code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from math import factorial def a_ ( _lowerCAmelCase : int = 100 ): '''simple docstring''' return sum(map(_lowerCAmelCase , str(factorial(_lowerCAmelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
77
"""simple docstring""" import qiskit def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Tuple = qiskit.Aer.get_backend('aer_simulator' ) A_ : str = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator A_ : Optional[Any] = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": lowerCamelCase_ : List[str] = half_adder(1, 1) print(F"Half Adder Output Qubit Counts: {counts}")
286
0
"""simple docstring""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase__ (snake_case__ : int , snake_case__ : Tuple , snake_case__ : Any ): """simple docstring""" if openai_config_file == "": _snake_case : Optional[int] = OpenAIGPTConfig() else: _snake_case : Union[str, Any] = OpenAIGPTConfig.from_json_file(snake_case__ ) _snake_case : Tuple = OpenAIGPTModel(snake_case__ ) # Load weights from numpy load_tf_weights_in_openai_gpt(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model _snake_case : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME _snake_case : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , snake_case__ ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--openai_checkpoint_folder_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--openai_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) A_ = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
352
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ = logging.get_logger(__name__) A_ = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase( __a , __a ): '''simple docstring''' lowercase__ = "swin" lowercase__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: Any, a_: List[str]=224, a_: List[Any]=4, a_: List[Any]=3, a_: Dict=96, a_: List[str]=[2, 2, 6, 2], a_: int=[3, 6, 12, 24], a_: int=7, a_: str=4.0, a_: Optional[Any]=True, a_: Dict=0.0, a_: List[Any]=0.0, a_: List[str]=0.1, a_: Union[str, Any]="gelu", a_: Dict=False, a_: Union[str, Any]=0.02, a_: Optional[int]=1E-5, a_: Optional[int]=32, a_: Tuple=None, a_: Union[str, Any]=None, **a_: Any, ): '''simple docstring''' super().__init__(**a_ ) _snake_case : Any = image_size _snake_case : List[Any] = patch_size _snake_case : Tuple = num_channels _snake_case : str = embed_dim _snake_case : Union[str, Any] = depths _snake_case : int = len(a_ ) _snake_case : Union[str, Any] = num_heads _snake_case : List[str] = window_size _snake_case : str = mlp_ratio _snake_case : Union[str, Any] = qkv_bias _snake_case : Dict = hidden_dropout_prob _snake_case : str = attention_probs_dropout_prob _snake_case : Union[str, Any] = drop_path_rate _snake_case : Optional[int] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : List[Any] = initializer_range _snake_case : Optional[Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Any = int(embed_dim * 2 ** (len(a_ ) - 1) ) _snake_case : Any = ["""stem"""] + [f"stage{idx}" for idx in range(1, len(a_ ) + 1 )] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=a_, out_indices=a_, stage_names=self.stage_names ) class lowercase( __a ): '''simple docstring''' lowercase__ = version.parse("1.11" ) @property def UpperCamelCase_ ( self: Any ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return 1E-4
132
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
96
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def UpperCamelCase (lowercase_: str ) -> Dict: A__ : int = int(lowercase_ ) A__ , A__ , A__ : Tuple = t // 3600, (t // 60) % 60, t % 60 return f"""{h}:{m:02d}:{s:02d}""" if h != 0 else f"""{m:02d}:{s:02d}""" def UpperCamelCase (lowercase_: str , lowercase_: Optional[Any] , lowercase_: Union[str, Any] , lowercase_: Tuple , lowercase_: Any=300 ) -> Optional[int]: # docstyle-ignore return f""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def UpperCamelCase (lowercase_: Tuple ) -> Optional[int]: A__ : Tuple = """<table border=\"1\" class=\"dataframe\">\n""" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: A__ : str = f"""{elt:.6f}""" if isinstance(lowercase_ , lowercase_ ) else str(lowercase_ ) html_code += f""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _a : '''simple docstring''' UpperCAmelCase__: str = 5 UpperCAmelCase__: int = 0.2 def __init__( self , A__ , A__ = None , A__ = True , A__ = None , A__ = 300 , ): A__ : Optional[int] = total A__ : Tuple = """""" if prefix is None else prefix A__ : str = leave A__ : str = parent A__ : int = width A__ : Dict = None A__ : List[str] = None A__ : Optional[int] = None def __A ( self , A__ , A__ = False , A__ = None ): A__ : Tuple = value if comment is not None: A__ : Any = comment if self.last_value is None: A__ : int = time.time() A__ : Dict = value A__ : int = None A__ : int = self.warmup A__ : str = 1 self.update_bar(A__ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 A__ : Any = time.time() A__ : str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: A__ : Dict = self.elapsed_time / (value - self.start_value) else: A__ : List[str] = None if value >= self.total: A__ : Optional[Any] = self.total A__ : List[Any] = None if not self.leave: self.close() elif self.average_time_per_item is not None: A__ : List[Any] = self.average_time_per_item * (self.total - value) self.update_bar(A__ ) A__ : Any = value A__ : List[str] = current_time if self.average_time_per_item is None: A__ : str = 1 else: A__ : Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def __A ( self , A__ , A__=None ): A__ : Tuple = """ """ * (len(str(self.total ) ) - len(str(A__ ) )) + str(A__ ) if self.elapsed_time is None: A__ : Union[str, Any] = F"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: A__ : Tuple = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: A__ : Optional[int] = ( F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" F""" {format_time(self.predicted_remaining )}""" ) self.label += F""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else F""", {self.comment}]""" self.display() def __A ( self ): A__ : str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: A__ : str = disp.display(disp.HTML(self.html_code ) , display_id=A__ ) else: self.output.update(disp.HTML(self.html_code ) ) def __A ( self ): if self.parent is None and self.output is not None: self.output.update(disp.HTML("""""" ) ) class _a (__magic_name__ ): '''simple docstring''' def __init__( self , A__ , A__=None ): super().__init__(A__ ) A__ : Optional[Any] = None if column_names is None else [column_names] A__ : Optional[Any] = None def __A ( self ): A__ : List[str] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: A__ : Optional[int] = disp.display(disp.HTML(self.html_code ) , display_id=A__ ) else: self.output.update(disp.HTML(self.html_code ) ) def __A ( self , A__ ): if self.inner_table is None: A__ : List[str] = [list(values.keys() ), list(values.values() )] else: A__ : Optional[Any] = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(A__ ) A__ : Any = columns self.inner_table.append([values[c] for c in columns] ) def __A ( self , A__ , A__=None , A__=300 ): A__ : Optional[Any] = NotebookProgressBar(A__ , prefix=A__ , parent=self , width=A__ ) return self.child_bar def __A ( self ): A__ : List[str] = None self.display() class _a (__magic_name__ ): '''simple docstring''' def __init__( self ): A__ : int = None A__ : List[str] = None A__ : Union[str, Any] = False def __A ( self , A__ , A__ , A__ , **A__ ): A__ : List[str] = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step""" A__ : Dict = 0 A__ : Tuple = 0 A__ : Optional[int] = [self.first_column] + ["""Training Loss"""] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("""Validation Loss""" ) A__ : Union[str, Any] = NotebookTrainingTracker(state.max_steps , A__ ) def __A ( self , A__ , A__ , A__ , **A__ ): A__ : Any = int(state.epoch ) if int(state.epoch ) == state.epoch else F"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=F"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) A__ : str = False def __A ( self , A__ , A__ , A__ , A__=None , **A__ ): if not has_length(A__ ): return if self.prediction_bar is None: if self.training_tracker is not None: A__ : Union[str, Any] = self.training_tracker.add_child(len(A__ ) ) else: A__ : Tuple = NotebookProgressBar(len(A__ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def __A ( self , A__ , A__ , A__ , **A__ ): if self.prediction_bar is not None: self.prediction_bar.close() A__ : List[str] = None def __A ( self , A__ , A__ , A__ , A__=None , **A__ ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: A__ : Dict = {"""Training Loss""": logs["""loss"""]} # First column is necessarily Step sine we're not in epoch eval strategy A__ : List[Any] = state.global_step self.training_tracker.write_line(A__ ) def __A ( self , A__ , A__ , A__ , A__=None , **A__ ): if self.training_tracker is not None: A__ : Tuple = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""} for log in reversed(state.log_history ): if "loss" in log: A__ : Dict = log["""loss"""] break if self.first_column == "Epoch": A__ : List[Any] = int(state.epoch ) else: A__ : Optional[Any] = state.global_step A__ : Optional[Any] = """eval""" for k in metrics: if k.endswith("""_loss""" ): A__ : Optional[int] = re.sub(r"""\_loss$""" , """""" , A__ ) A__ : int = metrics.pop("""total_flos""" , A__ ) A__ : int = metrics.pop("""epoch""" , A__ ) A__ : Optional[int] = metrics.pop(F"""{metric_key_prefix}_runtime""" , A__ ) A__ : Any = metrics.pop(F"""{metric_key_prefix}_samples_per_second""" , A__ ) A__ : List[Any] = metrics.pop(F"""{metric_key_prefix}_steps_per_second""" , A__ ) A__ : Optional[Any] = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""" , A__ ) for k, v in metrics.items(): if k == F"""{metric_key_prefix}_loss""": A__ : Any = v else: A__ : Optional[Any] = k.split("""_""" ) A__ : Any = """ """.join([part.capitalize() for part in splits[1:]] ) A__ : List[str] = v self.training_tracker.write_line(A__ ) self.training_tracker.remove_child() A__ : Dict = None # Evaluation takes a long time so we should force the next update. A__ : Union[str, Any] = True def __A ( self , A__ , A__ , A__ , **A__ ): self.training_tracker.update( state.global_step , comment=F"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=A__ ) A__ : Optional[int] = None
192
0
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =0 SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =3.0 class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): '''simple docstring''' # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def __a ( self : Optional[Any] ): '''simple docstring''' # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCAmelCase__ : str = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 ) AcceleratorState._reset_state() UpperCAmelCase__ : Optional[int] = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCAmelCase__ : Optional[Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_0_0_0 ) self.assertEqual(scaler._enabled , snake_case__ ) @require_multi_gpu def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = ["torchrun", f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase : str = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) _lowerCAmelCase : Any = Accelerator(kwargs_handlers=[ddp_scaler]) _lowerCAmelCase : List[str] = torch.nn.Linear(100, 200) _lowerCAmelCase : Tuple = accelerator.prepare(model) # Check the values changed in kwargs _lowerCAmelCase : int = """""" _lowerCAmelCase : List[str] = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
298
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _lowerCAmelCase : Union[str, Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Dict , snake_case__ : Optional[int] , snake_case__ : List[str]=7 , snake_case__ : int=3 , snake_case__ : Any=1_8 , snake_case__ : List[Any]=3_0 , snake_case__ : int=4_0_0 , snake_case__ : Dict=None , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=None , ): '''simple docstring''' UpperCAmelCase__ : Dict = size if size is not None else {"height": 2_0, "width": 2_0} UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : int = min_resolution UpperCAmelCase__ : Tuple = max_resolution UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : Optional[int] = do_normalize UpperCAmelCase__ : str = do_convert_rgb UpperCAmelCase__ : Dict = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] UpperCAmelCase__ : Union[str, Any] = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def __a ( self : str ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" UpperCAmelCase__ : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = PixaStructImageProcessingTester(self ) @property def __a ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.image_processor_tester.prepare_dummy_image() UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase__ : Dict = 2_0_4_8 UpperCAmelCase__ : int = image_processor(snake_case__ , return_tensors="pt" , max_patches=snake_case__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 UpperCAmelCase__ : Optional[int] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(snake_case__ ): UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches UpperCAmelCase__ : Optional[Any] = "Hello" UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Dict ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Dict = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : List[str] = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Optional[int] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCAmelCase__ : Optional[int] = 3 @property def __a ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : int ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
298
1
def _UpperCamelCase ( snake_case__ ) -> list: __UpperCAmelCase : Dict = [0] * len(snake_case__ ) for i in range(1, len(snake_case__ ) ): # use last results for better performance - dynamic programming __UpperCAmelCase : Any = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: __UpperCAmelCase : Union[str, Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 __UpperCAmelCase : Tuple = j return prefix_result def _UpperCamelCase ( snake_case__ ) -> int: return max(prefix_function(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
157
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _snake_case = logging.get_logger(__name__) _snake_case = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Tuple=None , **__lowerCamelCase: Union[str, Any] ) -> Dict: logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) __UpperCAmelCase : Union[str, Any] = model __UpperCAmelCase : Optional[Any] = kwargs.get("model_save_dir" , __lowerCamelCase ) __UpperCAmelCase : str = kwargs.get("latest_model_name" , __lowerCamelCase ) def __call__( self: int , **__lowerCamelCase: Optional[Any] ) -> int: __UpperCAmelCase : Optional[Any] = {k: np.array(__lowerCamelCase ) for k, v in kwargs.items()} return self.model.run(__lowerCamelCase , __lowerCamelCase ) @staticmethod def _lowerCamelCase ( __lowerCamelCase: Union[str, Path] , __lowerCamelCase: Union[str, Any]=None , __lowerCamelCase: Tuple=None ) -> List[str]: if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) __UpperCAmelCase : Any = "CPUExecutionProvider" return ort.InferenceSession(__lowerCamelCase , providers=[provider] , sess_options=__lowerCamelCase ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: Union[str, Path] , __lowerCamelCase: Optional[str] = None , **__lowerCamelCase: Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME __UpperCAmelCase : str = self.model_save_dir.joinpath(self.latest_model_name ) __UpperCAmelCase : Any = Path(__lowerCamelCase ).joinpath(__lowerCamelCase ) try: shutil.copyfile(__lowerCamelCase , __lowerCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __UpperCAmelCase : str = self.model_save_dir.joinpath(__lowerCamelCase ) if src_path.exists(): __UpperCAmelCase : List[str] = Path(__lowerCamelCase ).joinpath(__lowerCamelCase ) try: shutil.copyfile(__lowerCamelCase , __lowerCamelCase ) except shutil.SameFileError: pass def _lowerCamelCase ( self: Any , __lowerCamelCase: Union[str, os.PathLike] , **__lowerCamelCase: Any , ) -> List[Any]: if os.path.isfile(__lowerCamelCase ): logger.error(f'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) # saving model weights/files self._save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Optional[Any] , __lowerCamelCase: Union[str, Path] , __lowerCamelCase: Optional[Union[bool, str, None]] = None , __lowerCamelCase: Optional[Union[str, None]] = None , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional["ort.SessionOptions"] = None , **__lowerCamelCase: Union[str, Any] , ) -> Optional[Any]: __UpperCAmelCase : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__lowerCamelCase ): __UpperCAmelCase : Optional[int] = OnnxRuntimeModel.load_model( os.path.join(__lowerCamelCase , __lowerCamelCase ) , provider=__lowerCamelCase , sess_options=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = Path(__lowerCamelCase ) # load model from hub else: # download model __UpperCAmelCase : Optional[Any] = hf_hub_download( repo_id=__lowerCamelCase , filename=__lowerCamelCase , use_auth_token=__lowerCamelCase , revision=__lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , ) __UpperCAmelCase : Any = Path(__lowerCamelCase ).parent __UpperCAmelCase : List[Any] = Path(__lowerCamelCase ).name __UpperCAmelCase : Dict = OnnxRuntimeModel.load_model(__lowerCamelCase , provider=__lowerCamelCase , sess_options=__lowerCamelCase ) return cls(model=__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: Union[str, Path] , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional[str] = None , **__lowerCamelCase: Tuple , ) -> Optional[Any]: __UpperCAmelCase : int = None if len(str(__lowerCamelCase ).split("@" ) ) == 2: __UpperCAmelCase , __UpperCAmelCase : Any = model_id.split("@" ) return cls._from_pretrained( model_id=__lowerCamelCase , revision=__lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , use_auth_token=__lowerCamelCase , **__lowerCamelCase , )
157
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = '''▁''' lowerCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } lowerCamelCase = { '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off lowerCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class _a ( _lowercase): _a : List[Any] = VOCAB_FILES_NAMES _a : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : int = PRETRAINED_VOCAB_FILES_MAP _a : Any = ['''input_ids''', '''attention_mask'''] _a : List[int] = [] _a : List[int] = [] def __init__( self : int , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[Any]="<s>" , _SCREAMING_SNAKE_CASE : Union[str, Any]="</s>" , _SCREAMING_SNAKE_CASE : List[Any]="</s>" , _SCREAMING_SNAKE_CASE : Any="<s>" , _SCREAMING_SNAKE_CASE : Any="<unk>" , _SCREAMING_SNAKE_CASE : str="<pad>" , _SCREAMING_SNAKE_CASE : Optional[Any]="<mask>" , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Tuple=False , **_SCREAMING_SNAKE_CASE : Union[str, Any] , )-> List[str]: # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ : Tuple = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token lowerCAmelCase__ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase__ : Dict = legacy_behaviour super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , src_lang=_SCREAMING_SNAKE_CASE , tgt_lang=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase__ : Dict = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase__ : List[Any] = 1 lowerCAmelCase__ : Dict = len(self.sp_model ) lowerCAmelCase__ : Optional[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_SCREAMING_SNAKE_CASE ) } lowerCAmelCase__ : Union[str, Any] = {v: k for k, v in self.lang_code_to_id.items()} lowerCAmelCase__ : int = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCAmelCase__ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCAmelCase__ : Optional[int] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowerCAmelCase__ : Optional[Any] = src_lang if src_lang is not None else '''eng_Latn''' lowerCAmelCase__ : Dict = self.lang_code_to_id[self._src_lang] lowerCAmelCase__ : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[Any] )-> List[Any]: lowerCAmelCase__ : List[str] = self.__dict__.copy() lowerCAmelCase__ : Any = None lowerCAmelCase__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )-> str: lowerCAmelCase__ : str = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCAmelCase__ : Union[str, Any] = {} lowerCAmelCase__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def UpperCAmelCase__( self : Any )-> Optional[int]: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCAmelCase__( self : List[Any] )-> str: return self._src_lang @src_lang.setter def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : str )-> None: lowerCAmelCase__ : int = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None , _SCREAMING_SNAKE_CASE : bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = [1] * len(self.prefix_tokens ) lowerCAmelCase__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(_SCREAMING_SNAKE_CASE )) + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None )-> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None )-> List[int]: lowerCAmelCase__ : int = [self.sep_token_id] lowerCAmelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] , _SCREAMING_SNAKE_CASE : Optional[str] , **_SCREAMING_SNAKE_CASE : Optional[Any] )-> str: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowerCAmelCase__ : Optional[Any] = src_lang lowerCAmelCase__ : int = self(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[str] = tgt_lang_id return inputs def UpperCAmelCase__( self : str )-> str: lowerCAmelCase__ : Union[str, Any] = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : str )-> List[str]: return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : List[str] )-> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase__ : Union[str, Any] = self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Optional[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] )-> Optional[int]: lowerCAmelCase__ : Union[str, Any] = ''''''.join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None )-> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ : List[str] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowerCAmelCase__ : Any = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str = "eng_Latn" , _SCREAMING_SNAKE_CASE : Optional[List[str]] = None , _SCREAMING_SNAKE_CASE : str = "fra_Latn" , **_SCREAMING_SNAKE_CASE : Any , )-> BatchEncoding: lowerCAmelCase__ : List[Any] = src_lang lowerCAmelCase__ : Union[str, Any] = tgt_lang return super().prepare_seqaseq_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[Any] )-> Any: return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase__( self : Optional[int] )-> Dict: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : List[Any] )-> None: lowerCAmelCase__ : str = self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase__ : str = [self.cur_lang_code] lowerCAmelCase__ : int = [self.eos_token_id] def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : str )-> None: lowerCAmelCase__ : Optional[int] = self.lang_code_to_id[lang] if self.legacy_behaviour: lowerCAmelCase__ : List[Any] = [] lowerCAmelCase__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase__ : Optional[int] = [self.cur_lang_code] lowerCAmelCase__ : Optional[int] = [self.eos_token_id]
369
# using dfs for finding eulerian path traversal def lowerCamelCase_ ( _a , _a , _a , _a=None ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = True, True lowerCAmelCase__ : Any = dfs(_a , _a , _a , _a ) return path def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : str = -1 for i in range(_a ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowerCAmelCase__ : Tuple = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = check_circuit_or_path(_a , _a ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return lowerCAmelCase__ : Optional[int] = 1 if check == 2: lowerCAmelCase__ : Any = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) lowerCAmelCase__ : Optional[int] = dfs(_a , _a , _a ) print(_a ) def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : List[str] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowerCAmelCase__ : Tuple = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowerCAmelCase__ : str = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowerCAmelCase__ : List[str] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowerCAmelCase__ : List[Any] = { 1: [], 2: [] # all degree is zero } lowerCAmelCase__ : Optional[Any] = 10 check_euler(_a , _a ) check_euler(_a , _a ) check_euler(_a , _a ) check_euler(_a , _a ) check_euler(_a , _a ) if __name__ == "__main__": main()
211
0
def _a ( a :int ) -> list[int]: if num <= 0: raise ValueError('''Input must be a positive integer''' ) a = [True] * (num + 1) a = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , a ): a = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
0
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowercase_ ( lowercase ): '''simple docstring''' def __lowerCAmelCase ( self : str ) ->int: """simple docstring""" a = SMALL_MODEL_IDENTIFIER a = '''pt''' a = '''tf''' def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str ) ->Union[str, Any]: """simple docstring""" a = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ) ->List[str]: """simple docstring""" a = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCAmelCase ) model_tf.save_pretrained(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any ) ->int: """simple docstring""" a = '''mock_framework''' # Framework provided - return whatever the user provides a = FeaturesManager.determine_framework(self.test_model , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__UpperCAmelCase ) a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__UpperCAmelCase ) a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : str ) ->int: """simple docstring""" with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__UpperCAmelCase ) a = FeaturesManager.determine_framework(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__UpperCAmelCase ) a = FeaturesManager.determine_framework(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__UpperCAmelCase ): a = FeaturesManager.determine_framework(__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" a = MagicMock(return_value=__UpperCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ): a = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow a = MagicMock(return_value=__UpperCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ): a = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch a = MagicMock(return_value=__UpperCAmelCase ) a = MagicMock(return_value=__UpperCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ): a = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCAmelCase , self.framework_pt ) # Both not in environment -> raise error a = MagicMock(return_value=__UpperCAmelCase ) a = MagicMock(return_value=__UpperCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ): with self.assertRaises(__UpperCAmelCase ): a = FeaturesManager.determine_framework(self.test_model )
0
1
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> int: """simple docstring""" super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a ) SCREAMING_SNAKE_CASE__ : int = Sql( cache_dir=_a , features=_a , sql=_a , con=_a , **_a , ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : Tuple = None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , ) # Build dataset for splits SCREAMING_SNAKE_CASE__ : int = self.builder.as_dataset( split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class __a : '''simple docstring''' def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> List[str]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) SCREAMING_SNAKE_CASE__ : str = dataset SCREAMING_SNAKE_CASE__ : Any = name SCREAMING_SNAKE_CASE__ : Dict = con SCREAMING_SNAKE_CASE__ : Dict = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE SCREAMING_SNAKE_CASE__ : List[str] = num_proc SCREAMING_SNAKE_CASE__ : Union[str, Any] = to_sql_kwargs def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.to_sql_kwargs.pop("""sql""" , _a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.to_sql_kwargs.pop("""con""" , _a ) SCREAMING_SNAKE_CASE__ : List[str] = self.to_sql_kwargs.pop("""index""" , _a ) SCREAMING_SNAKE_CASE__ : Optional[int] = self._write(index=_a , **self.to_sql_kwargs ) return written def _a ( self , _a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = args SCREAMING_SNAKE_CASE__ : List[Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs SCREAMING_SNAKE_CASE__ : Union[str, Any] = query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) SCREAMING_SNAKE_CASE__ : Any = batch.to_pandas() SCREAMING_SNAKE_CASE__ : Any = df.to_sql(self.name , self.con , index=_a , **_a ) return num_rows or len(_a ) def _a ( self , _a , **_a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: SCREAMING_SNAKE_CASE__ : Any = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
367
"""simple docstring""" def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float: if principal <= 0: raise Exception("""Principal borrowed must be > 0""" ) if rate_per_annum < 0: raise Exception("""Rate of interest must be >= 0""" ) if years_to_repay <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise Exception("""Years to repay must be an integer > 0""" ) # Yearly rate is divided by 12 to get monthly rate SCREAMING_SNAKE_CASE__ : Union[str, Any] = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly SCREAMING_SNAKE_CASE__ : int = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
56
0
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 ): '''simple docstring''' __UpperCamelCase :List[Any] = right or len(SCREAMING_SNAKE_CASE ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
43
"""simple docstring""" a :dict[tuple[int, int, int], int] = {} def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on SCREAMING_SNAKE_CASE__ : str = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one SCREAMING_SNAKE_CASE__ : Tuple = _calculate(days - 1 , __lowerCAmelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 SCREAMING_SNAKE_CASE__ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter SCREAMING_SNAKE_CASE__ : Optional[Any] = _calculate(days - 1 , __lowerCAmelCase , 0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = state_late + state_absent + state_ontime SCREAMING_SNAKE_CASE__ : Optional[int] = prizestrings return prizestrings def _lowercase ( __lowerCAmelCase = 30 ) -> int: return _calculate(__lowerCAmelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
132
0
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _lowercase : Tuple = False, False, False @dataclass class __magic_name__ : UpperCamelCase__ = None UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = None # Automatically constructed UpperCamelCase__ = '''dict''' UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()}) UpperCamelCase__ = field(default='''Audio''', init=_UpperCAmelCase, repr=_UpperCAmelCase) def __call__( self : List[Any] ): return self.pa_type def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(lowercase_ , lowercase_ ): return {"bytes": None, "path": value} elif isinstance(lowercase_ , lowercase_ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowercase_ : List[str] = BytesIO() sf.write(lowercase_ , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowercase_ : int = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32767 else: lowercase_ : Tuple = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32767 lowercase_ : Tuple = BytesIO(bytes() ) sf.write(lowercase_ , lowercase_ , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : dict , lowercase_ : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) lowercase_ : str = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err lowercase_ : str = xsplitext(lowercase_ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: lowercase_ : Union[str, Any] = token_per_repo_id or {} lowercase_ : Optional[Any] = path.split("""::""" )[-1] try: lowercase_ : Optional[int] = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase_ : Optional[Any] = token_per_repo_id[repo_id] except (ValueError, KeyError): lowercase_ : int = None with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f: lowercase_ : Optional[int] = sf.read(lowercase_ ) else: lowercase_ : List[str] = sf.read(lowercase_ ) lowercase_ : int = array.T if self.mono: lowercase_ : List[Any] = librosa.to_mono(lowercase_ ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowercase_ : Any = librosa.resample(lowercase_ , orig_sr=lowercase_ , target_sr=self.sampling_rate ) lowercase_ : List[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowercase_ : List[Any] = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Dict = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): lowercase_ : Optional[Any] = pa.array([Audio().encode_example(lowercase_ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase_ : Optional[int] = storage.field("""bytes""" ) else: lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase_ : Any = storage.field("""path""" ) else: lowercase_ : List[str] = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(lowercase_ , self.pa_type ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(lowercase_ : str ): with xopen(lowercase_ , """rb""" ) as f: lowercase_ : Optional[Any] = f.read() return bytes_ lowercase_ : Any = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ : Any = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase_ : List[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type )
