': '''fugashi>=1.0''', '''GitPython''': '''GitPython<3.1.19''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.14.1,<1.0''', '''importlib_metadata''': '''importlib_metadata''', '''ipadic''': '''ipadic>=1.0.0,<2.0''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2,<=0.4.13''', '''jaxlib''': '''jaxlib>=0.1.65,<=0.4.13''', '''jieba''': '''jieba''', '''kenlm''': '''kenlm''', '''keras-nlp''': '''keras-nlp>=0.3.1''', '''librosa''': '''librosa''', '''nltk''': '''nltk''', '''natten''': '''natten>=0.14.6''', '''numpy''': '''numpy>=1.17''', '''onnxconverter-common''': '''onnxconverter-common''', '''onnxruntime-tools''': '''onnxruntime-tools>=1.4.2''', '''onnxruntime''': '''onnxruntime>=1.4.0''', '''opencv-python''': '''opencv-python''', '''optuna''': '''optuna''', '''optax''': '''optax>=0.0.8,<=0.1.4''', '''packaging''': '''packaging>=20.0''', '''parameterized''': '''parameterized''', '''phonemizer''': '''phonemizer''', '''protobuf''': '''protobuf''', '''psutil''': '''psutil''', '''pyyaml''': '''pyyaml>=5.1''', '''pydantic''': '''pydantic<2''', '''pytest''': '''pytest>=7.2.0''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''python''': '''python>=3.8.0''', '''ray[tune]''': '''ray[tune]''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''rhoknp''': '''rhoknp>=1.1.0,<1.3.1''', '''rjieba''': '''rjieba''', '''rouge-score''': '''rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1''', '''ruff''': '''ruff>=0.0.241,<=0.0.259''', '''sacrebleu''': '''sacrebleu>=1.4.12,<2.0.0''', '''sacremoses''': '''sacremoses''', '''safetensors''': '''safetensors>=0.3.1''', '''sagemaker''': '''sagemaker>=2.31.0''', '''scikit-learn''': '''scikit-learn''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''sigopt''': '''sigopt''', '''starlette''': '''starlette''', '''sudachipy''': '''sudachipy>=0.6.6''', '''sudachidict_core''': '''sudachidict_core>=20220729''', '''tensorflow-cpu''': '''tensorflow-cpu>=2.6,<2.14''', '''tensorflow''': '''tensorflow>=2.6,<2.14''', '''tensorflow-text''': '''tensorflow-text<2.14''', '''tf2onnx''': '''tf2onnx''', '''timeout-decorator''': '''timeout-decorator''', '''timm''': '''timm''', '''tokenizers''': '''tokenizers>=0.11.1,!=0.11.3,<0.14''', '''torch''': '''torch>=1.9,!=1.12.0''', '''torchaudio''': '''torchaudio''', '''torchvision''': '''torchvision''', '''pyctcdecode''': '''pyctcdecode>=0.4.0''', '''tqdm''': '''tqdm>=4.27''', '''unidic''': '''unidic>=1.0.2''', '''unidic_lite''': '''unidic_lite>=1.0.7''', '''urllib3''': '''urllib3<2.0.0''', '''uvicorn''': '''uvicorn''', }
278
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __lowerCamelCase : Tuple = logging.get_logger(__name__) class A__ ( __snake_case ): _UpperCAmelCase :Tuple = ['pixel_values'] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BILINEAR , A_ = True , A_ = None , A_ = True , A_ = 1 / 255 , A_ = True , A_ = None , A_ = None , **A_ , ): '''simple docstring''' super().__init__(**A_ ) UpperCamelCase : Optional[Any] = size if size is not None else {"shortest_edge": 256} UpperCamelCase : List[Any] = get_size_dict(A_ , default_to_square=A_ ) UpperCamelCase : Dict = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCamelCase : List[Any] = get_size_dict(A_ , param_name="crop_size" ) UpperCamelCase : Optional[int] = do_resize UpperCamelCase : str = size UpperCamelCase : str = resample UpperCamelCase : Optional[int] = do_center_crop UpperCamelCase : List[Any] = crop_size UpperCamelCase : Optional[int] = do_rescale UpperCamelCase : Any = rescale_factor UpperCamelCase : Optional[Any] = do_normalize UpperCamelCase : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase( self , A_ , A_ , A_ = PILImageResampling.BICUBIC , A_ = None , **A_ , ): '''simple docstring''' UpperCamelCase : Dict = get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCamelCase : Any = get_resize_output_image_size(A_ , size=size["shortest_edge"] , default_to_square=A_ ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def __UpperCamelCase( self , A_ , A_ , A_ = None , **A_ , ): '''simple docstring''' UpperCamelCase : Dict = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(A_ , size=(size["height"], size["width"]) , data_format=A_ , **A_ ) def __UpperCamelCase( self , A_ , A_ , A_ = None , **A_ ): '''simple docstring''' return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ = None , **A_ , ): '''simple docstring''' return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def __UpperCamelCase( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ): '''simple docstring''' UpperCamelCase : str = do_resize if do_resize is not None else self.do_resize UpperCamelCase : Tuple = size if size is not None else self.size UpperCamelCase : Any = get_size_dict(A_ , default_to_square=A_ ) UpperCamelCase : Optional[Any] = resample if resample is not None else self.resample UpperCamelCase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase : str = crop_size if crop_size is not None else self.crop_size UpperCamelCase : List[Any] = get_size_dict(A_ , param_name="crop_size" ) UpperCamelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase : List[Any] = image_mean if image_mean is not None else self.image_mean UpperCamelCase : Optional[Any] = image_std if image_std is not None else self.image_std UpperCamelCase : List[Any] = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase : Tuple = [to_numpy_array(A_ ) for image in images] if do_resize: UpperCamelCase : Union[str, Any] = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: UpperCamelCase : Optional[Any] = [self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: UpperCamelCase : int = [self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: UpperCamelCase : str = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] UpperCamelCase : List[str] = [to_channel_dimension_format(A_ , A_ ) for image in images] UpperCamelCase : List[Any] = {"pixel_values": images} return BatchFeature(data=A_ , tensor_type=A_ ) def __UpperCamelCase( self , A_ , A_ = None ): '''simple docstring''' UpperCamelCase : Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(A_ ): UpperCamelCase : Tuple = target_sizes.numpy() UpperCamelCase : Tuple = [] for idx in range(len(A_ ) ): UpperCamelCase : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=A_ ) UpperCamelCase : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: UpperCamelCase : Optional[Any] = logits.argmax(dim=1 ) UpperCamelCase : int = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
52
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCamelCase : List[Any] = """ @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __lowerCamelCase : Optional[int] = """\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. """ __lowerCamelCase : str = """ Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=[\"About 95 species are currently accepted .\"] >>> predictions=[\"About 95 you now get in .\"] >>> references=[[\"About 95 species are currently known .\"]] >>> wiki_split = datasets.load_metric(\"wiki_split\") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0} """ def A_ ( _lowerCAmelCase ) -> str: def remove_articles(_lowerCAmelCase ): UpperCamelCase : Tuple = re.compile(r"\b(a|an|the)\b" , re.UNICODE ) return re.sub(_lowerCAmelCase , " " , _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase ): UpperCamelCase : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> str: UpperCamelCase : Tuple = [any(compute_exact(_lowerCAmelCase , _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase , _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 100 def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: UpperCamelCase : Union[str, Any] = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCamelCase : Union[str, Any] = Counter(_lowerCAmelCase ) UpperCamelCase : Optional[int] = Counter(_lowerCAmelCase ) UpperCamelCase : List[Any] = Counter() for sgram, scount in sgramcounter.items(): UpperCamelCase : Tuple = scount * numref UpperCamelCase : Union[str, Any] = Counter(_lowerCAmelCase ) UpperCamelCase : Tuple = Counter() for cgram, ccount in cgramcounter.items(): UpperCamelCase : Dict = ccount * numref # KEEP UpperCamelCase : List[Any] = sgramcounter_rep & cgramcounter_rep UpperCamelCase : Union[str, Any] = keepgramcounter_rep & rgramcounter UpperCamelCase : Dict = sgramcounter_rep & rgramcounter UpperCamelCase : Optional[int] = 0 UpperCamelCase : Tuple = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase : Any = 1 UpperCamelCase : Any = 1 if len(_lowerCAmelCase ) > 0: UpperCamelCase : Dict = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCamelCase : Union[str, Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) UpperCamelCase : Any = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCamelCase : List[str] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCamelCase : Any = sgramcounter_rep - cgramcounter_rep UpperCamelCase : str = delgramcounter_rep - rgramcounter UpperCamelCase : Any = sgramcounter_rep - rgramcounter UpperCamelCase : Optional[int] = 0 UpperCamelCase : Union[str, Any] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase : Dict = 1 if len(_lowerCAmelCase ) > 0: UpperCamelCase : str = deltmpscorea / len(_lowerCAmelCase ) # ADDITION UpperCamelCase : List[str] = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) UpperCamelCase : List[str] = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) UpperCamelCase : Dict = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase : Tuple = 1 UpperCamelCase : Tuple = 1 if len(_lowerCAmelCase ) > 0: UpperCamelCase : Dict = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCamelCase : Tuple = addtmpscore / len(_lowerCAmelCase ) UpperCamelCase : List[str] = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCamelCase : List[str] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: UpperCamelCase : int = len(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = ssent.split(" " ) UpperCamelCase : Dict = csent.split(" " ) UpperCamelCase : str = [] UpperCamelCase : Any = [] UpperCamelCase : Any = [] UpperCamelCase : Union[str, Any] = [] UpperCamelCase : str = [] UpperCamelCase : str = [] UpperCamelCase : Dict = [] UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = [] UpperCamelCase : Tuple = [] for rsent in rsents: UpperCamelCase : List[Any] = rsent.split(" " ) UpperCamelCase : List[str] = [] UpperCamelCase : int = [] UpperCamelCase : Tuple = [] ragramslist.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: UpperCamelCase : Dict = ragrams[i] + " " + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: UpperCamelCase : Dict = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: UpperCamelCase : List[Any] = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: UpperCamelCase : Union[str, Any] = sagrams[i] + " " + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: UpperCamelCase : List[str] = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: UpperCamelCase : Optional[int] = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: UpperCamelCase : Union[str, Any] = cagrams[i] + " " + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: UpperCamelCase : Optional[Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: UpperCamelCase : Union[str, Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[Any] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : str = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : Tuple = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 UpperCamelCase : str = sum([delascore, delascore, delascore, delascore] ) / 4 UpperCamelCase : Union[str, Any] = sum([addascore, addascore, addascore, addascore] ) / 4 UpperCamelCase : Union[str, Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A_ ( _lowerCAmelCase , _lowerCAmelCase = True , _lowerCAmelCase = "13a" , _lowerCAmelCase = True ) -> Optional[Any]: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: UpperCamelCase : Dict = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: UpperCamelCase : str = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: UpperCamelCase : Dict = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": UpperCamelCase : Union[str, Any] = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase , return_str=_lowerCAmelCase , escape=_lowerCAmelCase ) elif tokenizer == "penn": UpperCamelCase : str = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase , return_str=_lowerCAmelCase ) else: UpperCamelCase : Union[str, Any] = sentence if not return_str: UpperCamelCase : Tuple = normalized_sent.split() return normalized_sent def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError("Sources length must match predictions and references lengths." ) UpperCamelCase : Optional[Any] = 0 for src, pred, refs in zip(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ) , normalize(_lowerCAmelCase ) , [normalize(_lowerCAmelCase ) for sent in refs] ) UpperCamelCase : Optional[int] = sari_score / len(_lowerCAmelCase ) return 100 * sari_score def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="exp" , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> List[str]: UpperCamelCase : Optional[Any] = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) UpperCamelCase : Optional[int] = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] UpperCamelCase : Tuple = sacrebleu.corpus_bleu( _lowerCAmelCase , _lowerCAmelCase , smooth_method=_lowerCAmelCase , smooth_value=_lowerCAmelCase , force=_lowerCAmelCase , lowercase=_lowerCAmelCase , use_effective_order=_lowerCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCamelCase( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] , reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = {} result.update({"sari": compute_sari(sources=A_ , predictions=A_ , references=A_ )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=A_ , references=A_ )} ) result.update({"exact": compute_em(predictions=A_ , references=A_ )} ) return result
52
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )["""last_hidden_state"""] __SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. __SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
331
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase : List[Any] = logging.get_logger(__name__) # TODO: upload to AWS UpperCAmelCase : Optional[int] = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "retribert" def __init__( self : int , __SCREAMING_SNAKE_CASE : str=30_522 , __SCREAMING_SNAKE_CASE : int=768 , __SCREAMING_SNAKE_CASE : Any=8 , __SCREAMING_SNAKE_CASE : List[str]=12 , __SCREAMING_SNAKE_CASE : List[str]=3_072 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Dict=512 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : List[str]=1E-12 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Any=128 , __SCREAMING_SNAKE_CASE : Tuple=0 , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Any: """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = share_encoders __SCREAMING_SNAKE_CASE = projection_dim
331
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} UpperCamelCase__ = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } UpperCamelCase__ = { '''abeja/gpt-neox-japanese-2.7b''': 2_0_4_8, } def lowerCAmelCase_ ( __A, __A ) -> List[str]: '''simple docstring''' with open(__A, "r", encoding="utf-8" ) as f: UpperCAmelCase__ = json.loads(f.read() ) UpperCAmelCase__ = collections.OrderedDict() UpperCAmelCase__ = collections.OrderedDict() UpperCAmelCase__ = collections.OrderedDict() with open(__A, "r", encoding="utf-8" ) as f: UpperCAmelCase__ = f.readlines() UpperCAmelCase__ = [[t.rstrip("\n" )] if (t == ',' or ',' not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(__A ): UpperCAmelCase__ = b UpperCAmelCase__ = idx for wd in b: UpperCAmelCase__ = idx return vocab, raw_vocab, ids_to_tokens, emoji class A ( snake_case__ ): __UpperCAmelCase : Tuple = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : int = ['''input_ids''', '''attention_mask'''] def __init__(self : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : List[Any]="<|endoftext|>" , __UpperCAmelCase : Union[str, Any]="<|endoftext|>" , __UpperCAmelCase : Union[str, Any]="<|startoftext|>" , __UpperCAmelCase : Dict="<|endoftext|>" , __UpperCAmelCase : Union[str, Any]=False , **__UpperCAmelCase : Dict , ) -> Dict: """simple docstring""" super().__init__( unk_token=_A , pad_token=_A , bos_token=_A , eos_token=_A , do_clean_text=_A , **_A , ) if not os.path.isfile(_A ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(_A ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) UpperCAmelCase__ = do_clean_text UpperCAmelCase__ = load_vocab_and_emoji(_A , _A ) UpperCAmelCase__ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def lowercase_ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return len(self.raw_vocab ) def lowercase_ (self : str ) -> str: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" return self.subword_tokenizer.tokenize(_A , clean=self.do_clean_text ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Dict ) -> Tuple: """simple docstring""" return self.vocab.get(_A , self.vocab.get(self.unk_token ) ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(_A ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : List[Any] ) -> str: """simple docstring""" UpperCAmelCase__ = ''.join(_A ).strip() return out_string def lowercase_ (self : str , __UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" UpperCAmelCase__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_A , add_special_tokens=_A ) + [self.eos_token_id] ) if len(_A ) > self.model_max_length: UpperCAmelCase__ = input_ids[-self.model_max_length :] return input_ids def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any = None ) -> Any: """simple docstring""" UpperCAmelCase__ = 0 if os.path.isdir(_A ): UpperCAmelCase__ = os.path.join( _A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ = os.path.join( _A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: UpperCAmelCase__ = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(_A , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) UpperCAmelCase__ = token_index writer.write(",".join(_A ) + "\n" ) index += 1 with open(_A , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , _A ) return vocab_file, emoji_file class A ( snake_case__ ): def __init__(self : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = vocab # same as swe UpperCAmelCase__ = ids_to_tokens # same as bpe UpperCAmelCase__ = emoji UpperCAmelCase__ = np.max([len(_A ) for w in self.vocab.keys()] ) UpperCAmelCase__ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) UpperCAmelCase__ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) UpperCAmelCase__ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) UpperCAmelCase__ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase__ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase__ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) UpperCAmelCase__ = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' UpperCAmelCase__ = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' UpperCAmelCase__ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__(self : Tuple ) -> Optional[Any]: """simple docstring""" return len(self.ids_to_tokens ) def lowercase_ (self : Dict , __UpperCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" UpperCAmelCase__ = self.content_repattera.sub("<URL>" , _A ) UpperCAmelCase__ = self.content_repattera.sub("<EMAIL>" , _A ) UpperCAmelCase__ = self.content_repattera.sub("<TEL>" , _A ) UpperCAmelCase__ = self.content_repattera.sub("<DATE>" , _A ) UpperCAmelCase__ = self.content_repattera.sub("<DATE>" , _A ) UpperCAmelCase__ = self.content_repattera.sub("<PRICE>" , _A ) UpperCAmelCase__ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase__ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def lowercase_ (self : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" UpperCAmelCase__ = text.replace(" " , "<SP>" ) UpperCAmelCase__ = text.replace(" " , "<SP>" ) UpperCAmelCase__ = text.replace("\r\n" , "<BR>" ) UpperCAmelCase__ = text.replace("\n" , "<BR>" ) UpperCAmelCase__ = text.replace("\r" , "<BR>" ) UpperCAmelCase__ = text.replace("\t" , "<TAB>" ) UpperCAmelCase__ = text.replace("—" , "ー" ) UpperCAmelCase__ = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase__ = text.replace(_A , _A ) if clean: UpperCAmelCase__ = self.clean_text(_A ) def check_simbol(__UpperCAmelCase : int ): UpperCAmelCase__ = x.encode() if len(_A ) == 1 and len(_A ) == 2: UpperCAmelCase__ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC_2A1 and c <= 0XC_2BF) or (c >= 0XC_780 and c <= 0XC_783) or (c >= 0XC_AB9 and c <= 0XC_BBF) or (c >= 0XC_C80 and c <= 0XC_DA2) ): return True return False def checkuae(__UpperCAmelCase : str ): UpperCAmelCase__ = x.encode() if len(_A ) == 1 and len(_A ) == 3: UpperCAmelCase__ = (int(e[0] ) << 1_6) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE28_080 and c <= 0XE2B_07F: return True return False UpperCAmelCase__ = 0 UpperCAmelCase__ = [] while pos < len(_A ): UpperCAmelCase__ = min(len(_A ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 UpperCAmelCase__ = [] # (token_id, token, pos) for e in range(_A , _A , -1 ): UpperCAmelCase__ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_A ) > 2: UpperCAmelCase__ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_A ) > 0: # the smallest token_id is adopted UpperCAmelCase__ = sorted(_A , key=lambda __UpperCAmelCase : x[0] )[0] result.append(_A ) UpperCAmelCase__ = e else: UpperCAmelCase__ = pos + 1 UpperCAmelCase__ = text[pos:end] if check_simbol(_A ): result.append("<KIGOU>" ) elif checkuae(_A ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) UpperCAmelCase__ = end return result def lowercase_ (self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any]="\n" ) -> int: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_A ) > 0: words.append(bytearray(_A ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase__ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(_A ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(_A ) if len(_A ) > 0: words.append(bytearray(_A ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase__ = ''.join(_A ) return text
65
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class _A( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=7 , _A=3 , _A=30 , _A=400 , _A=True , _A=None , _A=True , _A=[0.5, 0.5, 0.5] , _A=[0.5, 0.5, 0.5] , _A=True , _A=1 / 255 , _A=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : List[Any] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} __A : Union[str, Any] = parent __A : Optional[int] = batch_size __A : int = num_channels __A : int = min_resolution __A : Any = max_resolution __A : List[Any] = do_resize __A : List[Any] = size __A : Union[str, Any] = do_normalize __A : Optional[int] = image_mean __A : Optional[int] = image_std __A : int = do_rescale __A : str = rescale_factor __A : Tuple = do_pad def UpperCAmelCase_ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase_ ( self , _A , _A=False ): if not batched: __A : List[str] = image_inputs[0] if isinstance(_A , Image.Image ): __A , __A : int = image.size else: __A , __A : Any = image.shape[1], image.shape[2] if w < h: __A : List[Any] = int(self.size['shortest_edge'] * h / w ) __A : List[Any] = self.size['shortest_edge'] elif w > h: __A : Union[str, Any] = self.size['shortest_edge'] __A : str = int(self.size['shortest_edge'] * w / h ) else: __A : Dict = self.size['shortest_edge'] __A : str = self.size['shortest_edge'] else: __A : int = [] for image in image_inputs: __A , __A : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : List[str] = max(_A , key=lambda _A : item[0] )[0] __A : str = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _A( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[str] = YolosImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ): __A : Dict = YolosImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ): __A : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) def UpperCAmelCase_ ( self ): __A : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _A ) __A : Dict = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_A ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _A ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): # Initialize image_processing __A : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input __A : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) __A : str = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processing __A : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A , __A : List[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(_A , return_tensors='pt' ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processing __A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input __A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A , __A : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Optional[int] = image_processing(_A , return_tensors='pt' ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processings __A : Tuple = self.image_processing_class(**self.image_processor_dict ) __A : Any = self.image_processing_class(do_resize=_A , do_normalize=_A , do_rescale=_A ) # create random PyTorch tensors __A : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors __A : Optional[int] = image_processing_a.pad(_A , return_tensors='pt' ) __A : Optional[int] = image_processing_a(_A , return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'] , encoded_images['pixel_values'] , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self ): # prepare image and target __A : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __A : Optional[Any] = json.loads(f.read() ) __A : Optional[Any] = {'image_id': 39769, 'annotations': target} # encode them __A : str = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) __A : List[Any] = image_processing(images=_A , annotations=_A , return_tensors='pt' ) # verify pixel values __A : List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area __A : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _A ) ) # verify boxes __A : Any = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _A ) __A : Optional[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _A , atol=1e-3 ) ) # verify image_id __A : Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _A ) ) # verify is_crowd __A : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _A ) ) # verify class_labels __A : Any = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _A ) ) # verify orig_size __A : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _A ) ) # verify size __A : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _A ) ) @slow def UpperCAmelCase_ ( self ): # prepare image, target and masks_path __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __A : Tuple = json.loads(f.read() ) __A : Any = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} __A : List[Any] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __A : Any = YolosImageProcessor(format='coco_panoptic' ) __A : List[Any] = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='pt' ) # verify pixel values __A : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area __A : int = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _A ) ) # verify boxes __A : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _A ) __A : Optional[Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _A , atol=1e-3 ) ) # verify image_id __A : Union[str, Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _A ) ) # verify is_crowd __A : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _A ) ) # verify class_labels __A : List[str] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _A ) ) # verify masks __A : Tuple = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _A ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _A ) ) # verify size __A : int = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _A ) )
280
0
import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCAmelCase = ['''small''', '''medium''', '''large'''] __UpperCAmelCase = '''lm_head.decoder.weight''' __UpperCAmelCase = '''lm_head.weight''' def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : str ): a__: Optional[Any] =torch.load(__magic_name__ ) a__: Union[str, Any] =d.pop(__magic_name__ ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) torch.save(__magic_name__ , os.path.join(__magic_name__ , __magic_name__ ) ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) __UpperCAmelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCAmelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") __UpperCAmelCase = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
42