357
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : Dict , **lowercase_ : List[Any] ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None ): lowercase_ : Optional[Any] = {} lowercase_ : Tuple = {} if prompt is not None: lowercase_ : Tuple = prompt if generate_kwargs is not None: lowercase_ : List[str] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase_ : List[Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase_ : str = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[Any] , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[int] ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None ): lowercase_ : List[Any] = load_image(lowercase_ ) if prompt is not None: if not isinstance(lowercase_ , lowercase_ ): raise ValueError( f'''Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase_ : List[Any] = self.model.config.model_type if model_type == "git": lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : Union[str, Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids lowercase_ : int = [self.tokenizer.cls_token_id] + input_ids lowercase_ : List[Any] = torch.tensor(lowercase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase_ : Union[str, Any] = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : List[str] = self.tokenizer(lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: lowercase_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase_ : str = None return model_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any]=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , lowercase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase_ : Any = None if generate_kwargs is None: lowercase_ : Optional[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase_ : Dict = model_inputs.pop(self.model.main_input_name ) lowercase_ : Any = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] ): lowercase_ : List[str] = [] for output_ids in model_outputs: lowercase_ : Union[str, Any] = { """generated_text""": self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , ) } records.append(lowercase_ ) return records
21
0
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class A ( unittest.TestCase , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def a_ (self ) -> Optional[int]: __UpperCamelCase : Any = load_tool("text-classification" ) self.tool.setup() __UpperCamelCase : List[str] = load_tool("text-classification" , remote=_UpperCAmelCase ) def a_ (self ) -> Any: __UpperCamelCase : Dict = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(_UpperCAmelCase , "positive" ) def a_ (self ) -> List[Any]: __UpperCamelCase : Optional[int] = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(_UpperCAmelCase , "positive" ) def a_ (self ) -> str: __UpperCamelCase : Optional[int] = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(_UpperCAmelCase , "positive" ) def a_ (self ) -> List[Any]: __UpperCamelCase : str = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(_UpperCAmelCase , "positive" )
298
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase = logging.getLogger() def __lowerCAmelCase ( ): __UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("-f" ) __UpperCamelCase : Any = parser.parse_args() return args.f def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Dict = {} __UpperCamelCase : Dict = os.path.join(snake_case__ , "all_results.json" ) if os.path.exists(snake_case__ ): with open(snake_case__ , "r" ) as f: __UpperCamelCase : Any = json.load(snake_case__ ) else: raise ValueError(F"can't find {path}" ) return results def __lowerCAmelCase ( ): __UpperCamelCase : Any = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() _lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @classmethod def a_ (cls ) -> Union[str, Any]: # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __UpperCamelCase : Optional[Any] = tempfile.mkdtemp() __UpperCamelCase : List[str] = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) __UpperCamelCase : Optional[Any] = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def a_ (cls ) -> Union[str, Any]: shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Optional[int]: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) __UpperCamelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Dict: __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __UpperCamelCase : int = get_results(_UpperCAmelCase ) self.assertLess(result["perplexity"] , 1_0_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Any: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[Any] = get_results(_UpperCAmelCase ) self.assertLess(result["perplexity"] , 4_2 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> int: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __UpperCamelCase : int = 7 if get_gpu_count() > 1 else 2 __UpperCamelCase : int = self.get_auto_remove_tmp_dir() __UpperCamelCase : str = f"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : List[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Any: __UpperCamelCase : Tuple = self.get_auto_remove_tmp_dir() __UpperCamelCase : str = f"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[int] = get_results(_UpperCAmelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 2_8 ) self.assertGreaterEqual(result["eval_exact"] , 2_8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Dict: __UpperCamelCase : Tuple = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[str] = f"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Union[str, Any]: __UpperCamelCase : str = self.get_auto_remove_tmp_dir() __UpperCamelCase : Dict = f"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Dict = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_rouge1"] , 1_0 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Tuple: __UpperCamelCase : Optional[int] = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : List[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_bleu"] , 3_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "translation_no_trainer" ) ) ) @slow def a_ (self ) -> List[Any]: __UpperCamelCase : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCAmelCase ) __UpperCamelCase : Dict = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[int] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.10 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Tuple: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) __UpperCamelCase : str = get_results(_UpperCAmelCase ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "image_classification_no_trainer" ) ) )
298
1
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: lowerCAmelCase__ : Tuple = 0 if start < end: lowerCAmelCase__ : Any = randint(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : str = a[end] lowerCAmelCase__ : Tuple = a[pivot] lowerCAmelCase__ : Any = temp lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = _in_place_partition(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) count += _in_place_quick_sort(__UpperCAmelCase , __UpperCAmelCase , p - 1 ) count += _in_place_quick_sort(__UpperCAmelCase , p + 1 , __UpperCAmelCase ) return count def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : List[str] = randint(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : List[Any] = a[end] lowerCAmelCase__ : Optional[Any] = a[pivot] lowerCAmelCase__ : Optional[Any] = temp lowerCAmelCase__ : List[Any] = start - 1 for index in range(__UpperCAmelCase , __UpperCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCAmelCase__ : Union[str, Any] = new_pivot_index + 1 lowerCAmelCase__ : Dict = a[new_pivot_index] lowerCAmelCase__ : Optional[int] = a[index] lowerCAmelCase__ : Dict = temp lowerCAmelCase__ : Any = a[new_pivot_index + 1] lowerCAmelCase__ : Optional[Any] = a[end] lowerCAmelCase__ : Tuple = temp return new_pivot_index + 1, count _A = TemporaryFile() _A = 1_0_0 # 1000 elements are to be sorted _A , _A = 0, 1 # mean and standard deviation _A = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array _A = np.load(outfile) _A = len(M) - 1 _A = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
212
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _A = 2_5_6_0_4_7 _A = 2_5_6_1_4_5 @require_sentencepiece @require_tokenizers class _lowerCamelCase ( a_ , unittest.TestCase ): _lowerCamelCase :Any = NllbTokenizer _lowerCamelCase :Dict = NllbTokenizerFast _lowerCamelCase :str = True _lowerCamelCase :Optional[Any] = True _lowerCamelCase :Union[str, Any] = {} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : Optional[int] = NllbTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Dict = NllbTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) lowerCAmelCase__ : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowerCAmelCase__ : Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase__ : Optional[Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase__ : List[str] = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" lowerCAmelCase__ : str = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-nllb""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : str = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : int = tempfile.mkdtemp() lowerCAmelCase__ : Tuple = tokenizer_r.save_pretrained(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = tokenizer_p.save_pretrained(UpperCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) lowerCAmelCase__ : Dict = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(UpperCamelCase , UpperCamelCase ) # Checks everything loads correctly in the same way lowerCAmelCase__ : int = tokenizer_r.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = tokenizer_p.from_pretrained(UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase , UpperCamelCase ) ) shutil.rmtree(UpperCamelCase ) # Save tokenizer rust, legacy_format=True lowerCAmelCase__ : List[str] = tempfile.mkdtemp() lowerCAmelCase__ : Optional[Any] = tokenizer_r.save_pretrained(UpperCamelCase , legacy_format=UpperCamelCase ) lowerCAmelCase__ : List[str] = tokenizer_p.save_pretrained(UpperCamelCase ) # Checks it save with the same files self.assertSequenceEqual(UpperCamelCase , UpperCamelCase ) # Checks everything loads correctly in the same way lowerCAmelCase__ : List[str] = tokenizer_r.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = tokenizer_p.from_pretrained(UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase , UpperCamelCase ) ) shutil.rmtree(UpperCamelCase ) # Save tokenizer rust, legacy_format=False lowerCAmelCase__ : List[Any] = tempfile.mkdtemp() lowerCAmelCase__ : int = tokenizer_r.save_pretrained(UpperCamelCase , legacy_format=UpperCamelCase ) lowerCAmelCase__ : str = tokenizer_p.save_pretrained(UpperCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase__ : Dict = tokenizer_r.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = tokenizer_p.from_pretrained(UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase , UpperCamelCase ) ) shutil.rmtree(UpperCamelCase ) @require_torch def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" if not self.test_seqaseq: return lowerCAmelCase__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Longer text that will definitely require truncation. lowerCAmelCase__ : Any = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for""" """ Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons""" """ will only worsen the violence and misery for millions of people.""", ] lowerCAmelCase__ : Optional[int] = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al""" """ Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi""" """ că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] try: lowerCAmelCase__ : Dict = tokenizer.prepare_seqaseq_batch( src_texts=UpperCamelCase , tgt_texts=UpperCamelCase , max_length=3 , max_target_length=10 , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified lowerCAmelCase__ : str = tokenizer.prepare_seqaseq_batch( UpperCamelCase , tgt_texts=UpperCamelCase , max_length=3 , return_tensors="""pt""" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) lowerCAmelCase__ : int = tokenizer.prepare_seqaseq_batch( src_texts=UpperCamelCase , max_length=3 , max_target_length=10 , return_tensors="""pt""" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("""decoder_input_ids""" , UpperCamelCase ) @unittest.skip("""Unfortunately way too slow to build a BPE with SentencePiece.""" ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" pass def _lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ : str = [AddedToken("""<special>""" , lstrip=UpperCamelCase )] lowerCAmelCase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : Dict = tokenizer_r.encode("""Hey this is a <special> token""" ) lowerCAmelCase__ : Dict = tokenizer_r.encode("""<special>""" , add_special_tokens=UpperCamelCase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: lowerCAmelCase__ : List[Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , ) lowerCAmelCase__ : Dict = self.tokenizer_class.from_pretrained( UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : Optional[int] = tokenizer_p.encode("""Hey this is a <special> token""" ) lowerCAmelCase__ : Dict = tokenizer_cr.encode("""Hey this is a <special> token""" ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): _lowerCamelCase :int = "facebook/nllb-200-distilled-600M" _lowerCamelCase :List[str] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] _lowerCamelCase :Optional[Any] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] _lowerCamelCase :Tuple = [ 256047, 16297, 134408, 8165, 248066, 14734, 950, 1135, 105721, 3573, 83, 27352, 108, 49486, 2, ] @classmethod def _lowerCAmelCase ( cls : Optional[Any] ) -> Any: """simple docstring""" lowerCAmelCase__ : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" ) lowerCAmelCase__ : Optional[Any] = 1 return cls def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Arab"""] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Latn"""] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""fra_Latn"""] , 25_60_57 ) def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase ) def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" self.assertIn(UpperCamelCase , self.tokenizer.all_special_ids ) # fmt: off lowerCAmelCase__ : str = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on lowerCAmelCase__ : Any = self.tokenizer.decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) lowerCAmelCase__ : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCAmelCase__ : List[Any] = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , UpperCamelCase ) lowerCAmelCase__ : int = 10 lowerCAmelCase__ : Any = self.tokenizer(UpperCamelCase , max_length=UpperCamelCase , truncation=UpperCamelCase ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_62_03, 3] ) def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = tempfile.mkdtemp() lowerCAmelCase__ : int = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = NllbTokenizer.from_pretrained(UpperCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase ) @require_torch def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) lowerCAmelCase__ : int = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["""ron_Latn"""] ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) lowerCAmelCase__ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase ) self.assertEqual(UpperCamelCase , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" lowerCAmelCase__ : str = self.tokenizer(self.src_text , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=3 , return_tensors="""pt""" ) lowerCAmelCase__ : Any = self.tokenizer( text_target=self.tgt_text , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=10 , return_tensors="""pt""" ) lowerCAmelCase__ : str = targets["""input_ids"""] lowerCAmelCase__ : Any = shift_tokens_right( UpperCamelCase , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( nested_simplify(UpperCamelCase ) , { # A, test, EOS, en_XX """input_ids""": [[25_60_47, 70, 73_56, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_60_57, } , ) @require_torch def _lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : str = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : Union[str, Any] = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
212
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Optional[Any] = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
146
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = 'xmod' def __init__(self , A=30_522 , A=768 , A=12 , A=12 , A=3_072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.02 , A=1E-12 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , A=False , A=2 , A=False , A=True , A=True , A=("en_XX",) , A=None , **A , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = position_embedding_type _a = use_cache _a = classifier_dropout _a = pre_norm _a = adapter_reduction_factor _a = adapter_layer_norm _a = adapter_reuse_layer_norm _a = ln_before_adapter _a = list(A ) _a = default_language class __A ( A ): '''simple docstring''' @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
211
0
"""simple docstring""" from __future__ import annotations from typing import Any class A_ : """simple docstring""" def __init__( self :Optional[int] , lowercase_ :int ) -> None: UpperCAmelCase = num_of_nodes UpperCAmelCase = [] UpperCAmelCase = {} def UpperCAmelCase__ ( self :List[str] , lowercase_ :int , lowercase_ :int , lowercase_ :int ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCAmelCase__ ( self :Any , lowercase_ :int ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :int ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: UpperCAmelCase = self.find_component(lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :list[int] , lowercase_ :int , lowercase_ :int ) -> None: if component_size[u_node] <= component_size[v_node]: UpperCAmelCase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_ ) elif component_size[u_node] >= component_size[v_node]: UpperCAmelCase = self.find_component(lowercase_ ) component_size[u_node] += component_size[v_node] self.set_component(lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] ) -> None: UpperCAmelCase = [] UpperCAmelCase = 0 UpperCAmelCase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) UpperCAmelCase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = edge UpperCAmelCase = self.m_component[u] UpperCAmelCase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): UpperCAmelCase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = edge UpperCAmelCase = self.m_component[u] UpperCAmelCase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_ ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 UpperCAmelCase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _lowerCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
181
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _lowerCAmelCase ( lowercase_ ): random.seed(lowercase_ ) np.random.seed(lowercase_ ) torch.manual_seed(lowercase_ ) torch.cuda.manual_seed_all(lowercase_ ) # ^^ safe to call this function even if cuda is not available class A_ : """simple docstring""" def __init__( self :Any , lowercase_ :Iterable[torch.nn.Parameter] , lowercase_ :float = 0.9999 , lowercase_ :float = 0.0 , lowercase_ :int = 0 , lowercase_ :bool = False , lowercase_ :Union[float, int] = 1.0 , lowercase_ :Union[float, int] = 2 / 3 , lowercase_ :Optional[Any] = None , lowercase_ :Dict[str, Any] = None , **lowercase_ :Dict , ) -> Optional[int]: if isinstance(lowercase_ , torch.nn.Module ): UpperCAmelCase = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage`' , '1.0.0' , lowercase_ , standard_warn=lowercase_ , ) UpperCAmelCase = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility UpperCAmelCase = True if kwargs.get('max_value' , lowercase_ ) is not None: UpperCAmelCase = 'The `max_value` argument is deprecated. Please use `decay` instead.' deprecate('max_value' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) UpperCAmelCase = kwargs['max_value'] if kwargs.get('min_value' , lowercase_ ) is not None: UpperCAmelCase = 'The `min_value` argument is deprecated. Please use `min_decay` instead.' deprecate('min_value' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) UpperCAmelCase = kwargs['min_value'] UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = [p.clone().detach() for p in parameters] if kwargs.get('device' , lowercase_ ) is not None: UpperCAmelCase = 'The `device` argument is deprecated. Please use `to` instead.' deprecate('device' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) self.to(device=kwargs['device'] ) UpperCAmelCase = None UpperCAmelCase = decay UpperCAmelCase = min_decay UpperCAmelCase = update_after_step UpperCAmelCase = use_ema_warmup UpperCAmelCase = inv_gamma UpperCAmelCase = power UpperCAmelCase = 0 UpperCAmelCase = None # set in `step()` UpperCAmelCase = model_cls UpperCAmelCase = model_config @classmethod def UpperCAmelCase__ ( cls :int , lowercase_ :Union[str, Any] , lowercase_ :Any ) -> "EMAModel": UpperCAmelCase , UpperCAmelCase = model_cls.load_config(lowercase_ , return_unused_kwargs=lowercase_ ) UpperCAmelCase = model_cls.from_pretrained(lowercase_ ) UpperCAmelCase = cls(model.parameters() , model_cls=lowercase_ , model_config=model.config ) ema_model.load_state_dict(lowercase_ ) return ema_model def UpperCAmelCase__ ( self :List[Any] , lowercase_ :List[str] ) -> int: if self.model_cls is None: raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' ) if self.model_config is None: raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' ) UpperCAmelCase = self.model_cls.from_config(self.model_config ) UpperCAmelCase = self.state_dict() state_dict.pop('shadow_params' , lowercase_ ) model.register_to_config(**lowercase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :int ) -> float: UpperCAmelCase = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: UpperCAmelCase = 1 - (1 + step / self.inv_gamma) ** -self.power else: UpperCAmelCase = (1 + step) / (10 + step) UpperCAmelCase = min(lowercase_ , self.decay ) # make sure decay is not smaller than min_decay UpperCAmelCase = max(lowercase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Iterable[torch.nn.Parameter] ) -> Optional[int]: if isinstance(lowercase_ , torch.nn.Module ): UpperCAmelCase = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`' , '1.0.0' , lowercase_ , standard_warn=lowercase_ , ) UpperCAmelCase = parameters.parameters() UpperCAmelCase = list(lowercase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. UpperCAmelCase = self.get_decay(self.optimization_step ) UpperCAmelCase = decay UpperCAmelCase = 1 - decay UpperCAmelCase = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowercase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): UpperCAmelCase = deepspeed.zero.GatheredParameters(lowercase_ , modifier_rank=lowercase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowercase_ ) def UpperCAmelCase__ ( self :Tuple , lowercase_ :Iterable[torch.nn.Parameter] ) -> None: UpperCAmelCase = list(lowercase_ ) for s_param, param in zip(self.shadow_params , lowercase_ ): param.data.copy_(s_param.to(param.device ).data ) def UpperCAmelCase__ ( self :Dict , lowercase_ :Tuple=None , lowercase_ :Union[str, Any]=None ) -> None: UpperCAmelCase = [ p.to(device=lowercase_ , dtype=lowercase_ ) if p.is_floating_point() else p.to(device=lowercase_ ) for p in self.shadow_params ] def UpperCAmelCase__ ( self :Union[str, Any] ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Iterable[torch.nn.Parameter] ) -> None: UpperCAmelCase = [param.detach().cpu().clone() for param in parameters] def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :Iterable[torch.nn.Parameter] ) -> None: if self.temp_stored_params is None: raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' ) for c_param, param in zip(self.temp_stored_params , lowercase_ ): param.data.copy_(c_param.data ) # Better memory-wise. UpperCAmelCase = None def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :dict ) -> None: UpperCAmelCase = copy.deepcopy(lowercase_ ) UpperCAmelCase = state_dict.get('decay' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1' ) UpperCAmelCase = state_dict.get('min_decay' , self.min_decay ) if not isinstance(self.min_decay , lowercase_ ): raise ValueError('Invalid min_decay' ) UpperCAmelCase = state_dict.get('optimization_step' , self.optimization_step ) if not isinstance(self.optimization_step , lowercase_ ): raise ValueError('Invalid optimization_step' ) UpperCAmelCase = state_dict.get('update_after_step' , self.update_after_step ) if not isinstance(self.update_after_step , lowercase_ ): raise ValueError('Invalid update_after_step' ) UpperCAmelCase = state_dict.get('use_ema_warmup' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowercase_ ): raise ValueError('Invalid use_ema_warmup' ) UpperCAmelCase = state_dict.get('inv_gamma' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('Invalid inv_gamma' ) UpperCAmelCase = state_dict.get('power' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('Invalid power' ) UpperCAmelCase = state_dict.get('shadow_params' , lowercase_ ) if shadow_params is not None: UpperCAmelCase = shadow_params if not isinstance(self.shadow_params , lowercase_ ): raise ValueError('shadow_params must be a list' ) if not all(isinstance(lowercase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError('shadow_params must all be Tensors' )
181
1
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : int ) -> bool: __a = str(__UpperCAmelCase ) return len(__UpperCAmelCase ) == 9 and set(__UpperCAmelCase ) == set('''123456789''' ) def lowercase ( ) -> int | None: for base_num in range(9999 , 4999 , -1 ): __a = 100002 * base_num if is_9_pandigital(__UpperCAmelCase ): return candidate for base_num in range(333 , 99 , -1 ): __a = 1002003 * base_num if is_9_pandigital(__UpperCAmelCase ): return candidate return None if __name__ == "__main__": print(F'''{solution() = }''')
45
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class a ( _lowerCamelCase ): def A_ ( self : str ): snake_case_ = tempfile.mkdtemp() snake_case_ = 8 # DPR tok snake_case_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] snake_case_ = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) snake_case_ = os.path.join(lowercase_ , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok snake_case_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] snake_case_ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) snake_case_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] snake_case_ = {'''unk_token''': '''<unk>'''} snake_case_ = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) snake_case_ = os.path.join(lowercase_ , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ = os.path.join(lowercase_ , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase_ ) ) def A_ ( self : Union[str, Any] ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def A_ ( self : Union[str, Any] ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def A_ ( self : int ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def A_ ( self : str ): shutil.rmtree(self.tmpdirname ) def A_ ( self : str ): snake_case_ = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def A_ ( self : str ): snake_case_ = self.get_dummy_dataset() snake_case_ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: snake_case_ = dataset snake_case_ = RagRetriever( lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def A_ ( self : str , lowercase_ : bool ): snake_case_ = self.get_dummy_dataset() snake_case_ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: snake_case_ = os.path.join(self.tmpdirname , '''dataset''' ) snake_case_ = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset snake_case_ = RagRetriever( lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: snake_case_ = RagRetriever( lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , lowercase_ ) , ) return retriever def A_ ( self : Tuple ): snake_case_ = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) snake_case_ = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) snake_case_ = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) snake_case_ = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(lowercase_ , open(lowercase_ , '''wb''' ) ) snake_case_ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) snake_case_ = RagRetriever( lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def A_ ( self : Optional[Any] ): snake_case_ = 1 snake_case_ = self.get_dummy_canonical_hf_index_retriever() snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ ,snake_case_ ,snake_case_ = retriever.retrieve(lowercase_ , n_docs=lowercase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , lowercase_ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A_ ( self : str ): snake_case_ = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: snake_case_ = self.get_dummy_dataset() retriever.save_pretrained(lowercase_ ) snake_case_ = RagRetriever.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ = retriever.retrieve(lowercase_ , n_docs=1 ) self.assertTrue(out is not None ) def A_ ( self : int ): snake_case_ = 1 snake_case_ = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ ,snake_case_ ,snake_case_ = retriever.retrieve(lowercase_ , n_docs=lowercase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , lowercase_ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A_ ( self : int ): snake_case_ = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowercase_ ) snake_case_ = RagRetriever.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ = retriever.retrieve(lowercase_ , n_docs=1 ) self.assertTrue(out is not None ) def A_ ( self : str ): snake_case_ = 1 snake_case_ = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ ,snake_case_ ,snake_case_ = retriever.retrieve(lowercase_ , n_docs=lowercase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , lowercase_ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A_ ( self : Any ): snake_case_ = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowercase_ ) snake_case_ = RagRetriever.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ = retriever.retrieve(lowercase_ , n_docs=1 ) self.assertTrue(out is not None ) def A_ ( self : Any ): snake_case_ = 1 snake_case_ = self.get_dummy_legacy_index_retriever() snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ ,snake_case_ ,snake_case_ = retriever.retrieve(lowercase_ , n_docs=lowercase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , lowercase_ ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A_ ( self : int ): snake_case_ = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowercase_ ) snake_case_ = RagRetriever.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ = retriever.retrieve(lowercase_ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def A_ ( self : List[str] ): import torch snake_case_ = 1 snake_case_ = self.get_dummy_canonical_hf_index_retriever() snake_case_ = [[5, 7], [10, 11]] snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ = retriever(lowercase_ , lowercase_ , prefix=retriever.config.generator.prefix , n_docs=lowercase_ ) snake_case_ ,snake_case_ ,snake_case_ = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertIsInstance(lowercase_ , np.ndarray ) snake_case_ = retriever( lowercase_ , lowercase_ , prefix=retriever.config.generator.prefix , n_docs=lowercase_ , return_tensors='''pt''' , ) snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowercase_ , torch.Tensor ) self.assertIsInstance(lowercase_ , torch.Tensor ) self.assertIsInstance(lowercase_ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def A_ ( self : Tuple ): snake_case_ = self.get_dpr_ctx_encoder_tokenizer() snake_case_ = 1 snake_case_ = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) retriever.set_ctx_encoder_tokenizer(lowercase_ ) snake_case_ = [[5, 7], [10, 11]] snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ = retriever(lowercase_ , lowercase_ , prefix=retriever.config.generator.prefix , n_docs=lowercase_ ) self.assertEqual( len(lowercase_ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , lowercase_ ) # check for doc token related keys in dictionary.