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''▁''' __UpperCAmelCase = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __UpperCAmelCase = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } __UpperCAmelCase = { '''facebook/m2m100_418M''': 10_24, } # fmt: off __UpperCAmelCase = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class lowerCamelCase__ ( _a ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = ['''input_ids''', '''attention_mask'''] _lowerCAmelCase = [] _lowerCAmelCase = [] def __init__( self : Dict , _a : Tuple , _a : List[Any] , _a : Tuple=None , _a : Dict=None , _a : Any="<s>" , _a : Union[str, Any]="</s>" , _a : str="</s>" , _a : int="<pad>" , _a : str="<unk>" , _a : Tuple="m2m100" , _a : Optional[Dict[str, Any]] = None , _a : str=8 , **_a : str , ): a__: str ={} if sp_model_kwargs is None else sp_model_kwargs a__: Optional[int] =language_codes a__: Dict =FAIRSEQ_LANGUAGE_CODES[language_codes] a__: Tuple ={lang_code: F"__{lang_code}__" for lang_code in fairseq_language_code} a__: Any =kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(_a ) for lang_code in fairseq_language_code if self.get_lang_token(_a ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_a , tgt_lang=_a , bos_token=_a , eos_token=_a , sep_token=_a , unk_token=_a , pad_token=_a , language_codes=_a , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=_a , **_a , ) a__: Optional[Any] =vocab_file a__: Tuple =load_json(_a ) a__: Any ={v: k for k, v in self.encoder.items()} a__: List[str] =spm_file a__: str =load_spm(_a , self.sp_model_kwargs ) a__: Any =len(self.encoder ) a__: Dict ={ self.get_lang_token(_a ): self.encoder_size + i for i, lang_code in enumerate(_a ) } a__: List[Any] ={lang_code: self.encoder_size + i for i, lang_code in enumerate(_a )} a__: Dict ={v: k for k, v in self.lang_token_to_id.items()} a__: List[str] =src_lang if src_lang is not None else "en" a__: Any =tgt_lang a__: Tuple =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) a__: str =num_madeup_words @property def _lowerCamelCase ( self : int ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def _lowerCamelCase ( self : List[str] ): return self._src_lang @src_lang.setter def _lowerCamelCase ( self : Tuple , _a : str ): a__: Optional[int] =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowerCamelCase ( self : int , _a : str ): return self.sp_model.encode(_a , out_type=_a ) def _lowerCamelCase ( self : Tuple , _a : int ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_a , self.encoder[self.unk_token] ) def _lowerCamelCase ( self : int , _a : int ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_a , self.unk_token ) def _lowerCamelCase ( self : Dict , _a : List[str] ): a__: str =[] a__: Union[str, Any] ="" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_a ) + token a__: Dict =[] else: current_sub_tokens.append(_a ) out_string += self.sp_model.decode(_a ) return out_string.strip() def _lowerCamelCase ( self : str , _a : List[int] , _a : Optional[List[int]] = None , _a : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) a__: Union[str, Any] =[1] * len(self.prefix_tokens ) a__: Optional[Any] =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_a )) + suffix_ones return prefix_ones + ([0] * len(_a )) + ([0] * len(_a )) + suffix_ones def _lowerCamelCase ( self : Optional[int] , _a : List[int] , _a : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self : Dict ): a__: List[Any] ={self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): a__: Dict =self.__dict__.copy() a__: Union[str, Any] =None return state def __setstate__( self : Tuple , _a : Dict ): a__: str =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__: Optional[Any] ={} a__: Optional[Any] =load_spm(self.spm_file , self.sp_model_kwargs ) def _lowerCamelCase ( self : Any , _a : str , _a : Optional[str] = None ): a__: Union[str, Any] =Path(_a ) if not save_dir.is_dir(): raise OSError(F"{save_directory} should be a directory" ) a__: Union[str, Any] =save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) a__: Optional[int] =save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , _a ) if os.path.abspath(self.spm_file ) != os.path.abspath(_a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _a ) elif not os.path.isfile(self.spm_file ): with open(_a , "wb" ) as fi: a__: str =self.sp_model.serialized_model_proto() fi.write(_a ) return (str(_a ), str(_a )) def _lowerCamelCase ( self : List[str] , _a : List[str] , _a : str = "en" , _a : Optional[List[str]] = None , _a : str = "ro" , **_a : Optional[Any] , ): a__: Tuple =src_lang a__: int =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(_a , _a , **_a ) def _lowerCamelCase ( self : List[str] , _a : Dict , _a : Optional[str] , _a : Optional[str] , **_a : Optional[Any] ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) a__: Dict =src_lang a__: Optional[int] =self(_a , add_special_tokens=_a , **_a ) a__: Union[str, Any] =self.get_lang_id(_a ) a__: Tuple =tgt_lang_id return inputs def _lowerCamelCase ( self : List[Any] ): self.set_src_lang_special_tokens(self.src_lang ) def _lowerCamelCase ( self : List[Any] ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowerCamelCase ( self : Union[str, Any] , _a : str ): a__: Tuple =self.get_lang_token(_a ) a__: Optional[int] =self.lang_token_to_id[lang_token] a__: Any =[self.cur_lang_id] a__: Optional[Any] =[self.eos_token_id] def _lowerCamelCase ( self : str , _a : str ): a__: List[str] =self.get_lang_token(_a ) a__: Optional[Any] =self.lang_token_to_id[lang_token] a__: Optional[int] =[self.cur_lang_id] a__: Dict =[self.eos_token_id] def _lowerCamelCase ( self : Any , _a : str ): return self.lang_code_to_token[lang] def _lowerCamelCase ( self : int , _a : str ): a__: int =self.get_lang_token(_a ) return self.lang_token_to_id[lang_token] def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : Dict[str, Any] ): a__: Tuple =sentencepiece.SentencePieceProcessor(**__magic_name__ ) spm.Load(str(__magic_name__ ) ) return spm def __lowerCamelCase ( __magic_name__ : str ): with open(__magic_name__ , "r" ) as f: return json.load(__magic_name__ ) def __lowerCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : str ): with open(__magic_name__ , "w" ) as f: json.dump(__magic_name__ , __magic_name__ , indent=2 )
42
1
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( __snake_case : list[int | float] , __snake_case : int , __snake_case : int ): '''simple docstring''' if len(_a ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(_a ) or left < -len(_a ) or right >= len(_a ) or right < -len(_a ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] lowercase = (left + right) >> 1 # the middle lowercase = find_max(_a , _a , _a ) # find max in range[left, mid] lowercase = find_max(_a , mid + 1 , _a ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
220
from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: int ,**lowerCamelCase_: List[str] ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: List[str] ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: int ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Any = ["flax"] def __init__( self: int ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[str] ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Dict = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[Any] ) -> Any: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: List[Any] ) -> str: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[str] = ["flax"] def __init__( self: str ,*lowerCamelCase_: List[str] ,**lowerCamelCase_: Optional[int] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : int = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[Any] ) -> str: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: str ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[int] ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Optional[Any] ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[Any] = ["flax"] def __init__( self: Union[str, Any] ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: int ) -> List[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Dict: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: Any ,**lowerCamelCase_: int ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: Union[str, Any] ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Dict ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : str = ["flax"] def __init__( self: Optional[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: int ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: int ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Union[str, Any] = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Optional[int] ) -> List[str]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Dict ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: List[str] ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[Any] = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Optional[int] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Dict ) -> int: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Optional[Any]: requires_backends(cls ,["""flax"""] )
345
0
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed __snake_case =os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) __snake_case ='''sshleifer/student_marian_en_ro_6_1''' __snake_case ='''sshleifer/tiny-mbart''' @require_torch class lowercase ( _a ): """simple docstring""" def lowerCAmelCase__ ( self , UpperCamelCase_=False , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.run_trainer( eval_steps=1 , max_len=12 , model_name=snake_case_ , num_train_epochs=1 , distributed=snake_case_ , extra_args_str=snake_case_ , predict_with_generate=snake_case_ , do_train=snake_case_ , do_eval=snake_case_ , do_predict=snake_case_ , ) UpperCamelCase__ :int = TrainerState.load_from_json(os.path.join(snake_case_ , '''trainer_state.json''' ) ).log_history if not do_eval: return UpperCamelCase__ :Tuple = [log for log in logs if """eval_loss""" in log.keys()] UpperCamelCase__ :List[Any] = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCamelCase__ :Dict = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , snake_case_ ) assert not math.isnan(float(last_step_stats['''eval_loss'''] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCAmelCase__ ( self ): '''simple docstring''' self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCAmelCase__ ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=snake_case_ ) @require_torch_multi_gpu def lowerCAmelCase__ ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=snake_case_ ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase__ ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str='''--sharded_ddp simple''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase__ ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str='''--sharded_ddp simple --fp16''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase__ ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=snake_case_ ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase__ ( self ): '''simple docstring''' self.run_seqaseq_quick( distributed=snake_case_ , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=snake_case_ ) @require_apex @require_torch_gpu def lowerCAmelCase__ ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str='''--fp16 --fp16_backend=apex''' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str='''--fp16 --fp16_backend=apex''' ) @parameterized.expand(['''base''', '''low''', '''high''', '''mixed'''] ) @require_torch_multi_gpu def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Any = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } UpperCamelCase__ :Optional[int] = experiments[experiment_id] UpperCamelCase__ :Optional[int] = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} UpperCamelCase__ :Union[str, Any] = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**snake_case_ , extra_args_str=data['''extra_args_str'''] ) UpperCamelCase__ :str = len(re.findall(snake_case_ , cl.err ) ) self.assertEqual(snake_case_ , data['''n_matches'''] ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.run_trainer( eval_steps=2 , max_len=128 , model_name=snake_case_ , learning_rate=3e-4 , num_train_epochs=10 , distributed=snake_case_ , ) # Check metrics UpperCamelCase__ :Dict = TrainerState.load_from_json(os.path.join(snake_case_ , '''trainer_state.json''' ) ).log_history UpperCamelCase__ :List[str] = [log for log in logs if """eval_loss""" in log.keys()] UpperCamelCase__ :List[str] = eval_metrics[0] UpperCamelCase__ :Any = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , snake_case_ ) # test if do_predict saves generations and metrics UpperCamelCase__ :Optional[int] = os.listdir(snake_case_ ) UpperCamelCase__ :List[str] = {os.path.basename(snake_case_ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCAmelCase__ ( self ): '''simple docstring''' from transformers.training_args import OptimizerNames def train_and_return_metrics(UpperCamelCase_ ) -> Tuple[int, float]: UpperCamelCase__ :Dict = """--skip_memory_metrics 0""" UpperCamelCase__ :Optional[int] = self.run_trainer( max_len=128 , model_name=snake_case_ , learning_rate=3e-4 , num_train_epochs=1 , optim=snake_case_ , distributed=snake_case_ , extra_args_str=snake_case_ , do_eval=snake_case_ , do_predict=snake_case_ , n_gpus_to_use=1 , ) # Check metrics UpperCamelCase__ :Optional[Any] = TrainerState.load_from_json(Path(snake_case_ , '''trainer_state.json''' ) ).log_history UpperCamelCase__ :Optional[int] = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20 ) UpperCamelCase__ :Tuple = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20 ) UpperCamelCase__ :Optional[int] = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCamelCase__ :List[Any] = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) UpperCamelCase__ :List[Any] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) UpperCamelCase__ :Dict = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCamelCase__ :Optional[Any] = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCamelCase__ :Dict = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCamelCase__ :Tuple = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCamelCase__ :int = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( snake_case_ , snake_case_ , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' F''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' F''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( snake_case_ , snake_case_ , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' F''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' F''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( snake_case_ , snake_case_ , F'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 3e-3 , UpperCamelCase_ = "adafactor" , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = 0 , UpperCamelCase_ = True , UpperCamelCase_ = True , UpperCamelCase_ = True , UpperCamelCase_ = True , UpperCamelCase_ = None , ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" UpperCamelCase__ :Union[str, Any] = self.get_auto_remove_tmp_dir() UpperCamelCase__ :List[Any] = F'''\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(snake_case_ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(snake_case_ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n '''.split() UpperCamelCase__ :List[Any] = F'''\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(snake_case_ )}\n '''.split() UpperCamelCase__ :Dict = """ --do_predict """.split() UpperCamelCase__ :List[Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCamelCase__ :Any = get_gpu_count() UpperCamelCase__ :Optional[int] = get_torch_dist_unique_port() UpperCamelCase__ :List[str] = F'''\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n '''.split() UpperCamelCase__ :int = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case_ , env=self.get_env() ) else: UpperCamelCase__ :str = ["""run_translation.py"""] + args with patch.object(snake_case_ , '''argv''' , snake_case_ ): main() return output_dir
371
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" _a = AltDiffusionPipeline _a = TEXT_TO_IMAGE_PARAMS _a = TEXT_TO_IMAGE_BATCH_PARAMS _a = TEXT_TO_IMAGE_IMAGE_PARAMS _a = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ :List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCamelCase__ :int = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) UpperCamelCase__ :List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCamelCase__ :Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCamelCase__ :Optional[Any] = CLIPTextModel(UpperCamelCase_ ) UpperCamelCase__ :int = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) UpperCamelCase__ :Dict = 77 UpperCamelCase__ :Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=0 ): '''simple docstring''' if str(UpperCamelCase_ ).startswith('''mps''' ): UpperCamelCase__ :Dict = torch.manual_seed(UpperCamelCase_ ) else: UpperCamelCase__ :List[str] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase__ ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowerCAmelCase__ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ :Tuple = self.get_dummy_components() torch.manual_seed(0 ) UpperCamelCase__ :Dict = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase__ :Union[str, Any] = RobertaSeriesModelWithTransformation(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = text_encoder UpperCamelCase__ :Any = AltDiffusionPipeline(**UpperCamelCase_ ) UpperCamelCase__ :List[Any] = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :int = self.get_dummy_inputs(UpperCamelCase_ ) UpperCamelCase__ :Dict = '''A photo of an astronaut''' UpperCamelCase__ :Union[str, Any] = alt_pipe(**UpperCamelCase_ ) UpperCamelCase__ :Any = output.images UpperCamelCase__ :List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ :List[Any] = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ :int = self.get_dummy_components() UpperCamelCase__ :Union[str, Any] = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) UpperCamelCase__ :Dict = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase__ :str = RobertaSeriesModelWithTransformation(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = text_encoder UpperCamelCase__ :Union[str, Any] = AltDiffusionPipeline(**UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.get_dummy_inputs(UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = alt_pipe(**UpperCamelCase_ ) UpperCamelCase__ :str = output.images UpperCamelCase__ :int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ :List[Any] = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=UpperCamelCase_ ) UpperCamelCase__ :str = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :int = '''A painting of a squirrel eating a burger''' UpperCamelCase__ :int = torch.manual_seed(0 ) UpperCamelCase__ :Optional[Any] = alt_pipe([prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) UpperCamelCase__ :Union[str, Any] = output.images UpperCamelCase__ :Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) UpperCamelCase__ :List[str] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=UpperCamelCase_ , safety_checker=UpperCamelCase_ ) UpperCamelCase__ :Dict = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = '''A painting of a squirrel eating a burger''' UpperCamelCase__ :str = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = alt_pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''numpy''' ) UpperCamelCase__ :Any = output.images UpperCamelCase__ :int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ :int = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
219
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def snake_case ( snake_case__ :str) -> int: _A = filter(lambda snake_case__: p.requires_grad , model.parameters()) _A = sum([np.prod(p.size()) for p in model_parameters]) return params _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def snake_case ( snake_case__ :Optional[int] , snake_case__ :Tuple) -> Dict: if metric == "rouge2": _A = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": _A = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": _A = """{val_avg_em:.4f}-{step_count}""" elif metric == "loss": _A = """{val_avg_loss:.4f}-{step_count}""" else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' """ function.""") _A = ModelCheckpoint( dirpath=_A , filename=_A , monitor=F'''val_{metric}''' , mode="""max""" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def snake_case ( snake_case__ :Tuple , snake_case__ :int) -> Optional[Any]: return EarlyStopping( monitor=F'''val_{metric}''' , mode="""min""" if """loss""" in metric else """max""" , patience=_A , verbose=_A , ) class a ( pl.Callback ): """simple docstring""" def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _A = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(UpperCamelCase__ ) @rank_zero_only def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True ) -> Tuple: logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / """test_results.txt""" _A = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _A = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=UpperCamelCase__ ) generations_file.parent.mkdir(exist_ok=UpperCamelCase__ ) with open(UpperCamelCase__ , """a+""" ) as writer: for key in sorted(UpperCamelCase__ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(UpperCamelCase__ , torch.Tensor ): _A = val.item() _A = F'''{key}: {val:.6f}\n''' writer.write(UpperCamelCase__ ) if not save_generations: return if "preds" in metrics: _A = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(UpperCamelCase__ ) @rank_zero_only def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(UpperCamelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} ) @rank_zero_only def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(UpperCamelCase__ , UpperCamelCase__ , """test""" ) @rank_zero_only def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
180
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _A = logging.get_logger(__name__) class A ( __UpperCAmelCase ): def __init__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''', UpperCamelCase__, ) super().__init__(*UpperCamelCase__, **UpperCamelCase__ )
278
0
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Dict: """simple docstring""" __lowerCAmelCase : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_UpperCAmelCase)) def _SCREAMING_SNAKE_CASE ( self: Any) -> int: """simple docstring""" __lowerCAmelCase : Any = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_UpperCAmelCase)) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Tuple: """simple docstring""" __lowerCAmelCase : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_UpperCAmelCase)) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> int: """simple docstring""" __lowerCAmelCase : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_UpperCAmelCase)) def _SCREAMING_SNAKE_CASE ( self: Dict) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_UpperCAmelCase)) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> str: """simple docstring""" __lowerCAmelCase : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase : int = 'fp16' self.assertTrue(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase)) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[Any] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase : Optional[int] = 'fp16' self.assertTrue(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase)) def _SCREAMING_SNAKE_CASE ( self: str) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __lowerCAmelCase : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase)) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> int: """simple docstring""" __lowerCAmelCase : List[str] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase : List[Any] = 'fp16' self.assertFalse(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase)) def _SCREAMING_SNAKE_CASE ( self: str) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : int = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __lowerCAmelCase : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase)) def _SCREAMING_SNAKE_CASE ( self: str) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __lowerCAmelCase : Optional[int] = 'fp16' self.assertTrue(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase)) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase : Optional[int] = 'fp16' self.assertFalse(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase))
368
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __snake_case : Tuple = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def _lowercase ( __snake_case ,__snake_case ,__snake_case=None ) -> str: if rng is None: __lowerCAmelCase : str = random.Random() __lowerCAmelCase : List[Any] = 1 for dim in shape: total_dims *= dim __lowerCAmelCase : int = [] for _ in range(__snake_case ): values.append(rng.randint(0 ,vocab_size - 1 ) ) __lowerCAmelCase : Dict = np.array(__snake_case ,dtype=jnp.intaa ).reshape(__snake_case ) return output def _lowercase ( __snake_case ,__snake_case=None ) -> Optional[Any]: __lowerCAmelCase : List[str] = ids_tensor(__snake_case ,vocab_size=2 ,rng=__snake_case ) # make sure that at least one token is attended to for each batch __lowerCAmelCase : str = 1 return attn_mask @require_flax class A__ : '''simple docstring''' SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = () def _SCREAMING_SNAKE_CASE ( self: int) -> Tuple: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __lowerCAmelCase : Tuple = 2 __lowerCAmelCase : Dict = inputs["input_ids"].shape[-1] // 2 __lowerCAmelCase : Union[str, Any] = inputs["input_ids"][:max_batch_size, :sequence_length] __lowerCAmelCase : str = jnp.ones_like(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __lowerCAmelCase : Dict = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __lowerCAmelCase : int = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self: int) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : str = self._get_input_ids_and_config() __lowerCAmelCase : Dict = False __lowerCAmelCase : Dict = max_length __lowerCAmelCase : Any = 0 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase : int = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = pt_model_class(_SCREAMING_SNAKE_CASE).eval() __lowerCAmelCase : Optional[int] = load_flax_weights_in_pytorch_model(_SCREAMING_SNAKE_CASE , flax_model.params) __lowerCAmelCase : int = flax_model.generate(_SCREAMING_SNAKE_CASE).sequences __lowerCAmelCase : Any = pt_model.generate(torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __lowerCAmelCase : Any = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config() __lowerCAmelCase : List[str] = False __lowerCAmelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : List[str] = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = jit(model.generate) __lowerCAmelCase : List[str] = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Dict) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config() __lowerCAmelCase : Dict = True __lowerCAmelCase : List[str] = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : Tuple = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = jit(model.generate) __lowerCAmelCase : Optional[Any] = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Dict: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = self._get_input_ids_and_config() __lowerCAmelCase : Tuple = False __lowerCAmelCase : Tuple = max_length __lowerCAmelCase : Any = 2 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Optional[int] = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = jit(model.generate) __lowerCAmelCase : Dict = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: str) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[int] = self._get_input_ids_and_config() __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Any = max_length __lowerCAmelCase : Dict = 2 __lowerCAmelCase : int = 2 for model_class in self.all_generative_model_classes: __lowerCAmelCase : str = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[Any]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = self._get_input_ids_and_config() __lowerCAmelCase : str = True __lowerCAmelCase : Tuple = max_length __lowerCAmelCase : Tuple = 0.8 __lowerCAmelCase : Any = 10 __lowerCAmelCase : Any = 0.3 __lowerCAmelCase : List[Any] = 1 __lowerCAmelCase : int = 8 __lowerCAmelCase : Optional[int] = 9 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = jit(model.generate) __lowerCAmelCase : str = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> List[Any]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[str] = self._get_input_ids_and_config() __lowerCAmelCase : int = max_length __lowerCAmelCase : Tuple = 1 __lowerCAmelCase : List[str] = 8 __lowerCAmelCase : str = 9 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Dict = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = jit(model.generate) __lowerCAmelCase : str = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Dict: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = self._get_input_ids_and_config() __lowerCAmelCase : Union[str, Any] = max_length __lowerCAmelCase : Dict = 2 __lowerCAmelCase : Tuple = 1 __lowerCAmelCase : int = 8 __lowerCAmelCase : str = 9 for model_class in self.all_generative_model_classes: __lowerCAmelCase : str = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = jit(model.generate) __lowerCAmelCase : Union[str, Any] = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: str) -> Any: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left __lowerCAmelCase : Tuple = attention_mask.at[(0, 0)].set(0) __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : int = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : str = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = model.generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = jit(model.generate) __lowerCAmelCase : Dict = jit_generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = self._get_input_ids_and_config() # pad attention mask on the left __lowerCAmelCase : int = attention_mask.at[(0, 0)].set(0) __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = model.generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = jit(model.generate) __lowerCAmelCase : Any = jit_generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left __lowerCAmelCase : int = attention_mask.at[(0, 0)].set(0) __lowerCAmelCase : Tuple = 2 __lowerCAmelCase : Dict = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : Tuple = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = model.generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = jit(model.generate) __lowerCAmelCase : int = jit_generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Any: """simple docstring""" __lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") __lowerCAmelCase : Optional[int] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") __lowerCAmelCase : Optional[Any] = "Hello world" __lowerCAmelCase : str = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , "do_samples"): model.generate(_SCREAMING_SNAKE_CASE , do_samples=_SCREAMING_SNAKE_CASE) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , "foo"): __lowerCAmelCase : int = {"foo": "bar"} model.generate(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE)