56
0
def SCREAMING_SNAKE_CASE__ ( __a ): return 10 - x * x def SCREAMING_SNAKE_CASE__ ( __a , __a ): # Bolzano theory in order to find if there is a root between a and b if equation(__a ) * equation(__a ) >= 0: raise ValueError('Wrong space!' ) snake_case_ : Optional[Any] = a while (b - a) >= 0.01: # Find middle point snake_case_ : str = (a + b) / 2 # Check if middle point is root if equation(__a ) == 0.0: break # Decide the side to repeat the steps if equation(__a ) * equation(__a ) < 0: snake_case_ : List[Any] = c else: snake_case_ : List[Any] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
88
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _SCREAMING_SNAKE_CASE = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") _SCREAMING_SNAKE_CASE = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) _SCREAMING_SNAKE_CASE = """|""".join(sys.argv[1:]) _SCREAMING_SNAKE_CASE = re.compile(RF'''^({joined_dirs}).*?\.py$''') _SCREAMING_SNAKE_CASE = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
88
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: _enforce_args(lowerCamelCase_ , lowerCamelCase_ ) if n == 0: return 0 lowerCAmelCase__ : Union[str, Any] = float('-inf' ) for i in range(1 , n + 1 ): lowerCAmelCase__ : int = max( lowerCamelCase_ , prices[i - 1] + naive_cut_rod_recursive(n - i , lowerCamelCase_ ) ) return max_revue def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: _enforce_args(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ : Optional[Any] = [float('-inf' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowerCAmelCase__ : Any = float('-inf' ) for i in range(1 , n + 1 ): lowerCAmelCase__ : List[Any] = max( lowerCamelCase_ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , lowerCamelCase_ , lowerCamelCase_ ) , ) lowerCAmelCase__ : Dict = max_revenue return max_rev[n] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: _enforce_args(lowerCamelCase_ , lowerCamelCase_ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowerCAmelCase__ : int = [float('-inf' ) for _ in range(n + 1 )] lowerCAmelCase__ : str = 0 for i in range(1 , n + 1 ): lowerCAmelCase__ : Tuple = max_rev[i] for j in range(1 , i + 1 ): lowerCAmelCase__ : Any = max(lowerCamelCase_ , prices[j - 1] + max_rev[i - j] ) lowerCAmelCase__ : Optional[Any] = max_revenue_i return max_rev[n] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: if n < 0: lowerCAmelCase__ : Optional[int] = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(lowerCamelCase_ ) if n > len(lowerCamelCase_ ): lowerCAmelCase__ : Tuple = ( 'Each integral piece of rod must have a corresponding price. ' F'''Got n = {n} but length of prices = {len(lowerCamelCase_ )}''' ) raise ValueError(lowerCamelCase_ ) def lowerCAmelCase__ ( ) -> Optional[int]: lowerCAmelCase__ : List[str] = [6, 10, 12, 15, 20, 23] lowerCAmelCase__ : Any = len(lowerCamelCase_ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowerCAmelCase__ : Tuple = 36 lowerCAmelCase__ : int = top_down_cut_rod(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ : Tuple = bottom_up_cut_rod(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ : int = naive_cut_rod_recursive(lowerCamelCase_ , lowerCamelCase_ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
212
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCamelCase( _a, unittest.TestCase ): # TODO: is there an appropriate internal test set? lowercase_ : int = """ssube/stable-diffusion-x4-upscaler-onnx""" def UpperCamelCase ( self, lowerCamelCase=0) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = floats_tensor((1, 3, 1_28, 1_28), rng=random.Random(lowerCamelCase)) _lowercase : Union[str, Any] = torch.manual_seed(lowerCamelCase) _lowercase : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images _lowercase : Optional[int] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3]) assert np.abs(image_slice - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : str = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = self.get_dummy_inputs() _lowercase : List[Any] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : int = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = self.get_dummy_inputs() _lowercase : Union[str, Any] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Optional[int] = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Optional[Any] = pipe(**lowerCamelCase).images _lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_dummy_inputs() _lowercase : List[str] = pipe(**lowerCamelCase).images _lowercase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = ort.SessionOptions() _lowercase : str = False return options def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : int = init_image.resize((1_28, 1_28)) # using the PNDM scheduler by default _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : str = pipe( prompt=lowerCamelCase, image=lowerCamelCase, guidance_scale=7.5, num_inference_steps=10, generator=lowerCamelCase, output_type='np', ) _lowercase : List[Any] = output.images _lowercase : List[Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowercase : List[Any] = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : int = init_image.resize((1_28, 1_28)) _lowercase : str = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', subfolder='scheduler') _lowercase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', scheduler=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : str = pipe( prompt=lowerCamelCase, image=lowerCamelCase, guidance_scale=7.5, num_inference_steps=20, generator=lowerCamelCase, output_type='np', ) _lowercase : str = output.images _lowercase : str = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2
21
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=13 ,UpperCAmelCase_=7 ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=False ,UpperCAmelCase_=True ,UpperCAmelCase_=99 ,UpperCAmelCase_=32 ,UpperCAmelCase_=5 ,UpperCAmelCase_=4 ,UpperCAmelCase_=37 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=3 ,UpperCAmelCase_=4 ,UpperCAmelCase_=None ,): _lowercase : int = parent _lowercase : Any = batch_size _lowercase : Optional[Any] = seq_length _lowercase : Tuple = is_training _lowercase : List[Any] = use_input_mask _lowercase : int = use_token_type_ids _lowercase : Optional[Any] = use_labels _lowercase : Any = vocab_size _lowercase : str = hidden_size _lowercase : int = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : str = hidden_act _lowercase : int = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : Any = type_vocab_size _lowercase : Any = type_sequence_label_size _lowercase : str = initializer_range _lowercase : List[str] = num_labels _lowercase : int = num_choices _lowercase : Optional[int] = scope def lowerCamelCase__ ( self ): _lowercase : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowercase : Union[str, Any] = None if self.use_input_mask: _lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Optional[int] = None if self.use_token_type_ids: _lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowercase : List[Any] = None _lowercase : Optional[int] = None _lowercase : str = None if self.use_labels: _lowercase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowercase : Dict = ids_tensor([self.batch_size] ,self.num_choices ) _lowercase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self ): return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__A ,initializer_range=self.initializer_range ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[Any] = LlamaModel(config=__A ) model.to(__A ) model.eval() _lowercase : Optional[int] = model(__A ,attention_mask=__A ) _lowercase : Any = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : List[str] = True _lowercase : str = LlamaModel(__A ) model.to(__A ) model.eval() _lowercase : int = model( __A ,attention_mask=__A ,encoder_hidden_states=__A ,encoder_attention_mask=__A ,) _lowercase : List[Any] = model( __A ,attention_mask=__A ,encoder_hidden_states=__A ,) _lowercase : List[str] = model(__A ,attention_mask=__A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : int = LlamaForCausalLM(config=__A ) model.to(__A ) model.eval() _lowercase : Tuple = model(__A ,attention_mask=__A ,labels=__A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : int = True _lowercase : List[Any] = True _lowercase : Tuple = LlamaForCausalLM(config=__A ) model.to(__A ) model.eval() # first forward pass _lowercase : Union[str, Any] = model( __A ,attention_mask=__A ,encoder_hidden_states=__A ,encoder_attention_mask=__A ,use_cache=__A ,) _lowercase : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowercase : int = ids_tensor((self.batch_size, 3) ,config.vocab_size ) _lowercase : Any = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and _lowercase : List[str] = torch.cat([input_ids, next_tokens] ,dim=-1 ) _lowercase : Union[str, Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) _lowercase : List[Any] = model( __A ,attention_mask=__A ,encoder_hidden_states=__A ,encoder_attention_mask=__A ,output_hidden_states=__A ,)["""hidden_states"""][0] _lowercase : List[str] = model( __A ,attention_mask=__A ,encoder_hidden_states=__A ,encoder_attention_mask=__A ,past_key_values=__A ,output_hidden_states=__A ,)["""hidden_states"""][0] # select random slice _lowercase : Union[str, Any] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() _lowercase : int = output_from_no_past[:, -3:, random_slice_idx].detach() _lowercase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A ,__A ,atol=1E-3 ) ) def lowerCamelCase__ ( self ): _lowercase : List[Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( snake_case , snake_case , snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : List[str] = (LlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Optional[int] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Any = False def lowerCamelCase__ ( self ): _lowercase : Tuple = LlamaModelTester(self ) _lowercase : str = ConfigTester(self ,config_class=__A ,hidden_size=37 ) def lowerCamelCase__ ( self ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase__ ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase : Any = type self.model_tester.create_and_check_model(*__A ) def lowerCamelCase__ ( self ): _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Optional[Any] = 3 _lowercase : List[Any] = input_dict["""input_ids"""] _lowercase : Union[str, Any] = input_ids.ne(1 ).to(__A ) _lowercase : Optional[Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) _lowercase : Union[str, Any] = LlamaForSequenceClassification(__A ) model.to(__A ) model.eval() _lowercase : Any = model(__A ,attention_mask=__A ,labels=__A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self ): _lowercase , _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Dict = 3 _lowercase : List[Any] = """single_label_classification""" _lowercase : str = input_dict["""input_ids"""] _lowercase : Union[str, Any] = input_ids.ne(1 ).to(__A ) _lowercase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) _lowercase : Optional[int] = LlamaForSequenceClassification(__A ) model.to(__A ) model.eval() _lowercase : Dict = model(__A ,attention_mask=__A ,labels=__A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self ): _lowercase , _lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Union[str, Any] = 3 _lowercase : Optional[Any] = """multi_label_classification""" _lowercase : Optional[int] = input_dict["""input_ids"""] _lowercase : List[str] = input_ids.ne(1 ).to(__A ) _lowercase : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) _lowercase : Tuple = LlamaForSequenceClassification(__A ) model.to(__A ) model.eval() _lowercase : Dict = model(__A ,attention_mask=__A ,labels=__A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def lowerCamelCase__ ( self ): pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase , _lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : List[str] = ids_tensor([1, 10] ,config.vocab_size ) _lowercase : List[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowercase : Optional[int] = LlamaModel(__A ) original_model.to(__A ) original_model.eval() _lowercase : int = original_model(__A ).last_hidden_state _lowercase : Tuple = original_model(__A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowercase : Tuple = {"""type""": scaling_type, """factor""": 10.0} _lowercase : int = LlamaModel(__A ) scaled_model.to(__A ) scaled_model.eval() _lowercase : List[Any] = scaled_model(__A ).last_hidden_state _lowercase : Optional[Any] = scaled_model(__A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__A ,__A ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__A ,__A ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__A ,__A ,atol=1E-5 ) ) @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def lowerCamelCase__ ( self ): _lowercase : List[str] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _lowercase : Dict = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" ,device_map="""auto""" ) _lowercase : Optional[Any] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _lowercase : Union[str, Any] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,__A ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowercase : Optional[int] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,__A ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def lowerCamelCase__ ( self ): _lowercase : Optional[int] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _lowercase : Any = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" ,device_map="""auto""" ) _lowercase : Union[str, Any] = model(torch.tensor(__A ) ) # Expected mean on dim = -1 _lowercase : Union[str, Any] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,__A ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowercase : Tuple = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,__A ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _lowercase : List[str] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ,device_map="""auto""" ) _lowercase : int = model(torch.tensor(__A ) ) # Expected mean on dim = -1 _lowercase : Tuple = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,__A ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowercase : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,__A ,atol=1E-2 ,rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def lowerCamelCase__ ( self ): _lowercase : Dict = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _lowercase : List[Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" ,device_map="""auto""" ) _lowercase : Optional[Any] = model(torch.tensor(__A ) ) _lowercase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,__A ,atol=1E-2 ,rtol=1E-2 ) # fmt: off _lowercase : Optional[Any] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,__A ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def lowerCamelCase__ ( self ): _lowercase : Any = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" _lowercase : int = """Simply put, the theory of relativity states that """ _lowercase : List[str] = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) _lowercase : Union[str, Any] = tokenizer.encode(__A ,return_tensors="""pt""" ) _lowercase : List[str] = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" ,device_map="""sequential""" ,use_safetensors=__A ) # greedy generation outputs _lowercase : Optional[int] = model.generate(__A ,max_new_tokens=64 ,top_p=__A ,temperature=1 ,do_sample=__A ) _lowercase : List[str] = tokenizer.decode(generated_ids[0] ,skip_special_tokens=__A ) self.assertEqual(__A ,__A )
359
"""simple docstring""" import cva import numpy as np class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if k in (0.04, 0.06): _lowercase : Optional[Any] = k _lowercase : Optional[Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self ): return str(self.k ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = cva.imread(UpperCAmelCase_ ,0 ) _lowercase , _lowercase : Dict = img.shape _lowercase : list[list[int]] = [] _lowercase : int = img.copy() _lowercase : List[str] = cva.cvtColor(UpperCAmelCase_ ,cva.COLOR_GRAY2RGB ) _lowercase , _lowercase : Optional[Any] = np.gradient(UpperCAmelCase_ ) _lowercase : Optional[int] = dx**2 _lowercase : Optional[Any] = dy**2 _lowercase : Optional[Any] = dx * dy _lowercase : List[str] = 0.04 _lowercase : Optional[Any] = self.window_size // 2 for y in range(UpperCAmelCase_ ,h - offset ): for x in range(UpperCAmelCase_ ,w - offset ): _lowercase : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Dict = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Union[str, Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : int = (wxx * wyy) - (wxy**2) _lowercase : Union[str, Any] = wxx + wyy _lowercase : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,2_55 ) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase: Optional[int] = HarrisCorner(0.04, 3) UpperCAmelCase , UpperCAmelCase: List[Any] = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
336
0
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowerCamelCase__ = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: lowerCamelCase__ = json.load(f) @require_torch class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : List[str] , a : Union[str, Any] ): '''simple docstring''' return FSMTTokenizer.from_pretrained(a ) def _lowerCamelCase ( self : str , a : int ): '''simple docstring''' lowerCAmelCase__ : Dict = FSMTForConditionalGeneration.from_pretrained(a ).to(a ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def _lowerCamelCase ( self : int , a : List[str] , a : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : str = f'''facebook/wmt19-{pair}''' lowerCAmelCase__ : Tuple = self.get_tokenizer(a ) lowerCAmelCase__ : Any = self.get_model(a ) lowerCAmelCase__ : List[str] = bleu_data[pair]['src'] lowerCAmelCase__ : int = bleu_data[pair]['tgt'] lowerCAmelCase__ : Tuple = tokenizer(a , return_tensors='pt' , truncation=a , padding='longest' ).to(a ) lowerCAmelCase__ : Any = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase__ : Dict = tokenizer.batch_decode( a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) lowerCAmelCase__ : Optional[int] = calculate_bleu(a , a ) print(a ) self.assertGreaterEqual(scores['bleu'] , a )
212
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class A__ ( __magic_name__ , unittest.TestCase ): lowercase = MvpTokenizer lowercase = MvpTokenizerFast lowercase = True lowercase = filter_roberta_detectors def _lowerCamelCase ( self : int ): '''simple docstring''' super().setUp() lowerCAmelCase__ : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCAmelCase__ : Any = dict(zip(a , range(len(a ) ) ) ) lowerCAmelCase__ : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCAmelCase__ : Any = {'unk_token': '<unk>'} lowerCAmelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(a ) ) def _lowerCamelCase ( self : str , **a : Tuple ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a ) def _lowerCamelCase ( self : Dict , **a : Optional[int] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **a ) def _lowerCamelCase ( self : Tuple , a : Dict ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def _lowerCamelCase ( self : Dict ): '''simple docstring''' return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCAmelCase__ : List[Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ : int = tokenizer(a , max_length=len(a ) , padding=a , return_tensors='pt' ) self.assertIsInstance(a , a ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCAmelCase__ : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(a , a ) # Test that special tokens are reset @require_torch def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ : Any = tokenizer(a , padding=a , return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' , a ) self.assertIn('attention_mask' , a ) self.assertNotIn('labels' , a ) self.assertNotIn('decoder_attention_mask' , a ) @require_torch def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ : Tuple = tokenizer(text_target=a , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ : str = tokenizer( ['I am a small frog' * 1_024, 'I am a small frog'] , padding=a , truncation=a , return_tensors='pt' ) self.assertIsInstance(a , a ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = ['A long paragraph for summarization.'] lowerCAmelCase__ : Any = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ : List[Any] = tokenizer(a , text_target=a , return_tensors='pt' ) lowerCAmelCase__ : Optional[int] = inputs['input_ids'] lowerCAmelCase__ : str = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def _lowerCamelCase ( self : Any ): '''simple docstring''' pass def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase__ : str = self.rust_tokenizer_class.from_pretrained(a , **a ) lowerCAmelCase__ : List[str] = self.tokenizer_class.from_pretrained(a , **a ) lowerCAmelCase__ : Optional[int] = 'A, <mask> AllenNLP sentence.' lowerCAmelCase__ : int = tokenizer_r.encode_plus(a , add_special_tokens=a , return_token_type_ids=a ) lowerCAmelCase__ : Optional[int] = tokenizer_p.encode_plus(a , add_special_tokens=a , return_token_type_ids=a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) lowerCAmelCase__ : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowerCAmelCase__ : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( a , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( a , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
212
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def _A ( ) -> Tuple: '''simple docstring''' __lowercase = _ask_options( "In which compute environment are you running?", ["This machine", "AWS (Amazon SageMaker)"], _convert_compute_environment, ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase = get_sagemaker_input() else: __lowercase = get_cluster_input() return config def _A ( UpperCamelCase_ : Union[str, Any]=None) -> Union[str, Any]: '''simple docstring''' if subparsers is not None: __lowercase = subparsers.add_parser("config", description=UpperCamelCase_) else: __lowercase = argparse.ArgumentParser("Accelerate config command", description=UpperCamelCase_) parser.add_argument( "--config_file", default=UpperCamelCase_, help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ), ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase_) return parser def _A ( UpperCamelCase_ : Dict) -> str: '''simple docstring''' __lowercase = get_user_input() if args.config_file is not None: __lowercase = args.config_file else: if not os.path.isdir(UpperCamelCase_): os.makedirs(UpperCamelCase_) __lowercase = default_yaml_config_file if config_file.endswith(".json"): config.to_json_file(UpperCamelCase_) else: config.to_yaml_file(UpperCamelCase_) print(F"""accelerate configuration saved at {config_file}""") def _A ( ) -> Optional[Any]: '''simple docstring''' __lowercase = config_command_parser() __lowercase = parser.parse_args() config_command(UpperCamelCase_) if __name__ == "__main__": main()
144
"""simple docstring""" import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, **UpperCamelCase_ : Optional[int]) -> Tuple: '''simple docstring''' __lowercase = AutoConfig.from_pretrained(UpperCamelCase_, **UpperCamelCase_) __lowercase = AutoModelForSeqaSeqLM.from_config(UpperCamelCase_) model.save_pretrained(UpperCamelCase_) AutoTokenizer.from_pretrained(UpperCamelCase_).save_pretrained(UpperCamelCase_) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
144
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = KandinskyInpaintPipeline lowerCAmelCase__ = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] lowerCAmelCase__ = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] lowerCAmelCase__ = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCAmelCase__ = False @property def lowercase_ ( self : Any ): '''simple docstring''' return 32 @property def lowercase_ ( self : List[Any] ): '''simple docstring''' return 32 @property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return self.time_input_dim @property def lowercase_ ( self : Tuple ): '''simple docstring''' return self.time_input_dim * 4 @property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return 100 @property def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def lowercase_ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Dict = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) UpperCAmelCase__ : int = MultilingualCLIP(_A ) UpperCAmelCase__ : Union[str, Any] = text_encoder.eval() return text_encoder @property def lowercase_ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase__ : Optional[int] = UNetaDConditionModel(**_A ) return model @property def lowercase_ ( self : Tuple ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase_ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.dummy_text_encoder UpperCAmelCase__ : List[Any] = self.dummy_tokenizer UpperCAmelCase__ : List[str] = self.dummy_unet UpperCAmelCase__ : int = self.dummy_movq UpperCAmelCase__ : str = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=_A , set_alpha_to_one=_A , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_A , ) UpperCAmelCase__ : List[str] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowercase_ ( self : List[Any] , _A : Any , _A : Union[str, Any]=0 ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase__ : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_A ) # create init_image UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : List[Any] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ).resize((256, 256) ) # create mask UpperCAmelCase__ : Union[str, Any] = np.ones((64, 64) , dtype=np.floataa ) UpperCAmelCase__ : Optional[Any] = 0 if str(_A ).startswith('''mps''' ): UpperCAmelCase__ : str = torch.manual_seed(_A ) else: UpperCAmelCase__ : Dict = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase__ : Any = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = '''cpu''' UpperCAmelCase__ : str = self.get_dummy_components() UpperCAmelCase__ : Dict = self.pipeline_class(**_A ) UpperCAmelCase__ : List[Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : str = pipe(**self.get_dummy_inputs(_A ) ) UpperCAmelCase__ : List[Any] = output.images UpperCAmelCase__ : Optional[Any] = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] UpperCAmelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : List[Any] = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def lowercase_ ( self : Tuple ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) UpperCAmelCase__ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCAmelCase__ : Optional[Any] = np.ones((768, 768) , dtype=np.floataa ) UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Union[str, Any] = '''a hat''' UpperCAmelCase__ : Optional[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) UpperCAmelCase__ : str = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) UpperCAmelCase__ : List[str] = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : str = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase__ : Any = pipeline( _A , image=_A , mask_image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) UpperCAmelCase__ : List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A )
181