58
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : Dict ) -> Tuple: __magic_name__ : List[str] = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) __magic_name__ : int = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __magic_name__ : Dict = model(_A )['last_hidden_state'] __magic_name__ : Optional[Any] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _A ) # compare the actual values for a slice. __magic_name__ : Optional[Any] = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
331
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase :Tuple = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase :List[Any] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase :Optional[Any] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase :Union[str, Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase :Tuple = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) ) __magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase ( lowerCAmelCase : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = PokerHand(lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): """simple docstring""" assert PokerHand(lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS] __magic_name__ : Tuple = poker_hands.copy() shuffle(lowerCAmelCase ) __magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) ) for index, hand in enumerate(lowerCAmelCase ): assert hand == poker_hands[index] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' ) __magic_name__ : Optional[Any] = True __magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = 0 __magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) ) __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' ) with open(lowerCAmelCase ) as file_hand: for line in file_hand: __magic_name__ : Optional[int] = line[:14].strip() __magic_name__ : List[Any] = line[15:].strip() __magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase ) __magic_name__ : List[Any] = player.compare_with(lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
331
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case_ = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
216
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer snake_case_ = logging.get_logger(__name__) snake_case_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case_ = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } snake_case_ = { '''junnyu/roformer_chinese_small''': 1_536, '''junnyu/roformer_chinese_base''': 1_536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } snake_case_ = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase : Tuple = RoFormerTokenizer def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ): super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) lowercase__ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( pre_tok_state.get('lowercase' , a) != do_lower_case or pre_tok_state.get('strip_accents' , a) != strip_accents ): lowercase__ : Optional[int] = getattr(a , pre_tok_state.pop('type')) lowercase__ : str = do_lower_case lowercase__ : Union[str, Any] = strip_accents lowercase__ : int = pre_tok_class(**a) lowercase__ : Optional[int] = do_lower_case def __getstate__( self): lowercase__ : str = self.__dict__.copy() lowercase__ : Any = BertPreTokenizer() return state def __setstate__( self , a): lowercase__ : Union[str, Any] = d lowercase__ : int = self.__dict__['_tokenizer'].get_vocab() lowercase__ : List[str] = PreTokenizer.custom(JiebaPreTokenizer(a)) def snake_case_ ( self , a , a=None): lowercase__ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , a , a = None): lowercase__ : Tuple = [self.sep_token_id] lowercase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case_ ( self , a , a = None): lowercase__ : Optional[Any] = self._tokenizer.model.save(a , name=a) return tuple(a) def snake_case_ ( self , a , a=None , a=None , a=False , **a , ): lowercase__ : List[str] = BertPreTokenizer() return super().save_pretrained(a , a , a , a , **a)
216
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase : Any = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ["LayoutLMv2FeatureExtractor"] lowercase : Optional[int] = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys lowercase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class __UpperCAmelCase ( tf.keras.layers.Layer ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1 , lowerCAmelCase_=False , **lowerCAmelCase_ ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _snake_case = vocab_size _snake_case = d_embed _snake_case = d_proj _snake_case = cutoffs + [vocab_size] _snake_case = [0] + self.cutoffs _snake_case = div_val _snake_case = self.cutoffs[0] _snake_case = len(self.cutoffs ) - 1 _snake_case = self.shortlist_size + self.n_clusters _snake_case = keep_order _snake_case = [] _snake_case = [] def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if self.n_clusters > 0: _snake_case = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='zeros' , trainable=lowerCAmelCase_ , name='cluster_weight' ) _snake_case = self.add_weight( shape=(self.n_clusters,) , initializer='zeros' , trainable=lowerCAmelCase_ , name='cluster_bias' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: _snake_case = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_projs_._{i}' , ) self.out_projs.append(lowerCAmelCase_ ) else: self.out_projs.append(lowerCAmelCase_ ) _snake_case = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._weight' , ) _snake_case = self.add_weight( shape=(self.vocab_size,) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): _snake_case , _snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case = self.d_embed // (self.div_val**i) _snake_case = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_projs_._{i}' ) self.out_projs.append(lowerCAmelCase_ ) _snake_case = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._weight' , ) _snake_case = self.add_weight( shape=(r_idx - l_idx,) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) super().build(lowerCAmelCase_ ) @staticmethod def lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ): """simple docstring""" _snake_case = x if proj is not None: _snake_case = tf.einsum('ibd,ed->ibe' , lowerCAmelCase_ , lowerCAmelCase_ ) return tf.einsum('ibd,nd->ibn' , lowerCAmelCase_ , lowerCAmelCase_ ) + b @staticmethod def lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = shape_list(lowerCAmelCase_ ) _snake_case = tf.range(lp_size[0] , dtype=target.dtype ) _snake_case = tf.stack([r, target] , 1 ) return tf.gather_nd(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=False ): """simple docstring""" _snake_case = 0 if self.n_clusters == 0: _snake_case = self._logit(lowerCAmelCase_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: _snake_case = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lowerCAmelCase_ , logits=lowerCAmelCase_ ) _snake_case = tf.nn.log_softmax(lowerCAmelCase_ , axis=-1 ) else: _snake_case = shape_list(lowerCAmelCase_ ) _snake_case = [] _snake_case = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): _snake_case , _snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: _snake_case = (target >= l_idx) & (target < r_idx) _snake_case = tf.where(lowerCAmelCase_ ) _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) - l_idx if self.div_val == 1: _snake_case = self.out_layers[0][0][l_idx:r_idx] _snake_case = self.out_layers[0][1][l_idx:r_idx] else: _snake_case = self.out_layers[i][0] _snake_case = self.out_layers[i][1] if i == 0: _snake_case = tf.concat([cur_W, self.cluster_weight] , 0 ) _snake_case = tf.concat([cur_b, self.cluster_bias] , 0 ) _snake_case = self._logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.out_projs[0] ) _snake_case = tf.nn.log_softmax(lowerCAmelCase_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self._gather_logprob(lowerCAmelCase_ , lowerCAmelCase_ ) else: _snake_case = self._logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.out_projs[i] ) _snake_case = tf.nn.log_softmax(lowerCAmelCase_ ) _snake_case = self.cutoffs[0] + i - 1 # No probability for the head cluster _snake_case = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(lowerCAmelCase_ ) if target is not None: _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self._gather_logprob(lowerCAmelCase_ , lowerCAmelCase_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(lowerCAmelCase_ , -cur_logprob , shape_list(lowerCAmelCase_ ) ) _snake_case = tf.concat(lowerCAmelCase_ , axis=-1 ) if target is not None: if return_mean: _snake_case = tf.reduce_mean(lowerCAmelCase_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(lowerCAmelCase_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(lowerCAmelCase_ , name=self.name , aggregation='mean' if return_mean else '' ) return out
42
1
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowercase : Any = logging.get_logger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: def constraint_to_multiple_of(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=None ): lowercase : str = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowercase : Union[str, Any] = math.floor(val / multiple ) * multiple if x < min_val: lowercase : Optional[int] = math.ceil(val / multiple ) * multiple return x lowercase : List[Any] = (output_size, output_size) if isinstance(_A , _A ) else output_size lowercase : Dict = get_image_size(_A ) lowercase : Optional[int] = output_size # determine new height and width lowercase : Dict = output_height / input_height lowercase : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowercase : Dict = scale_width else: # fit height lowercase : Optional[int] = scale_height lowercase : str = constraint_to_multiple_of(scale_height * input_height , multiple=_A ) lowercase : str = constraint_to_multiple_of(scale_width * input_width , multiple=_A ) return (new_height, new_width) class __snake_case ( lowerCamelCase__ ): _a : Tuple= ["pixel_values"] def __init__( self ,snake_case = True ,snake_case = None ,snake_case = PILImageResampling.BILINEAR ,snake_case = False ,snake_case = 1 ,snake_case = True ,snake_case = 1 / 255 ,snake_case = True ,snake_case = None ,snake_case = None ,**snake_case ,): '''simple docstring''' super().__init__(**__snake_case ) lowercase : List[Any] = size if size is not None else {'height': 384, 'width': 384} lowercase : List[str] = get_size_dict(__snake_case ) lowercase : Optional[int] = do_resize lowercase : Tuple = size lowercase : str = keep_aspect_ratio lowercase : Optional[Any] = ensure_multiple_of lowercase : int = resample lowercase : Optional[Any] = do_rescale lowercase : Tuple = rescale_factor lowercase : Any = do_normalize lowercase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case = False ,snake_case = 1 ,snake_case = PILImageResampling.BICUBIC ,snake_case = None ,**snake_case ,): '''simple docstring''' lowercase : Union[str, Any] = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) lowercase : Any = get_resize_output_image_size( __snake_case ,output_size=(size["""height"""], size["""width"""]) ,keep_aspect_ratio=__snake_case ,multiple=__snake_case ,) return resize(__snake_case ,size=__snake_case ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case = None ,**snake_case ,): '''simple docstring''' return rescale(__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case = None ,**snake_case ,): '''simple docstring''' return normalize(__snake_case ,mean=__snake_case ,std=__snake_case ,data_format=__snake_case ,**__snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = ChannelDimension.FIRST ,**snake_case ,): '''simple docstring''' lowercase : Any = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = size if size is not None else self.size lowercase : Optional[int] = get_size_dict(__snake_case ) lowercase : int = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowercase : Any = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowercase : List[str] = resample if resample is not None else self.resample lowercase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowercase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Any = do_normalize if do_normalize is not None else self.do_normalize lowercase : Dict = image_mean if image_mean is not None else self.image_mean lowercase : str = image_std if image_std is not None else self.image_std lowercase : Any = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase : Dict = [to_numpy_array(__snake_case ) for image in images] if do_resize: lowercase : Union[str, Any] = [self.resize(image=__snake_case ,size=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: lowercase : int = [self.rescale(image=__snake_case ,scale=__snake_case ) for image in images] if do_normalize: lowercase : Tuple = [self.normalize(image=__snake_case ,mean=__snake_case ,std=__snake_case ) for image in images] lowercase : List[str] = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] lowercase : str = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__snake_case ) != len(__snake_case ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__snake_case ): lowercase : List[str] = target_sizes.numpy() lowercase : str = [] for idx in range(len(__snake_case ) ): lowercase : str = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=__snake_case ) lowercase : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__snake_case ) else: lowercase : List[str] = logits.argmax(dim=1 ) lowercase : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
358
class __snake_case : def __init__( self ,snake_case ,snake_case=None ,snake_case=None ): '''simple docstring''' lowercase : Tuple = data lowercase : List[Any] = previous lowercase : List[str] = next_node def __str__( self ): '''simple docstring''' return f"{self.data}" def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.data def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.next def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.previous class __snake_case : def __init__( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = head def __iter__( self ): '''simple docstring''' return self def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if not self.current: raise StopIteration else: lowercase : Union[str, Any] = self.current.get_data() lowercase : Optional[Any] = self.current.get_next() return value class __snake_case : def __init__( self ): '''simple docstring''' lowercase : str = None # First node in list lowercase : str = None # Last node in list def __str__( self ): '''simple docstring''' lowercase : int = self.head lowercase : str = [] while current is not None: nodes.append(current.get_data() ) lowercase : Dict = current.get_next() return " ".join(str(snake_case ) for node in nodes ) def __contains__( self ,snake_case ): '''simple docstring''' lowercase : Dict = self.head while current: if current.get_data() == value: return True lowercase : Any = current.get_next() return False def __iter__( self ): '''simple docstring''' return LinkedListIterator(self.head ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.head: return self.head.get_data() return None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.tail: return self.tail.get_data() return None def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.head is None: lowercase : Any = node lowercase : Dict = node else: self.insert_before_node(self.head ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.head is None: self.set_head(snake_case ) else: self.insert_after_node(self.tail ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Dict = Node(snake_case ) if self.head is None: self.set_head(snake_case ) else: self.set_tail(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = node lowercase : Optional[int] = node.previous if node.get_previous() is None: lowercase : Optional[int] = node_to_insert else: lowercase : Optional[int] = node_to_insert lowercase : List[Any] = node_to_insert def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Dict = node lowercase : List[str] = node.next if node.get_next() is None: lowercase : Union[str, Any] = node_to_insert else: lowercase : List[str] = node_to_insert lowercase : Dict = node_to_insert def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[Any] = 1 lowercase : List[str] = Node(snake_case ) lowercase : Any = self.head while node: if current_position == position: self.insert_before_node(snake_case ,snake_case ) return current_position += 1 lowercase : List[Any] = node.next self.insert_after_node(self.tail ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = self.head while node: if node.get_data() == item: return node lowercase : Any = node.get_next() raise Exception("""Node not found""" ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if (node := self.get_node(snake_case )) is not None: if node == self.head: lowercase : Optional[Any] = self.head.get_next() if node == self.tail: lowercase : List[str] = self.tail.get_previous() self.remove_node_pointers(snake_case ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' if node.get_next(): lowercase : Optional[int] = node.previous if node.get_previous(): lowercase : Union[str, Any] = node.next lowercase : Union[str, Any] = None lowercase : Optional[Any] = None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.head is None def _snake_case( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
285
0
import operator as op def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple ) -> int: """simple docstring""" UpperCamelCase :Dict = [] UpperCamelCase :Union[str, Any] = lambda __magic_name__ , __magic_name__ : int(x / y ) # noqa: E731 integer division operation UpperCamelCase :Optional[Any] = { """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ) , """Action""".center(12 ) , """Stack""" , sep=""" | """ ) print("""-""" * (30 + len(__magic_name__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__magic_name__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(12 ) , """,""".join(__magic_name__ ) , sep=""" | """ ) else: UpperCamelCase :List[Any] = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(12 ) , """,""".join(__magic_name__ ) , sep=""" | """ ) UpperCamelCase :Union[str, Any] = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(12 ) , """,""".join(__magic_name__ ) , sep=""" | """ ) stack.append( str(opr[x](int(__magic_name__ ) , int(__magic_name__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(12 ) , """,""".join(__magic_name__ ) , sep=""" | """ , ) return int(stack[0] ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
38
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Any = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Any: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Optional[Any]: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE__ = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(__UpperCamelCase , id=__UpperCamelCase )
219
0
def __lowerCamelCase ( a_ : list ) -> list: if len(a_ ) < 2: return collection def circle_sort_util(a_ : list , a_ : int , a_ : int ) -> bool: __SCREAMING_SNAKE_CASE :List[Any] = False if low == high: return swapped __SCREAMING_SNAKE_CASE :Dict = low __SCREAMING_SNAKE_CASE :List[Any] = high while left < right: if collection[left] > collection[right]: __SCREAMING_SNAKE_CASE :Optional[int] = ( collection[right], collection[left], ) __SCREAMING_SNAKE_CASE :Any = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __SCREAMING_SNAKE_CASE :Any = ( collection[right + 1], collection[left], ) __SCREAMING_SNAKE_CASE :Optional[int] = True __SCREAMING_SNAKE_CASE :List[str] = low + int((high - low) / 2 ) __SCREAMING_SNAKE_CASE :Optional[Any] = circle_sort_util(a_ , a_ , a_ ) __SCREAMING_SNAKE_CASE :List[str] = circle_sort_util(a_ , mid + 1 , a_ ) return swapped or left_swap or right_swap __SCREAMING_SNAKE_CASE :str = True while is_not_sorted is True: __SCREAMING_SNAKE_CASE :Optional[Any] = circle_sort_util(a_ , 0 , len(a_ ) - 1 ) return collection if __name__ == "__main__": lowerCamelCase_ = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase_ = [int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
367
"""simple docstring""" import math import unittest def __lowerCamelCase ( a_ : int ) -> bool: assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) ,'''Zero doesn\'t have any positive factors, primes must have exactly two.''' ,) self.assertFalse( is_prime(1 ) ,'''One only has 1 positive factor, primes must have exactly two.''' ,) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
239
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path a : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) a : list[int] = [ord(letter) for letter in string.ascii_lowercase] a : set[int] = {ord(char) for char in VALID_CHARS} a : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def _SCREAMING_SNAKE_CASE ( _lowercase : list[int] , _lowercase : tuple[int, ...] ) ->str | None: '''simple docstring''' a : str = "" a : int a : int a : int for keychar, cipherchar in zip(cycle(_lowercase ) , _lowercase ): a : Optional[int] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_lowercase ) return decoded def _SCREAMING_SNAKE_CASE ( _lowercase : list[int] ) ->list[str]: '''simple docstring''' a : list[str] = [] for key in product(_lowercase , repeat=3 ): a : Tuple = try_key(_lowercase , _lowercase ) if encoded is not None: possibles.append(_lowercase ) return possibles def _SCREAMING_SNAKE_CASE ( _lowercase : list[str] , _lowercase : str ) ->list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def _SCREAMING_SNAKE_CASE ( _lowercase : str = "p059_cipher.txt" ) ->int: '''simple docstring''' a : list[int] a : list[str] a : str a : str a : str = Path(_lowercase ).parent.joinpath(_lowercase ).read_text(encoding="utf-8" ) a : Union[str, Any] = [int(_lowercase ) for number in data.strip().split("," )] a : Optional[Any] = filter_valid_chars(_lowercase ) for common_word in COMMON_WORDS: a : Any = filter_common_word(_lowercase , _lowercase ) if len(_lowercase ) == 1: break a : Optional[Any] = possibles[0] return sum(ord(_lowercase ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
105
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase_ = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any]=8 ) ->Tuple: _SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A , A , A , ) -> Union[str, Any]: super().__init__() self.register_modules( unet=A , scheduler=A , movq=A , ) _SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case_( self , A , A , A , A , A , A ) -> Union[str, Any]: if latents is None: _SCREAMING_SNAKE_CASE = randn_tensor(A , generator=A , device=A , dtype=A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _SCREAMING_SNAKE_CASE = latents.to(A ) _SCREAMING_SNAKE_CASE = latents * scheduler.init_noise_sigma return latents def snake_case_( self , A=0 ) -> Dict: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _SCREAMING_SNAKE_CASE = torch.device(f'cuda:{gpu_id}' ) _SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A , A ) def snake_case_( self , A=0 ) -> str: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _SCREAMING_SNAKE_CASE = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cpu_offload_with_hook(A , A , prev_module_hook=A ) # We'll offload the last model manually. _SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case_( self ) -> Tuple: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(A , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A ) def __call__( self , A , A , A = 512 , A = 512 , A = 100 , A = 4.0 , A = 1 , A = None , A = None , A = "pil" , A = True , ) -> List[str]: _SCREAMING_SNAKE_CASE = self._execution_device _SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(A , A ): _SCREAMING_SNAKE_CASE = torch.cat(A , dim=0 ) _SCREAMING_SNAKE_CASE = image_embeds.shape[0] * num_images_per_prompt if isinstance(A , A ): _SCREAMING_SNAKE_CASE = torch.cat(A , dim=0 ) if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(A , dim=0 ) _SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(A , dim=0 ) _SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A ) self.scheduler.set_timesteps(A , device=A ) _SCREAMING_SNAKE_CASE = self.scheduler.timesteps _SCREAMING_SNAKE_CASE = self.unet.config.in_channels _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = downscale_height_and_width(A , A , self.movq_scale_factor ) # create initial latent _SCREAMING_SNAKE_CASE = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A , A , A , self.scheduler , ) for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance _SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _SCREAMING_SNAKE_CASE = {"""image_embeds""": image_embeds} _SCREAMING_SNAKE_CASE = self.unet( sample=A , timestep=A , encoder_hidden_states=A , added_cond_kwargs=A , return_dict=A , )[0] if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) _SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _SCREAMING_SNAKE_CASE = self.scheduler.step( A , A , A , generator=A , )[0] # post-processing _SCREAMING_SNAKE_CASE = self.movq.decode(A , force_not_quantize=A )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 _SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
58
0
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = torch.nn.Linear(10 , 10) UpperCAmelCase_ = torch.optim.SGD(model.parameters() , 0.1) UpperCAmelCase_ = Accelerator() UpperCAmelCase_ = accelerator.prepare(_snake_case) try: pickle.loads(pickle.dumps(_snake_case)) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""") AcceleratorState._reset_state()
367
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A (__A : BertModel , __A : str , __A : str ) -> int: """simple docstring""" UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') UpperCAmelCase_ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__A ): os.makedirs(__A ) UpperCAmelCase_ = model.state_dict() def to_tf_var_name(__A : str ): for patt, repl in iter(__A ): UpperCAmelCase_ = name.replace(__A , __A ) return F"""bert/{name}""" def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ): UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__A ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase_ = to_tf_var_name(__A ) UpperCAmelCase_ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase_ = torch_tensor.T UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A ) tf.keras.backend.set_value(__A , __A ) UpperCAmelCase_ = session.run(__A ) print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" ) UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() ) saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def A (__A : Any=None ) -> str: """simple docstring""" UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' ) UpperCAmelCase_ = parser.parse_args(__A ) UpperCAmelCase_ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
7
0
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowercase__ =datasets.utils.logging.get_logger(__name__) class UpperCamelCase__ ( folder_based_builder.FolderBasedBuilderConfig ): _SCREAMING_SNAKE_CASE : bool = None _SCREAMING_SNAKE_CASE : bool = None class UpperCamelCase__ ( folder_based_builder.FolderBasedBuilder ): _SCREAMING_SNAKE_CASE : Optional[int] = datasets.Audio() _SCREAMING_SNAKE_CASE : List[str] = "audio" _SCREAMING_SNAKE_CASE : List[str] = AudioFolderConfig _SCREAMING_SNAKE_CASE : List[str] # definition at the bottom of the script _SCREAMING_SNAKE_CASE : List[str] = AudioClassification(audio_column="audio" ,label_column="label" ) lowercase__ =[ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] lowercase__ =AUDIO_EXTENSIONS
216
from __future__ import annotations from typing import Any class UpperCamelCase__ : def __init__(self : Union[str, Any] , snake_case_ : int ): __a : Dict = num_of_nodes __a : list[list[int]] = [] __a : dict[int, int] = {} def lowerCAmelCase (self : Optional[Any] , snake_case_ : int , snake_case_ : int , snake_case_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowerCAmelCase (self : Any , snake_case_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowerCAmelCase (self : str , snake_case_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: __a : Optional[int] = self.find_component(snake_case_ ) def lowerCAmelCase (self : Any , snake_case_ : list[int] , snake_case_ : int , snake_case_ : int ): if component_size[u_node] <= component_size[v_node]: __a : List[str] = v_node component_size[v_node] += component_size[u_node] self.set_component(snake_case_ ) elif component_size[u_node] >= component_size[v_node]: __a : Optional[int] = self.find_component(snake_case_ ) component_size[u_node] += component_size[v_node] self.set_component(snake_case_ ) def lowerCAmelCase (self : Optional[Any] ): __a : str = [] __a : int = 0 __a : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __a : Union[str, Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __a , __a , __a : Optional[Any] = edge __a : List[str] = self.m_component[u] __a : List[Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __a : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(snake_case_ , snake_case_ ): __a , __a , __a : str = edge __a : Any = self.m_component[u] __a : Any = self.m_component[v] if u_component != v_component: mst_weight += w self.union(snake_case_ , snake_case_ , snake_case_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __a : Optional[int] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def __UpperCamelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
216
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'rwkv' _lowerCAmelCase = {'max_position_embeddings': 'context_length'} def __init__( self : Tuple , _lowerCamelCase : str=50277 , _lowerCamelCase : Tuple=1024 , _lowerCamelCase : Optional[int]=4096 , _lowerCamelCase : Tuple=32 , _lowerCamelCase : List[str]=None , _lowerCamelCase : str=None , _lowerCamelCase : Tuple=1E-5 , _lowerCamelCase : Optional[Any]=0 , _lowerCamelCase : Dict=0 , _lowerCamelCase : Dict=6 , _lowerCamelCase : List[Any]=False , _lowerCamelCase : List[Any]=True , **_lowerCamelCase : List[str] , ): """simple docstring""" A_ : Optional[int] = vocab_size A_ : List[Any] = context_length A_ : Optional[int] = hidden_size A_ : Union[str, Any] = num_hidden_layers A_ : Optional[int] = attention_hidden_size if attention_hidden_size is not None else hidden_size A_ : Union[str, Any] = intermediate_size if intermediate_size is not None else 4 * hidden_size A_ : str = layer_norm_epsilon A_ : Dict = rescale_every A_ : Union[str, Any] = use_cache A_ : Dict = bos_token_id A_ : Dict = eos_token_id super().__init__( tie_word_embeddings=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase )
353
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCamelCase_ (a__, a__ ): """simple docstring""" _lowerCAmelCase = 'swin' _lowerCAmelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , _lowerCamelCase : Optional[Any]=224 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Tuple=96 , _lowerCamelCase : List[Any]=[2, 2, 6, 2] , _lowerCamelCase : List[str]=[3, 6, 12, 24] , _lowerCamelCase : List[Any]=7 , _lowerCamelCase : Optional[int]=4.0 , _lowerCamelCase : List[str]=True , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Any=0.0 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : Tuple=False , _lowerCamelCase : Dict=0.02 , _lowerCamelCase : Optional[Any]=1E-5 , _lowerCamelCase : Any=32 , _lowerCamelCase : Tuple=None , _lowerCamelCase : Any=None , **_lowerCamelCase : str , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : Optional[int] = image_size A_ : Optional[int] = patch_size A_ : Optional[int] = num_channels A_ : Any = embed_dim A_ : List[Any] = depths A_ : Any = len(_lowerCamelCase ) A_ : List[Any] = num_heads A_ : Tuple = window_size A_ : Tuple = mlp_ratio A_ : Dict = qkv_bias A_ : List[str] = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Any = drop_path_rate A_ : List[Any] = hidden_act A_ : Tuple = use_absolute_embeddings A_ : int = layer_norm_eps A_ : Optional[Any] = initializer_range A_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ : str = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) A_ : str = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(_lowerCamelCase ) + 1 )] A_ ,A_ : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : str ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _a ( self : Union[str, Any] ): """simple docstring""" return 1E-4
4
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=_UpperCamelCase ): lowerCAmelCase : str = ['note_seq'] def __init__( self : Tuple ,*_UpperCAmelCase : List[Any] ,**_UpperCAmelCase : str ): requires_backends(self ,['note_seq'] ) @classmethod def __lowercase ( cls : List[Any] ,*_UpperCAmelCase : str ,**_UpperCAmelCase : Optional[Any] ): requires_backends(cls ,['note_seq'] ) @classmethod def __lowercase ( cls : Union[str, Any] ,*_UpperCAmelCase : Dict ,**_UpperCAmelCase : Any ): requires_backends(cls ,['note_seq'] )
89
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration _UpperCAmelCase : Optional[int] = 5_0000 _UpperCAmelCase : Dict = 5000 _UpperCAmelCase , _UpperCAmelCase : Optional[int] = os.path.split(__file__) _UpperCAmelCase : List[str] = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for i in range(UpperCamelCase__ ): snake_case_ = dataset[i] @get_duration def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for i in range(0 , len(UpperCamelCase__ ) , UpperCamelCase__ ): snake_case_ = dataset[i : i + batch_size] @get_duration def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' with dataset.formatted_as(type=UpperCamelCase__ ): for i in range(UpperCamelCase__ ): snake_case_ = dataset[i] @get_duration def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' with dataset.formatted_as(type=UpperCamelCase__ ): for i in range(0 , UpperCamelCase__ , UpperCamelCase__ ): snake_case_ = dataset[i : i + batch_size] def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = {'num examples': SPEED_TEST_N_EXAMPLES} snake_case_ = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}), ] snake_case_ = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) snake_case_ = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) snake_case_ = generate_example_dataset( os.path.join(UpperCamelCase__ , 'dataset.arrow' ) , UpperCamelCase__ , num_examples=UpperCamelCase__ , seq_shapes={'list': (100,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(UpperCamelCase__ ) ) snake_case_ = func(UpperCamelCase__ , **UpperCamelCase__ ) print('shuffling dataset' ) snake_case_ = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(UpperCamelCase__ ) ) snake_case_ = func( UpperCamelCase__ , **UpperCamelCase__ ) with open(UpperCamelCase__ , 'wb' ) as f: f.write(json.dumps(UpperCamelCase__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
285
0
import torch from torch import nn class snake_case_ ( nn.Module ): def __init__( self : List[Any] , _snake_case : int , _snake_case : Dict , _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : Any=1 , _snake_case : Union[str, Any]=False )->List[Any]: '''simple docstring''' super().__init__() __lowerCAmelCase : List[str] = n_token __lowerCAmelCase : Any = d_embed __lowerCAmelCase : str = d_proj __lowerCAmelCase : Union[str, Any] = cutoffs + [n_token] __lowerCAmelCase : List[Any] = [0] + self.cutoffs __lowerCAmelCase : List[str] = div_val __lowerCAmelCase : Optional[Any] = self.cutoffs[0] __lowerCAmelCase : Union[str, Any] = len(self.cutoffs ) - 1 __lowerCAmelCase : int = self.shortlist_size + self.n_clusters if self.n_clusters > 0: __lowerCAmelCase : Any = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) __lowerCAmelCase : Optional[int] = nn.Parameter(torch.zeros(self.n_clusters ) ) __lowerCAmelCase : Any = nn.ModuleList() __lowerCAmelCase : List[str] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_snake_case , _snake_case ) ) ) else: self.out_projs.append(_snake_case ) self.out_layers.append(nn.Linear(_snake_case , _snake_case ) ) else: for i in range(len(self.cutoffs ) ): __lowerCAmelCase , __lowerCAmelCase : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowerCAmelCase : int = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_snake_case , _snake_case ) ) ) self.out_layers.append(nn.Linear(_snake_case , r_idx - l_idx ) ) __lowerCAmelCase : Union[str, Any] = keep_order def UpperCAmelCase__ ( self : Tuple , _snake_case : Tuple , _snake_case : Tuple , _snake_case : Tuple , _snake_case : Optional[int] )->int: '''simple docstring''' if proj is None: __lowerCAmelCase : Optional[int] = nn.functional.linear(_snake_case , _snake_case , bias=_snake_case ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: __lowerCAmelCase : str = nn.functional.linear(_snake_case , proj.t().contiguous() ) __lowerCAmelCase : Optional[int] = nn.functional.linear(_snake_case , _snake_case , bias=_snake_case ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCAmelCase__ ( self : List[str] , _snake_case : Union[str, Any] , _snake_case : Optional[int]=None , _snake_case : List[str]=False )->int: '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n __lowerCAmelCase : List[Any] = hidden[..., :-1, :].contiguous() __lowerCAmelCase : Optional[Any] = labels[..., 1:].contiguous() __lowerCAmelCase : Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) __lowerCAmelCase : Optional[int] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: __lowerCAmelCase : List[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: __lowerCAmelCase : str = self._compute_logit(_snake_case , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: __lowerCAmelCase : int = labels != -100 __lowerCAmelCase : Union[str, Any] = torch.zeros_like(_snake_case , dtype=hidden.dtype , device=hidden.device ) __lowerCAmelCase : Optional[int] = ( -nn.functional.log_softmax(_snake_case , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: __lowerCAmelCase : int = nn.functional.log_softmax(_snake_case , dim=-1 ) else: # construct weights and biases __lowerCAmelCase , __lowerCAmelCase : List[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __lowerCAmelCase , __lowerCAmelCase : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowerCAmelCase : List[str] = self.out_layers[0].weight[l_idx:r_idx] __lowerCAmelCase : Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: __lowerCAmelCase : int = self.out_layers[i].weight __lowerCAmelCase : List[str] = self.out_layers[i].bias if i == 0: __lowerCAmelCase : int = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __lowerCAmelCase : int = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_snake_case ) biases.append(_snake_case ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[Any] = weights[0], biases[0], self.out_projs[0] __lowerCAmelCase : Any = self._compute_logit(_snake_case , _snake_case , _snake_case , _snake_case ) __lowerCAmelCase : Any = nn.functional.log_softmax(_snake_case , dim=1 ) if labels is None: __lowerCAmelCase : int = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: __lowerCAmelCase : Union[str, Any] = torch.zeros_like(_snake_case , dtype=hidden.dtype , device=hidden.device ) __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : Tuple = [0] + self.cutoffs for i in range(len(_snake_case ) - 1 ): __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: __lowerCAmelCase : List[str] = (labels >= l_idx) & (labels < r_idx) __lowerCAmelCase : Union[str, Any] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue __lowerCAmelCase : Union[str, Any] = labels.index_select(0 , _snake_case ) - l_idx __lowerCAmelCase : Union[str, Any] = head_logprob.index_select(0 , _snake_case ) __lowerCAmelCase : Optional[int] = hidden.index_select(0 , _snake_case ) else: __lowerCAmelCase : str = hidden if i == 0: if labels is not None: __lowerCAmelCase : Union[str, Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: __lowerCAmelCase : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = weights[i], biases[i], self.out_projs[i] __lowerCAmelCase : Any = self._compute_logit(_snake_case , _snake_case , _snake_case , _snake_case ) __lowerCAmelCase : Optional[int] = nn.functional.log_softmax(_snake_case , dim=1 ) __lowerCAmelCase : Any = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: __lowerCAmelCase : Union[str, Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: __lowerCAmelCase : Dict = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i __lowerCAmelCase : str = logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , _snake_case , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def UpperCAmelCase__ ( self : Union[str, Any] , _snake_case : str )->Optional[Any]: '''simple docstring''' if self.n_clusters == 0: __lowerCAmelCase : List[str] = self._compute_logit(_snake_case , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(_snake_case , dim=-1 ) else: # construct weights and biases __lowerCAmelCase , __lowerCAmelCase : List[str] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowerCAmelCase : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] __lowerCAmelCase : int = self.out_layers[0].bias[l_idx:r_idx] else: __lowerCAmelCase : int = self.out_layers[i].weight __lowerCAmelCase : Optional[Any] = self.out_layers[i].bias if i == 0: __lowerCAmelCase : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __lowerCAmelCase : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_snake_case ) biases.append(_snake_case ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[Any] = weights[0], biases[0], self.out_projs[0] __lowerCAmelCase : str = self._compute_logit(_snake_case , _snake_case , _snake_case , _snake_case ) __lowerCAmelCase : Optional[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) __lowerCAmelCase : List[str] = nn.functional.log_softmax(_snake_case , dim=1 ) __lowerCAmelCase : Tuple = [0] + self.cutoffs for i in range(len(_snake_case ) - 1 ): __lowerCAmelCase , __lowerCAmelCase : Dict = cutoff_values[i], cutoff_values[i + 1] if i == 0: __lowerCAmelCase : Optional[Any] = head_logprob[:, : self.cutoffs[0]] else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Tuple = weights[i], biases[i], self.out_projs[i] __lowerCAmelCase : List[Any] = self._compute_logit(_snake_case , _snake_case , _snake_case , _snake_case ) __lowerCAmelCase : Tuple = nn.functional.log_softmax(_snake_case , dim=1 ) __lowerCAmelCase : Union[str, Any] = head_logprob[:, -i] + tail_logprob_i __lowerCAmelCase : Tuple = logprob_i return out
232
from math import isqrt def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> list[int]: __lowerCAmelCase : Tuple = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = False return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int = 10**8 ) -> int: __lowerCAmelCase : int = calculate_prime_numbers(max_number // 2 ) __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : List[Any] = len(SCREAMING_SNAKE_CASE ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
232
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ (_UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""image_processor""", """tokenizer"""] SCREAMING_SNAKE_CASE__ : List[str] = """ViltImageProcessor""" SCREAMING_SNAKE_CASE__ : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , lowercase_=None , lowercase_=None , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase_ , ) UpperCAmelCase_ : Union[str, Any] = kwargs.pop("feature_extractor" ) UpperCAmelCase_ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowercase_ , lowercase_ ) UpperCAmelCase_ : Dict = self.image_processor def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = True , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = True , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : str = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel_values + pixel_mask UpperCAmelCase_ : int = self.image_processor(lowercase_ , return_tensors=lowercase_ ) encoding.update(lowercase_ ) return encoding def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.tokenizer.model_input_names UpperCAmelCase_ : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase_ , ) return self.image_processor_class @property def UpperCamelCase__ ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowercase_ , ) return self.image_processor
61
'''simple docstring''' import operator as op def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> int: lowercase_ : Optional[Any] = [] lowercase_ : str = lambda UpperCAmelCase__ , UpperCAmelCase__ : int(x / y ) # noqa: E731 integer division operation lowercase_ : Optional[Any] = { """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ) , """Action""".center(12 ) , """Stack""" , sep=""" | """ ) print("""-""" * (30 + len(UpperCAmelCase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(UpperCAmelCase__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(12 ) , """,""".join(UpperCAmelCase__ ) , sep=""" | """ ) else: lowercase_ : str = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(12 ) , """,""".join(UpperCAmelCase__ ) , sep=""" | """ ) lowercase_ : Optional[int] = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(12 ) , """,""".join(UpperCAmelCase__ ) , sep=""" | """ ) stack.append( str(opr[x](int(UpperCAmelCase__ ) , int(UpperCAmelCase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(12 ) , """,""".join(UpperCAmelCase__ ) , sep=""" | """ , ) return int(stack[0] ) if __name__ == "__main__": _lowercase : Tuple = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", solve(Postfix))
239
0
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging a = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def _snake_case ( _snake_case : str , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : Tuple=None ) -> List[str]: '''simple docstring''' _A = XLNetConfig.from_json_file(_snake_case ) _A = finetuning_task.lower() if finetuning_task is not None else '' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) _A = finetuning_task _A = GLUE_TASKS_NUM_LABELS[finetuning_task] _A = XLNetForSequenceClassification(_snake_case ) elif "squad" in finetuning_task: _A = finetuning_task _A = XLNetForQuestionAnswering(_snake_case ) else: _A = XLNetLMHeadModel(_snake_case ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_snake_case , _snake_case , _snake_case ) # Save pytorch-model _A = os.path.join(_snake_case , _snake_case ) _A = os.path.join(_snake_case , _snake_case ) print(F'''Save PyTorch model to {os.path.abspath(_snake_case )}''' ) torch.save(model.state_dict() , _snake_case ) print(F'''Save configuration file to {os.path.abspath(_snake_case )}''' ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) a = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
271
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel a = logging.getLogger(__name__) def _snake_case ( _snake_case : str , _snake_case : Tuple ) -> Any: '''simple docstring''' if os.path.exists(_snake_case ): if os.path.exists(os.path.join(_snake_case , 'config.json' ) ) and os.path.isfile( os.path.join(_snake_case , 'config.json' ) ): os.remove(os.path.join(_snake_case , 'config.json' ) ) if os.path.exists(os.path.join(_snake_case , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(_snake_case , 'pytorch_model.bin' ) ): os.remove(os.path.join(_snake_case , 'pytorch_model.bin' ) ) else: os.makedirs(_snake_case ) model.save_pretrained(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Optional[int]=False ) -> Tuple: '''simple docstring''' _A = 2 if unlogit: _A = torch.pow(_snake_case , _snake_case ) _A = p * torch.log(_snake_case ) _A = 0 return -plogp.sum(dim=-1 ) def _snake_case ( _snake_case : Optional[Any] ) -> int: '''simple docstring''' logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(_snake_case ) ) ) ) for row in range(len(_snake_case ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def _snake_case ( _snake_case : List[str] , _snake_case : Dict , _snake_case : List[str] , _snake_case : Union[str, Any]=True , _snake_case : Any=True , _snake_case : List[str]=None , _snake_case : List[Any]=False ) -> int: '''simple docstring''' _A , _A = model.config.num_hidden_layers, model.config.num_attention_heads _A = torch.zeros(_snake_case , _snake_case ).to(args.device ) _A = torch.zeros(_snake_case , _snake_case ).to(args.device ) if head_mask is None: _A = torch.ones(_snake_case , _snake_case ).to(args.device ) head_mask.requires_grad_(requires_grad=_snake_case ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _A = None _A = 0.0 _A = 0.0 for step, inputs in enumerate(tqdm(_snake_case , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _A = tuple(t.to(args.device ) for t in inputs ) ((_A) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _A = model(_snake_case , labels=_snake_case , head_mask=_snake_case ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _A , _A , _A = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_snake_case ): _A = entropy(attn.detach() , _snake_case ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_snake_case ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _A = 2 _A = torch.pow(torch.pow(_snake_case , _snake_case ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _A = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(_snake_case ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(_snake_case ) logger.info('Head ranked by importance scores' ) _A = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _A = torch.arange( head_importance.numel() , device=args.device ) _A = head_ranks.view_as(_snake_case ) print_ad_tensor(_snake_case ) return attn_entropy, head_importance, total_loss def _snake_case ( _snake_case : Any , _snake_case : Tuple , _snake_case : List[Any] ) -> List[str]: '''simple docstring''' _A , _A , _A = compute_heads_importance(_snake_case , _snake_case , _snake_case , compute_entropy=_snake_case ) _A = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , _snake_case , original_score * args.masking_threshold ) _A = torch.ones_like(_snake_case ) _A = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _A = original_score while current_score >= original_score * args.masking_threshold: _A = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _A = float('Inf' ) _A = head_importance.view(-1 ).sort()[1] if len(_snake_case ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _A = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _A = new_head_mask.view(-1 ) _A = 0.0 _A = new_head_mask.view_as(_snake_case ) _A = new_head_mask.clone().detach() print_ad_tensor(_snake_case ) # Compute metric and head importance again _A , _A , _A = compute_heads_importance( _snake_case , _snake_case , _snake_case , compute_entropy=_snake_case , head_mask=_snake_case ) _A = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , _snake_case , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(_snake_case ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : Dict , _snake_case : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _A = datetime.now() _A , _A , _A = compute_heads_importance( _snake_case , _snake_case , _snake_case , compute_entropy=_snake_case , compute_importance=_snake_case , head_mask=_snake_case ) _A = 1 / loss _A = datetime.now() - before_time _A = sum(p.numel() for p in model.parameters() ) _A = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_snake_case ) ) } for k, v in heads_to_prune.items(): if isinstance(_snake_case , _snake_case ): _A = [ v, ] assert sum(len(_snake_case ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_snake_case ) _A = sum(p.numel() for p in model.parameters() ) _A = datetime.now() _A , _A , _A = compute_heads_importance( _snake_case , _snake_case , _snake_case , compute_entropy=_snake_case , compute_importance=_snake_case , head_mask=_snake_case , actually_pruned=_snake_case , ) _A = 1 / loss _A = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , _snake_case , _snake_case , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , _snake_case , _snake_case ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(_snake_case , args.output_dir ) def _snake_case ( ) -> Dict: '''simple docstring''' _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=_snake_case , type=_snake_case , required=_snake_case , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=_snake_case , type=_snake_case , required=_snake_case , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=_snake_case , type=_snake_case , required=_snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=_snake_case , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=_snake_case , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=_snake_case , type=_snake_case , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=_snake_case , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=_snake_case , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=_snake_case , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=_snake_case , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=_snake_case , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=_snake_case , help='Batch size.' ) parser.add_argument('--seed' , type=_snake_case , default=42 ) parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=_snake_case , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=_snake_case , default='' , help='Can be used for distant debugging.' ) _A = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_snake_case ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _A = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _A = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _A = torch.device('cuda' , args.local_rank ) _A = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _A = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _A = nn.parallel.DistributedDataParallel( _snake_case , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_snake_case ) elif args.n_gpu > 1: _A = nn.DataParallel(_snake_case ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_snake_case ) torch.save(_snake_case , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , _snake_case ) # Prepare dataset _A = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _A = (torch.from_numpy(_snake_case ),) _A = TensorDataset(*_snake_case ) _A = RandomSampler(_snake_case ) _A = DataLoader(_snake_case , sampler=_snake_case , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_snake_case , _snake_case , _snake_case ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _A = mask_heads(_snake_case , _snake_case , _snake_case ) prune_heads(_snake_case , _snake_case , _snake_case , _snake_case ) if __name__ == "__main__": main()
271
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ : Optional[int] = logging.get_logger(__name__) a__ : int = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class UpperCamelCase_ ( _UpperCAmelCase , _UpperCAmelCase): """simple docstring""" snake_case__ : Dict = "resnet" snake_case__ : Tuple = ["basic", "bottleneck"] def __init__( self : Optional[Any] , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : List[str]=6_4 , UpperCAmelCase__ : int=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , UpperCAmelCase__ : Tuple=[3, 4, 6, 3] , UpperCAmelCase__ : Union[str, Any]="bottleneck" , UpperCAmelCase__ : List[str]="relu" , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[Any]=None , **UpperCAmelCase__ : str , ) -> Optional[Any]: super().__init__(**lowercase_ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embedding_size __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = layer_type __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = downsample_in_first_stage __SCREAMING_SNAKE_CASE = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class UpperCamelCase_ ( _UpperCAmelCase): """simple docstring""" snake_case__ : Union[str, Any] = version.parse("1.11") @property def UpperCAmelCase_ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase_ ( self : Any ) -> float: return 1E-3
54
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ = 0 A__ = len(SCREAMING_SNAKE_CASE__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None A__ = sorted_collection[point] if current_item == item: return point else: if point < left: A__ = left A__ = point elif point > right: A__ = right A__ = point else: if item < current_item: A__ = point - 1 else: A__ = point + 1 return None def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif point > right: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point - 1 ) else: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point + 1 , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: '''simple docstring''' if collection != sorted(SCREAMING_SNAKE_CASE__ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys lowercase_ = 0 if debug == 1: lowercase_ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") lowercase_ = 67 lowercase_ = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("Not found")
7