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> int: UpperCAmelCase__ : Tuple = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def a__ ( lowerCAmelCase__ = 1_00 ) -> int: UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase__ : Tuple = pre_numerator UpperCAmelCase__ : Tuple = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase__ : str = cur_numerator UpperCAmelCase__ : List[str] = e_cont * pre_numerator + temp return sum_digits(lowerCAmelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
181
1
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase__ ( _a : ndarray ): return np.dot(_a , _a ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self , *, _SCREAMING_SNAKE_CASE = np.inf , _SCREAMING_SNAKE_CASE = "linear" , _SCREAMING_SNAKE_CASE = 0.0 , ) -> None: snake_case_ : Optional[int] = regularization snake_case_ : List[Any] = gamma if kernel == "linear": snake_case_ : int = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("rbf kernel requires gamma" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("gamma must be float or int" ) if not self.gamma > 0: raise ValueError("gamma must be > 0" ) snake_case_ : Optional[Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: snake_case_ : List[Any] = f'''Unknown kernel: {kernel}''' raise ValueError(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: return np.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: snake_case_ : int = observations snake_case_ : str = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((snake_case_) , ) : Any = np.shape(_SCREAMING_SNAKE_CASE ) def to_minimize(_SCREAMING_SNAKE_CASE ) -> float: snake_case_ : Dict = 0 ((snake_case_) , ) : str = np.shape(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = LinearConstraint(_SCREAMING_SNAKE_CASE , 0 , 0 ) snake_case_ : Union[str, Any] = Bounds(0 , self.regularization ) snake_case_ : Tuple = minimize( _SCREAMING_SNAKE_CASE , np.ones(_SCREAMING_SNAKE_CASE ) , bounds=_SCREAMING_SNAKE_CASE , constraints=[ly_contraint] ).x snake_case_ : Optional[int] = l_star # calculating mean offset of separation plane to points snake_case_ : Optional[Any] = 0 for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) snake_case_ : int = s / n def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> int: snake_case_ : List[str] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _SCREAMING_SNAKE_CASE ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
36
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = DebertaTokenizer A : List[Any] = True A : Dict = DebertaTokenizerFast def _lowerCAmelCase ( self ) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ : Union[str, Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] snake_case_ : Optional[Any] = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) snake_case_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] snake_case_ : Optional[int] = {"unk_token": "[UNK]"} snake_case_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_SCREAMING_SNAKE_CASE ) ) def _lowerCAmelCase ( self , **_SCREAMING_SNAKE_CASE ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ : int = "lower newer" snake_case_ : Dict = "lower newer" return input_text, output_text def _lowerCAmelCase ( self ) -> str: snake_case_ : Tuple = self.get_tokenizer() snake_case_ : str = "lower newer" snake_case_ : int = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] snake_case_ : str = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : Dict = tokens + [tokenizer.unk_token] snake_case_ : int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : List[str] = self.get_tokenizer() snake_case_ : str = tokenizer("Hello" , "World" ) snake_case_ : List[Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , _SCREAMING_SNAKE_CASE ) @slow def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : str = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) snake_case_ : Optional[int] = tokenizer.encode("sequence builders" , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : int = tokenizer.encode("multi-sequence build" , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = tokenizer.encode( "sequence builders" , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) snake_case_ : str = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) snake_case_ : str = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: snake_case_ : str = tokenizer_class.from_pretrained("microsoft/deberta-base" ) snake_case_ : int = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] snake_case_ : Any = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = [tokenizer.decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) for seq in encoding["input_ids"]] # fmt: off snake_case_ : List[Any] = { "input_ids": [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on snake_case_ : List[str] = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , _SCREAMING_SNAKE_CASE ) for expected, decoded in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
36
1
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness __lowerCAmelCase : Tuple = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' __lowerCAmelCase : str = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' __lowerCAmelCase : Optional[int] = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' __lowerCAmelCase : Dict = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' __lowerCAmelCase : Union[str, Any] = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self : Any ) -> str: """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def _lowercase ( self : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any]=[1, 10, 100] , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Optional[Any]=3.0 ) -> List[str]: """simple docstring""" if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=UpperCamelCase__ ) as executor: __magic_name__ = [] __magic_name__ = Counter() __magic_name__ = 0 __magic_name__ = defaultdict(UpperCamelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(UpperCamelCase__ , UpperCamelCase__ ) ): for candidate in candidates: __magic_name__ = candidate + """\n""" + test_case __magic_name__ = (test_program, timeout, task_id, completion_id[task_id]) __magic_name__ = executor.submit(UpperCamelCase__ , *UpperCamelCase__ ) futures.append(UpperCamelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(UpperCamelCase__ ): __magic_name__ = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) __magic_name__ , __magic_name__ = [], [] for result in results.values(): result.sort() __magic_name__ = [r[1]["""passed"""] for r in result] total.append(len(UpperCamelCase__ ) ) correct.append(sum(UpperCamelCase__ ) ) __magic_name__ = np.array(UpperCamelCase__ ) __magic_name__ = np.array(UpperCamelCase__ ) __magic_name__ = k __magic_name__ = {F'''pass@{k}''': estimate_pass_at_k(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def a__ ( A_, A_, A_ ): '''simple docstring''' def estimator(A_, A_, A_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1 ) ) if isinstance(A_, A_ ): __magic_name__ = itertools.repeat(A_, len(A_ ) ) else: assert len(A_ ) == len(A_ ) __magic_name__ = iter(A_ ) return np.array([estimator(int(A_ ), int(A_ ), A_ ) for n, c in zip(A_, A_ )] )
88
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Any = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
88
1
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class A ( a_ ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="None" , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=None , ) -> List[Any]: """simple docstring""" A : Any = parent A : Any = batch_size A : List[str] = seq_length A : List[str] = is_training A : Union[str, Any] = use_input_mask A : Any = use_token_type_ids A : Tuple = use_labels A : List[str] = vocab_size A : Tuple = hidden_size A : str = num_hidden_layers A : str = num_attention_heads A : Union[str, Any] = intermediate_size A : Union[str, Any] = hidden_act A : str = hidden_dropout_prob A : str = attention_probs_dropout_prob A : str = max_position_embeddings A : List[Any] = type_vocab_size A : int = type_sequence_label_size A : str = initializer_range A : str = num_labels A : Optional[Any] = num_choices A : List[str] = relative_attention A : List[Any] = position_biased_input A : int = pos_att_type A : Dict = scope def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Any = None if self.use_input_mask: A : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A : List[str] = None if self.use_token_type_ids: A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A : Dict = None A : List[Any] = None A : str = None if self.use_labels: A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) A : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : List[str] = self.get_config() A : str = 300 return config def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" A : List[str] = DebertaModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : int = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE )[0] A : List[Any] = model(SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE )[0] A : str = model(SCREAMING_SNAKE_CASE )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : str = DebertaForMaskedLM(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : List[str] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : List[str] = self.num_labels A : List[str] = DebertaForSequenceClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : List[str] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" A : Dict = self.num_labels A : str = DebertaForTokenClassification(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Optional[int] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" A : Optional[int] = DebertaForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : List[str] = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , start_positions=SCREAMING_SNAKE_CASE , end_positions=SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : int = self.prepare_config_and_inputs() ( ( A ), ( A ), ( A ), ( A ), ( A ), ( A ), ( A ), ) : Any = config_and_inputs A : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A ( a_ , a_ , unittest.TestCase ): __magic_name__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __magic_name__ = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Union[str, Any] = DebertaModelTester(self ) A : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : List[Any] = DebertaModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" pass @slow def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Union[str, Any] = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) A : int = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) A : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A : Dict = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. A : Any = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE , atol=1e-4 ) , F'{output[:, 1:4, 1:4]}' )
350
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase : str = datasets.utils.logging.get_logger(__name__) lowercase : Union[str, Any] = ['names', 'prefix'] lowercase : Union[str, Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] lowercase : List[Any] = ['encoding_errors', 'on_bad_lines'] lowercase : Any = ['date_format'] @dataclass class A ( datasets.BuilderConfig ): __magic_name__ = "," __magic_name__ = None __magic_name__ = "infer" __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = False __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = True __magic_name__ = False __magic_name__ = True __magic_name__ = None __magic_name__ = "." __magic_name__ = None __magic_name__ = '"' __magic_name__ = 0 __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = True __magic_name__ = 0 __magic_name__ = True __magic_name__ = False __magic_name__ = None __magic_name__ = 10000 __magic_name__ = None __magic_name__ = "strict" __magic_name__ = "error" __magic_name__ = None def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" if self.delimiter is not None: A : Optional[Any] = self.delimiter if self.column_names is not None: A : Optional[Any] = self.column_names @property def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : str = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A ( datasets.ArrowBasedBuilder ): __magic_name__ = CsvConfig def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) A : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE , (str, list, tuple) ): A : str = data_files if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : int = [files] A : Optional[int] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A : Tuple = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : List[str] = [files] A : List[str] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files} ) ) return splits def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> pa.Table: """simple docstring""" if self.config.features is not None: A : Optional[int] = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE ) for feature in self.config.features.values() ): # cheaper cast A : List[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE ) else: # more expensive cast; allows str <-> int/float or str to Audio for example A : int = table_cast(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return pa_table def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" A : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str A : int = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) ): A : Union[str, Any] = pd.read_csv(SCREAMING_SNAKE_CASE , iterator=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE ): A : Dict = pa.Table.from_pandas(SCREAMING_SNAKE_CASE ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE )}: {e}' ) raise
311
0
'''simple docstring''' def a_ ( __snake_case : list ) -> bool: """simple docstring""" if not isinstance(__snake_case , __snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(__snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(__snake_case ) == 1: return True lowerCamelCase_ =series[1] - series[0] for index in range(len(__snake_case ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def a_ ( __snake_case : list ) -> float: """simple docstring""" if not isinstance(__snake_case , __snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(__snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) lowerCamelCase_ =0 for val in series: answer += val return answer / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
75
from __future__ import annotations def a__ ( UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase ) # We need to create solution object to save path. UpperCAmelCase : int = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )] UpperCAmelCase : Union[str, Any] = run_maze(UpperCAmelCase , 0 , 0 , UpperCAmelCase ) if solved: print('''\n'''.join(str(UpperCAmelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Dict = len(UpperCAmelCase ) # Final check point. if i == j == (size - 1): UpperCAmelCase : Dict = 1 return True UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds UpperCAmelCase : List[Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCAmelCase : str = 1 # check for directions if ( run_maze(UpperCAmelCase , i + 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j + 1 , UpperCAmelCase ) or run_maze(UpperCAmelCase , i - 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j - 1 , UpperCAmelCase ) ): return True UpperCAmelCase : Any = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
336
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
371
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency a_ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } a_ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" a_ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowercase ( snake_case_ : str ) ->dict[str, int]: '''simple docstring''' __A : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __lowercase ( snake_case_ : tuple ) ->str: '''simple docstring''' return x[0] def __lowercase ( snake_case_ : str ) ->str: '''simple docstring''' __A : Union[str, Any] = get_letter_count(snake_case_ ) __A : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(snake_case_ ) __A : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find ,reverse=snake_case_ ) __A : Optional[int] = ''''''.join(freq_to_letter[freq] ) __A : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=snake_case_ ,reverse=snake_case_ ) __A : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(snake_case_ ) def __lowercase ( snake_case_ : str ) ->int: '''simple docstring''' __A : Any = get_frequency_order(snake_case_ ) __A : str = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
291
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase__ ( snake_case__ ): _UpperCAmelCase :torch.FloatTensor class lowercase__ ( snake_case__, snake_case__ ): @register_to_config def __init__( self : Optional[int] , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : Tuple[str] = ("DownEncoderBlock2D",) , snake_case__ : Tuple[str] = ("UpDecoderBlock2D",) , snake_case__ : Tuple[int] = (64,) , snake_case__ : int = 1 , snake_case__ : str = "silu" , snake_case__ : int = 3 , snake_case__ : int = 32 , snake_case__ : int = 256 , snake_case__ : int = 32 , snake_case__ : Optional[int] = None , snake_case__ : float = 0.18_215 , snake_case__ : str = "group" , ): super().__init__() # pass init params to Encoder lowerCamelCase_ : List[str] =Encoder( in_channels=snake_case__ , out_channels=snake_case__ , down_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , double_z=snake_case__ , ) lowerCamelCase_ : Union[str, Any] =vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCamelCase_ : List[Any] =nn.Convad(snake_case__ , snake_case__ , 1 ) lowerCamelCase_ : int =VectorQuantizer(snake_case__ , snake_case__ , beta=0.25 , remap=snake_case__ , sane_index_shape=snake_case__ ) lowerCamelCase_ : int =nn.Convad(snake_case__ , snake_case__ , 1 ) # pass init params to Decoder lowerCamelCase_ : Union[str, Any] =Decoder( in_channels=snake_case__ , out_channels=snake_case__ , up_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , norm_type=snake_case__ , ) @apply_forward_hook def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): lowerCamelCase_ : int =self.encoder(snake_case__ ) lowerCamelCase_ : Union[str, Any] =self.quant_conv(snake_case__ ) if not return_dict: return (h,) return VQEncoderOutput(latents=snake_case__ ) @apply_forward_hook def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : bool = False , snake_case__ : bool = True ): # also go through quantization layer if not force_not_quantize: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Dict =self.quantize(snake_case__ ) else: lowerCamelCase_ : List[Any] =h lowerCamelCase_ : List[Any] =self.post_quant_conv(snake_case__ ) lowerCamelCase_ : Dict =self.decoder(snake_case__ , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ ) def UpperCAmelCase__ ( self : Any , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): lowerCamelCase_ : Dict =sample lowerCamelCase_ : Optional[Any] =self.encode(snake_case__ ).latents lowerCamelCase_ : str =self.decode(snake_case__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ )
144
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Dict = logging.get_logger(__name__) A__ : Union[str, Any] = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class lowercase__ ( snake_case__ ): _UpperCAmelCase :List[str] = "canine" def __init__( self : Optional[Any] , snake_case__ : Union[str, Any]=768 , snake_case__ : Tuple=12 , snake_case__ : Optional[Any]=12 , snake_case__ : Union[str, Any]=3072 , snake_case__ : Optional[Any]="gelu" , snake_case__ : Tuple=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : int=1_6384 , snake_case__ : str=16 , snake_case__ : Tuple=0.02 , snake_case__ : Dict=1E-12 , snake_case__ : Any=0 , snake_case__ : Optional[int]=0xe_000 , snake_case__ : List[str]=0xe_001 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : List[Any]=8 , snake_case__ : List[str]=1_6384 , snake_case__ : Union[str, Any]=128 , **snake_case__ : Tuple , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCamelCase_ : Tuple =max_position_embeddings lowerCamelCase_ : Optional[int] =hidden_size lowerCamelCase_ : Tuple =num_hidden_layers lowerCamelCase_ : Dict =num_attention_heads lowerCamelCase_ : str =intermediate_size lowerCamelCase_ : Dict =hidden_act lowerCamelCase_ : List[Any] =hidden_dropout_prob lowerCamelCase_ : Union[str, Any] =attention_probs_dropout_prob lowerCamelCase_ : Dict =initializer_range lowerCamelCase_ : Tuple =type_vocab_size lowerCamelCase_ : Optional[Any] =layer_norm_eps # Character config: lowerCamelCase_ : List[str] =downsampling_rate lowerCamelCase_ : List[Any] =upsampling_kernel_size lowerCamelCase_ : Any =num_hash_functions lowerCamelCase_ : Optional[int] =num_hash_buckets lowerCamelCase_ : Union[str, Any] =local_transformer_stride
144
1
"""simple docstring""" from math import ceil def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: __lowerCAmelCase: Tuple = list(range(0 , __SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Optional[Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __lowerCAmelCase: List[Any] = [] for i in device_map_blocks: if device_map_blocks.count(__SCREAMING_SNAKE_CASE ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__SCREAMING_SNAKE_CASE ) # Missing blocks __lowerCAmelCase: Optional[Any] = [i for i in blocks if i not in device_map_blocks] __lowerCAmelCase: List[Any] = [i for i in device_map_blocks if i not in blocks] if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(__SCREAMING_SNAKE_CASE ) ) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: __lowerCAmelCase: List[Any] = list(range(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Dict = int(ceil(n_layers / len(__SCREAMING_SNAKE_CASE ) ) ) __lowerCAmelCase: Union[str, Any] = [layers[i : i + n_blocks] for i in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] return dict(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
108
"""simple docstring""" import comet # From: unbabel-comet import torch import datasets __A = datasets.logging.get_logger(__name__) __A = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" __A = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" __A = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): def lowercase_ ( self : List[Any])-> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://unbabel.github.io/COMET/html/index.html" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "sources": datasets.Value("string" , id="sequence"), "predictions": datasets.Value("string" , id="sequence"), "references": datasets.Value("string" , id="sequence"), }) , codebase_urls=["https://github.com/Unbabel/COMET"] , reference_urls=[ "https://github.com/Unbabel/COMET", "https://www.aclweb.org/anthology/2020.emnlp-main.213/", "http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6", ] , ) def lowercase_ ( self : Tuple , UpperCamelCase__ : Any)-> Dict: '''simple docstring''' if self.config_name == "default": __lowerCAmelCase: Union[str, Any] = comet.load_from_checkpoint(comet.download_model("wmt20-comet-da")) else: __lowerCAmelCase: Tuple = comet.load_from_checkpoint(comet.download_model(self.config_name)) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : List[str]=False)-> str: '''simple docstring''' if gpus is None: __lowerCAmelCase: Union[str, Any] = 1 if torch.cuda.is_available() else 0 __lowerCAmelCase: Dict = {"src": sources, "mt": predictions, "ref": references} __lowerCAmelCase: Union[str, Any] = [dict(zip(UpperCamelCase__ , UpperCamelCase__)) for t in zip(*data.values())] __lowerCAmelCase , __lowerCAmelCase: str = self.scorer.predict(UpperCamelCase__ , gpus=UpperCamelCase__ , progress_bar=UpperCamelCase__) return {"mean_score": mean_score, "scores": scores}
108
1
import argparse import copy def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = {} with open(_lowerCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _lowerCAmelCase : Tuple = [] _list.append([line.split()[1], line.split()[2]] ) _lowerCAmelCase : Any = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _lowerCAmelCase : str = [] _list.append([line.split()[0], line.split()[2]] ) _lowerCAmelCase : Any = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase ) as f: _lowerCAmelCase : str = f.read(1 ) _lowerCAmelCase : str = start_node _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Any = start_node _lowerCAmelCase : str = 0 while visiting not in first_solution: _lowerCAmelCase : Dict = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_lowerCamelCase ) and k[0] not in first_solution: _lowerCAmelCase : List[str] = k[1] _lowerCAmelCase : List[Any] = k[0] first_solution.append(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = distance_of_first_solution + int(_lowerCamelCase ) _lowerCAmelCase : str = best_node first_solution.append(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _lowerCAmelCase : Tuple = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = [] for n in solution[1:-1]: _lowerCAmelCase : Dict = solution.index(_lowerCamelCase ) for kn in solution[1:-1]: _lowerCAmelCase : Dict = solution.index(_lowerCamelCase ) if n == kn: continue _lowerCAmelCase : Optional[int] = copy.deepcopy(_lowerCamelCase ) _lowerCAmelCase : int = kn _lowerCAmelCase : Dict = n _lowerCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _lowerCAmelCase : str = _tmp[_tmp.index(_lowerCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _lowerCAmelCase : Optional[Any] = distance + int(i[1] ) _tmp.append(_lowerCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _lowerCAmelCase : List[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _lowerCamelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : int = first_solution _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Tuple = distance_of_first_solution _lowerCAmelCase : Optional[int] = solution while count <= iters: _lowerCAmelCase : int = find_neighborhood(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = neighborhood[index_of_best_solution] _lowerCAmelCase : int = len(_lowerCamelCase ) - 1 _lowerCAmelCase : Union[str, Any] = False while not found: _lowerCAmelCase : Tuple = 0 while i < len(_lowerCamelCase ): if best_solution[i] != solution[i]: _lowerCAmelCase : str = best_solution[i] _lowerCAmelCase : Tuple = solution[i] break _lowerCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : Optional[Any] = best_solution[:-1] _lowerCAmelCase : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _lowerCAmelCase : Union[str, Any] = cost _lowerCAmelCase : List[Any] = solution else: _lowerCAmelCase : Optional[Any] = index_of_best_solution + 1 _lowerCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] if len(_lowerCamelCase ) >= size: tabu_list.pop(0 ) _lowerCAmelCase : int = count + 1 return best_solution_ever, best_cost def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = generate_neighbours(args.File ) _lowerCAmelCase , _lowerCAmelCase : List[str] = generate_first_solution( args.File , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Any = tabu_search( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , args.Iterations , args.Size , ) print(F"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
36