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _UpperCAmelCase : Any = """pt""" elif is_tf_available(): _UpperCAmelCase : List[str] = """tf""" else: _UpperCAmelCase : int = """jax""" class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = PerceiverTokenizer __UpperCamelCase : int = False def _snake_case (self ): super().setUp() __lowerCAmelCase = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _snake_case (self ): return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def _snake_case (self , **__lowercase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase , __lowercase=False , __lowercase=20 , __lowercase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __lowerCAmelCase = [] for i in range(len(__lowercase ) ): try: __lowerCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=__lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __lowerCAmelCase = list(filter(lambda __lowercase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , __lowercase ) ) __lowerCAmelCase = list(filter(lambda __lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__lowercase ) , __lowercase ) ) if max_length is not None and len(__lowercase ) > max_length: __lowerCAmelCase = toks[:max_length] if min_length is not None and len(__lowercase ) < min_length and len(__lowercase ) > 0: while len(__lowercase ) < min_length: __lowerCAmelCase = toks + toks # toks_str = [t[1] for t in toks] __lowerCAmelCase = [t[0] for t in toks] # Ensure consistency __lowerCAmelCase = tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) if " " not in output_txt and len(__lowercase ) > 1: __lowerCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowercase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowercase ) ) if with_prefix_space: __lowerCAmelCase = ''' ''' + output_txt __lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) return output_txt, output_ids def _snake_case (self ): __lowerCAmelCase = self.perceiver_tokenizer __lowerCAmelCase = '''Unicode €.''' __lowerCAmelCase = tokenizer(__lowercase ) __lowerCAmelCase = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5] self.assertEqual(encoded['''input_ids'''] , __lowercase ) # decoding __lowerCAmelCase = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , '''[CLS]Unicode €.[SEP]''' ) __lowerCAmelCase = tokenizer('''e è é ê ë''' ) __lowerCAmelCase = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5] self.assertEqual(encoded['''input_ids'''] , __lowercase ) # decoding __lowerCAmelCase = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def _snake_case (self ): __lowerCAmelCase = self.perceiver_tokenizer __lowerCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off __lowerCAmelCase = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0] # fmt: on __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase , return_tensors=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) if FRAMEWORK != "jax": __lowerCAmelCase = list(batch.input_ids.numpy()[0] ) else: __lowerCAmelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__lowercase , __lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def _snake_case (self ): __lowerCAmelCase = self.perceiver_tokenizer __lowerCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase , return_tensors=__lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , __lowercase ) self.assertIn('''attention_mask''' , __lowercase ) self.assertNotIn('''decoder_input_ids''' , __lowercase ) self.assertNotIn('''decoder_attention_mask''' , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.perceiver_tokenizer __lowerCAmelCase = [ '''Summary of the text.''', '''Another summary.''', ] __lowerCAmelCase = tokenizer( text_target=__lowercase , max_length=32 , padding='''max_length''' , truncation=__lowercase , return_tensors=__lowercase ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _snake_case (self ): # safety check on max_len default value so we are sure the test works __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' __lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) __lowerCAmelCase = tokenizer.__class__.from_pretrained(__lowercase ) __lowerCAmelCase = after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) shutil.rmtree(__lowercase ) __lowerCAmelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) __lowerCAmelCase = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) __lowerCAmelCase = tokenizer.__class__.from_pretrained(__lowercase ) __lowerCAmelCase = after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __lowerCAmelCase = tokenizer.__class__.from_pretrained(__lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowercase ) def _snake_case (self ): __lowerCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowercase ) with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: __lowerCAmelCase = json.load(__lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: __lowerCAmelCase = json.load(__lowercase ) __lowerCAmelCase = [F"""<extra_id_{i}>""" for i in range(1_25 )] __lowerCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] __lowerCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowerCAmelCase = tokenizer_class.from_pretrained( __lowercase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowerCAmelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=__lowercase )] __lowerCAmelCase = tokenizer_class.from_pretrained( __lowercase , additional_special_tokens=__lowercase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _snake_case (self ): __lowerCAmelCase = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_78] ) , '''�''' ) def _snake_case (self ): pass def _snake_case (self ): pass def _snake_case (self ): pass def _snake_case (self ): pass def _snake_case (self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __lowerCAmelCase = self.get_tokenizers(fast=__lowercase , do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] __lowerCAmelCase = tokenizer.convert_tokens_to_string(__lowercase ) self.assertIsInstance(__lowercase , __lowercase )
9
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : str = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return [ int(1_0_0_0 * (box[0] / width)), int(1_0_0_0 * (box[1] / height)), int(1_0_0_0 * (box[2] / width)), int(1_0_0_0 * (box[3] / height)), ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None): __lowerCAmelCase = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowerCAmelCase = to_pil_image(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = pil_image.size __lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()] __lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase = [] for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase) # finally, normalize the bounding boxes __lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase)) assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = apply_ocr __lowerCAmelCase = ocr_lang __lowerCAmelCase = tesseract_config def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase = (size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowerCAmelCase = [] __lowerCAmelCase = [] for image in images: __lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase ) words_batch.append(__lowercase ) boxes_batch.append(__lowercase ) if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase ) if apply_ocr: __lowerCAmelCase = words_batch __lowerCAmelCase = boxes_batch return data
9
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCAmelCase (metaclass=__lowercase ): """simple docstring""" _UpperCAmelCase :Any = ['''keras_nlp'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''keras_nlp'''] )
177
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __snake_case ="""\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ __snake_case ="""\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ __snake_case =""" Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def a_ ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] ): return float((preds == labels).mean() ) def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str="binary" ): lowerCAmelCase = simple_accuracy(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ): lowerCAmelCase = {} for id_pred, label in zip(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' lowerCAmelCase = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase = [(pred, label)] lowerCAmelCase , lowerCAmelCase = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase , lowerCAmelCase = zip(*lowerCamelCase ) lowerCAmelCase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' ) fas.append(lowerCamelCase ) lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) ) ems.append(lowerCamelCase ) lowerCAmelCase = float(sum(lowerCamelCase ) / len(lowerCamelCase ) ) lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : List[str] ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' ) elif self.config_name == "record": lowerCAmelCase = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] lowerCAmelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
4
0
"""simple docstring""" def _A (__a = 10_00 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = 2**power SCREAMING_SNAKE_CASE_ : List[str] = str(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 for i in list_num: sum_of_num += int(_UpperCAmelCase ) return sum_of_num if __name__ == "__main__": UpperCAmelCase_ : List[Any] = int(input("""Enter the power of 2: """).strip()) print("""2 ^ """, power, """ = """, 2**power) UpperCAmelCase_ : Dict = solution(power) print("""Sum of the digits is: """, result)
350
"""simple docstring""" from scipy.stats import pearsonr import datasets UpperCAmelCase_ : List[Any] = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ UpperCAmelCase_ : Optional[int] = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ UpperCAmelCase_ : Tuple = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=False): '''simple docstring''' if return_pvalue: SCREAMING_SNAKE_CASE_ : int = pearsonr(lowercase_ , lowercase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowercase_ , lowercase_)[0])}
318
0
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowercase : Optional[Any] = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowercase : Optional[Any] = concatenate_datasets lowercase : Optional[Any] = DownloadConfig lowercase : int = DownloadManager lowercase : int = DownloadMode lowercase : Optional[Any] = DownloadConfig lowercase : Optional[int] = DownloadMode lowercase : List[Any] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
232
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase : Optional[int] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase : Optional[Any] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} lowercase : str = 'zero2' lowercase : Optional[int] = 'zero3' lowercase : Optional[Any] = [ZEROa, ZEROa] def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[str]) -> int: '''simple docstring''' __UpperCamelCase : Union[str, Any] = parameterized.to_safe_name("_".join(str(_lowerCamelCase) for x in param.args)) return F'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test lowercase : List[str] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCamelCase__ ( __lowercase): '''simple docstring''' @parameterized.expand(a , name_func=a ) def _lowerCamelCase ( self :Dict , a :Optional[Any] , a :str ) -> Optional[int]: self.run_and_check( stage=a , model=a , distributed=a , fpaa=a , ) @require_torch_multi_gpu @parameterized.expand(a , name_func=a ) def _lowerCamelCase ( self :List[str] , a :str , a :str ) -> List[Any]: self.run_and_check( stage=a , model=a , distributed=a , fpaa=a , ) @parameterized.expand(a , name_func=a ) def _lowerCamelCase ( self :List[Any] , a :List[str] , a :int ) -> Optional[int]: self.run_and_check( stage=a , model=a , distributed=a , fpaa=a , ) @require_torch_multi_gpu @parameterized.expand(a , name_func=a ) def _lowerCamelCase ( self :List[str] , a :List[Any] , a :Dict ) -> int: self.run_and_check( stage=a , model=a , distributed=a , fpaa=a , ) def _lowerCamelCase ( self :Any , a :List[str] ) -> Optional[Any]: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def _lowerCamelCase ( self :Optional[Any] , a :str , a :str , a :int = 1_0 , a :bool = True , a :bool = True , a :bool = True , ) -> Any: __UpperCamelCase : Optional[Any] = models[model] __UpperCamelCase : List[Any] = self.run_trainer( stage=a , model_name=a , eval_steps=a , num_train_epochs=1 , distributed=a , fpaa=a , ) self.do_checks(a ) return output_dir def _lowerCamelCase ( self :List[str] , a :str , a :str , a :int = 1_0 , a :int = 1 , a :bool = True , a :bool = True , ) -> Dict: __UpperCamelCase : int = self.get_auto_remove_tmp_dir("./xxx" , after=a ) __UpperCamelCase : int = f'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(a )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __UpperCamelCase : Dict = f'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() __UpperCamelCase : int = [f'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] __UpperCamelCase : Optional[Any] = self.get_launcher(a ) __UpperCamelCase : Optional[int] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(a , env=self.get_env() ) return output_dir def _lowerCamelCase ( self :Any , a :List[Any]=False ) -> List[Any]: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) __UpperCamelCase : List[Any] = min(2 , get_gpu_count() ) if distributed else 1 return f'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
232
1
"""simple docstring""" from __future__ import annotations import math import random from typing import Any class _A : def __init__( self ): """simple docstring""" lowercase = [] lowercase = 0 lowercase = 0 def A__ ( self ): """simple docstring""" return self.head == self.tail def A__ ( self , __lowerCAmelCase ): """simple docstring""" self.data.append(__lowerCAmelCase ) lowercase = self.tail + 1 def A__ ( self ): """simple docstring""" lowercase = self.data[self.head] lowercase = self.head + 1 return ret def A__ ( self ): """simple docstring""" return self.tail - self.head def A__ ( self ): """simple docstring""" print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = data lowercase = None lowercase = None lowercase = 1 def A__ ( self ): """simple docstring""" return self.data def A__ ( self ): """simple docstring""" return self.left def A__ ( self ): """simple docstring""" return self.right def A__ ( self ): """simple docstring""" return self.height def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = data def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = node def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = node def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = height def UpperCAmelCase__ ( lowerCAmelCase__ :MyNode | None ) -> int: '''simple docstring''' if node is None: return 0 return node.get_height() def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: '''simple docstring''' if a > b: return a return b def UpperCAmelCase__ ( lowerCAmelCase__ :MyNode ) -> MyNode: '''simple docstring''' print("""left rotation node:""" , node.get_data() ) lowercase = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowerCAmelCase__ ) lowercase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) lowercase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase__ ) return ret def UpperCAmelCase__ ( lowerCAmelCase__ :MyNode ) -> MyNode: '''simple docstring''' print("""right rotation node:""" , node.get_data() ) lowercase = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowerCAmelCase__ ) lowercase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) lowercase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase__ ) return ret def UpperCAmelCase__ ( lowerCAmelCase__ :MyNode ) -> MyNode: '''simple docstring''' lowercase = node.get_left() assert left_child is not None node.set_left(left_rotation(lowerCAmelCase__ ) ) return right_rotation(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :MyNode ) -> MyNode: '''simple docstring''' lowercase = node.get_right() assert right_child is not None node.set_right(right_rotation(lowerCAmelCase__ ) ) return left_rotation(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :MyNode | None , lowerCAmelCase__ :Any ) -> MyNode | None: '''simple docstring''' if node is None: return MyNode(lowerCAmelCase__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowerCAmelCase__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected lowercase = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child lowercase = right_rotation(lowerCAmelCase__ ) else: lowercase = lr_rotation(lowerCAmelCase__ ) else: node.set_right(insert_node(node.get_right() , lowerCAmelCase__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: lowercase = node.get_right() assert right_child is not None if data < right_child.get_data(): lowercase = rl_rotation(lowerCAmelCase__ ) else: lowercase = left_rotation(lowerCAmelCase__ ) lowercase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) return node def UpperCAmelCase__ ( lowerCAmelCase__ :MyNode ) -> Any: '''simple docstring''' while True: lowercase = root.get_right() if right_child is None: break lowercase = right_child return root.get_data() def UpperCAmelCase__ ( lowerCAmelCase__ :MyNode ) -> Any: '''simple docstring''' while True: lowercase = root.get_left() if left_child is None: break lowercase = left_child return root.get_data() def UpperCAmelCase__ ( lowerCAmelCase__ :MyNode , lowerCAmelCase__ :Any ) -> MyNode | None: '''simple docstring''' lowercase = root.get_left() lowercase = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: lowercase = get_left_most(lowerCAmelCase__ ) root.set_data(lowerCAmelCase__ ) root.set_right(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) elif left_child is not None: lowercase = left_child elif right_child is not None: lowercase = right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) if get_height(lowerCAmelCase__ ) - get_height(lowerCAmelCase__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): lowercase = left_rotation(lowerCAmelCase__ ) else: lowercase = rl_rotation(lowerCAmelCase__ ) elif get_height(lowerCAmelCase__ ) - get_height(lowerCAmelCase__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): lowercase = right_rotation(lowerCAmelCase__ ) else: lowercase = lr_rotation(lowerCAmelCase__ ) lowercase = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowerCAmelCase__ ) return root class _A : def __init__( self ): """simple docstring""" lowercase = None def A__ ( self ): """simple docstring""" return get_height(self.root ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" print("""insert:""" + str(__lowerCAmelCase ) ) lowercase = insert_node(self.root , __lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" print("""delete:""" + str(__lowerCAmelCase ) ) if self.root is None: print("""Tree is empty!""" ) return lowercase = del_node(self.root , __lowerCAmelCase ) def __str__( self , ): # a level traversale, gives a more intuitive look on the tree """simple docstring""" lowercase = """""" lowercase = MyQueue() q.push(self.root ) lowercase = self.get_height() if layer == 0: return output lowercase = 0 while not q.is_empty(): lowercase = q.pop() lowercase = """ """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(__lowerCAmelCase ) q.push(__lowerCAmelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space lowercase = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , __lowerCAmelCase ) - 1: lowercase = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def UpperCAmelCase__ ( ) -> None: '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() __lowerCAmelCase : Any =AVLtree() __lowerCAmelCase : int =list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
366
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""only integers accepted as input""" ) else: lowercase = str(abs(lowerCAmelCase__ ) ) lowercase = [list(lowerCAmelCase__ ) for char in range(len(lowerCAmelCase__ ) )] for index in range(len(lowerCAmelCase__ ) ): num_transpositions[index].pop(lowerCAmelCase__ ) return max( int("""""".join(list(lowerCAmelCase__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
32
0
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : int = ComputeEnvironment.AMAZON_SAGEMAKER __UpperCAmelCase : List[Any] = True __UpperCAmelCase : List[Any] = '''ml.p3.2xlarge''' __UpperCAmelCase : Optional[int] = '''accelerate_sagemaker_execution_role''' __UpperCAmelCase : List[str] = '''hf-sm''' __UpperCAmelCase : Dict = '''us-east-1''' __UpperCAmelCase : List[str] = 1 __UpperCAmelCase : int = '''accelerate-sagemaker-1''' __UpperCAmelCase : Optional[int] = '''1.6''' __UpperCAmelCase : List[str] = '''4.4''' __UpperCAmelCase : List[Any] = '''train.py''' __UpperCAmelCase : List[Any] = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] __UpperCAmelCase : Dict = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : str ): '''simple docstring''' _a : Dict = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['model_name_or_path'] ,_a ) assert isinstance(converted_args['do_train'] ,_a ) assert isinstance(converted_args['epochs'] ,_a ) assert isinstance(converted_args['learning_rate'] ,_a ) assert isinstance(converted_args['max_steps'] ,_a ) with pytest.raises(_a ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
271
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = """▁""" __lowerCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} __lowerCAmelCase = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } __lowerCAmelCase = {"""vinai/bartpho-syllable""": 1_0_2_4} class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self : str ,_a : str ,_a : Any ,_a : Any="<s>" ,_a : Dict="</s>" ,_a : int="</s>" ,_a : Union[str, Any]="<s>" ,_a : List[Any]="<unk>" ,_a : Optional[Any]="<pad>" ,_a : List[str]="<mask>" ,_a : Optional[Dict[str, Any]] = None ,**_a : int ,): '''simple docstring''' _a : Any = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else mask_token _a : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a ,eos_token=_a ,unk_token=_a ,sep_token=_a ,cls_token=_a ,pad_token=_a ,mask_token=_a ,sp_model_kwargs=self.sp_model_kwargs ,**_a ,) _a : Optional[int] = vocab_file _a : Union[str, Any] = monolingual_vocab_file _a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _a : Union[str, Any] = {} _a : int = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_a ) not in self.fairseq_tokens_to_ids: _a : int = cnt cnt += 1 with open(_a ,'r' ,encoding='utf-8' ) as f: for line in f.readlines(): _a : str = line.strip().split()[0] _a : Tuple = len(self.fairseq_tokens_to_ids ) if str(_a ) not in self.fairseq_tokens_to_ids: _a : List[str] = len(self.fairseq_tokens_to_ids ) _a : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Union[str, Any] ): '''simple docstring''' _a : int = self.__dict__.copy() _a : str = None _a : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple ,_a : Tuple ): '''simple docstring''' _a : Tuple = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _a : List[str] = {} _a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowercase ( self : Dict ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : Dict = [self.cls_token_id] _a : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowercase ( self : int ,_a : List[int] ,_a : Optional[List[int]] = None ,_a : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a ,token_ids_a=_a ,already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def __lowercase ( self : Tuple ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : List[str] = [self.sep_token_id] _a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowercase ( self : Dict ): '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def __lowercase ( self : Dict ): '''simple docstring''' _a : List[str] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowercase ( self : Tuple ,_a : str ): '''simple docstring''' return self.sp_model.encode(_a ,out_type=_a ) def __lowercase ( self : Union[str, Any] ,_a : Union[str, Any] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __lowercase ( self : Any ,_a : int ): '''simple docstring''' return self.fairseq_ids_to_tokens[index] def __lowercase ( self : Tuple ,_a : Union[str, Any] ): '''simple docstring''' _a : str = ''.join(_a ).replace(_a ,' ' ).strip() return out_string def __lowercase ( self : Union[str, Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : int = os.path.join( _a ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _a : int = os.path.join( _a ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] ,) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_a ) elif not os.path.isfile(self.vocab_file ): with open(_a ,'wb' ) as fi: _a : List[Any] = self.sp_model.serialized_model_proto() fi.write(_a ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( _a ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file ,_a ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(_a ,'w' ,encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"""{str(_a )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
271
1
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class a_ ( _snake_case ): UpperCamelCase__ : List[Any] ="van" def __init__( self :Any , _lowercase :Union[str, Any]=224 , _lowercase :int=3 , _lowercase :List[Any]=[7, 3, 3, 3] , _lowercase :Optional[Any]=[4, 2, 2, 2] , _lowercase :Optional[int]=[64, 128, 320, 512] , _lowercase :Optional[Any]=[3, 3, 12, 3] , _lowercase :Dict=[8, 8, 4, 4] , _lowercase :Optional[int]="gelu" , _lowercase :str=0.02 , _lowercase :Optional[int]=1E-6 , _lowercase :Optional[Any]=1E-2 , _lowercase :Union[str, Any]=0.0 , _lowercase :Tuple=0.0 , **_lowercase :List[Any] , ) -> Optional[Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = patch_sizes UpperCAmelCase_ = strides UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = mlp_ratios UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = layer_scale_init_value UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = dropout_rate
360
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Dict ="open-llama" def __init__( self :Union[str, Any] , _lowercase :List[Any]=100000 , _lowercase :Dict=4096 , _lowercase :List[Any]=11008 , _lowercase :Optional[int]=32 , _lowercase :Union[str, Any]=32 , _lowercase :List[str]="silu" , _lowercase :Union[str, Any]=2048 , _lowercase :Any=0.02 , _lowercase :Optional[Any]=1E-6 , _lowercase :str=True , _lowercase :str=0 , _lowercase :Any=1 , _lowercase :Optional[Any]=2 , _lowercase :str=False , _lowercase :Dict=True , _lowercase :Optional[Any]=0.1 , _lowercase :Tuple=0.1 , _lowercase :Dict=True , _lowercase :List[Any]=True , _lowercase :Dict=None , **_lowercase :Optional[int] , ) -> List[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , _lowercase) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase , ) def __a ( self :int) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowercase) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _lowercase) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _lowercase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(_lowercase , _lowercase) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
344
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __lowerCAmelCase : str ='pt' elif is_tf_available(): __lowerCAmelCase : Dict ='tf' else: __lowerCAmelCase : Dict ='jax' class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = PerceiverTokenizer SCREAMING_SNAKE_CASE__ : List[Any] = False def __magic_name__( self :Any ) -> str: super().setUp() __SCREAMING_SNAKE_CASE : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __magic_name__( self :str ) -> List[Any]: return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def __magic_name__( self :List[Any] , **lowerCAmelCase__ :Optional[int] ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Union[str, Any]=False , lowerCAmelCase__ :List[Any]=20 , lowerCAmelCase__ :str=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(len(lowerCAmelCase__ ) ): try: __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) __SCREAMING_SNAKE_CASE : Optional[int] = list(filter(lambda lowerCAmelCase__ : re.match(r'''^[ a-zA-Z]+$''' , t[1] ) , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = list(filter(lambda lowerCAmelCase__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCAmelCase__ ) , lowerCAmelCase__ ) ) if max_length is not None and len(lowerCAmelCase__ ) > max_length: __SCREAMING_SNAKE_CASE : Dict = toks[:max_length] if min_length is not None and len(lowerCAmelCase__ ) < min_length and len(lowerCAmelCase__ ) > 0: while len(lowerCAmelCase__ ) < min_length: __SCREAMING_SNAKE_CASE : List[Any] = toks + toks # toks_str = [t[1] for t in toks] __SCREAMING_SNAKE_CASE : Optional[int] = [t[0] for t in toks] # Ensure consistency __SCREAMING_SNAKE_CASE : Dict = tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) if " " not in output_txt and len(lowerCAmelCase__ ) > 1: __SCREAMING_SNAKE_CASE : Any = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase__ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase__ ) ) if with_prefix_space: __SCREAMING_SNAKE_CASE : List[str] = ''' ''' + output_txt __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) return output_txt, output_ids def __magic_name__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Any = self.perceiver_tokenizer __SCREAMING_SNAKE_CASE : str = '''Unicode €.''' __SCREAMING_SNAKE_CASE : Any = tokenizer(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , lowerCAmelCase__ ) # decoding __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , '''[CLS]Unicode €.[SEP]''' ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer('''e è é ê ë''' ) __SCREAMING_SNAKE_CASE : Tuple = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , lowerCAmelCase__ ) # decoding __SCREAMING_SNAKE_CASE : Any = tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def __magic_name__( self :List[Any] ) -> int: __SCREAMING_SNAKE_CASE : List[Any] = self.perceiver_tokenizer __SCREAMING_SNAKE_CASE : Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off __SCREAMING_SNAKE_CASE : Any = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __SCREAMING_SNAKE_CASE : Tuple = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) if FRAMEWORK != "jax": __SCREAMING_SNAKE_CASE : Union[str, Any] = list(batch.input_ids.numpy()[0] ) else: __SCREAMING_SNAKE_CASE : str = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def __magic_name__( self :Union[str, Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[str] = self.perceiver_tokenizer __SCREAMING_SNAKE_CASE : Optional[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __SCREAMING_SNAKE_CASE : List[Any] = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowerCAmelCase__ ) self.assertIn('''attention_mask''' , lowerCAmelCase__ ) self.assertNotIn('''decoder_input_ids''' , lowerCAmelCase__ ) self.assertNotIn('''decoder_attention_mask''' , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> List[str]: __SCREAMING_SNAKE_CASE : Dict = self.perceiver_tokenizer __SCREAMING_SNAKE_CASE : int = [ '''Summary of the text.''', '''Another summary.''', ] __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer( text_target=lowerCAmelCase__ , max_length=32 , padding='''max_length''' , truncation=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def __magic_name__( self :Union[str, Any] ) -> Dict: # safety check on max_len default value so we are sure the test works __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __SCREAMING_SNAKE_CASE : Dict = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : Tuple = ''' He is very happy, UNwant\u00E9d,running''' __SCREAMING_SNAKE_CASE : Any = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) shutil.rmtree(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : List[str] = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.__class__.from_pretrained(lowerCAmelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: __SCREAMING_SNAKE_CASE : Tuple = json.load(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: __SCREAMING_SNAKE_CASE : int = json.load(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [f'''<extra_id_{i}>''' for i in range(125 )] __SCREAMING_SNAKE_CASE : List[Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] __SCREAMING_SNAKE_CASE : Tuple = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowerCAmelCase__ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_class.from_pretrained( lowerCAmelCase__ , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __SCREAMING_SNAKE_CASE : Any = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowerCAmelCase__ )] __SCREAMING_SNAKE_CASE : Any = tokenizer_class.from_pretrained( lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def __magic_name__( self :Any ) -> Dict: pass def __magic_name__( self :Optional[int] ) -> List[Any]: pass def __magic_name__( self :Any ) -> str: pass def __magic_name__( self :Optional[int] ) -> Union[str, Any]: pass def __magic_name__( self :Union[str, Any] ) -> str: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizers(fast=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __SCREAMING_SNAKE_CASE : int = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] __SCREAMING_SNAKE_CASE : Any = tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