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Union[str, Any] = feat_extract_activation _lowerCAmelCase : Optional[Any] = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : str = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : str = num_conv_pos_embeddings _lowerCAmelCase : List[Any] = num_conv_pos_embedding_groups _lowerCAmelCase : str = len(self.conv_dim) _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : Optional[Any] = hidden_dropout _lowerCAmelCase : List[str] = attention_dropout _lowerCAmelCase : Tuple = activation_dropout _lowerCAmelCase : int = feat_proj_dropout _lowerCAmelCase : List[str] = final_dropout _lowerCAmelCase : int = layerdrop _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = vocab_size _lowerCAmelCase : Optional[Any] = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : str = apply_spec_augment _lowerCAmelCase : Optional[Any] = mask_time_prob _lowerCAmelCase : Optional[int] = mask_time_length _lowerCAmelCase : List[str] = mask_time_min_masks _lowerCAmelCase : Optional[int] = mask_feature_prob _lowerCAmelCase : Optional[int] = mask_feature_length _lowerCAmelCase : List[str] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : Union[str, Any] = num_codevectors_per_group _lowerCAmelCase : str = num_codevector_groups _lowerCAmelCase : Optional[int] = contrastive_logits_temperature _lowerCAmelCase : Optional[int] = feat_quantizer_dropout _lowerCAmelCase : Optional[int] = num_negatives _lowerCAmelCase : Union[str, Any] = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Tuple = ctc_loss_reduction _lowerCAmelCase : Tuple = ctc_zero_infinity # adapter _lowerCAmelCase : List[Any] = add_adapter _lowerCAmelCase : List[str] = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[str] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : Tuple = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : str = list(__a) _lowerCAmelCase : Union[str, Any] = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
36
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _lowerCamelCase : int = logging.get_logger(__name__) @dataclass class lowercase ( a ): lowercase__ : Tuple = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self : str , **_UpperCamelCase : Dict ) -> Tuple: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE = deprecated_arg[3:] SCREAMING_SNAKE_CASE = not kwargs.pop(_UpperCamelCase ) logger.warning( F"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" F" {positive_arg}={kwargs[positive_arg]}" ) SCREAMING_SNAKE_CASE = kwargs.pop("tpu_name" , self.tpu_name ) SCREAMING_SNAKE_CASE = kwargs.pop("device_idx" , self.device_idx ) SCREAMING_SNAKE_CASE = kwargs.pop("eager_mode" , self.eager_mode ) SCREAMING_SNAKE_CASE = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**_UpperCamelCase ) lowercase__ : str = field( default=a , metadata={"""help""": """Name of TPU"""} , ) lowercase__ : int = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) lowercase__ : bool = field(default=a , metadata={"""help""": """Benchmark models in eager model."""} ) lowercase__ : bool = field( default=a , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def __snake_case( self : Optional[Any] ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["tf"] ) SCREAMING_SNAKE_CASE = None if self.tpu: try: if self.tpu_name: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: SCREAMING_SNAKE_CASE = None return tpu @cached_property def __snake_case( self : List[Any] ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) SCREAMING_SNAKE_CASE = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=F"/gpu:{self.device_idx}" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=F"/cpu:{self.device_idx}" ) return strategy @property def __snake_case( self : Union[str, Any] ) -> bool: '''simple docstring''' requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def __snake_case( self : Optional[int] ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ["tf"] ) return self._setup_strategy @property def __snake_case( self : Dict ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def __snake_case( self : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __snake_case( self : Optional[int] ) -> bool: '''simple docstring''' return self.n_gpu > 0
206
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : int = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } _lowerCamelCase : Tuple = {'''allegro/herbert-base-cased''': 5_14} _lowerCamelCase : Optional[int] = {} class lowercase ( a ): lowercase__ : List[str] = VOCAB_FILES_NAMES lowercase__ : str = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Tuple = PRETRAINED_INIT_CONFIGURATION lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : str = HerbertTokenizer def __init__( self : Dict , _UpperCamelCase : Any=None , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Optional[int]="<s>" , _UpperCamelCase : Union[str, Any]="<unk>" , _UpperCamelCase : List[str]="<pad>" , _UpperCamelCase : List[str]="<mask>" , _UpperCamelCase : Tuple="</s>" , **_UpperCamelCase : Any , ) -> str: '''simple docstring''' super().__init__( _UpperCamelCase , _UpperCamelCase , tokenizer_file=_UpperCamelCase , cls_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , sep_token=_UpperCamelCase , **_UpperCamelCase , ) def __snake_case( self : Optional[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __snake_case( self : Any , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def __snake_case( self : Union[str, Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case( self : str , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
206
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A , A , A , A , A , A , A , ) -> str: super().__init__() self.register_modules( vae=A , text_encoder=A , tokenizer=A , unet=A , scheduler=A , safety_checker=A , feature_extractor=A , ) def snake_case_( self , A = "auto" ) -> Optional[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _SCREAMING_SNAKE_CASE = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def snake_case_( self ) -> List[Any]: self.enable_attention_slicing(A ) @torch.no_grad() def __call__( self , A , A = 512 , A = 512 , A = 50 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , A = None , **A , ) -> List[str]: if isinstance(A , A ): _SCREAMING_SNAKE_CASE = 1 elif isinstance(A , A ): _SCREAMING_SNAKE_CASE = len(A ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(A )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(A )}.' ) # get prompt text embeddings _SCREAMING_SNAKE_CASE = self.tokenizer( A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) _SCREAMING_SNAKE_CASE = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) _SCREAMING_SNAKE_CASE = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: _SCREAMING_SNAKE_CASE = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = text_embeddings.shape _SCREAMING_SNAKE_CASE = text_embeddings.repeat(1 , A , 1 ) _SCREAMING_SNAKE_CASE = text_embeddings.view(bs_embed * num_images_per_prompt , A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _SCREAMING_SNAKE_CASE = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE = 42 if negative_prompt is None: _SCREAMING_SNAKE_CASE = [""""""] elif type(A ) is not type(A ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(A )} !=' f' {type(A )}.' ) elif isinstance(A , A ): _SCREAMING_SNAKE_CASE = [negative_prompt] elif batch_size != len(A ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(A )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: _SCREAMING_SNAKE_CASE = negative_prompt _SCREAMING_SNAKE_CASE = text_input_ids.shape[-1] _SCREAMING_SNAKE_CASE = self.tokenizer( A , padding="""max_length""" , max_length=A , truncation=A , return_tensors="""pt""" , ) _SCREAMING_SNAKE_CASE = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _SCREAMING_SNAKE_CASE = uncond_embeddings.shape[1] _SCREAMING_SNAKE_CASE = uncond_embeddings.repeat(A , A , 1 ) _SCREAMING_SNAKE_CASE = uncond_embeddings.view(batch_size * num_images_per_prompt , A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _SCREAMING_SNAKE_CASE = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _SCREAMING_SNAKE_CASE = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _SCREAMING_SNAKE_CASE = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) _SCREAMING_SNAKE_CASE = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _SCREAMING_SNAKE_CASE = torch.randn( A , generator=A , device="""cpu""" , dtype=A ).to(self.device ) _SCREAMING_SNAKE_CASE = torch.randn(A , generator=A , device="""cpu""" , dtype=A ).to( self.device ) else: _SCREAMING_SNAKE_CASE = torch.randn( A , generator=A , device=self.device , dtype=A ) _SCREAMING_SNAKE_CASE = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents_reference.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) _SCREAMING_SNAKE_CASE = latents_reference.to(self.device ) _SCREAMING_SNAKE_CASE = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images _SCREAMING_SNAKE_CASE = (latents_shape[3] - latents_shape_reference[3]) // 2 _SCREAMING_SNAKE_CASE = (latents_shape[2] - latents_shape_reference[2]) // 2 _SCREAMING_SNAKE_CASE = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx _SCREAMING_SNAKE_CASE = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy _SCREAMING_SNAKE_CASE = 0 if dx < 0 else dx _SCREAMING_SNAKE_CASE = 0 if dy < 0 else dy _SCREAMING_SNAKE_CASE = max(-dx , 0 ) _SCREAMING_SNAKE_CASE = max(-dy , 0 ) # import pdb # pdb.set_trace() _SCREAMING_SNAKE_CASE = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _SCREAMING_SNAKE_CASE = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _SCREAMING_SNAKE_CASE = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _SCREAMING_SNAKE_CASE = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _SCREAMING_SNAKE_CASE = {} if accepts_eta: _SCREAMING_SNAKE_CASE = eta for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance _SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _SCREAMING_SNAKE_CASE = self.scheduler.scale_model_input(A , A ) # predict the noise residual _SCREAMING_SNAKE_CASE = self.unet(A , A , encoder_hidden_states=A ).sample # perform guidance if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) _SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _SCREAMING_SNAKE_CASE = self.scheduler.step(A , A , A , **A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A , A ) _SCREAMING_SNAKE_CASE = 1 / 0.1_8215 * latents _SCREAMING_SNAKE_CASE = self.vae.decode(A ).sample _SCREAMING_SNAKE_CASE = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: _SCREAMING_SNAKE_CASE = self.feature_extractor(self.numpy_to_pil(A ) , return_tensors="""pt""" ).to( self.device ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.safety_checker( images=A , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: _SCREAMING_SNAKE_CASE = None if output_type == "pil": _SCREAMING_SNAKE_CASE = self.numpy_to_pil(A ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
58
'''simple docstring''' import argparse import copy def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = {} with open(__magic_name__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: UpperCAmelCase : List[Any] = [] _list.append([line.split()[1], line.split()[2]] ) UpperCAmelCase : Tuple = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: UpperCAmelCase : Any = [] _list.append([line.split()[0], line.split()[2]] ) UpperCAmelCase : int = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' with open(__magic_name__ ) as f: UpperCAmelCase : List[str] = f.read(1 ) UpperCAmelCase : List[Any] = start_node UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Any = start_node UpperCAmelCase : Optional[Any] = 0 while visiting not in first_solution: UpperCAmelCase : Optional[Any] = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__magic_name__ ) and k[0] not in first_solution: UpperCAmelCase : Tuple = k[1] UpperCAmelCase : Dict = k[0] first_solution.append(__magic_name__ ) UpperCAmelCase : int = distance_of_first_solution + int(__magic_name__ ) UpperCAmelCase : str = best_node first_solution.append(__magic_name__ ) UpperCAmelCase : int = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 UpperCAmelCase : str = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [] for n in solution[1:-1]: UpperCAmelCase : Any = solution.index(__magic_name__ ) for kn in solution[1:-1]: UpperCAmelCase : Dict = solution.index(__magic_name__ ) if n == kn: continue UpperCAmelCase : Tuple = copy.deepcopy(__magic_name__ ) UpperCAmelCase : Optional[int] = kn UpperCAmelCase : List[str] = n UpperCAmelCase : str = 0 for k in _tmp[:-1]: UpperCAmelCase : List[Any] = _tmp[_tmp.index(__magic_name__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: UpperCAmelCase : List[Any] = distance + int(i[1] ) _tmp.append(__magic_name__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) UpperCAmelCase : List[str] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __magic_name__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[Any] = 1 UpperCAmelCase : List[str] = first_solution UpperCAmelCase : str = [] UpperCAmelCase : Union[str, Any] = distance_of_first_solution UpperCAmelCase : Union[str, Any] = solution while count <= iters: UpperCAmelCase : int = find_neighborhood(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = 0 UpperCAmelCase : List[str] = neighborhood[index_of_best_solution] UpperCAmelCase : Dict = len(__magic_name__ ) - 1 UpperCAmelCase : Dict = False while not found: UpperCAmelCase : List[Any] = 0 while i < len(__magic_name__ ): if best_solution[i] != solution[i]: UpperCAmelCase : int = best_solution[i] UpperCAmelCase : Optional[int] = solution[i] break UpperCAmelCase : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) UpperCAmelCase : List[str] = True UpperCAmelCase : List[Any] = best_solution[:-1] UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: UpperCAmelCase : Union[str, Any] = cost UpperCAmelCase : Tuple = solution else: UpperCAmelCase : Optional[Any] = index_of_best_solution + 1 UpperCAmelCase : str = neighborhood[index_of_best_solution] if len(__magic_name__ ) >= size: tabu_list.pop(0 ) UpperCAmelCase : int = count + 1 return best_solution_ever, best_cost def lowercase ( __magic_name__=None ): '''simple docstring''' UpperCAmelCase : Dict = generate_neighbours(args.File ) UpperCAmelCase , UpperCAmelCase : Any = generate_first_solution( args.File , __magic_name__ ) UpperCAmelCase , UpperCAmelCase : Any = tabu_search( __magic_name__ , __magic_name__ , __magic_name__ , args.Iterations , args.Size , ) print(F"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
311
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case__ : List[str] = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys snake_case__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
274
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Optional[Any] = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :List[str] = '''autoformer''' lowerCamelCase_ :Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , snake_case_ = None , snake_case_ = None , snake_case_ = "student_t" , snake_case_ = "nll" , snake_case_ = 1 , snake_case_ = [1, 2, 3, 4, 5, 6, 7] , snake_case_ = True , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = 6_4 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 3_2 , snake_case_ = 3_2 , snake_case_ = "gelu" , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 1_0_0 , snake_case_ = 0.02 , snake_case_ = True , snake_case_=True , snake_case_ = 1_0 , snake_case_ = 2_5 , snake_case_ = 3 , **snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = prediction_length UpperCAmelCase_ : List[str] = context_length if context_length is not None else prediction_length UpperCAmelCase_ : Optional[int] = distribution_output UpperCAmelCase_ : Optional[int] = loss UpperCAmelCase_ : Union[str, Any] = input_size UpperCAmelCase_ : int = num_time_features UpperCAmelCase_ : List[str] = lags_sequence UpperCAmelCase_ : Any = scaling UpperCAmelCase_ : Any = num_dynamic_real_features UpperCAmelCase_ : int = num_static_real_features UpperCAmelCase_ : Optional[Any] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase_ : List[Any] = cardinality else: UpperCAmelCase_ : Optional[int] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase_ : List[str] = embedding_dimension else: UpperCAmelCase_ : List[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase_ : List[str] = num_parallel_samples # Transformer architecture configuration UpperCAmelCase_ : Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase_ : str = d_model UpperCAmelCase_ : str = encoder_attention_heads UpperCAmelCase_ : str = decoder_attention_heads UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : str = decoder_ffn_dim UpperCAmelCase_ : str = encoder_layers UpperCAmelCase_ : str = decoder_layers UpperCAmelCase_ : str = dropout UpperCAmelCase_ : Optional[int] = attention_dropout UpperCAmelCase_ : Tuple = activation_dropout UpperCAmelCase_ : Any = encoder_layerdrop UpperCAmelCase_ : Tuple = decoder_layerdrop UpperCAmelCase_ : List[str] = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Union[str, Any] = use_cache # Autoformer UpperCAmelCase_ : Any = label_length UpperCAmelCase_ : Union[str, Any] = moving_average UpperCAmelCase_ : Tuple = autocorrelation_factor super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def _UpperCamelCase ( self ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
274
1
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowercase_ = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowercase_ = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowercase_ = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowercase_ = { """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } lowercase_ = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } lowercase_ = { """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def lowerCamelCase ( __lowerCamelCase : Dict ) ->Optional[int]: if isinstance(__lowerCamelCase , __lowerCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int]=False ) ->List[Any]: _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.0.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.0.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.2.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.2.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.emb_layers.1.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.emb_layers.1.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.0.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.0.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.3.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.3.bias'] if has_skip: _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.skip_connection.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.skip_connection.bias'] return new_checkpoint def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any]=None ) ->int: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 , dim=0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 , dim=0 ) _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.norm.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.norm.bias'] _SCREAMING_SNAKE_CASE = weight_q.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = bias_q.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = weight_k.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = bias_k.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = weight_v.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = bias_v.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = ( checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Tuple ) ->List[str]: _SCREAMING_SNAKE_CASE = torch.load(__lowerCamelCase , map_location="""cpu""" ) _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.0.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.0.bias"""] _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.2.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: _SCREAMING_SNAKE_CASE = checkpoint["""label_emb.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""input_blocks.0.0.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""input_blocks.0.0.bias"""] _SCREAMING_SNAKE_CASE = unet_config["""down_block_types"""] _SCREAMING_SNAKE_CASE = unet_config["""layers_per_block"""] _SCREAMING_SNAKE_CASE = unet_config["""attention_head_dim"""] _SCREAMING_SNAKE_CASE = unet_config["""block_out_channels"""] _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = channels_list[0] for i, layer_type in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = channels_list[i] _SCREAMING_SNAKE_CASE = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = True if j == 0 and downsample_block_has_skip else False _SCREAMING_SNAKE_CASE = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_skip=__lowerCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = True if j == 0 and downsample_block_has_skip else False _SCREAMING_SNAKE_CASE = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_skip=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.attentions.{j}' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.1' _SCREAMING_SNAKE_CASE = convert_attention( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) current_layer += 1 if i != len(__lowerCamelCase ) - 1: _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.downsamplers.0' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) current_layer += 1 _SCREAMING_SNAKE_CASE = current_channels # hardcoded the mid-block for now _SCREAMING_SNAKE_CASE = """mid_block.resnets.0""" _SCREAMING_SNAKE_CASE = """middle_block.0""" _SCREAMING_SNAKE_CASE = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = """mid_block.attentions.0""" _SCREAMING_SNAKE_CASE = """middle_block.1""" _SCREAMING_SNAKE_CASE = convert_attention(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = """mid_block.resnets.1""" _SCREAMING_SNAKE_CASE = """middle_block.2""" _SCREAMING_SNAKE_CASE = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = unet_config["""up_block_types"""] for i, layer_type in enumerate(__lowerCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_skip=__lowerCamelCase ) current_layer += 1 if i != len(__lowerCamelCase ) - 1: _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.upsamplers.0' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer-1}.1' _SCREAMING_SNAKE_CASE = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_skip=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.attentions.{j}' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer}.1' _SCREAMING_SNAKE_CASE = convert_attention( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) current_layer += 1 if i != len(__lowerCamelCase ) - 1: _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.upsamplers.0' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer-1}.2' _SCREAMING_SNAKE_CASE = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = checkpoint["""out.0.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""out.0.bias"""] _SCREAMING_SNAKE_CASE = checkpoint["""out.2.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowercase_ = parser.parse_args() lowercase_ = strabool(args.class_cond) lowercase_ = os.path.basename(args.unet_path) print(f"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: lowercase_ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowercase_ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowercase_ = TEST_UNET_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: lowercase_ = None lowercase_ = con_pt_to_diffuser(args.unet_path, unet_config) lowercase_ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowercase_ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowercase_ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowercase_ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") lowercase_ = CMStochasticIterativeScheduler(**scheduler_config) lowercase_ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
58
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : '''simple docstring''' def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ): """simple docstring""" lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = image_size lowerCamelCase = patch_size lowerCamelCase = num_channels lowerCamelCase = is_training lowerCamelCase = use_labels lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = type_sequence_label_size lowerCamelCase = initializer_range lowerCamelCase = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase = (image_size // patch_size) ** 2 lowerCamelCase = num_patches + 1 def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self ): """simple docstring""" return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = ViTMSNModel(config=_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = self.type_sequence_label_size lowerCamelCase = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a , labels=_a ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase = 1 lowerCamelCase = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase = config_and_inputs lowerCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = ViTMSNModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def _lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def _lowerCAmelCase ( self ): """simple docstring""" pass def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(_a ) lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase = [*signature.parameters.keys()] lowerCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def _lowerCAmelCase ( self ): """simple docstring""" for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def a__ ( ) -> Any: lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase ( self ): """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def _lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(2 ) lowerCamelCase = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a ) lowerCamelCase = self.default_image_processor lowerCamelCase = prepare_img() lowerCamelCase = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): lowerCamelCase = model(**_a ) # verify the logits lowerCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) lowerCamelCase = torch.tensor([-0.0_803, -0.4_454, -0.2_375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
291
0
def lowerCAmelCase_ ( __a = 100 ) -> int: """simple docstring""" lowerCamelCase__: Optional[Any] =set() lowerCamelCase__: Any =0 lowerCamelCase__: int =n + 1 # maximum limit for a in range(2 , __a ): for b in range(2 , __a ): lowerCamelCase__: Tuple =a**b # calculates the current power collect_powers.add(__a ) # adds the result to the set return len(__a ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
273
def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" assert x is not None assert y is not None lowerCamelCase__: Any =len(__a ) lowerCamelCase__: int =len(__a ) # declaring the array for storing the dp values lowerCamelCase__: List[Any] =[[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): lowerCamelCase__: str =1 if x[i - 1] == y[j - 1] else 0 lowerCamelCase__: str =max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) lowerCamelCase__: Any ="" lowerCamelCase__ , lowerCamelCase__: str =m, n while i > 0 and j > 0: lowerCamelCase__: Union[str, Any] =1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: lowerCamelCase__: Any =x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": __A = "AGGTAB" __A = "GXTXAYB" __A = 4 __A = "GTAB" __A , __A = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
273
1
"""simple docstring""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = name lowerCAmelCase : str = value lowerCAmelCase : Any = weight def __repr__( self ): """simple docstring""" return f"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowercase__ ( self ): """simple docstring""" return self.value def lowercase__ ( self ): """simple docstring""" return self.name def lowercase__ ( self ): """simple docstring""" return self.weight def lowercase__ ( self ): """simple docstring""" return self.value / self.weight def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : int = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Tuple = sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = [] lowerCAmelCase , lowerCAmelCase : List[Any] = 0.0, 0.0 for i in range(len(SCREAMING_SNAKE_CASE ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def a__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
108
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' if height >= 1: move_tower(height - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) move_disk(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) move_tower(height - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' print("moving disk from" , SCREAMING_SNAKE_CASE , "to" , SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = int(input("Height of hanoi: " ).strip() ) move_tower(SCREAMING_SNAKE_CASE , "A" , "B" , "C" ) if __name__ == "__main__": main()
108
1
import re def __lowercase ( _UpperCamelCase ) ->bool: """simple docstring""" lowercase : Any = re.compile( R'''^(?:0|94|\+94|0{2}94)''' R'''7(0|1|2|4|5|6|7|8)''' R'''(-| |)''' R'''\d{7}$''' ) return bool(re.search(lowerCAmelCase__, lowerCAmelCase__ ) ) if __name__ == "__main__": __a = "0094702343221" print(is_sri_lankan_phone_number(phone))
366
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __SCREAMING_SNAKE_CASE ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1.0 , SCREAMING_SNAKE_CASE__ = None , ): super().__init__() lowercase : str = initial_learning_rate lowercase : Optional[Any] = warmup_steps lowercase : Union[str, Any] = power lowercase : List[str] = decay_schedule_fn lowercase : List[str] = name def __call__( self , SCREAMING_SNAKE_CASE__ ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowercase : Optional[Any] = tf.cast(SCREAMING_SNAKE_CASE__ , tf.floataa ) lowercase : Tuple = tf.cast(self.warmup_steps , tf.floataa ) lowercase : Optional[Any] = global_step_float / warmup_steps_float lowercase : Union[str, Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE__ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE__ , ) def __lowerCamelCase ( self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase = 0.0, _UpperCamelCase = 0.9, _UpperCamelCase = 0.9_9_9, _UpperCamelCase = 1e-8, _UpperCamelCase = None, _UpperCamelCase = None, _UpperCamelCase = 0.0, _UpperCamelCase = 1.0, _UpperCamelCase = None, ) ->Any: """simple docstring""" lowercase : List[str] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_UpperCamelCase, decay_steps=num_train_steps - num_warmup_steps, end_learning_rate=init_lr * min_lr_ratio, power=_UpperCamelCase, ) if num_warmup_steps: lowercase : Tuple = WarmUp( initial_learning_rate=_UpperCamelCase, decay_schedule_fn=_UpperCamelCase, warmup_steps=_UpperCamelCase, ) if weight_decay_rate > 0.0: lowercase : Tuple = AdamWeightDecay( learning_rate=_UpperCamelCase, weight_decay_rate=_UpperCamelCase, beta_a=_UpperCamelCase, beta_a=_UpperCamelCase, epsilon=_UpperCamelCase, clipnorm=_UpperCamelCase, global_clipnorm=_UpperCamelCase, exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''], include_in_weight_decay=_UpperCamelCase, ) else: lowercase : Union[str, Any] = tf.keras.optimizers.Adam( learning_rate=_UpperCamelCase, beta_a=_UpperCamelCase, beta_a=_UpperCamelCase, epsilon=_UpperCamelCase, clipnorm=_UpperCamelCase, global_clipnorm=_UpperCamelCase, ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , SCREAMING_SNAKE_CASE__ = 0.001 , SCREAMING_SNAKE_CASE__ = 0.9 , SCREAMING_SNAKE_CASE__ = 0.999 , SCREAMING_SNAKE_CASE__ = 1E-7 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE__ , ): super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowercase : str = weight_decay_rate lowercase : int = include_in_weight_decay lowercase : str = exclude_from_weight_decay @classmethod def __lowerCamelCase ( cls , SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = {'''WarmUp''': WarmUp} return super(SCREAMING_SNAKE_CASE__ , cls ).from_config(SCREAMING_SNAKE_CASE__ , custom_objects=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): super(SCREAMING_SNAKE_CASE__ , self )._prepare_local(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ ): lowercase , lowercase : Tuple = list(zip(*SCREAMING_SNAKE_CASE__ ) ) return super(SCREAMING_SNAKE_CASE__ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , name=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowercase : Tuple = apply_state or {} lowercase : Any = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowercase : Dict = self._fallback_apply_state(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): lowercase , lowercase : int = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE__ ) lowercase : str = self._decay_weights_op(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE__ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): lowercase , lowercase : Union[str, Any] = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = self._decay_weights_op(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE__ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Dict = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) is not None: return False return True class __SCREAMING_SNAKE_CASE ( A__ ): def __init__( self ): lowercase : Optional[Any] = [] lowercase : Tuple = None @property def __lowerCamelCase ( self ): if self._accum_steps is None: lowercase : Any = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def __lowerCamelCase ( self ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , SCREAMING_SNAKE_CASE__ ): if not self._gradients: lowercase : Optional[Any] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(SCREAMING_SNAKE_CASE__ ) , trainable=SCREAMING_SNAKE_CASE__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(SCREAMING_SNAKE_CASE__ ) != len(self._gradients ): raise ValueError(f"""Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE__ )}""" ) for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(SCREAMING_SNAKE_CASE__ ) self._accum_steps.assign_add(1 ) def __lowerCamelCase ( self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE__ ) )
173
0
'''simple docstring''' def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Optional[Any] = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def a ( ): '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
206
'''simple docstring''' from __future__ import annotations import math def a ( lowerCamelCase__ ): '''simple docstring''' if num <= 0: A_ : List[Any] = f'{num}: Invalid input, please enter a positive integer.' raise ValueError(lowerCamelCase__ ) A_ : Dict = [True] * (num + 1) A_ : List[Any] = [] A_ : Tuple = 2 A_ : Optional[int] = int(math.sqrt(lowerCamelCase__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCamelCase__ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCamelCase__ ): if sieve[i] is True: A_ : List[Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCamelCase__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
206
1
"""simple docstring""" from collections import namedtuple UpperCAmelCase = namedtuple("""from_to""", """from_ to""") UpperCAmelCase = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.0_01, 1_000), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.0_04_54, 264.172), """cubicyard""": from_to(0.7_64_55, 1.3_07_95), """cubicfoot""": from_to(0.0_28, 35.31_47), """cup""": from_to(0.0_00_23_65_88, 4_226.75), } def lowercase ( a__ : float , a__ : str , a__ : str ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ''', '''.join(a__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ''', '''.join(a__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class UpperCAmelCase_ ( _lowercase): snake_case__ = '''deta''' snake_case__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Dict , __UpperCamelCase : List[str]=None , __UpperCamelCase : Any=900 , __UpperCamelCase : Dict=2048 , __UpperCamelCase : Dict=6 , __UpperCamelCase : Union[str, Any]=2048 , __UpperCamelCase : str=8 , __UpperCamelCase : List[Any]=6 , __UpperCamelCase : Union[str, Any]=1024 , __UpperCamelCase : Optional[int]=8 , __UpperCamelCase : Optional[Any]=0.0 , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Any="relu" , __UpperCamelCase : Dict=256 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : int=0.0 , __UpperCamelCase : Any=0.0 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Union[str, Any]=1.0 , __UpperCamelCase : Dict=True , __UpperCamelCase : str=False , __UpperCamelCase : List[Any]="sine" , __UpperCamelCase : List[Any]=5 , __UpperCamelCase : Dict=4 , __UpperCamelCase : int=4 , __UpperCamelCase : Dict=True , __UpperCamelCase : List[Any]=300 , __UpperCamelCase : Any=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : List[str]=1 , __UpperCamelCase : Optional[Any]=5 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : Tuple=1 , __UpperCamelCase : int=1 , __UpperCamelCase : str=5 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Tuple=0.2_5 , **__UpperCamelCase : Union[str, Any] , ) -> Optional[int]: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase = backbone_config.pop('''model_type''' ) _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__UpperCamelCase ) _UpperCamelCase = backbone_config _UpperCamelCase = num_queries _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type # deformable attributes _UpperCamelCase = num_feature_levels _UpperCamelCase = encoder_n_points _UpperCamelCase = decoder_n_points _UpperCamelCase = two_stage _UpperCamelCase = two_stage_num_proposals _UpperCamelCase = with_box_refine _UpperCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient _UpperCamelCase = focal_alpha super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def _UpperCamelCase ( self : Optional[Any] ) -> int: return self.encoder_attention_heads @property def _UpperCamelCase ( self : List[str] ) -> int: return self.d_model def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
54
0
from sklearn.metrics import fa_score import datasets A : Any = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' A : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' A : List[Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A (datasets.Metric ): '''simple docstring''' def a_ ( self : Optional[int] ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def a_ ( self : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Any="binary" , __lowerCAmelCase : Optional[int]=None ) -> List[Any]: """simple docstring""" A__ = fa_score( __lowerCAmelCase , __lowerCAmelCase , labels=__lowerCAmelCase , pos_label=__lowerCAmelCase , average=__lowerCAmelCase , sample_weight=__lowerCAmelCase ) return {"f1": float(__lowerCAmelCase ) if score.size == 1 else score}
274
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A : str = logging.get_logger(__name__) A : Union[str, Any] = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Optional[Any] = '''layoutlmv3''' def __init__( self : Tuple , __lowerCAmelCase : Optional[int]=5_02_65 , __lowerCAmelCase : Tuple=7_68 , __lowerCAmelCase : Union[str, Any]=12 , __lowerCAmelCase : Any=12 , __lowerCAmelCase : List[Any]=30_72 , __lowerCAmelCase : Optional[int]="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Dict=5_12 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Dict=0.0_2 , __lowerCAmelCase : List[str]=1e-5 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : int=0 , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : Tuple=10_24 , __lowerCAmelCase : List[str]=1_28 , __lowerCAmelCase : Optional[int]=1_28 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Optional[Any]=32 , __lowerCAmelCase : Any=1_28 , __lowerCAmelCase : str=64 , __lowerCAmelCase : Optional[int]=2_56 , __lowerCAmelCase : int=True , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : int=2_24 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Dict=None , **__lowerCAmelCase : Optional[Any] , ) -> Dict: """simple docstring""" super().__init__( vocab_size=__lowerCAmelCase , hidden_size=__lowerCAmelCase , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , intermediate_size=__lowerCAmelCase , hidden_act=__lowerCAmelCase , hidden_dropout_prob=__lowerCAmelCase , attention_probs_dropout_prob=__lowerCAmelCase , max_position_embeddings=__lowerCAmelCase , type_vocab_size=__lowerCAmelCase , initializer_range=__lowerCAmelCase , layer_norm_eps=__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) A__ = max_ad_position_embeddings A__ = coordinate_size A__ = shape_size A__ = has_relative_attention_bias A__ = rel_pos_bins A__ = max_rel_pos A__ = has_spatial_attention_bias A__ = rel_ad_pos_bins A__ = max_rel_ad_pos A__ = text_embed A__ = visual_embed A__ = input_size A__ = num_channels A__ = patch_size A__ = classifier_dropout class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : List[str] = version.parse('''1.12''' ) @property def a_ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def a_ ( self : Optional[int] ) -> float: """simple docstring""" return 1e-5 @property def a_ ( self : Tuple ) -> int: """simple docstring""" return 12 def a_ ( self : str , __lowerCAmelCase : "ProcessorMixin" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 40 , __lowerCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __lowerCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A__ = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A__ = processor.tokenizer.num_special_tokens_to_add(__lowerCAmelCase ) A__ = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence A__ = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes A__ = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) A__ = self._generate_dummy_images(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A__ = dict( processor( __lowerCAmelCase , text=__lowerCAmelCase , boxes=__lowerCAmelCase , return_tensors=__lowerCAmelCase , ) ) return inputs
274
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowercase__ :Any = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if isinstance(lowerCAmelCase__ , torch.Tensor ): return image elif isinstance(lowerCAmelCase__ , PIL.Image.Image ): lowercase = [image] lowercase = [trans(img.convert('''RGB''' ) ) for img in image] lowercase = torch.stack(lowerCAmelCase__ ) return image class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__ ,A__): super().__init__() # make sure scheduler can always be converted to DDIM lowercase = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=A__ ,scheduler=A__) def A__ ( self ,A__): if strength < 0 or strength > 1: raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') def A__ ( self ,A__ ,A__ ,A__): # get the original timestep using init_timestep lowercase = min(int(num_inference_steps * strength) ,A__) lowercase = max(num_inference_steps - init_timestep ,0) lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__=None): if not isinstance(A__ ,(torch.Tensor, PIL.Image.Image, list)): raise ValueError( f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(A__)}') lowercase = image.to(device=A__ ,dtype=A__) if isinstance(A__ ,A__) and len(A__) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(A__)}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.') lowercase = init_latents.shape lowercase = randn_tensor(A__ ,generator=A__ ,device=A__ ,dtype=A__) # get latents print('''add noise to latents at timestep''' ,A__) lowercase = self.scheduler.add_noise(A__ ,A__ ,A__) lowercase = init_latents return latents @torch.no_grad() def __call__( self ,A__ = None ,A__ = 0.8 ,A__ = 1 ,A__ = None ,A__ = 0.0 ,A__ = 5_0 ,A__ = None ,A__ = "pil" ,A__ = True ,): self.check_inputs(A__) # 2. Preprocess image lowercase = preprocess(A__) # 3. set timesteps self.scheduler.set_timesteps(A__ ,device=self.device) lowercase , lowercase = self.get_timesteps(A__ ,A__ ,self.device) lowercase = timesteps[:1].repeat(A__) # 4. Prepare latent variables lowercase = self.prepare_latents(A__ ,A__ ,A__ ,self.unet.dtype ,self.device ,A__) lowercase = latents # 5. Denoising loop for t in self.progress_bar(A__): # 1. predict noise model_output lowercase = self.unet(A__ ,A__).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase = self.scheduler.step( A__ ,A__ ,A__ ,eta=A__ ,use_clipped_model_output=A__ ,generator=A__ ,).prev_sample lowercase = (image / 2 + 0.5).clamp(0 ,1) lowercase = image.cpu().permute(0 ,2 ,3 ,1).numpy() if output_type == "pil": lowercase = self.numpy_to_pil(A__) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=A__)
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowercase__ :str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :str = ["ViTFeatureExtractor"] lowercase__ :int = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :Any = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :Optional[int] = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowercase__ :Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
97
0
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Dict: '''simple docstring''' UpperCAmelCase = [False] * len(UpperCamelCase__ ) UpperCAmelCase = [-1] * len(UpperCamelCase__ ) def dfs(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase = True UpperCAmelCase = c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase__ , 1 - c ) for i in range(len(UpperCamelCase__ ) ): if not visited[i]: dfs(UpperCamelCase__ , 0 ) for i in range(len(UpperCamelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __A : List[Any] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
273
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_A , ) assert hasattr(self , '''env''' ) def _lowercase ( self , _A=1 ): '''simple docstring''' return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=_A , instance_type=self.instance_type , debugger_hook_config=_A , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def _lowercase ( self , _A ): '''simple docstring''' TrainingJobAnalytics(_A ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.create_estimator() # run training estimator.fit() # result dataframe UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _A )
273
1
'''simple docstring''' from statistics import mean import numpy as np def UpperCAmelCase ( lowerCamelCase_ :list , lowerCamelCase_ :list , lowerCamelCase_ :list , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : Optional[Any] = 0 # Number of processes finished snake_case_ : Dict = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. snake_case_ : List[str] = [0] * no_of_process # List to include calculation results snake_case_ : int = [0] * no_of_process # Sort by arrival time. snake_case_ : Any = [burst_time[i] for i in np.argsort(lowerCamelCase_ )] snake_case_ : Tuple = [process_name[i] for i in np.argsort(lowerCamelCase_ )] arrival_time.sort() while no_of_process > finished_process_count: snake_case_ : Tuple = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: snake_case_ : List[str] = arrival_time[i] snake_case_ : Optional[int] = 0 # Index showing the location of the process being performed snake_case_ : Union[str, Any] = 0 # Saves the current response ratio. snake_case_ : Union[str, Any] = 0 for i in range(0 , lowerCamelCase_ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: snake_case_ : Any = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: snake_case_ : Tuple = temp snake_case_ : Optional[Any] = i # Calculate the turn around time snake_case_ : List[Any] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. snake_case_ : Any = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def UpperCAmelCase ( lowerCamelCase_ :list , lowerCamelCase_ :list , lowerCamelCase_ :list , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : Union[str, Any] = [0] * no_of_process for i in range(0 , lowerCamelCase_ ): snake_case_ : Any = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": __A : Tuple = 5 __A : Dict = ['A', 'B', 'C', 'D', 'E'] __A : Dict = [1, 2, 3, 4, 5] __A : Dict = [1, 2, 3, 4, 5] __A : str = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) __A : int = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('Process name \tArrival time \tBurst time \tTurn around time \tWaiting time') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
366
'''simple docstring''' import re def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : List[Any] = re.compile( R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" ) return bool(re.search(lowerCamelCase_ , lowerCamelCase_ ) ) if __name__ == "__main__": __A : int = '0094702343221' print(is_sri_lankan_phone_number(phone))
8
0
lowercase__ :Tuple = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = set() # keep track of all the paths to be checked lowercase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowercase = queue.pop(0 ) # get the last node from the path lowercase = path[-1] if node not in explored: lowercase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowercase = list(lowerCAmelCase__ ) new_path.append(lowerCAmelCase__ ) queue.append(lowerCAmelCase__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowerCAmelCase__ ) # in case there's no path between the 2 nodes return [] def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowercase = [start] lowercase = set(lowerCAmelCase__ ) # Keep tab on distances from `start` node. lowercase = {start: 0, target: -1} while queue: lowercase = queue.pop(0 ) if node == target: lowercase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowerCAmelCase__ ) queue.append(lowerCAmelCase__ ) lowercase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
101
"""simple docstring""" from ..utils import DummyObject, requires_backends class a ( metaclass=UpperCAmelCase__ ): UpperCamelCase : Optional[int] = ['torch', 'torchsde'] def __init__( self : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] )
173
0
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Any = "align_text_model" def __init__( self : Optional[int] ,lowerCamelCase__ : int=30522 ,lowerCamelCase__ : str=768 ,lowerCamelCase__ : Tuple=12 ,lowerCamelCase__ : int=12 ,lowerCamelCase__ : Dict=3072 ,lowerCamelCase__ : Union[str, Any]="gelu" ,lowerCamelCase__ : List[Any]=0.1 ,lowerCamelCase__ : Union[str, Any]=0.1 ,lowerCamelCase__ : List[str]=512 ,lowerCamelCase__ : List[str]=2 ,lowerCamelCase__ : Dict=0.02 ,lowerCamelCase__ : Dict=1e-1_2 ,lowerCamelCase__ : Optional[int]=0 ,lowerCamelCase__ : Union[str, Any]="absolute" ,lowerCamelCase__ : Dict=True ,**lowerCamelCase__ : Dict ,) -> str: '''simple docstring''' super().__init__(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = pad_token_id @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] ,lowerCamelCase__ : Union[str, os.PathLike] ,**lowerCamelCase__ : Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = cls.get_config_dict(lowerCamelCase__ ,**lowerCamelCase__ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": SCREAMING_SNAKE_CASE = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCamelCase__ ,**lowerCamelCase__ ) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : List[Any] = "align_vision_model" def __init__( self : Optional[Any] ,lowerCamelCase__ : int = 3 ,lowerCamelCase__ : int = 600 ,lowerCamelCase__ : float = 2.0 ,lowerCamelCase__ : float = 3.1 ,lowerCamelCase__ : int = 8 ,lowerCamelCase__ : List[int] = [3, 3, 5, 3, 5, 5, 3] ,lowerCamelCase__ : List[int] = [32, 16, 24, 40, 80, 112, 192] ,lowerCamelCase__ : List[int] = [16, 24, 40, 80, 112, 192, 320] ,lowerCamelCase__ : List[int] = [] ,lowerCamelCase__ : List[int] = [1, 2, 2, 2, 1, 2, 1] ,lowerCamelCase__ : List[int] = [1, 2, 2, 3, 3, 4, 1] ,lowerCamelCase__ : List[int] = [1, 6, 6, 6, 6, 6, 6] ,lowerCamelCase__ : float = 0.25 ,lowerCamelCase__ : str = "swish" ,lowerCamelCase__ : int = 2560 ,lowerCamelCase__ : str = "mean" ,lowerCamelCase__ : float = 0.02 ,lowerCamelCase__ : float = 0.001 ,lowerCamelCase__ : float = 0.99 ,lowerCamelCase__ : float = 0.2 ,**lowerCamelCase__ : List[str] ,) -> List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = width_coefficient SCREAMING_SNAKE_CASE = depth_coefficient SCREAMING_SNAKE_CASE = depth_divisor SCREAMING_SNAKE_CASE = kernel_sizes SCREAMING_SNAKE_CASE = in_channels SCREAMING_SNAKE_CASE = out_channels SCREAMING_SNAKE_CASE = depthwise_padding SCREAMING_SNAKE_CASE = strides SCREAMING_SNAKE_CASE = num_block_repeats SCREAMING_SNAKE_CASE = expand_ratios SCREAMING_SNAKE_CASE = squeeze_expansion_ratio SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dim SCREAMING_SNAKE_CASE = pooling_type SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = batch_norm_eps SCREAMING_SNAKE_CASE = batch_norm_momentum SCREAMING_SNAKE_CASE = drop_connect_rate SCREAMING_SNAKE_CASE = sum(lowerCamelCase__ ) * 4 @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] ,lowerCamelCase__ : Union[str, os.PathLike] ,**lowerCamelCase__ : int ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = cls.get_config_dict(lowerCamelCase__ ,**lowerCamelCase__ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": SCREAMING_SNAKE_CASE = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCamelCase__ ,**lowerCamelCase__ ) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[str, Any] = "align" __snake_case : Any = True def __init__( self : int ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : int=None ,lowerCamelCase__ : List[str]=640 ,lowerCamelCase__ : str=1.0 ,lowerCamelCase__ : int=0.02 ,**lowerCamelCase__ : List[Any] ,) -> Tuple: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if text_config is None: SCREAMING_SNAKE_CASE = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: SCREAMING_SNAKE_CASE = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) SCREAMING_SNAKE_CASE = AlignTextConfig(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AlignVisionConfig(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = projection_dim SCREAMING_SNAKE_CASE = temperature_init_value SCREAMING_SNAKE_CASE = initializer_range @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] ,lowerCamelCase__ : AlignTextConfig ,lowerCamelCase__ : AlignVisionConfig ,**lowerCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE = self.text_config.to_dict() SCREAMING_SNAKE_CASE = self.vision_config.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output
193
from PIL import Image def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Image: '''simple docstring''' def brightness(_SCREAMING_SNAKE_CASE ) -> float: return 1_28 + level + (c - 1_28) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 SCREAMING_SNAKE_CASE_ = change_brightness(img, 1_0_0) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
193
1