9
from __future__ import annotations import bisect def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): if hi < 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowercase__ ) while lo < hi: __SCREAMING_SNAKE_CASE : Any = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __SCREAMING_SNAKE_CASE : Union[str, Any] = mid + 1 else: __SCREAMING_SNAKE_CASE : Optional[Any] = mid return lo def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): if hi < 0: __SCREAMING_SNAKE_CASE : List[Any] = len(lowercase__ ) while lo < hi: __SCREAMING_SNAKE_CASE : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __SCREAMING_SNAKE_CASE : Any = mid + 1 else: __SCREAMING_SNAKE_CASE : Optional[int] = mid return lo def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): sorted_collection.insert(bisect_left(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): sorted_collection.insert(bisect_right(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : List[Any] = len(lowercase__ ) - 1 while left <= right: __SCREAMING_SNAKE_CASE : str = left + (right - left) // 2 __SCREAMING_SNAKE_CASE : List[str] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __SCREAMING_SNAKE_CASE : int = midpoint - 1 else: __SCREAMING_SNAKE_CASE : Dict = midpoint + 1 return None def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = bisect.bisect_left(lowercase__ , lowercase__ ) if index != len(lowercase__ ) and sorted_collection[index] == item: return index return None def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if right < left: return None __SCREAMING_SNAKE_CASE : int = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , midpoint - 1 ) else: return binary_search_by_recursion(lowercase__ , lowercase__ , midpoint + 1 , lowercase__ ) if __name__ == "__main__": __lowerCAmelCase : Dict =input('Enter numbers separated by comma:\n').strip() __lowerCAmelCase : str =sorted(int(item) for item in user_input.split(',')) __lowerCAmelCase : Tuple =int(input('Enter a single number to be found in the list:\n')) __lowerCAmelCase : Tuple =binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
9
1
"""simple docstring""" import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=[] ) ->Union[str, Any]: """simple docstring""" lowerCAmelCase__ :List[Any] = size[0] - overlap_pixels * 2 lowerCAmelCase__ :Optional[Any] = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels lowerCAmelCase__ :Union[str, Any] = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 lowerCAmelCase__ :str = np.pad(_SCREAMING_SNAKE_CASE , mode='linear_ramp' , pad_width=_SCREAMING_SNAKE_CASE , end_values=0 ) if "l" in remove_borders: lowerCAmelCase__ :List[Any] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: lowerCAmelCase__ :List[Any] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: lowerCAmelCase__ :str = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: lowerCAmelCase__ :int = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Any: """simple docstring""" return max(_SCREAMING_SNAKE_CASE , min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" lowerCAmelCase__ :Tuple = list(_SCREAMING_SNAKE_CASE ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap lowerCAmelCase__ :str = clamp_rect(_SCREAMING_SNAKE_CASE , [0, 0] , [image_size[0], image_size[1]] ) return rect def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: """simple docstring""" lowerCAmelCase__ :Any = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(_SCREAMING_SNAKE_CASE , (original_slice, 0) ) return result def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" lowerCAmelCase__ :Dict = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) lowerCAmelCase__ :int = tile.crop(_SCREAMING_SNAKE_CASE ) return tile def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Any: """simple docstring""" lowerCAmelCase__ :str = n % d return n - divisor class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 3_5_0 , ): '''simple docstring''' super().__init__( vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , max_noise_level=__UpperCAmelCase , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :Union[str, Any] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) lowerCAmelCase__ :Any = add_overlap_rect(__UpperCAmelCase , __UpperCAmelCase , image.size ) lowerCAmelCase__ :Tuple = image.crop(__UpperCAmelCase ) lowerCAmelCase__ :str = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] lowerCAmelCase__ :List[Any] = translated_slice_x - (original_image_slice / 2) lowerCAmelCase__ :Optional[Any] = max(0 , __UpperCAmelCase ) lowerCAmelCase__ :Tuple = squeeze_tile(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :str = to_input.size lowerCAmelCase__ :str = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) lowerCAmelCase__ :Tuple = super(__UpperCAmelCase , self ).__call__(image=__UpperCAmelCase , **__UpperCAmelCase ).images[0] lowerCAmelCase__ :List[str] = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) lowerCAmelCase__ :Optional[int] = unsqueeze_tile(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) lowerCAmelCase__ :Optional[int] = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) lowerCAmelCase__ :Any = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__UpperCAmelCase ) , mode='L' , ) final_image.paste( __UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 7_5 , __UpperCAmelCase = 9.0 , __UpperCAmelCase = 5_0 , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 1_2_8 , __UpperCAmelCase = 3_2 , __UpperCAmelCase = 3_2 , ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) lowerCAmelCase__ :Optional[int] = math.ceil(image.size[0] / tile_size ) lowerCAmelCase__ :Union[str, Any] = math.ceil(image.size[1] / tile_size ) lowerCAmelCase__ :List[Any] = tcx * tcy lowerCAmelCase__ :Any = 0 for y in range(__UpperCAmelCase ): for x in range(__UpperCAmelCase ): self._process_tile( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , prompt=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , noise_level=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def __A () ->List[str]: """simple docstring""" lowerCAmelCase__ :Dict = 'stabilityai/stable-diffusion-x4-upscaler' lowerCAmelCase__ :Any = StableDiffusionTiledUpscalePipeline.from_pretrained(_SCREAMING_SNAKE_CASE , revision='fp16' , torch_dtype=torch.floataa ) lowerCAmelCase__ :Dict = pipe.to('cuda' ) lowerCAmelCase__ :int = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(_SCREAMING_SNAKE_CASE ): print(F"progress: {obj['progress']:.4f}" ) obj["image"].save('diffusers_library_progress.jpg' ) lowerCAmelCase__ :List[Any] = pipe(image=_SCREAMING_SNAKE_CASE , prompt='Black font, white background, vector' , noise_level=40 , callback=_SCREAMING_SNAKE_CASE ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
254
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __A = direct_transformers_import(PATH_TO_TRANSFORMERS) __A = transformers.models.auto.configuration_auto.CONFIG_MAPPING __A = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" lowerCAmelCase__ :List[str] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"config.{attribute}" in modeling_source or F"getattr(config, \"{attribute}\"" in modeling_source or F"getattr(self.config, \"{attribute}\"" in modeling_source ): lowerCAmelCase__ :List[str] = True # Deal with multi-line cases elif ( re.search( rF"getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"" , _SCREAMING_SNAKE_CASE , ) is not None ): lowerCAmelCase__ :int = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowerCAmelCase__ :Any = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowerCAmelCase__ :Union[str, Any] = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] lowerCAmelCase__ :Union[str, Any] = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed lowerCAmelCase__ :Any = True if not attribute_used: lowerCAmelCase__ :List[Any] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowerCAmelCase__ :List[str] = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowerCAmelCase__ :Tuple = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowerCAmelCase__ :Optional[Any] = True elif attribute.endswith('_token_id' ): lowerCAmelCase__ :List[Any] = True # configuration class specific cases if not case_allowed: lowerCAmelCase__ :List[str] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowerCAmelCase__ :List[Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def __A (_SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" lowerCAmelCase__ :List[Any] = dict(inspect.signature(config_class.__init__ ).parameters ) lowerCAmelCase__ :List[Any] = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] lowerCAmelCase__ :List[Any] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowerCAmelCase__ :Optional[Any] = {} if len(config_class.attribute_map ) > 0: lowerCAmelCase__ :Optional[int] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowerCAmelCase__ :str = inspect.getsourcefile(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = os.path.dirname(_SCREAMING_SNAKE_CASE ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowerCAmelCase__ :Dict = [os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for fn in os.listdir(_SCREAMING_SNAKE_CASE ) if fn.startswith('modeling_' )] # Get the source code strings lowerCAmelCase__ :Tuple = [] for path in modeling_paths: if os.path.isfile(_SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE ) as fp: modeling_sources.append(fp.read() ) lowerCAmelCase__ :Any = [] for config_param, default_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # `attributes` here is all the variant names for `config_param` lowerCAmelCase__ :Optional[int] = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): unused_attributes.append(attributes[0] ) return sorted(_SCREAMING_SNAKE_CASE ) def __A () ->List[Any]: """simple docstring""" lowerCAmelCase__ :Optional[int] = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowerCAmelCase__ :List[str] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _SCREAMING_SNAKE_CASE : inspect.isclass(_SCREAMING_SNAKE_CASE ) and issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and inspect.getmodule(_SCREAMING_SNAKE_CASE ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowerCAmelCase__ :Union[str, Any] = check_config_attributes_being_used(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase__ :int = unused_attributes if len(_SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase__ :Any = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += F"{name}: {attributes}\n" raise ValueError(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": check_config_attributes()
254
1
def _a ( a :int ) -> list[int]: if num <= 0: raise ValueError('''Input must be a positive integer''' ) a = [True] * (num + 1) a = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , a ): a = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
0
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __lowercase : Optional[Any] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowercase : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens __lowercase : Any = os.environ.get('''USER_TOKEN''', '''''') def lowercase_ ( _lowercase ) -> dict[Any, Any]: '''simple docstring''' lowerCamelCase_ : str = { '''Authorization''': F"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(_lowercase , headers=_lowercase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
318
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_: str =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[Any] ={ "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class __A ( snake_case__ ): a__ : int = """xmod""" def __init__(self : Dict , __a : str=30522 , __a : Optional[Any]=768 , __a : int=12 , __a : Union[str, Any]=12 , __a : int=3072 , __a : int="gelu" , __a : int=0.1 , __a : int=0.1 , __a : Dict=512 , __a : str=2 , __a : Union[str, Any]=0.02 , __a : List[Any]=1E-12 , __a : List[str]=1 , __a : str=0 , __a : str=2 , __a : List[Any]="absolute" , __a : Optional[int]=True , __a : str=None , __a : Optional[int]=False , __a : Union[str, Any]=2 , __a : Tuple=False , __a : Tuple=True , __a : Union[str, Any]=True , __a : Union[str, Any]=("en_XX",) , __a : Tuple=None , **__a : Optional[int] , ): super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout UpperCAmelCase_ = pre_norm UpperCAmelCase_ = adapter_reduction_factor UpperCAmelCase_ = adapter_layer_norm UpperCAmelCase_ = adapter_reuse_layer_norm UpperCAmelCase_ = ln_before_adapter UpperCAmelCase_ = list(UpperCAmelCase_ ) UpperCAmelCase_ = default_language class __A ( snake_case__ ): @property def _lowercase (self : Optional[Any] ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
365
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Any , snake_case_ : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = 0 if start < end: UpperCAmelCase_ = randint(snake_case_ , snake_case_ ) UpperCAmelCase_ = a[end] UpperCAmelCase_ = a[pivot] UpperCAmelCase_ = temp UpperCAmelCase_ , UpperCAmelCase_ = _in_place_partition(snake_case_ , snake_case_ , snake_case_ ) count += _in_place_quick_sort(snake_case_ , snake_case_ , p - 1 ) count += _in_place_quick_sort(snake_case_ , p + 1 , snake_case_ ) return count def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : List[str] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = randint(snake_case_ , snake_case_ ) UpperCAmelCase_ = a[end] UpperCAmelCase_ = a[pivot] UpperCAmelCase_ = temp UpperCAmelCase_ = start - 1 for index in range(snake_case_ , snake_case_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCAmelCase_ = new_pivot_index + 1 UpperCAmelCase_ = a[new_pivot_index] UpperCAmelCase_ = a[index] UpperCAmelCase_ = temp UpperCAmelCase_ = a[new_pivot_index + 1] UpperCAmelCase_ = a[end] UpperCAmelCase_ = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_: List[str] =TemporaryFile() SCREAMING_SNAKE_CASE_: int =1_00 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_: str =0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_: List[str] =np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_: str =np.load(outfile) SCREAMING_SNAKE_CASE_: List[Any] =len(M) - 1 SCREAMING_SNAKE_CASE_: Dict =_in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
106
0
def _lowerCAmelCase ( __lowerCAmelCase ) -> list: """simple docstring""" if len(__A ) <= 1: return lst snake_case__ : List[Any] = 1 while i < len(__A ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case__ : Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case__ : Dict = 1 return lst if __name__ == "__main__": A__ = input('''Enter numbers separated by a comma:\n''').strip() A__ = [int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
230
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : str = 'T5Config' def SCREAMING_SNAKE_CASE_ ( __A : jnp.array , __A : int , __A : int ) -> jnp.ndarray: """simple docstring""" a_ : Dict = jnp.zeros_like(__A ) a_ : Dict = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) a_ : str = shifted_input_ids.at[:, 0].set(__A ) a_ : int = jnp.where(shifted_input_ids == -1_00 , __A , __A ) return shifted_input_ids class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : str = '''mt5''' snake_case__ : List[Any] = MTaConfig class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : str = '''mt5''' snake_case__ : List[str] = MTaConfig class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Any = '''mt5''' snake_case__ : Union[str, Any] = MTaConfig
32
0
"""simple docstring""" import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowercase( __a ): '''simple docstring''' lowercase__ = (EulerDiscreteScheduler,) lowercase__ = 10 def UpperCamelCase_ ( self: str, **a_: List[Any] ): '''simple docstring''' _snake_case : int = { """num_train_timesteps""": 1_100, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**a_ ) return config def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001], [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=a_, beta_end=a_ ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : str = self.scheduler_classes[0] _snake_case : Optional[Any] = self.get_scheduler_config() _snake_case : Optional[Any] = scheduler_class(**a_ ) scheduler.set_timesteps(self.num_inference_steps ) _snake_case : str = torch.manual_seed(0 ) _snake_case : Optional[Any] = self.dummy_model() _snake_case : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma _snake_case : List[Any] = sample.to(a_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Tuple = scheduler.scale_model_input(a_, a_ ) _snake_case : int = model(a_, a_ ) _snake_case : str = scheduler.step(a_, a_, a_, generator=a_ ) _snake_case : Dict = output.prev_sample _snake_case : Tuple = torch.sum(torch.abs(a_ ) ) _snake_case : str = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = self.scheduler_classes[0] _snake_case : int = self.get_scheduler_config(prediction_type="""v_prediction""" ) _snake_case : Any = scheduler_class(**a_ ) scheduler.set_timesteps(self.num_inference_steps ) _snake_case : List[Any] = torch.manual_seed(0 ) _snake_case : List[Any] = self.dummy_model() _snake_case : Any = self.dummy_sample_deter * scheduler.init_noise_sigma _snake_case : Any = sample.to(a_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Dict = scheduler.scale_model_input(a_, a_ ) _snake_case : List[Any] = model(a_, a_ ) _snake_case : Tuple = scheduler.step(a_, a_, a_, generator=a_ ) _snake_case : Any = output.prev_sample _snake_case : Any = torch.sum(torch.abs(a_ ) ) _snake_case : str = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 0.0_002 ) < 1E-2 assert abs(result_mean.item() - 2.26_76E-06 ) < 1E-3 def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Dict = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) scheduler.set_timesteps(self.num_inference_steps, device=a_ ) _snake_case : List[str] = torch.manual_seed(0 ) _snake_case : Dict = self.dummy_model() _snake_case : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _snake_case : List[str] = sample.to(a_ ) for t in scheduler.timesteps: _snake_case : Optional[int] = scheduler.scale_model_input(a_, a_ ) _snake_case : Union[str, Any] = model(a_, a_ ) _snake_case : Union[str, Any] = scheduler.step(a_, a_, a_, generator=a_ ) _snake_case : Any = output.prev_sample _snake_case : List[Any] = torch.sum(torch.abs(a_ ) ) _snake_case : Optional[Any] = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : str = self.scheduler_classes[0] _snake_case : List[str] = self.get_scheduler_config() _snake_case : Any = scheduler_class(**a_, use_karras_sigmas=a_ ) scheduler.set_timesteps(self.num_inference_steps, device=a_ ) _snake_case : Any = torch.manual_seed(0 ) _snake_case : str = self.dummy_model() _snake_case : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _snake_case : Any = sample.to(a_ ) for t in scheduler.timesteps: _snake_case : Tuple = scheduler.scale_model_input(a_, a_ ) _snake_case : int = model(a_, a_ ) _snake_case : Optional[Any] = scheduler.step(a_, a_, a_, generator=a_ ) _snake_case : Dict = output.prev_sample _snake_case : Union[str, Any] = torch.sum(torch.abs(a_ ) ) _snake_case : Tuple = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1E-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1E-3
132
"""simple docstring""" from collections.abc import Generator from math import sin def UpperCAmelCase__ (snake_case__ : bytes ): """simple docstring""" if len(snake_case__ ) != 32: raise ValueError("""Input must be of length 32""" ) _snake_case : Optional[int] = B"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) _snake_case : Optional[Any] = format(snake_case__ , """08x""" )[-8:] _snake_case : Optional[Any] = B"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def UpperCAmelCase__ (snake_case__ : bytes ): """simple docstring""" _snake_case : Union[str, Any] = B"""""" for char in message: bit_string += format(snake_case__ , """08b""" ).encode("""utf-8""" ) _snake_case : List[Any] = format(len(snake_case__ ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(snake_case__ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase__ (snake_case__ : bytes ): """simple docstring""" if len(snake_case__ ) % 5_12 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(snake_case__ ) , 5_12 ): _snake_case : List[str] = bit_string[pos : pos + 5_12] _snake_case : List[str] = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) _snake_case : Optional[int] = format(snake_case__ , """032b""" ) _snake_case : str = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(snake_case__ , 2 ) def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" return (a + b) % 2**32 def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase__ (snake_case__ : bytes ): """simple docstring""" _snake_case : Any = preprocess(snake_case__ ) _snake_case : Optional[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _snake_case : Union[str, Any] = 0x6745_2301 _snake_case : List[Any] = 0xEFCD_AB89 _snake_case : Optional[Any] = 0x98BA_DCFE _snake_case : Optional[int] = 0x1032_5476 _snake_case : Tuple = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(snake_case__ ): _snake_case : Tuple = aa _snake_case : str = ba _snake_case : int = ca _snake_case : Dict = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _snake_case : int = d ^ (b & (c ^ d)) _snake_case : Dict = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _snake_case : Tuple = c ^ (d & (b ^ c)) _snake_case : int = (5 * i + 1) % 16 elif i <= 47: _snake_case : List[Any] = b ^ c ^ d _snake_case : Union[str, Any] = (3 * i + 5) % 16 else: _snake_case : Tuple = c ^ (b | not_aa(snake_case__ )) _snake_case : Optional[int] = (7 * i) % 16 _snake_case : Dict = (f + a + added_consts[i] + block_words[g]) % 2**32 _snake_case : List[str] = d _snake_case : List[Any] = c _snake_case : str = b _snake_case : List[str] = sum_aa(snake_case__ , left_rotate_aa(snake_case__ , shift_amounts[i] ) ) # Add hashed chunk to running total _snake_case : Union[str, Any] = sum_aa(snake_case__ , snake_case__ ) _snake_case : str = sum_aa(snake_case__ , snake_case__ ) _snake_case : Any = sum_aa(snake_case__ , snake_case__ ) _snake_case : List[str] = sum_aa(snake_case__ , snake_case__ ) _snake_case : Any = reformat_hex(snake_case__ ) + reformat_hex(snake_case__ ) + reformat_hex(snake_case__ ) + reformat_hex(snake_case__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
132
1
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> int: assert column_title.isupper() lowerCamelCase__ : Dict = 0 lowerCamelCase__ : str = len(UpperCamelCase ) - 1 lowerCamelCase__ : str = 0 while index >= 0: lowerCamelCase__ : List[str] = (ord(column_title[index] ) - 64) * pow(26 , UpperCamelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
41
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __A (snake_case__): '''simple docstring''' __lowercase: Optional[int] = """beit""" def __init__( self : List[str] , UpperCAmelCase_ : List[Any]=8_192 , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : List[Any]=3_072 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : Optional[Any]=1E-12 , UpperCAmelCase_ : int=224 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Dict=[3, 5, 7, 11] , UpperCAmelCase_ : Tuple=[1, 2, 3, 6] , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[Any]=0.4 , UpperCAmelCase_ : Optional[Any]=256 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Tuple=255 , **UpperCAmelCase_ : List[str] , ) ->Optional[Any]: """simple docstring""" super().__init__(**UpperCAmelCase_ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = use_mask_token snake_case_ = use_absolute_position_embeddings snake_case_ = use_relative_position_bias snake_case_ = use_shared_relative_position_bias snake_case_ = layer_scale_init_value snake_case_ = drop_path_rate snake_case_ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case_ = out_indices snake_case_ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = auxiliary_channels snake_case_ = auxiliary_num_convs snake_case_ = auxiliary_concat_input snake_case_ = semantic_loss_ignore_index class __A (snake_case__): '''simple docstring''' __lowercase: List[Any] = version.parse("""1.11""") @property def lowerCAmelCase ( self : Dict ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase ( self : Any ) ->float: """simple docstring""" return 1E-4
347
0
def lowerCAmelCase__ ( _a : Optional[Any] , _a : List[Any] , _a : List[Any] , _a : Any ): if height >= 1: move_tower(height - 1 , _a , _a , _a ) move_disk(_a , _a ) move_tower(height - 1 , _a , _a , _a ) def lowerCAmelCase__ ( _a : Union[str, Any] , _a : List[str] ): print("moving disk from" , _a , "to" , _a ) def lowerCAmelCase__ ( ): snake_case_ : Any = int(input("Height of hanoi: " ).strip() ) move_tower(_a , "A" , "B" , "C" ) if __name__ == "__main__": main()
368
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCAmelCase__ ( _a : str ): snake_case_ : str = FileLock(str(tmpdir / "foo.lock" ) ) snake_case_ : Optional[Any] = FileLock(str(tmpdir / "foo.lock" ) ) snake_case_ : Any = 0.01 with locka.acquire(): with pytest.raises(_a ): snake_case_ : Optional[int] = time.time() locka.acquire(_a ) assert time.time() - _start > timeout def lowerCAmelCase__ ( _a : Union[str, Any] ): snake_case_ : List[str] = "a" * 10_00 + ".lock" snake_case_ : Optional[int] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(_a ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 snake_case_ : int = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_a ): locka.acquire(0 )
36
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _UpperCamelCase = get_tests_dir('''fixtures''') _UpperCamelCase = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') _UpperCamelCase = get_tests_dir('''fixtures/dummy-config.json''') class _A ( unittest.TestCase ): def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[str] = 0 def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Optional[int] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase ).to_dict() config_dict.pop("""feature_extractor_type""" ) __UpperCAmelCase : List[str] = WavaVecaFeatureExtractor(**__UpperCAmelCase ) # save in new folder model_config.save_pretrained(__UpperCAmelCase ) config.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase ) # make sure private variable is not incorrectly saved __UpperCAmelCase : Any = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ): __UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def __A ( self ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase , revision="""aaaaaa""" ) def __A ( self ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__UpperCAmelCase ) __UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__UpperCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase , trust_remote_code=__UpperCAmelCase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def __A ( self ) -> Dict: '''simple docstring''' try: AutoConfig.register("""custom""" , __UpperCAmelCase ) AutoFeatureExtractor.register(__UpperCAmelCase , __UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCAmelCase ): AutoFeatureExtractor.register(__UpperCAmelCase , __UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCAmelCase : Optional[int] = CustomFeatureExtractor.from_pretrained(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __A ( self ) -> List[Any]: '''simple docstring''' class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = True try: AutoConfig.register("""custom""" , __UpperCAmelCase ) AutoFeatureExtractor.register(__UpperCAmelCase , __UpperCAmelCase ) # If remote code is not set, the default is to use local __UpperCAmelCase : Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__UpperCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__UpperCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(__UpperCAmelCase , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
254
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
254
1
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase__ : Optional[int] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''sequence-classification''' def __init__( self , _UpperCAmelCase): '''simple docstring''' if type(_UpperCAmelCase) == dict: __A : Any = Namespace(**_UpperCAmelCase) __A : Union[str, Any] = glue_output_modes[hparams.task] __A : List[Any] = glue_tasks_num_labels[hparams.task] super().__init__(_UpperCAmelCase , _UpperCAmelCase , self.mode) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return self.model(**_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __A : List[Any] = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None __A : Dict = self(**_UpperCAmelCase) __A : str = outputs[0] __A : str = self.trainer.lr_schedulers[0]['scheduler'] __A : List[Any] = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.hparams __A : Optional[Any] = processors[args.task]() __A : Union[str, Any] = processor.get_labels() for mode in ["train", "dev"]: __A : int = self._feature_file(_UpperCAmelCase) if os.path.exists(_UpperCAmelCase) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , _UpperCAmelCase) else: logger.info('Creating features from dataset file at %s' , args.data_dir) __A : Optional[int] = ( processor.get_dev_examples(args.data_dir) if mode == 'dev' else processor.get_train_examples(args.data_dir) ) __A : Any = convert_examples_to_features( _UpperCAmelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , _UpperCAmelCase) torch.save(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False): '''simple docstring''' __A : Dict = 'dev' if mode == 'test' else mode __A : Optional[Any] = self._feature_file(_UpperCAmelCase) logger.info('Loading features from cached file %s' , _UpperCAmelCase) __A : Optional[Any] = torch.load(_UpperCAmelCase) __A : Union[str, Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long) __A : Any = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) __A : Optional[Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) if self.hparams.glue_output_mode == "classification": __A : Union[str, Any] = torch.tensor([f.label for f in features] , dtype=torch.long) elif self.hparams.glue_output_mode == "regression": __A : int = torch.tensor([f.label for f in features] , dtype=torch.float) return DataLoader( TensorDataset(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) , batch_size=_UpperCAmelCase , shuffle=_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __A : Dict = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None __A : Any = self(**_UpperCAmelCase) __A : str = outputs[:2] __A : Optional[Any] = logits.detach().cpu().numpy() __A : List[str] = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Dict = torch.stack([x['val_loss'] for x in outputs]).mean().detach().cpu().item() __A : str = np.concatenate([x['pred'] for x in outputs] , axis=0) if self.hparams.glue_output_mode == "classification": __A : int = np.argmax(_UpperCAmelCase , axis=1) elif self.hparams.glue_output_mode == "regression": __A : Dict = np.squeeze(_UpperCAmelCase) __A : Union[str, Any] = np.concatenate([x['target'] for x in outputs] , axis=0) __A : Dict = [[] for _ in range(out_label_ids.shape[0])] __A : int = [[] for _ in range(out_label_ids.shape[0])] __A : Dict = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , _UpperCAmelCase , _UpperCAmelCase)} __A : Tuple = dict(results.items()) __A : Optional[int] = results return ret, preds_list, out_label_list def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : int = self._eval_end(_UpperCAmelCase) __A : Dict = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = self._eval_end(_UpperCAmelCase) __A : Tuple = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' BaseTransformer.add_model_specific_args(_UpperCAmelCase , _UpperCAmelCase) parser.add_argument( '--max_seq_length' , default=128 , type=_UpperCAmelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=_UpperCAmelCase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets') return parser def _lowerCAmelCase ( ) -> Dict: __A : int = argparse.ArgumentParser() add_generic_args(__snake_case , os.getcwd() ) __A : Tuple = GLUETransformer.add_model_specific_args(__snake_case , os.getcwd() ) __A : Union[str, Any] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __A : List[str] = os.path.join( './results' , f'{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}' , ) os.makedirs(args.output_dir ) __A : Any = GLUETransformer(__snake_case ) __A : List[Any] = generic_train(__snake_case , __snake_case ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __A : List[str] = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__snake_case ) ) __A : List[Any] = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__snake_case ) if __name__ == "__main__": main()
355
'''simple docstring''' from collections.abc import Iterable from typing import Any class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase = None): '''simple docstring''' __A : str = value __A : Node | None = None # Added in order to delete a node easier __A : Node | None = None __A : Node | None = None def __repr__( self): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value) return pformat({F'{self.value}': (self.left, self.right)} , indent=1) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase = None): '''simple docstring''' __A : int = root def __str__( self): '''simple docstring''' return str(self.root) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if new_children is not None: # reset its kids __A : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(_UpperCAmelCase): # If it is the right children __A : int = new_children else: __A : Union[str, Any] = new_children else: __A : Tuple = new_children def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.root is None def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Dict = Node(_UpperCAmelCase) # create a new Node if self.empty(): # if Tree is empty __A : Union[str, Any] = new_node # set its root else: # Tree is not empty __A : Dict = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: __A : Tuple = new_node # We insert the new node in a leaf break else: __A : str = parent_node.left else: if parent_node.right is None: __A : List[str] = new_node break else: __A : int = parent_node.right __A : int = parent_node def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase): '''simple docstring''' for value in values: self.__insert(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if self.empty(): raise IndexError('Warning: Tree is empty! please use another.') else: __A : Any = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: __A : List[Any] = node.left if value < node.value else node.right return node def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase = None): '''simple docstring''' if node is None: if self.root is None: return None __A : str = self.root if not self.empty(): while node.right is not None: __A : Dict = node.right return node def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase = None): '''simple docstring''' if node is None: __A : Optional[Any] = self.root if self.root is None: return None if not self.empty(): __A : Optional[int] = self.root while node.left is not None: __A : Tuple = node.left return node def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = self.search(_UpperCAmelCase) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_UpperCAmelCase , _UpperCAmelCase) elif node.left is None: # Has only right children self.__reassign_nodes(_UpperCAmelCase , node.right) elif node.right is None: # Has only left children self.__reassign_nodes(_UpperCAmelCase , node.left) else: __A : str = self.get_max( node.left) # Gets the max value of the left branch self.remove(tmp_node.value) # type: ignore __A : List[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left) yield from self.preorder_traverse(node.right) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase=None): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root) else: return traversal_function(self.root) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if node: self.inorder(_UpperCAmelCase , node.left) arr.append(node.value) self.inorder(_UpperCAmelCase , node.right) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : list[int] = [] self.inorder(_UpperCAmelCase , _UpperCAmelCase) # append all values to list using inorder traversal return arr[k - 1] def _lowerCAmelCase ( __snake_case : Node | None ) -> list[Node]: __A : Tuple = [] if curr_node is not None: __A : Optional[Any] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _lowerCAmelCase ( ) -> None: __A : Optional[int] = (8, 3, 6, 1, 10, 14, 13, 4, 7) __A : str = BinarySearchTree() for i in testlist: t.insert(__snake_case ) # Prints all the elements of the list in order traversal print(__snake_case ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(__snake_case ) print(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
190
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A =logging.getLogger(__name__) def snake_case_ (_a : Dict , _a : Union[str, Any] ): return (preds == labels).mean() @dataclass class _a : __a : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _a : __a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) __a : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) __a : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __a : bool = field( default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def snake_case_ (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _a ) # Set seed set_seed(training_args.seed ) try: UpperCAmelCase = processors[data_args.task_name]() UpperCAmelCase = processor.get_labels() UpperCAmelCase = len(_a ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , ) # Get datasets UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_a : EvalPrediction ) -> Dict: UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_a , p.label_ids )} # Data collator UpperCAmelCase = DataCollatorWithPadding(_a , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCAmelCase = Trainer( model=_a , args=_a , train_dataset=_a , eval_dataset=_a , compute_metrics=_a , data_collator=_a , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(_a , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , _a , _a ) writer.write('''%s = %s\n''' % (key, value) ) results.update(_a ) return results def snake_case_ (_a : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
34
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase_ : List[str] ,lowercase_ : Any=1_0_0 ,lowercase_ : str=1_3 ,lowercase_ : Any=3_0 ,lowercase_ : Optional[int]=2 ,lowercase_ : Dict=3 ,lowercase_ : Optional[int]=True ,lowercase_ : Union[str, Any]=True ,lowercase_ : Optional[Any]=3_2 ,lowercase_ : List[Any]=5 ,lowercase_ : Any=4 ,lowercase_ : Optional[int]=3_7 ,lowercase_ : List[Any]="gelu" ,lowercase_ : Dict=0.1 ,lowercase_ : List[Any]=0.1 ,lowercase_ : int=1_0 ,lowercase_ : int=0.02 ,lowercase_ : List[str]=3 ,): lowerCAmelCase__ : int = parent lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : List[Any] = batch_size lowerCAmelCase__ : Union[str, Any] = image_size lowerCAmelCase__ : Optional[int] = patch_size lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : str = is_training lowerCAmelCase__ : Optional[Any] = use_labels lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Optional[Any] = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : Union[str, Any] = intermediate_size lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : str = hidden_dropout_prob lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob lowerCAmelCase__ : Union[str, Any] = type_sequence_label_size lowerCAmelCase__ : Dict = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Any = (image_size // patch_size) ** 2 lowerCAmelCase__ : str = num_patches + 1 def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Optional[int] = None if self.use_labels: lowerCAmelCase__ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ : List[str] = BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowercase_ ,initializer_range=self.initializer_range ,) return config, pixel_values, labels def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : str ,lowercase_ : Dict ,lowercase_ : Any ): lowerCAmelCase__ : Any = FlaxBeitModel(config=lowercase_ ) lowerCAmelCase__ : str = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Dict ,lowercase_ : Any ,lowercase_ : Union[str, Any] ,lowercase_ : Any ): lowerCAmelCase__ : Optional[int] = FlaxBeitForMaskedImageModeling(config=lowercase_ ) lowerCAmelCase__ : str = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def __lowerCAmelCase ( self : List[str] ,lowercase_ : str ,lowercase_ : List[str] ,lowercase_ : str ): lowerCAmelCase__ : Dict = self.type_sequence_label_size lowerCAmelCase__ : Tuple = FlaxBeitForImageClassification(config=lowercase_ ) lowerCAmelCase__ : List[str] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ : int = 1 lowerCAmelCase__ : Tuple = FlaxBeitForImageClassification(lowercase_ ) lowerCAmelCase__ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : List[str] = model(lowercase_ ) def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) : Optional[int] = config_and_inputs lowerCAmelCase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Tuple = FlaxBeitModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self ,config_class=lowercase_ ,has_text_modality=lowercase_ ,hidden_size=3_7 ) def __lowerCAmelCase ( self : Dict ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = model_class(lowercase_ ) lowerCAmelCase__ : Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Tuple = [*signature.parameters.keys()] lowerCAmelCase__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ : Union[str, Any] = self._prepare_for_class(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Dict = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ : Dict ,**lowercase_ : List[Any] ): return model(pixel_values=lowercase_ ,**lowercase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase__ : Any = model_jitted(**lowercase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase__ : int = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) ,len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ ,lowercase_ ): self.assertEqual(jitted_output.shape ,output.shape ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def __lowerCAmelCase ( self : List[str] ): for model_class_name in self.all_model_classes: lowerCAmelCase__ : Tuple = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) lowerCAmelCase__ : List[Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(lowercase_ ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self : Dict ): return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Tuple = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) lowerCAmelCase__ : List[str] = self.default_image_processor lowerCAmelCase__ : Optional[int] = prepare_img() lowerCAmelCase__ : Union[str, Any] = image_processor(images=lowercase_ ,return_tensors='''np''' ).pixel_values # prepare bool_masked_pos lowerCAmelCase__ : str = np.ones((1, 1_9_6) ,dtype=lowercase_ ) # forward pass lowerCAmelCase__ : Dict = model(pixel_values=lowercase_ ,bool_masked_pos=lowercase_ ) lowerCAmelCase__ : str = outputs.logits # verify the logits lowerCAmelCase__ : Any = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape ,lowercase_ ) lowerCAmelCase__ : str = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] ,lowercase_ ,atol=1E-2 ) ) @slow def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : List[str] = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) lowerCAmelCase__ : Dict = self.default_image_processor lowerCAmelCase__ : Optional[Any] = prepare_img() lowerCAmelCase__ : Any = image_processor(images=lowercase_ ,return_tensors='''np''' ) # forward pass lowerCAmelCase__ : List[Any] = model(**lowercase_ ) lowerCAmelCase__ : int = outputs.logits # verify the logits lowerCAmelCase__ : Dict = (1, 1_0_0_0) self.assertEqual(logits.shape ,lowercase_ ) lowerCAmelCase__ : Dict = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] ,lowercase_ ,atol=1E-4 ) ) lowerCAmelCase__ : Union[str, Any] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() ,lowercase_ ) @slow def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Tuple = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) lowerCAmelCase__ : Union[str, Any] = self.default_image_processor lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : Union[str, Any] = image_processor(images=lowercase_ ,return_tensors='''np''' ) # forward pass lowerCAmelCase__ : Tuple = model(**lowercase_ ) lowerCAmelCase__ : int = outputs.logits # verify the logits lowerCAmelCase__ : Optional[int] = (1, 2_1_8_4_1) self.assertEqual(logits.shape ,lowercase_ ) lowerCAmelCase__ : Union[str, Any] = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] ,lowercase_ ,atol=1E-4 ) ) lowerCAmelCase__ : Optional[int] = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() ,lowercase_ )
106
0
'''simple docstring''' from bisect import bisect from itertools import accumulate def A_( A : Optional[Any] , A : Optional[Any] , A : List[Any] , A : Union[str, Any]): UpperCamelCase = sorted(zip(A , A) , key=lambda A: x[0] / x[1] , reverse=A) UpperCamelCase , UpperCamelCase = [i[0] for i in r], [i[1] for i in r] UpperCamelCase = list(accumulate(A)) UpperCamelCase = bisect(A , A) return ( 0 if k == 0 else sum(vl[:k]) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k]) ) if __name__ == "__main__": import doctest doctest.testmod()
356
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=13 , A_=2 , A_=24 , A_=16 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=None , A_=2 , A_=2 , )-> int: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = patch_size UpperCamelCase = max_length UpperCamelCase = num_mel_bins UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = frequency_stride UpperCamelCase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCamelCase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCamelCase = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCamelCase = frequency_out_dimension * time_out_dimension UpperCamelCase = num_patches + 2 def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, input_values, labels def UpperCAmelCase_ ( self )-> int: '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = ASTModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_values': input_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ )-> Dict: '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = ASTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['input_values'] self.assertListEqual(arg_names[:1] , A_ ) def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = ASTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A_( ): UpperCamelCase = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset') UpperCamelCase , UpperCamelCase = torchaudio.load(A) return audio, sampling_rate @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.default_feature_extractor UpperCamelCase = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(A_ ) UpperCamelCase = self.default_feature_extractor UpperCamelCase , UpperCamelCase = prepare_audio() UpperCamelCase = audio.squeeze().numpy() UpperCamelCase = feature_extractor(A_ , sampling_rate=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
251
0
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: """simple docstring""" lowerCAmelCase__ :list[list[str]] = [[] for _ in range(_a )] lowerCAmelCase__ :Optional[Any] = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(_a ) <= key: return input_string for position, character in enumerate(_a ): lowerCAmelCase__ :Union[str, Any] = position % (lowest * 2) # puts it in bounds lowerCAmelCase__ :Union[str, Any] = min(_a , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(_a ) lowerCAmelCase__ :Optional[int] = [''''''.join(_a ) for row in temp_grid] lowerCAmelCase__ :str = ''''''.join(_a ) return output_string def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" lowerCAmelCase__ :Optional[int] = [] lowerCAmelCase__ :int = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string lowerCAmelCase__ :list[list[str]] = [[] for _ in range(_a )] # generates template for position in range(len(_a ) ): lowerCAmelCase__ :Tuple = position % (lowest * 2) # puts it in bounds lowerCAmelCase__ :List[str] = min(_a , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) lowerCAmelCase__ :Tuple = 0 for row in temp_grid: # fills in the characters lowerCAmelCase__ :Optional[Any] = input_string[counter : counter + len(_a )] grid.append(list(_a ) ) counter += len(_a ) lowerCAmelCase__ :List[Any] = '''''' # reads as zigzag for position in range(len(_a ) ): lowerCAmelCase__ :List[str] = position % (lowest * 2) # puts it in bounds lowerCAmelCase__ :Dict = min(_a , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __A (_SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" lowerCAmelCase__ :str = {} for key_guess in range(1 , len(_a ) ): # tries every key lowerCAmelCase__ :Dict = decrypt(_a , _a ) return results if __name__ == "__main__": import doctest doctest.testmod()
293
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
131
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' UpperCAmelCase : Any = dataset UpperCAmelCase : List[str] = process UpperCAmelCase : int = params def __len__( self ) -> Optional[Any]: '''simple docstring''' return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] = self.dataset[i] UpperCAmelCase : Union[str, Any] = self.process(_SCREAMING_SNAKE_CASE , **self.params ) return processed class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any = loader UpperCAmelCase : Tuple = infer UpperCAmelCase : List[Any] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether UpperCAmelCase : str = None UpperCAmelCase : List[str] = loader_batch_size # Internal bookkeeping UpperCAmelCase : Dict = None UpperCAmelCase : Any = None def __len__( self ) -> str: '''simple docstring''' return len(self.loader ) def __iter__( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Tuple = iter(self.loader ) return self def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice UpperCAmelCase : Any = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) UpperCAmelCase : List[str] = {} for k, element in self._loader_batch_data.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Convert ModelOutput to tuple first UpperCAmelCase : List[str] = element.to_tuple() if isinstance(element[0] , torch.Tensor ): UpperCAmelCase : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCAmelCase : Optional[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): UpperCAmelCase : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCAmelCase : List[str] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around UpperCAmelCase : List[Any] = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase : Tuple = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase : Any = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. UpperCAmelCase : Any = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 UpperCAmelCase : List[str] = self._loader_batch_data.__class__(_SCREAMING_SNAKE_CASE ) self._loader_batch_index += 1 return result def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch UpperCAmelCase : Dict = next(self.iterator ) UpperCAmelCase : List[str] = self.infer(_SCREAMING_SNAKE_CASE , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): UpperCAmelCase : Optional[Any] = processed else: UpperCAmelCase : Dict = list(processed.keys() )[0] UpperCAmelCase : int = processed[key] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Tuple = len(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : int = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase : Any = observed_batch_size # Setting internal index to unwrap the batch UpperCAmelCase : Tuple = processed UpperCAmelCase : List[Any] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: '''simple docstring''' super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __iter__( self ) -> Any: '''simple docstring''' UpperCAmelCase : Any = iter(self.loader ) UpperCAmelCase : str = None return self def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' if self.subiterator is None: UpperCAmelCase : List[Any] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item UpperCAmelCase : Any = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators UpperCAmelCase : int = self.infer(next(self.iterator ) , **self.params ) UpperCAmelCase : Union[str, Any] = next(self.subiterator ) return processed class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __iter__( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = iter(self.loader ) return self def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : int = False UpperCAmelCase : List[str] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase : Tuple = self.loader_batch_item() UpperCAmelCase : Union[str, Any] = item.pop("""is_last""" ) accumulator.append(_SCREAMING_SNAKE_CASE ) if is_last: return accumulator while not is_last: UpperCAmelCase : Optional[int] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): UpperCAmelCase : Any = processed else: UpperCAmelCase : List[Any] = list(processed.keys() )[0] UpperCAmelCase : int = processed[key] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Dict = len(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : List[str] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase : Union[str, Any] = observed_batch_size UpperCAmelCase : Any = processed UpperCAmelCase : int = 0 while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase : Optional[Any] = self.loader_batch_item() UpperCAmelCase : Any = item.pop("""is_last""" ) accumulator.append(_SCREAMING_SNAKE_CASE ) if is_last: return accumulator else: UpperCAmelCase : Union[str, Any] = processed UpperCAmelCase : Any = item.pop("""is_last""" ) accumulator.append(_SCREAMING_SNAKE_CASE ) return accumulator class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple = dataset UpperCAmelCase : Dict = key def __len__( self ) -> Any: '''simple docstring''' return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return self.dataset[i][self.key] class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' UpperCAmelCase : Dict = dataset UpperCAmelCase : Dict = keya UpperCAmelCase : List[Any] = keya def __len__( self ) -> int: '''simple docstring''' return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
76
"""simple docstring""" import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def _snake_case ( UpperCamelCase : np.ndarray ): return input_array.reshape((input_array.size, 1) ) def _snake_case ( UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : int ): UpperCAmelCase : Optional[int] = np.nan for i in range(UpperCamelCase ): UpperCAmelCase : int = features[:, labels == i] UpperCAmelCase : List[Any] = data.mean(1 ) # Centralize the data of class i UpperCAmelCase : Dict = data - column_reshape(UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCAmelCase : Optional[Any] = np.dot(UpperCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def _snake_case ( UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : int ): UpperCAmelCase : Tuple = features.mean(1 ) UpperCAmelCase : Union[str, Any] = np.nan for i in range(UpperCamelCase ): UpperCAmelCase : int = features[:, labels == i] UpperCAmelCase : List[str] = data.shape[1] UpperCAmelCase : Optional[int] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCamelCase ) - column_reshape(UpperCamelCase ) , (column_reshape(UpperCamelCase ) - column_reshape(UpperCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(UpperCamelCase ) - column_reshape(UpperCamelCase ) , (column_reshape(UpperCamelCase ) - column_reshape(UpperCamelCase )).T , ) return covariance_sum / features.shape[1] def _snake_case ( UpperCamelCase : np.ndarray , UpperCamelCase : int ): # Check if the features have been loaded if features.any(): UpperCAmelCase : Tuple = features.mean(1 ) # Center the dataset UpperCAmelCase : List[str] = features - np.reshape(UpperCamelCase , (data_mean.size, 1) ) UpperCAmelCase : str = np.dot(UpperCamelCase , centered_data.T ) / features.shape[1] UpperCAmelCase , UpperCAmelCase : int = np.linalg.eigh(UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCAmelCase : List[Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCAmelCase : int = np.dot(filtered_eigenvectors.T , UpperCamelCase ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=UpperCamelCase ) logging.error("""Dataset empty""" ) raise AssertionError def _snake_case ( UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : int , UpperCamelCase : int ): assert classes > dimensions # Check if features have been already loaded if features.any: UpperCAmelCase , UpperCAmelCase : Dict = eigh( covariance_between_classes(UpperCamelCase , UpperCamelCase , UpperCamelCase ) , covariance_within_classes(UpperCamelCase , UpperCamelCase , UpperCamelCase ) , ) UpperCAmelCase : Any = eigenvectors[:, ::-1][:, :dimensions] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = np.linalg.svd(UpperCamelCase ) UpperCAmelCase : Tuple = svd_matrix[:, 0:dimensions] UpperCAmelCase : Tuple = np.dot(filtered_svd_matrix.T , UpperCamelCase ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=UpperCamelCase ) logging.error("""Dataset empty""" ) raise AssertionError def _snake_case ( ): # Create dummy dataset with 2 classes and 3 features UpperCAmelCase : Dict = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) UpperCAmelCase : List[str] = 2 UpperCAmelCase : int = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCamelCase ) as error_info: UpperCAmelCase : Union[str, Any] = linear_discriminant_analysis( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if isinstance(UpperCamelCase , np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def _snake_case ( ): UpperCAmelCase : List[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : Any = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCamelCase ) as error_info: UpperCAmelCase : Tuple = principal_component_analysis(UpperCamelCase , UpperCamelCase ) if not np.allclose(UpperCamelCase , UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
76
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase_ = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
268