"""simple docstring""" from __future__ import annotations import math def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Tuple: if num <= 0: _lowerCAmelCase : Union[str, Any] = f"{num}: Invalid input, please enter a positive integer." raise ValueError(lowerCAmelCase_ ) _lowerCAmelCase : List[Any] = [True] * (num + 1) _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : str = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start ,num + 1 ,lowerCAmelCase_ ): if sieve[i] is True: _lowerCAmelCase : int = False start += 1 for j in range(end + 1 ,num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
44
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef a__ : Any = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' warnings.warn(lowerCAmelCase_ , lowerCAmelCase_ ) requires_backends(lowerCAmelCase_ , "sklearn" ) return (preds == labels).mean() def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' warnings.warn(lowerCAmelCase_ , lowerCAmelCase_ ) requires_backends(lowerCAmelCase_ , "sklearn" ) __SCREAMING_SNAKE_CASE = simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = fa_score(y_true=lowerCAmelCase_ , y_pred=lowerCAmelCase_ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' warnings.warn(lowerCAmelCase_ , lowerCAmelCase_ ) requires_backends(lowerCAmelCase_ , "sklearn" ) __SCREAMING_SNAKE_CASE = pearsonr(lowerCAmelCase_ , lowerCAmelCase_ )[0] __SCREAMING_SNAKE_CASE = spearmanr(lowerCAmelCase_ , lowerCAmelCase_ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' warnings.warn(lowerCAmelCase_ , lowerCAmelCase_ ) requires_backends(lowerCAmelCase_ , "sklearn" ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), f"""Predictions and labels have mismatched lengths {len(lowerCAmelCase_ )} and {len(lowerCAmelCase_ )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(lowerCAmelCase_ , lowerCAmelCase_ )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )} elif task_name == "mrpc": return acc_and_fa(lowerCAmelCase_ , lowerCAmelCase_ ) elif task_name == "sts-b": return pearson_and_spearman(lowerCAmelCase_ , lowerCAmelCase_ ) elif task_name == "qqp": return acc_and_fa(lowerCAmelCase_ , lowerCAmelCase_ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )} elif task_name == "qnli": return {"acc": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )} elif task_name == "rte": return {"acc": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )} elif task_name == "wnli": return {"acc": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )} elif task_name == "hans": return {"acc": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )} else: raise KeyError(lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' warnings.warn(lowerCAmelCase_ , lowerCAmelCase_ ) requires_backends(lowerCAmelCase_ , "sklearn" ) if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(lowerCAmelCase_ )} and {len(lowerCAmelCase_ )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )} else: raise KeyError(lowerCAmelCase_ )
54
0
'''simple docstring''' a_ : Optional[int] = { "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) a_ : Union[str, Any] = { "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 1_2, "Pm": 1_5, "Em": 1_8, "Zm": 2_1, "Ym": 2_4, } def _A (lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[int] ) -> float: '''simple docstring''' _a = from_type.lower().strip('s' ) _a = to_type.lower().strip('s' ) _a = UNIT_SYMBOL.get(__lowerCAmelCase , __lowerCAmelCase ) _a = UNIT_SYMBOL.get(__lowerCAmelCase , __lowerCAmelCase ) if from_sanitized not in METRIC_CONVERSION: _a = ( f'Invalid \'from_type\' value: {from_type!r}.\n' f'Conversion abbreviations are: {", ".join(__lowerCAmelCase )}' ) raise ValueError(__lowerCAmelCase ) if to_sanitized not in METRIC_CONVERSION: _a = ( f'Invalid \'to_type\' value: {to_type!r}.\n' f'Conversion abbreviations are: {", ".join(__lowerCAmelCase )}' ) raise ValueError(__lowerCAmelCase ) _a = METRIC_CONVERSION[from_sanitized] _a = METRIC_CONVERSION[to_sanitized] _a = 1 if from_exponent > to_exponent: _a = from_exponent - to_exponent else: _a = -(to_exponent - from_exponent) return value * pow(10 , __lowerCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
350
'''simple docstring''' from timeit import timeit def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) _a = 0 while number: number &= number - 1 result += 1 return result def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) _a = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def _A () -> None: '''simple docstring''' def do_benchmark(lowerCAmelCase__ :int ) -> None: _a = 'import __main__ as z' print(f'Benchmark when {number = }:' ) print(f'{get_set_bits_count_using_modulo_operator(lowerCAmelCase__ ) = }' ) _a = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=lowerCAmelCase__ ) print(f'timeit() runs in {timing} seconds' ) print(f'{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase__ ) = }' ) _a = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=lowerCAmelCase__ , ) print(f'timeit() runs in {timing} seconds' ) for number in (25, 37, 58, 0): do_benchmark(lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
104
0
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : List[str]=1 ) -> int: if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : List[Any]=0 ) -> str: _a : Optional[int] =[] for old_item in old_list: _a : Union[str, Any] =old_item.replace("""in_layers.0""" ,"""norm1""" ) _a : List[str] =new_item.replace("""in_layers.2""" ,"""conv1""" ) _a : Dict =new_item.replace("""out_layers.0""" ,"""norm2""" ) _a : Dict =new_item.replace("""out_layers.3""" ,"""conv2""" ) _a : Any =new_item.replace("""emb_layers.1""" ,"""time_emb_proj""" ) _a : Union[str, Any] =new_item.replace("""skip_connection""" ,"""conv_shortcut""" ) _a : List[str] =shave_segments(__a ,n_shave_prefix_segments=__a ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ,_UpperCAmelCase : Union[str, Any]=0 ) -> Dict: _a : Optional[int] =[] for old_item in old_list: _a : Tuple =old_item _a : Any =new_item.replace("""norm.weight""" ,"""group_norm.weight""" ) _a : List[Any] =new_item.replace("""norm.bias""" ,"""group_norm.bias""" ) _a : Union[str, Any] =new_item.replace("""proj_out.weight""" ,"""proj_attn.weight""" ) _a : Tuple =new_item.replace("""proj_out.bias""" ,"""proj_attn.bias""" ) _a : Optional[int] =shave_segments(__a ,n_shave_prefix_segments=__a ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Dict ,_UpperCAmelCase : str ,_UpperCAmelCase : str ,_UpperCAmelCase : Union[str, Any]=None ,_UpperCAmelCase : List[str]=None ,_UpperCAmelCase : int=None ) -> str: assert isinstance(__a ,__a ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _a : Any =old_checkpoint[path] _a : List[str] =old_tensor.shape[0] // 3 _a : Optional[Any] =(-1, channels) if len(old_tensor.shape ) == 3 else (-1) _a : int =old_tensor.shape[0] // config['''num_head_channels'''] // 3 _a : Dict =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _a : List[Any] =old_tensor.split(channels // num_heads ,dim=1 ) _a : Union[str, Any] =query.reshape(__a ) _a : List[Any] =key.reshape(__a ) _a : Union[str, Any] =value.reshape(__a ) for path in paths: _a : Tuple =path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _a : Dict =new_path.replace("""middle_block.0""" ,"""mid_block.resnets.0""" ) _a : List[str] =new_path.replace("""middle_block.1""" ,"""mid_block.attentions.0""" ) _a : str =new_path.replace("""middle_block.2""" ,"""mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _a : Tuple =new_path.replace(replacement["""old"""] ,replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _a : List[str] =old_checkpoint[path['''old''']][:, :, 0] else: _a : List[str] =old_checkpoint[path['''old''']] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : Optional[Any] ) -> int: _a : int ={} _a : Union[str, Any] =checkpoint['''time_embed.0.weight'''] _a : Tuple =checkpoint['''time_embed.0.bias'''] _a : Union[str, Any] =checkpoint['''time_embed.2.weight'''] _a : Union[str, Any] =checkpoint['''time_embed.2.bias'''] _a : List[str] =checkpoint['''input_blocks.0.0.weight'''] _a : Tuple =checkpoint['''input_blocks.0.0.bias'''] _a : Any =checkpoint['''out.0.weight'''] _a : Dict =checkpoint['''out.0.bias'''] _a : str =checkpoint['''out.2.weight'''] _a : List[Any] =checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only _a : Optional[Any] =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _a : Optional[int] ={ layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(__a ) } # Retrieves the keys for the middle blocks only _a : int =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _a : int ={ layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(__a ) } # Retrieves the keys for the output blocks only _a : List[str] =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _a : Any ={ layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(__a ) } for i in range(1 ,__a ): _a : Optional[int] =(i - 1) // (config['''num_res_blocks'''] + 1) _a : List[Any] =(i - 1) % (config['''num_res_blocks'''] + 1) _a : int =[key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] _a : Dict =[key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: _a : List[Any] =checkpoint[ F"input_blocks.{i}.0.op.weight" ] _a : Optional[Any] =checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue _a : List[Any] =renew_resnet_paths(__a ) _a : Union[str, Any] ={'''old''': F"input_blocks.{i}.0", '''new''': F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} _a : Union[str, Any] ={'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( __a ,__a ,__a ,additional_replacements=[meta_path, resnet_op] ,config=__a ) if len(__a ): _a : List[Any] =renew_attention_paths(__a ) _a : List[str] ={ '''old''': F"input_blocks.{i}.1", '''new''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } _a : Optional[Any] ={ F"input_blocks.{i}.1.qkv.bias": { '''key''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", '''query''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", '''value''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { '''key''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", '''query''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", '''value''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( __a ,__a ,__a ,additional_replacements=[meta_path] ,attention_paths_to_split=__a ,config=__a ,) _a : str =middle_blocks[0] _a : List[Any] =middle_blocks[1] _a : Optional[int] =middle_blocks[2] _a : List[str] =renew_resnet_paths(__a ) assign_to_checkpoint(__a ,__a ,__a ,config=__a ) _a : Optional[int] =renew_resnet_paths(__a ) assign_to_checkpoint(__a ,__a ,__a ,config=__a ) _a : List[str] =renew_attention_paths(__a ) _a : int ={ '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( __a ,__a ,__a ,attention_paths_to_split=__a ,config=__a ) for i in range(__a ): _a : List[str] =i // (config['''num_res_blocks'''] + 1) _a : Optional[Any] =i % (config['''num_res_blocks'''] + 1) _a : Optional[int] =[shave_segments(__a ,2 ) for name in output_blocks[i]] _a : Optional[int] ={} for layer in output_block_layers: _a : List[Any] =layer.split(""".""" )[0], shave_segments(__a ,1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__a ) else: _a : Dict =[layer_name] if len(__a ) > 1: _a : Dict =[key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] _a : str =[key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] _a : Tuple =renew_resnet_paths(__a ) _a : int =renew_resnet_paths(__a ) _a : Union[str, Any] ={'''old''': F"output_blocks.{i}.0", '''new''': F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(__a ,__a ,__a ,additional_replacements=[meta_path] ,config=__a ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _a : str =list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _a : str =checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] _a : List[Any] =checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(__a ) == 2: _a : str =[] if len(__a ): _a : Optional[int] =renew_attention_paths(__a ) _a : Optional[Any] ={ '''old''': F"output_blocks.{i}.1", '''new''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } _a : Optional[int] ={ F"output_blocks.{i}.1.qkv.bias": { '''key''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", '''query''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", '''value''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { '''key''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", '''query''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", '''value''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( __a ,__a ,__a ,additional_replacements=[meta_path] ,attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None ,config=__a ,) else: _a : Dict =renew_resnet_paths(__a ,n_shave_prefix_segments=1 ) for path in resnet_0_paths: _a : List[Any] ='''.'''.join(["""output_blocks""", str(__a ), path["""old"""]] ) _a : Optional[int] ='''.'''.join(["""up_blocks""", str(__a ), """resnets""", str(__a ), path["""new"""]] ) _a : int =checkpoint[old_path] return new_checkpoint if __name__ == "__main__": A__: Any = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') A__: List[Any] = parser.parse_args() A__: str = torch.load(args.checkpoint_path) with open(args.config_file) as f: A__: Union[str, Any] = json.loads(f.read()) A__: List[Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] A__: List[str] = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: A__: Optional[Any] = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A__: int = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A__: int = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
276
'''simple docstring''' import re from filelock import FileLock try: import nltk __snake_case = True except (ImportError, ModuleNotFoundError): __snake_case = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def a ( __a ) -> str: '''simple docstring''' re.sub('''<n>''' , '''''' , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
97
0
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder UpperCAmelCase__ = """base_with_context""" def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) ,requires_grad=_lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): _UpperCAmelCase = weights[f'''layers_{lyr_num}'''] _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _UpperCAmelCase = ly_weight["""attention"""] _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) ,requires_grad=_lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): _UpperCAmelCase = weights[f'''layers_{lyr_num}'''] _UpperCAmelCase = ly_weight["""attention"""] _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) ,requires_grad=_lowerCAmelCase ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _UpperCAmelCase = weights[f'''layers_{lyr_num}'''] _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _UpperCAmelCase = ly_weight["""self_attention"""] _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _UpperCAmelCase = ly_weight["""MultiHeadDotProductAttention_0"""] _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _UpperCAmelCase = jnp.tree_util.tree_map(onp.array ,_lowerCAmelCase ) _UpperCAmelCase = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] _UpperCAmelCase = os.path.join(args.checkpoint_path ,"""..""" ,"""config.gin""" ) _UpperCAmelCase = inference.parse_training_gin_file(_lowerCAmelCase ,_lowerCAmelCase ) _UpperCAmelCase = inference.InferenceModel(args.checkpoint_path ,_lowerCAmelCase ) _UpperCAmelCase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ,variance_type="""fixed_large""" ) _UpperCAmelCase = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] ,vocab_size=synth_model.model.module.config.vocab_size ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj="""gated-gelu""" ,) _UpperCAmelCase = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims ,targets_context_length=synth_model.sequence_length["""targets_context"""] ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj="""gated-gelu""" ,) _UpperCAmelCase = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims ,targets_length=synth_model.sequence_length["""targets_context"""] ,max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time ,d_model=synth_model.model.module.config.emb_dim ,num_layers=synth_model.model.module.config.num_decoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,) _UpperCAmelCase = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] ,_lowerCAmelCase ) _UpperCAmelCase = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] ,_lowerCAmelCase ) _UpperCAmelCase = load_decoder(ta_checkpoint["""target"""]["""decoder"""] ,_lowerCAmelCase ) _UpperCAmelCase = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) _UpperCAmelCase = SpectrogramDiffusionPipeline( notes_encoder=_lowerCAmelCase ,continuous_encoder=_lowerCAmelCase ,decoder=_lowerCAmelCase ,scheduler=_lowerCAmelCase ,melgan=_lowerCAmelCase ,) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help="""Path to the original jax model checkpoint.""", ) UpperCAmelCase__ = parser.parse_args() main(args)
353
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = ArgumentParser("""Accelerate CLI tool""" ,usage="""accelerate <command> [<args>]""" ,allow_abbrev=lowercase ) _UpperCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(lowercase ,"""func""" ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
30
0
from typing import TYPE_CHECKING from ..utils import _LazyModule _lowerCamelCase : Any = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
336
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowerCAmelCase_ = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict="<unk>" , _UpperCamelCase : List[str]="<s>" , _UpperCamelCase : Tuple="</s>" , _UpperCamelCase : Any="<pad>" , _UpperCamelCase : Any="[SEP]" , _UpperCamelCase : Optional[Any]="[MASK]" , _UpperCamelCase : Any="[CLS]" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) ->None: snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , sep_token=_UpperCamelCase , mask_token=_UpperCamelCase , cls_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def snake_case__( self : str ) ->List[Any]: return self.sp_model.get_piece_size() def snake_case__( self : int ) ->Union[str, Any]: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) ->Any: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : str , _UpperCamelCase : List[Any] ) ->List[str]: snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__( self : Optional[int] , _UpperCamelCase : str ) ->List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : List[str] ) ->Tuple: return self.sp_model.piece_to_id(_UpperCamelCase ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : str ) ->List[Any]: snake_case_ = self.sp_model.IdToPiece(_UpperCamelCase ) return token def snake_case__( self : Dict , _UpperCamelCase : Optional[int] ) ->List[str]: snake_case_ = [] snake_case_ = '''''' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : bool = False , _UpperCamelCase : bool = None , _UpperCamelCase : bool = True , **_UpperCamelCase : List[str] , ) ->str: snake_case_ = kwargs.pop('''use_source_tokenizer''' , _UpperCamelCase ) snake_case_ = self.convert_ids_to_tokens(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) snake_case_ = [] sub_texts.append(_UpperCamelCase ) else: current_sub_text.append(_UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(_UpperCamelCase ) ) else: snake_case_ = ''''''.join(_UpperCamelCase ) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(_UpperCamelCase ) return clean_text else: return text def snake_case__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def snake_case__( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case__( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def snake_case__( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
8
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ): snake_case__ : List[str] = FileLock(str(tmpdir / "foo.lock" ) ) snake_case__ : Dict = FileLock(str(tmpdir / "foo.lock" ) ) snake_case__ : List[Any] = 0.01 with locka.acquire(): with pytest.raises(snake_case_ ): snake_case__ : Dict = time.time() locka.acquire(snake_case_ ) assert time.time() - _start > timeout def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ): snake_case__ : List[Any] = "a" * 1000 + ".lock" snake_case__ : Tuple = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(snake_case_ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 snake_case__ : str = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case_ ): locka.acquire(0 )
358
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : Any = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
286
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('>=', '0.0.12') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
193
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCamelCase__( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple=0.999 , UpperCamelCase__ : Any="cosine" , )->List[str]: if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ : Optional[int] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ : str ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) A__ = [] for i in range(UpperCamelCase__ ): A__ = i / num_diffusion_timesteps A__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase__ ) / alpha_bar_fn(UpperCamelCase__ ) , UpperCamelCase__ ) ) return torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = [e.name for e in KarrasDiffusionSchedulers] __SCREAMING_SNAKE_CASE = 2 @register_to_config def __init__( self,__lowerCamelCase = 1000,__lowerCamelCase = 0.00085,__lowerCamelCase = 0.012,__lowerCamelCase = "linear",__lowerCamelCase = None,__lowerCamelCase = "epsilon",__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = 1.0,__lowerCamelCase = "linspace",__lowerCamelCase = 0,): if trained_betas is not None: A__ = torch.tensor(__lowerCamelCase,dtype=torch.floataa ) elif beta_schedule == "linear": A__ = torch.linspace(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A__ = ( torch.linspace(beta_start**0.5,beta_end**0.5,__lowerCamelCase,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A__ = betas_for_alpha_bar(__lowerCamelCase,alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": A__ = betas_for_alpha_bar(__lowerCamelCase,alpha_transform_type='''exp''' ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) A__ = 1.0 - self.betas A__ = torch.cumprod(self.alphas,dim=0 ) # set all values self.set_timesteps(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) A__ = use_karras_sigmas def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=None ): if schedule_timesteps is None: A__ = self.timesteps A__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: A__ = 1 if len(__lowerCamelCase ) > 1 else 0 else: A__ = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep A__ = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,): A__ = self.index_for_timestep(__lowerCamelCase ) A__ = self.sigmas[step_index] A__ = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None,__lowerCamelCase = None,): A__ = num_inference_steps A__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": A__ = np.linspace(0,num_train_timesteps - 1,__lowerCamelCase,dtype=__lowerCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": A__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A__ = (np.arange(0,__lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(__lowerCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": A__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A__ = (np.arange(__lowerCamelCase,0,-step_ratio )).round().copy().astype(__lowerCamelCase ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) A__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) A__ = np.log(__lowerCamelCase ) A__ = np.interp(__lowerCamelCase,np.arange(0,len(__lowerCamelCase ) ),__lowerCamelCase ) if self.config.use_karras_sigmas: A__ = self._convert_to_karras(in_sigmas=__lowerCamelCase,num_inference_steps=self.num_inference_steps ) A__ = np.array([self._sigma_to_t(__lowerCamelCase,__lowerCamelCase ) for sigma in sigmas] ) A__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) A__ = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase ) A__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) A__ = torch.from_numpy(__lowerCamelCase ) A__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(__lowerCamelCase ).startswith('''mps''' ): # mps does not support float64 A__ = timesteps.to(__lowerCamelCase,dtype=torch.floataa ) else: A__ = timesteps.to(device=__lowerCamelCase ) # empty dt and derivative A__ = None A__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter A__ = defaultdict(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): # get log sigma A__ = np.log(__lowerCamelCase ) # get distribution A__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range A__ = np.cumsum((dists >= 0),axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) A__ = low_idx + 1 A__ = log_sigmas[low_idx] A__ = log_sigmas[high_idx] # interpolate sigmas A__ = (low - log_sigma) / (low - high) A__ = np.clip(__lowerCamelCase,0,1 ) # transform interpolation to time range A__ = (1 - w) * low_idx + w * high_idx A__ = t.reshape(sigma.shape ) return t def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = in_sigmas[-1].item() A__ = in_sigmas[0].item() A__ = 7.0 # 7.0 is the value used in the paper A__ = np.linspace(0,1,__lowerCamelCase ) A__ = sigma_min ** (1 / rho) A__ = sigma_max ** (1 / rho) A__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def UpperCamelCase ( self ): return self.dt is None def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = True,): A__ = self.index_for_timestep(__lowerCamelCase ) # advance index counter by 1 A__ = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: A__ = self.sigmas[step_index] A__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method A__ = self.sigmas[step_index - 1] A__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API A__ = 0 A__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": A__ = sigma_hat if self.state_in_first_order else sigma_next A__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": A__ = sigma_hat if self.state_in_first_order else sigma_next A__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": A__ = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: A__ = pred_original_sample.clamp( -self.config.clip_sample_range,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order A__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep A__ = sigma_next - sigma_hat # store for 2nd order step A__ = derivative A__ = dt A__ = sample else: # 2. 2nd order / Heun's method A__ = (sample - pred_original_sample) / sigma_next A__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample A__ = self.dt A__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" A__ = None A__ = None A__ = None A__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,): # Make sure sigmas and timesteps have the same device and dtype as original_samples A__ = self.sigmas.to(device=original_samples.device,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__lowerCamelCase ): # mps does not support float64 A__ = self.timesteps.to(original_samples.device,dtype=torch.floataa ) A__ = timesteps.to(original_samples.device,dtype=torch.floataa ) else: A__ = self.timesteps.to(original_samples.device ) A__ = timesteps.to(original_samples.device ) A__ = [self.index_for_timestep(__lowerCamelCase,__lowerCamelCase ) for t in timesteps] A__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): A__ = sigma.unsqueeze(-1 ) A__ = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