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = "huggingface/label-files" _lowerCAmelCase : int = "imagenet-1k-id2label.json" _lowerCAmelCase : Tuple = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : Tuple = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} _lowerCAmelCase : Tuple = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" _lowerCAmelCase : Optional[int] = BitConfig( conv_layer=_lowerCamelCase , num_labels=1_000 , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase , ) return config def A ( _lowerCamelCase ): '''simple docstring''' if "stem.conv" in name: _lowerCAmelCase : List[str] = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: _lowerCAmelCase : Any = name.replace("blocks" , "layers" ) if "head.fc" in name: _lowerCAmelCase : Optional[Any] = name.replace("head.fc" , "classifier.1" ) if name.startswith("norm" ): _lowerCAmelCase : Any = "bit." + name if "bit" not in name and "classifier" not in name: _lowerCAmelCase : Dict = "bit.encoder." + name return name def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = get_config(_lowerCamelCase ) # load original model from timm _lowerCAmelCase : int = create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model _lowerCAmelCase : Any = timm_model.state_dict() for key in state_dict.copy().keys(): _lowerCAmelCase : Dict = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val.squeeze() if "head" in key else val # load HuggingFace model _lowerCAmelCase : Optional[Any] = BitForImageClassification(_lowerCamelCase ) model.eval() model.load_state_dict(_lowerCamelCase ) # create image processor _lowerCAmelCase : Dict = create_transform(**resolve_data_config({} , model=_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = transform.transforms _lowerCAmelCase : Tuple = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } _lowerCAmelCase : Tuple = BitImageProcessor( do_resize=_lowerCamelCase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCamelCase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) _lowerCAmelCase : Optional[int] = prepare_img() _lowerCAmelCase : Any = transform(_lowerCamelCase ).unsqueeze(0 ) _lowerCAmelCase : Optional[int] = processor(_lowerCamelCase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) # verify logits with torch.no_grad(): _lowerCAmelCase : Tuple = model(_lowerCamelCase ) _lowerCAmelCase : str = outputs.logits print("Logits:" , logits[0, :3] ) print("Predicted class:" , model.config.idalabel[logits.argmax(-1 ).item()] ) _lowerCAmelCase : Union[str, Any] = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {model_name} and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(F"Pushing model {model_name} and processor to the hub" ) model.push_to_hub(F"ybelkada/{model_name}" ) processor.push_to_hub(F"ybelkada/{model_name}" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) _snake_case = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
36
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( _a ): """simple docstring""" a_ = (PNDMScheduler,) a_ = (("""num_inference_steps""", 5_0),) def _lowercase ( self : List[str] , **__A : List[Any] ): snake_case__ : Optional[int] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**__A ) return config def _lowercase ( self : Union[str, Any] , __A : str=0 , **__A : Union[str, Any] ): snake_case__ : Optional[Any] = dict(self.forward_default_kwargs ) snake_case__ : int = kwargs.pop("num_inference_steps" , __A ) snake_case__ : Optional[int] = self.dummy_sample snake_case__ : List[str] = 0.1 * sample snake_case__ : str = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: snake_case__ : Any = self.get_scheduler_config(**__A ) snake_case__ : List[str] = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # copy over dummy past residuals snake_case__ : Optional[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__A ) snake_case__ : Optional[int] = scheduler_class.from_pretrained(__A ) new_scheduler.set_timesteps(__A ) # copy over dummy past residuals snake_case__ : Optional[int] = dummy_past_residuals[:] snake_case__ : List[Any] = scheduler.step_prk(__A , __A , __A , **__A ).prev_sample snake_case__ : Any = new_scheduler.step_prk(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" snake_case__ : Union[str, Any] = scheduler.step_plms(__A , __A , __A , **__A ).prev_sample snake_case__ : Optional[int] = new_scheduler.step_plms(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase ( self : List[Any] ): pass def _lowercase ( self : str , __A : Dict=0 , **__A : Any ): snake_case__ : Dict = dict(self.forward_default_kwargs ) snake_case__ : Dict = kwargs.pop("num_inference_steps" , __A ) snake_case__ : List[str] = self.dummy_sample snake_case__ : List[Any] = 0.1 * sample snake_case__ : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: snake_case__ : Union[str, Any] = self.get_scheduler_config() snake_case__ : Any = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # copy over dummy past residuals (must be after setting timesteps) snake_case__ : List[str] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__A ) snake_case__ : Any = scheduler_class.from_pretrained(__A ) # copy over dummy past residuals new_scheduler.set_timesteps(__A ) # copy over dummy past residual (must be after setting timesteps) snake_case__ : Optional[int] = dummy_past_residuals[:] snake_case__ : Any = scheduler.step_prk(__A , __A , __A , **__A ).prev_sample snake_case__ : Union[str, Any] = new_scheduler.step_prk(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" snake_case__ : Tuple = scheduler.step_plms(__A , __A , __A , **__A ).prev_sample snake_case__ : List[str] = new_scheduler.step_plms(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase ( self : Union[str, Any] , **__A : str ): snake_case__ : List[str] = self.scheduler_classes[0] snake_case__ : int = self.get_scheduler_config(**__A ) snake_case__ : Union[str, Any] = scheduler_class(**__A ) snake_case__ : Optional[Any] = 1_0 snake_case__ : Tuple = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(__A ) for i, t in enumerate(scheduler.prk_timesteps ): snake_case__ : Any = model(__A , __A ) snake_case__ : Union[str, Any] = scheduler.step_prk(__A , __A , __A ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): snake_case__ : Union[str, Any] = model(__A , __A ) snake_case__ : Optional[int] = scheduler.step_plms(__A , __A , __A ).prev_sample return sample def _lowercase ( self : int ): snake_case__ : Dict = dict(self.forward_default_kwargs ) snake_case__ : Optional[Any] = kwargs.pop("num_inference_steps" , __A ) for scheduler_class in self.scheduler_classes: snake_case__ : Dict = self.get_scheduler_config() snake_case__ : List[str] = scheduler_class(**__A ) snake_case__ : Optional[Any] = self.dummy_sample snake_case__ : Dict = 0.1 * sample if num_inference_steps is not None and hasattr(__A , "set_timesteps" ): scheduler.set_timesteps(__A ) elif num_inference_steps is not None and not hasattr(__A , "set_timesteps" ): snake_case__ : Any = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case__ : List[str] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] snake_case__ : List[Any] = dummy_past_residuals[:] snake_case__ : Optional[int] = scheduler.step_prk(__A , 0 , __A , **__A ).prev_sample snake_case__ : Union[str, Any] = scheduler.step_prk(__A , 1 , __A , **__A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) snake_case__ : Tuple = scheduler.step_plms(__A , 0 , __A , **__A ).prev_sample snake_case__ : Any = scheduler.step_plms(__A , 1 , __A , **__A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowercase ( self : int ): for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__A ) def _lowercase ( self : Optional[Any] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__A ) snake_case__ : Any = self.scheduler_classes[0] snake_case__ : Union[str, Any] = self.get_scheduler_config(steps_offset=1 ) snake_case__ : Any = scheduler_class(**__A ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def _lowercase ( self : Tuple ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=__A , beta_end=__A ) def _lowercase ( self : Any ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__A ) def _lowercase ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def _lowercase ( self : List[Any] ): for t in [1, 5, 1_0]: self.check_over_forward(time_step=__A ) def _lowercase ( self : int ): for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=__A ) def _lowercase ( self : Tuple ): snake_case__ : Optional[int] = 2_7 for scheduler_class in self.scheduler_classes: snake_case__ : Tuple = self.dummy_sample snake_case__ : Union[str, Any] = 0.1 * sample snake_case__ : int = self.get_scheduler_config() snake_case__ : int = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): snake_case__ : List[str] = scheduler.step_prk(__A , __A , __A ).prev_sample def _lowercase ( self : Optional[int] ): with self.assertRaises(__A ): snake_case__ : str = self.scheduler_classes[0] snake_case__ : Optional[Any] = self.get_scheduler_config() snake_case__ : List[Any] = scheduler_class(**__A ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _lowercase ( self : str ): snake_case__ : Dict = self.full_loop() snake_case__ : Tuple = torch.sum(torch.abs(__A ) ) snake_case__ : str = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def _lowercase ( self : Optional[Any] ): snake_case__ : Dict = self.full_loop(prediction_type="v_prediction" ) snake_case__ : Union[str, Any] = torch.sum(torch.abs(__A ) ) snake_case__ : Optional[Any] = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def _lowercase ( self : Dict ): snake_case__ : Any = self.full_loop(set_alpha_to_one=__A , beta_start=0.0_1 ) snake_case__ : Tuple = torch.sum(torch.abs(__A ) ) snake_case__ : str = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def _lowercase ( self : Tuple ): snake_case__ : Any = self.full_loop(set_alpha_to_one=__A , beta_start=0.0_1 ) snake_case__ : Tuple = torch.sum(torch.abs(__A ) ) snake_case__ : List[str] = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
368
from datetime import datetime import matplotlib.pyplot as plt import torch def SCREAMING_SNAKE_CASE ( snake_case_ : int ): for param in module.parameters(): snake_case__ : Tuple = False def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): snake_case__ : List[Any] = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[str] = plt.imshow(snake_case_ ) fig.axes.get_xaxis().set_visible(snake_case_ ) fig.axes.get_yaxis().set_visible(snake_case_ ) plt.show() def SCREAMING_SNAKE_CASE ( ): snake_case__ : str = datetime.now() snake_case__ : Optional[Any] = current_time.strftime("%H:%M:%S" ) return timestamp
286
0
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def __snake_case ( UpperCAmelCase_ : int ): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def __snake_case ( ): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def __snake_case ( ): lowerCamelCase_ = 'mock-s3-bucket' lowerCamelCase_ = F'''s3://{mock_bucket}''' lowerCamelCase_ = extract_path_from_uri(__snake_case ) assert dataset_path.startswith("s3://" ) is False lowerCamelCase_ = './local/path' lowerCamelCase_ = extract_path_from_uri(__snake_case ) assert dataset_path == new_dataset_path def __snake_case ( UpperCAmelCase_ : Union[str, Any] ): lowerCamelCase_ = is_remote_filesystem(__snake_case ) assert is_remote is True lowerCamelCase_ = fsspec.filesystem("file" ) lowerCamelCase_ = is_remote_filesystem(__snake_case ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , __snake_case ) def __snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] ): lowerCamelCase_ = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} lowerCamelCase_ = input_paths[compression_fs_class.protocol] if input_path is None: lowerCamelCase_ = F'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__snake_case ) lowerCamelCase_ = fsspec.filesystem(compression_fs_class.protocol , fo=__snake_case ) assert isinstance(__snake_case , __snake_case ) lowerCamelCase_ = os.path.basename(__snake_case ) lowerCamelCase_ = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(__snake_case , "r" , encoding="utf-8" ) as f, open(__snake_case , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def __snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] ): lowerCamelCase_ = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} lowerCamelCase_ = compressed_file_paths[protocol] lowerCamelCase_ = 'dataset.jsonl' lowerCamelCase_ = F'''{protocol}://{member_file_path}::{compressed_file_path}''' lowerCamelCase_ = fsspec.get_fs_token_paths(__snake_case ) assert fs.isfile(__snake_case ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def __snake_case ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCamelCase_ = hf_api.dataset_info(__snake_case , token=__snake_case ) lowerCamelCase_ = HfFileSystem(repo_info=__snake_case , token=__snake_case ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(__snake_case ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def __snake_case ( ): lowerCamelCase_ = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__snake_case , __snake_case , clobber=__snake_case ) with pytest.warns(__snake_case ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__snake_case ) == 1 assert ( str(warning_info[0].message ) == F'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
55
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = tempfile.mkdtemp() __A : Optional[int] = BlipImageProcessor() __A : List[str] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel') __A : Any = BlipProcessor(_UpperCAmelCase , _UpperCAmelCase) processor.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase).tokenizer def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase).image_processor def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] __A : Union[str, Any] = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1)) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __A : int = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') __A : List[Any] = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0) __A : Tuple = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_UpperCAmelCase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.get_image_processor() __A : str = self.get_tokenizer() __A : int = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : List[str] = self.prepare_image_inputs() __A : str = image_processor(_UpperCAmelCase , return_tensors='np') __A : str = processor(images=_UpperCAmelCase , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.get_image_processor() __A : Tuple = self.get_tokenizer() __A : Union[str, Any] = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : str = 'lower newer' __A : Dict = processor(text=_UpperCAmelCase) __A : Tuple = tokenizer(_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : Optional[Any] = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Dict = 'lower newer' __A : int = self.prepare_image_inputs() __A : List[Any] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask']) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase): processor() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : Union[str, Any] = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : List[str] = processor.batch_decode(_UpperCAmelCase) __A : List[str] = tokenizer.batch_decode(_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.get_image_processor() __A : Union[str, Any] = self.get_tokenizer() __A : Optional[Any] = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : str = 'lower newer' __A : str = self.prepare_image_inputs() __A : Optional[int] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask'])
190
0
from __future__ import annotations def UpperCamelCase ( __lowercase : Dict ,__lowercase : Dict ): '''simple docstring''' A_ : Union[str, Any] = 0 A_ : Union[str, Any] = len(__snake_case ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: A_ : List[str] = i + 1 else: A_ : Optional[Any] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
362
from __future__ import annotations import requests _UpperCAmelCase = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def UpperCamelCase ( __lowercase : str ,__lowercase : int = 1 ,__lowercase : str = "new" ,__lowercase : list | None = None ): '''simple docstring''' A_ : Tuple = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__lowercase ) - valid_terms ) ): A_ : int = f'''Invalid search term: {invalid_search_terms}''' raise ValueError(__lowercase ) A_ : Optional[int] = requests.get( f'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' ,headers={'User-agent': 'A random string'} ,) if response.status_code == 4_29: raise requests.HTTPError A_ : Optional[Any] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__lowercase )} A_ : Union[str, Any] = {} for id_ in range(__lowercase ): A_ : List[str] = { item: data['data']['children'][id_]['data'][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
192
0
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowerCamelCase ( __UpperCamelCase ) -> Dict: """simple docstring""" warnings.warn( "The preprocess method is deprecated and will be removed in a future version. Please" " use VaeImageProcessor.preprocess instead" , __UpperCamelCase , ) if isinstance(__UpperCamelCase , torch.Tensor ): return image elif isinstance(__UpperCamelCase , PIL.Image.Image ): lowerCAmelCase_ : List[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCAmelCase_ : Any = image[0].size lowerCAmelCase_ : List[str] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowerCAmelCase_ : Tuple = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] lowerCAmelCase_ : Optional[int] = np.concatenate(__UpperCamelCase , axis=0 ) lowerCAmelCase_ : List[str] = np.array(__UpperCamelCase ).astype(np.floataa ) / 255.0 lowerCAmelCase_ : Optional[int] = image.transpose(0 , 3 , 1 , 2 ) lowerCAmelCase_ : Optional[int] = 2.0 * image - 1.0 lowerCAmelCase_ : List[Any] = torch.from_numpy(__UpperCamelCase ) elif isinstance(image[0] , torch.Tensor ): lowerCAmelCase_ : str = torch.cat(__UpperCamelCase , dim=0 ) return image def __lowerCamelCase ( __UpperCamelCase ) -> Union[str, Any]: """simple docstring""" if isinstance(__UpperCamelCase , torch.Tensor ): return mask elif isinstance(__UpperCamelCase , PIL.Image.Image ): lowerCAmelCase_ : Union[str, Any] = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowerCAmelCase_ : Union[str, Any] = mask[0].size lowerCAmelCase_ : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase_ : Tuple = [np.array(m.convert("L" ).resize((w, h) , resample=PIL_INTERPOLATION["nearest"] ) )[None, :] for m in mask] lowerCAmelCase_ : Any = np.concatenate(__UpperCamelCase , axis=0 ) lowerCAmelCase_ : Dict = mask.astype(np.floataa ) / 255.0 lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Union[str, Any] = 1 lowerCAmelCase_ : List[str] = torch.from_numpy(__UpperCamelCase ) elif isinstance(mask[0] , torch.Tensor ): lowerCAmelCase_ : Optional[Any] = torch.cat(__UpperCamelCase , dim=0 ) return mask class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : UNetaDModel a_ : RePaintScheduler def __init__( self : List[Any] , a_ : int , a_ : str ): super().__init__() self.register_modules(unet=a_ , scheduler=a_ ) @torch.no_grad() def __call__( self : List[str] , a_ : Dict , a_ : Union[str, Any] , a_ : Tuple = 2_50 , a_ : Optional[Any] = 0.0 , a_ : Optional[Any] = 10 , a_ : List[Any] = 10 , a_ : Optional[Any] = None , a_ : int = "pil" , a_ : Union[str, Any] = True , ): lowerCAmelCase_ : str = image lowerCAmelCase_ : List[str] = _preprocess_image(a_ ) lowerCAmelCase_ : List[Any] = original_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase_ : List[str] = _preprocess_mask(a_ ) lowerCAmelCase_ : str = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase_ : str = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(a_ , a_ ) and len(a_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(a_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase_ : Optional[int] = original_image.shape lowerCAmelCase_ : Union[str, Any] = randn_tensor(a_ , generator=a_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(a_ , a_ , a_ , self.device ) lowerCAmelCase_ : Dict = eta lowerCAmelCase_ : List[Any] = self.scheduler.timesteps[0] + 1 lowerCAmelCase_ : Any = generator[0] if isinstance(a_ , a_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowerCAmelCase_ : Tuple = self.unet(a_ , a_ ).sample # compute previous image: x_t -> x_t-1 lowerCAmelCase_ : Optional[int] = self.scheduler.step(a_ , a_ , a_ , a_ , a_ , a_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowerCAmelCase_ : str = self.scheduler.undo_step(a_ , a_ , a_ ) lowerCAmelCase_ : Optional[int] = t lowerCAmelCase_ : str = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase_ : int = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
241
'''simple docstring''' from itertools import product def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = sides_number SCREAMING_SNAKE_CASE : str = max_face_number * dice_number SCREAMING_SNAKE_CASE : Tuple = [0] * (max_total + 1) SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : int = range(__UpperCamelCase ,max_face_number + 1 ) for dice_numbers in product(__UpperCamelCase ,repeat=__UpperCamelCase ): SCREAMING_SNAKE_CASE : Any = sum(__UpperCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = total_frequency_distribution( sides_number=4 ,dice_number=9 ) SCREAMING_SNAKE_CASE : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : List[Any] = 9 SCREAMING_SNAKE_CASE : Dict = 4 * 9 SCREAMING_SNAKE_CASE : str = 6 for peter_total in range(__UpperCamelCase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) SCREAMING_SNAKE_CASE : Optional[Any] = (4**9) * (6**6) SCREAMING_SNAKE_CASE : int = peter_wins_count / total_games_number SCREAMING_SNAKE_CASE : Optional[Any] = round(__UpperCamelCase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
251
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE_ = 'ChineseCLIPImageProcessor' SCREAMING_SNAKE_CASE_ = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Tuple , lowercase_ : Union[str, Any]=None , lowercase_ : int=None , **lowercase_ : Union[str, Any] ): UpperCamelCase__ : List[str] =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase_ , ) UpperCamelCase__ : List[str] =kwargs.pop('''feature_extractor''' ) UpperCamelCase__ : List[Any] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase_ , lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.image_processor def __call__( self : Optional[int] , lowercase_ : int=None , lowercase_ : Optional[int]=None , lowercase_ : int=None , **lowercase_ : Union[str, Any] ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCamelCase__ : Optional[int] =self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: UpperCamelCase__ : str =self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: UpperCamelCase__ : Optional[int] =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def _lowerCAmelCase ( self : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ): return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def _lowerCAmelCase ( self : str , *lowercase_ : Dict , **lowercase_ : Union[str, Any] ): return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : List[str] =self.tokenizer.model_input_names UpperCamelCase__ : List[str] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCAmelCase ( self : Any ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase_ , ) return self.image_processor_class
157
"""simple docstring""" from __future__ import annotations import math def _lowerCAmelCase ( UpperCAmelCase : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _SCREAMING_SNAKE_CASE : Union[str, Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def _lowerCAmelCase ( UpperCAmelCase : int ): '''simple docstring''' if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) UpperCamelCase__ : Union[str, Any] =[] for num in range(len(UpperCAmelCase ) ): UpperCamelCase__ : Tuple =0 while 2 * i * i <= odd_composites[num]: UpperCamelCase__ : Any =odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase ) == n: return list_nums return [] def _lowerCAmelCase ( ): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
157
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =(UnCLIPScheduler,) def __UpperCamelCase ( self : List[str] , **a : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = { "num_train_timesteps": 1000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**a ) return config def __UpperCamelCase ( self : Any ) -> str: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=a ) def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=a ) def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=a ) def __UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=a ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=a ) def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=a , prev_timestep=a ) def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : int = self.get_scheduler_config(variance_type="fixed_small_log" ) SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config(variance_type="learned_range" ) SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**a ) SCREAMING_SNAKE_CASE : int = 0.5 assert scheduler._get_variance(1 , predicted_variance=a ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=a ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=a ) - -0.001_0011 < 1e-5 def __UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Dict = scheduler_class(**a ) SCREAMING_SNAKE_CASE : Tuple = scheduler.timesteps SCREAMING_SNAKE_CASE : str = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) for i, t in enumerate(a ): # 1. predict noise residual SCREAMING_SNAKE_CASE : Tuple = model(a , a ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE : Optional[int] = scheduler.step(a , a , a , generator=a ).prev_sample SCREAMING_SNAKE_CASE : Optional[int] = pred_prev_sample SCREAMING_SNAKE_CASE : str = torch.sum(torch.abs(a ) ) SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**a ) scheduler.set_timesteps(25 ) SCREAMING_SNAKE_CASE : List[str] = scheduler.timesteps SCREAMING_SNAKE_CASE : List[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample_deter SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) for i, t in enumerate(a ): # 1. predict noise residual SCREAMING_SNAKE_CASE : Union[str, Any] = model(a , a ) if i + 1 == timesteps.shape[0]: SCREAMING_SNAKE_CASE : List[str] = None else: SCREAMING_SNAKE_CASE : List[Any] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step( a , a , a , prev_timestep=a , generator=a ).prev_sample SCREAMING_SNAKE_CASE : Tuple = pred_prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(a ) ) SCREAMING_SNAKE_CASE : Any = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def __UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" pass def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" pass
76
def lowerCamelCase__ ( _a , _a): _validate_point(_a) _validate_point(_a) if len(_a) != len(_a): raise ValueError("Both points must be in the same n-dimensional space") return float(sum(abs(a - b) for a, b in zip(_a , _a))) def lowerCamelCase__ ( _a): if point: if isinstance(_a , _a): for item in point: if not isinstance(_a , (int, float)): SCREAMING_SNAKE_CASE : List[Any] = ( "Expected a list of numbers as input, found " f"{type(_a).__name__}" ) raise TypeError(_a) else: SCREAMING_SNAKE_CASE : List[Any] = f"Expected a list of numbers as input, found {type(_a).__name__}" raise TypeError(_a) else: raise ValueError("Missing an input") def lowerCamelCase__ ( _a , _a): _validate_point(_a) _validate_point(_a) if len(_a) != len(_a): raise ValueError("Both points must be in the same n-dimensional space") return float(sum(abs(x - y) for x, y in zip(_a , _a))) if __name__ == "__main__": import doctest doctest.testmod()
76
1
'''simple docstring''' def a_ ( _UpperCAmelCase : int ) -> list[int]: if num <= 0: raise ValueError('Input must be a positive integer' ) __snake_case : Tuple = [True] * (num + 1) __snake_case : Tuple = 2 while p * p <= num: if primes[p]: for i in range(p * p ,num + 1 ,_UpperCAmelCase ): __snake_case : str = False p += 1 return [prime for prime in range(2 ,num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() A__ : Any = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
0
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def A_ ( self : List[Any] ) -> int: '''simple docstring''' __snake_case : Optional[int] = SMALL_MODEL_IDENTIFIER __snake_case : str = 'pt' __snake_case : Union[str, Any] = 'tf' def A_ ( self : Dict , __a : Tuple ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__a ) def A_ ( self : Any , __a : Optional[Any] ) -> Dict: '''simple docstring''' __snake_case : Union[str, Any] = TFAutoModel.from_pretrained(self.test_model , from_pt=__a ) model_tf.save_pretrained(__a ) def A_ ( self : Any ) -> Tuple: '''simple docstring''' __snake_case : Tuple = 'mock_framework' # Framework provided - return whatever the user provides __snake_case : int = FeaturesManager.determine_framework(self.test_model , __a ) self.assertEqual(__a , __a ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) __snake_case : List[Any] = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) __snake_case : Tuple = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) def A_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) __snake_case : Tuple = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) __snake_case : Union[str, Any] = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__a ): __snake_case : Optional[int] = FeaturesManager.determine_framework(__a ) def A_ ( self : Any ) -> List[Any]: '''simple docstring''' __snake_case : Union[str, Any] = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ): __snake_case : int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __snake_case : Tuple = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_torch_available' , __a ): __snake_case : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_tf ) # Both in environment -> use PyTorch __snake_case : Optional[Any] = MagicMock(return_value=__a ) __snake_case : Tuple = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ), patch( 'transformers.onnx.features.is_torch_available' , __a ): __snake_case : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # Both not in environment -> raise error __snake_case : str = MagicMock(return_value=__a ) __snake_case : List[Any] = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ), patch( 'transformers.onnx.features.is_torch_available' , __a ): with self.assertRaises(__a ): __snake_case : Tuple = FeaturesManager.determine_framework(self.test_model )
0
1