193
1
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _UpperCAmelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self : Any , lowercase_ : Any) -> List[Any]: """simple docstring""" super().__init__() _UpperCamelCase = model _UpperCamelCase = 2 _UpperCamelCase = nn.Linear(self.model.config.hidden_size , self.num_labels) def __UpperCAmelCase ( self : Tuple) -> List[str]: """simple docstring""" pass def lowerCAmelCase__ ( a__ , a__ , a__ ) ->Optional[int]: '''simple docstring''' _UpperCamelCase = LongformerModel.from_pretrained(a__ ) _UpperCamelCase = LightningModel(a__ ) _UpperCamelCase = torch.load(a__ , map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model _UpperCamelCase = LongformerForQuestionAnswering.from_pretrained(a__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a__ ) print(f'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase__ = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
355
import requests from bsa import BeautifulSoup def lowerCAmelCase__ ( a__ = "https://www.worldometers.info/coronavirus" ) ->dict: '''simple docstring''' _UpperCamelCase = BeautifulSoup(requests.get(a__ ).text , "html.parser" ) _UpperCamelCase = soup.findAll("h1" ) _UpperCamelCase = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(a__ , a__ )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(F"{key}\n{value}\n")
63
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class _lowercase : def __init__( self: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Optional[Any]=13 , UpperCamelCase__: Dict=7 , UpperCamelCase__: Tuple=True , UpperCamelCase__: Any=True , UpperCamelCase__: List[str]=True , UpperCamelCase__: Optional[Any]=True , UpperCamelCase__: List[str]=99 , UpperCamelCase__: Dict=32 , UpperCamelCase__: int=2 , UpperCamelCase__: Any=4 , UpperCamelCase__: Optional[int]=37 , UpperCamelCase__: List[Any]="gelu" , UpperCamelCase__: int=0.1 , UpperCamelCase__: List[str]=0.1 , UpperCamelCase__: Dict=512 , UpperCamelCase__: Union[str, Any]=16 , UpperCamelCase__: Optional[int]=2 , UpperCamelCase__: int=0.02 , UpperCamelCase__: Tuple=3 , UpperCamelCase__: Optional[Any]=4 , UpperCamelCase__: Optional[int]=None , UpperCamelCase__: List[Any]=0 , ): lowerCamelCase__ : str = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : Optional[int] = seq_length lowerCamelCase__ : Dict = is_training lowerCamelCase__ : Optional[int] = use_input_mask lowerCamelCase__ : Optional[Any] = use_token_type_ids lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Tuple = vocab_size lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Dict = attention_probs_dropout_prob lowerCamelCase__ : str = max_position_embeddings lowerCamelCase__ : List[str] = type_vocab_size lowerCamelCase__ : Optional[Any] = type_sequence_label_size lowerCamelCase__ : Optional[Any] = initializer_range lowerCamelCase__ : int = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : int = scope lowerCamelCase__ : Tuple = projection_dim def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Dict = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCamelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Tuple = None if self.use_token_type_ids: lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : int = None lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) lowerCamelCase__ : Tuple = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: str , UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: str , UpperCamelCase__: int , UpperCamelCase__: Any ): lowerCamelCase__ : Optional[Any] = TFDPRContextEncoder(config=UpperCamelCase__ ) lowerCamelCase__ : List[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowerCamelCase__ : int = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowerCamelCase__ : str = model(UpperCamelCase__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowerCamelCase_ ( self: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str] , UpperCamelCase__: List[str] , UpperCamelCase__: List[Any] , UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: Any ): lowerCamelCase__ : int = TFDPRQuestionEncoder(config=UpperCamelCase__ ) lowerCamelCase__ : Any = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowerCamelCase__ : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: Any , UpperCamelCase__: int , UpperCamelCase__: Any , UpperCamelCase__: Tuple ): lowerCamelCase__ : str = TFDPRReader(config=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : str = config_and_inputs lowerCamelCase__ : Optional[int] = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) a = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} a = False a = False a = False a = False a = False def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : str = TFDPRModelTester(self ) lowerCamelCase__ : int = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def lowerCamelCase_ ( self: Dict ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCamelCase__ ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCamelCase__ ) @slow def lowerCamelCase_ ( self: Optional[int] ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : str = TFDPRContextEncoder.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Optional[int] = TFDPRContextEncoder.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Tuple = TFDPRQuestionEncoder.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDPRReader.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf class _lowercase ( unittest.TestCase ): @slow def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : List[str] = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) lowerCamelCase__ : Optional[Any] = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] lowerCamelCase__ : Optional[Any] = model(UpperCamelCase__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCamelCase__ : Union[str, Any] = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
41
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase__ = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _A ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__=False , ): """simple docstring""" output_path.parent.mkdir(parents=A__ , exist_ok=A__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , use_external_data_format=A__ , enable_onnx_checker=A__ , opset_version=A__ , ) else: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , opset_version=A__ , ) @torch.no_grad() def _A ( A__ , A__ , A__ , A__ = False ): """simple docstring""" __lowercase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowercase = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: __lowercase = '''cpu''' __lowercase = Path(A__ ) # VAE DECODER __lowercase = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) __lowercase = vae_decoder.config.latent_channels # forward only through the decoder part __lowercase = vae_decoder.decode onnx_export( A__ , model_args=( torch.randn(1 , A__ , 25 , 25 ).to(device=A__ , dtype=A__ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=A__ , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') lowerCAmelCase__ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
104
0
import math def A__ ( lowerCamelCase ) -> int: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase_: Optional[Any] = F'''Input value of [number={number}] must be an integer''' raise TypeError(_UpperCAmelCase ) if number < 1: UpperCamelCase_: int = F'''Input value of [number={number}] must be > 0''' raise ValueError(_UpperCAmelCase ) elif number == 1: return 3 elif number == 2: return 5 else: UpperCamelCase_: Optional[int] = int(math.log(number // 3 , 2 ) ) + 2 UpperCamelCase_: str = [3, 5] UpperCamelCase_: str = 2 UpperCamelCase_: Optional[Any] = 3 for block in range(1 , _UpperCAmelCase ): for _ in range(_UpperCAmelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): lowerCamelCase_ : Union[str, Any] = 0 try: lowerCamelCase_ : int = proth(number) except ValueError: print(F"""ValueError: there is no {number}th Proth number""") continue print(F"""The {number}th Proth number: {value}""")
359
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = PegasusConfig __UpperCamelCase : str = {} __UpperCamelCase : Optional[Any] = """gelu""" def __init__( self : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : str=13 , snake_case_ : Dict=7 , snake_case_ : List[Any]=True , snake_case_ : Optional[int]=False , snake_case_ : Any=99 , snake_case_ : Optional[Any]=32 , snake_case_ : Dict=2 , snake_case_ : Any=4 , snake_case_ : Optional[Any]=37 , snake_case_ : Dict=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : List[str]=40 , snake_case_ : Tuple=2 , snake_case_ : Optional[int]=1 , snake_case_ : str=0 , ): UpperCamelCase_: List[str] = parent UpperCamelCase_: Optional[Any] = batch_size UpperCamelCase_: Union[str, Any] = seq_length UpperCamelCase_: Tuple = is_training UpperCamelCase_: Tuple = use_labels UpperCamelCase_: Tuple = vocab_size UpperCamelCase_: Tuple = hidden_size UpperCamelCase_: Optional[Any] = num_hidden_layers UpperCamelCase_: List[Any] = num_attention_heads UpperCamelCase_: Optional[int] = intermediate_size UpperCamelCase_: Dict = hidden_dropout_prob UpperCamelCase_: str = attention_probs_dropout_prob UpperCamelCase_: Optional[int] = max_position_embeddings UpperCamelCase_: Union[str, Any] = eos_token_id UpperCamelCase_: Optional[int] = pad_token_id UpperCamelCase_: List[Any] = bos_token_id def lowerCAmelCase__ ( self : str ): UpperCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_: List[str] = prepare_pegasus_inputs_dict(snake_case_ , snake_case_ , snake_case_ ) return config, inputs_dict def lowerCAmelCase__ ( self : Any , snake_case_ : List[str] , snake_case_ : Dict ): UpperCamelCase_: Any = TFPegasusModel(config=snake_case_ ).get_decoder() UpperCamelCase_: Any = inputs_dict["""input_ids"""] UpperCamelCase_: int = input_ids[:1, :] UpperCamelCase_: List[str] = inputs_dict["""attention_mask"""][:1, :] UpperCamelCase_: Tuple = inputs_dict["""head_mask"""] UpperCamelCase_: int = 1 # first forward pass UpperCamelCase_: Dict = model(snake_case_ , attention_mask=snake_case_ , head_mask=snake_case_ , use_cache=snake_case_ ) UpperCamelCase_, UpperCamelCase_: List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_: Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_: Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_: Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_: List[Any] = model(snake_case_ , attention_mask=snake_case_ )[0] UpperCamelCase_: Dict = model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_: str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_: str = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_: int = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case_ , snake_case_ , rtol=1e-3 ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if attention_mask is None: UpperCamelCase_: Union[str, Any] = tf.cast(tf.math.not_equal(lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase_: str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_: Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_: str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCamelCase ( _A , _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __UpperCamelCase : str = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : int = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Any = False __UpperCamelCase : Dict = False def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = TFPegasusModelTester(self ) UpperCamelCase_: List[Any] = ConfigTester(self , config_class=snake_case_ ) def lowerCAmelCase__ ( self : Dict ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) @require_sentencepiece @require_tokenizers @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __UpperCamelCase : Optional[int] = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers __UpperCamelCase : Union[str, Any] = """google/pegasus-xsum""" @cached_property def lowerCAmelCase__ ( self : Dict ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCAmelCase__ ( self : Union[str, Any] , **snake_case_ : Optional[int] ): UpperCamelCase_: str = self.translate_src_text(**snake_case_ ) assert self.expected_text == generated_words def lowerCAmelCase__ ( self : Optional[Any] , **snake_case_ : int ): UpperCamelCase_: Tuple = self.tokenizer(self.src_text , **snake_case_ , padding=snake_case_ , return_tensors="""tf""" ) UpperCamelCase_: Tuple = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=snake_case_ , ) UpperCamelCase_: Tuple = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case_ ) return generated_words @slow def lowerCAmelCase__ ( self : Optional[Any] ): self._assert_generated_batch_equal_expected()
223
0
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : dict ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE =set() # To detect a back edge, keep track of vertices currently in the recursion stack _SCREAMING_SNAKE_CASE =set() return any( node not in visited and depth_first_search(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for node in graph ) def _lowerCAmelCase ( _UpperCamelCase : dict , _UpperCamelCase : int , _UpperCamelCase : set , _UpperCamelCase : set ) -> bool: """simple docstring""" visited.add(_UpperCamelCase ) rec_stk.add(_UpperCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(_UpperCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
47
from __future__ import annotations from collections.abc import MutableSequence class lowercase__: """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : MutableSequence[float] ) -> None: if len(SCREAMING_SNAKE_CASE_ ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = degree def __add__( self : Any , SCREAMING_SNAKE_CASE_ : Polynomial ) -> Polynomial: if self.degree > polynomial_a.degree: lowercase_ = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , SCREAMING_SNAKE_CASE_ ) else: lowercase_ = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , SCREAMING_SNAKE_CASE_ ) def __sub__( self : str , SCREAMING_SNAKE_CASE_ : Polynomial ) -> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : int ) -> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : Any , SCREAMING_SNAKE_CASE_ : Polynomial ) -> Polynomial: lowercase_ = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : int | float ) -> int | float: lowercase_ = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Tuple ) -> str: lowercase_ = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(SCREAMING_SNAKE_CASE_ ) return polynomial def __repr__( self : Optional[Any] ) -> str: return self.__str__() def _lowercase ( self : int ) -> Polynomial: lowercase_ = [0] * self.degree for i in range(self.degree ): lowercase_ = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : int | float = 0 ) -> Polynomial: lowercase_ = [0] * (self.degree + 2) lowercase_ = constant for i in range(self.degree + 1 ): lowercase_ = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , SCREAMING_SNAKE_CASE_ ) def __eq__( self : str , SCREAMING_SNAKE_CASE_ : object ) -> bool: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : List[str] , SCREAMING_SNAKE_CASE_ : object ) -> bool: return not self.__eq__(SCREAMING_SNAKE_CASE_ )
30
0
"""simple docstring""" import requests from bsa import BeautifulSoup def _A ( _a : Union[str, Any] = "https://www.worldometers.info/coronavirus" ): """simple docstring""" A = BeautifulSoup(requests.get(__lowerCamelCase ).text , """html.parser""" ) A = soup.findAll("""h1""" ) A = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCamelCase , __lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
351
"""simple docstring""" import pytest UpperCAmelCase ="__dummy_dataset1__" UpperCAmelCase ="\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def _A ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _A ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _A ( _a : str , _a : List[Any] , _a : List[Any] ): """simple docstring""" A = dataset_loading_script_name A = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=_a ) A = script_dir / f'{script_name}.py' with open(_a , """w""" ) as f: f.write(_a ) return str(_a )
77
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ : Any = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : int = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys SCREAMING_SNAKE_CASE_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
335
"""simple docstring""" import torch from diffusers import DiffusionPipeline class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): """simple docstring""" super().__init__() self.register_modules(unet=snake_case_ , scheduler=snake_case_ ) def __call__( self ): """simple docstring""" A_ : Optional[Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) A_ : List[str] = 1 A_ : List[str] = self.unet(snake_case_ , snake_case_ ).sample A_ : Optional[int] = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample A_ : List[Any] = scheduler_output - scheduler_output + torch.ones_like(snake_case_ ) return result
286
0
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def _snake_case ( lowercase__ ): _lowerCamelCase : str = [False] * len(lowercase__ ) _lowerCamelCase : Optional[int] = [-1] * len(lowercase__ ) def dfs(lowercase__ , lowercase__ ): _lowerCamelCase : Optional[int] = True _lowerCamelCase : Union[str, Any] = c for u in graph[v]: if not visited[u]: dfs(lowercase__ , 1 - c ) for i in range(len(lowercase__ ) ): if not visited[i]: dfs(lowercase__ , 0 ) for i in range(len(lowercase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph lowercase__ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
12
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int ) -> bool: '''simple docstring''' A__ = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
68
'''simple docstring''' def _lowerCamelCase ( lowercase : int = 100 ) -> int: _a = 0 _a = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
63
0
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any]=13 , SCREAMING_SNAKE_CASE : str=32 , SCREAMING_SNAKE_CASE : Any=2 , SCREAMING_SNAKE_CASE : Any=3 , SCREAMING_SNAKE_CASE : int=16 , SCREAMING_SNAKE_CASE : Dict=[1, 2, 1] , SCREAMING_SNAKE_CASE : List[Any]=[2, 2, 4] , SCREAMING_SNAKE_CASE : Optional[Any]=2 , SCREAMING_SNAKE_CASE : List[Any]=2.0 , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : List[Any]=0.0 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE : List[str]=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : Any=0.02 , SCREAMING_SNAKE_CASE : List[str]=1e-5 , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : List[str]=10 , SCREAMING_SNAKE_CASE : Dict=8 , ): _A : List[Any] = parent _A : List[Any] = batch_size _A : Union[str, Any] = image_size _A : Tuple = patch_size _A : List[str] = num_channels _A : List[Any] = embed_dim _A : List[str] = depths _A : Optional[int] = num_heads _A : List[Any] = window_size _A : Union[str, Any] = mlp_ratio _A : Optional[Any] = qkv_bias _A : int = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : List[Any] = drop_path_rate _A : Any = hidden_act _A : List[Any] = use_absolute_embeddings _A : List[Any] = patch_norm _A : Union[str, Any] = layer_norm_eps _A : Union[str, Any] = initializer_range _A : Dict = is_training _A : Any = scope _A : Any = use_labels _A : List[str] = type_sequence_label_size _A : Optional[int] = encoder_stride def A ( self : Any): _A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _A : Dict = None if self.use_labels: _A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : Tuple = self.get_config() return config, pixel_values, labels def A ( self : str): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A ( self : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any]): _A : Any = SwinvaModel(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Optional[Any] = model(SCREAMING_SNAKE_CASE) _A : List[str] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _A : List[str] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def A ( self : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict): _A : Optional[Any] = SwinvaForMaskedImageModeling(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Any = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _A : Tuple = 1 _A : Optional[Any] = SwinvaForMaskedImageModeling(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _A : Optional[int] = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size)) def A ( self : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any): _A : Dict = self.type_sequence_label_size _A : Optional[int] = SwinvaForImageClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : int = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def A ( self : Any): _A : Union[str, Any] = self.prepare_config_and_inputs() _A , _A , _A : List[str] = config_and_inputs _A : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" a = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) a = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) a = False a = False a = False a = False def A ( self : int): _A : List[Any] = SwinvaModelTester(self) _A : Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , embed_dim=37) def A ( self : List[str]): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Tuple): _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.') def A ( self : Dict): pass @unittest.skip(reason='Swinv2 does not use inputs_embeds') def A ( self : str): pass def A ( self : Any): _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Tuple = model_class(SCREAMING_SNAKE_CASE) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _A : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear)) def A ( self : Any): _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Any = model_class(SCREAMING_SNAKE_CASE) _A : List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : Tuple = [*signature.parameters.keys()] _A : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE) def A ( self : int): _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Optional[int] = True for model_class in self.all_model_classes: _A : Union[str, Any] = True _A : Optional[Any] = False _A : Union[str, Any] = True _A : Optional[Any] = model_class(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): _A : Optional[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)) _A : str = outputs.attentions _A : int = len(self.model_tester.depths) self.assertEqual(len(SCREAMING_SNAKE_CASE) , SCREAMING_SNAKE_CASE) # check that output_attentions also work using config del inputs_dict["output_attentions"] _A : int = True _A : int = config.window_size**2 _A : Optional[int] = model_class(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): _A : Union[str, Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)) _A : List[str] = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE) , SCREAMING_SNAKE_CASE) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _A : int = len(SCREAMING_SNAKE_CASE) # Check attention is always last and order is fine _A : Optional[Any] = True _A : Any = True _A : str = model_class(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): _A : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)) if hasattr(self.model_tester , 'num_hidden_states_types'): _A : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _A : Union[str, Any] = 2 self.assertEqual(out_len + added_hidden_states , len(SCREAMING_SNAKE_CASE)) _A : Dict = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE) , SCREAMING_SNAKE_CASE) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str): _A : List[str] = model_class(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): _A : Any = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)) _A : Dict = outputs.hidden_states _A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths) + 1) self.assertEqual(len(SCREAMING_SNAKE_CASE) , SCREAMING_SNAKE_CASE) # Swinv2 has a different seq_length _A : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) _A : Optional[int] = outputs.reshaped_hidden_states self.assertEqual(len(SCREAMING_SNAKE_CASE) , SCREAMING_SNAKE_CASE) _A , _A , _A , _A : Optional[Any] = reshaped_hidden_states[0].shape _A : Optional[int] = ( reshaped_hidden_states[0].view(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def A ( self : Tuple): _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _A : Any = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Dict = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) def A ( self : List[str]): _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : List[Any] = 3 _A : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _A : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _A : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _A : List[str] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : List[Any] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , (padded_height, padded_width)) def A ( self : str): _A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE) def A ( self : List[Any]): _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE) @slow def A ( self : List[str]): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : int = SwinvaModel.from_pretrained(SCREAMING_SNAKE_CASE) self.assertIsNotNone(SCREAMING_SNAKE_CASE) def A ( self : Union[str, Any]): _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _A : Dict = _config_zero_init(SCREAMING_SNAKE_CASE) for model_class in self.all_model_classes: _A : Optional[Any] = model_class(config=SCREAMING_SNAKE_CASE) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : List[str]): return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256') if is_vision_available() else None ) @slow def A ( self : Union[str, Any]): _A : List[Any] = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256').to( SCREAMING_SNAKE_CASE) _A : Any = self.default_image_processor _A : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _A : List[str] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt').to(SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): _A : int = model(**SCREAMING_SNAKE_CASE) # verify the logits _A : Tuple = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE) _A : int = torch.tensor([-0.3947, -0.4306, 0.0026]).to(SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4))
227
'''simple docstring''' # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def lowerCAmelCase__ ( lowerCamelCase : Optional[int] ,lowerCamelCase : List[Any] ,lowerCamelCase : Tuple ,lowerCamelCase : List[str] ): _A : Dict = multiprocessing.Manager() _A : List[Any] = manager.list() _A : Dict = multiprocessing.Process(target=lowerCamelCase ,args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def lowerCAmelCase__ ( lowerCamelCase : Optional[int] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : Optional[Any] ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil _A : Any = shutil.rmtree _A : Optional[int] = os.rmdir _A : str = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: _A : str = {} with swallow_io(): with time_limit(lowerCamelCase ): exec(lowerCamelCase ,lowerCamelCase ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(F'failed: {e}' ) # Needed for cleaning up. _A : Optional[int] = rmtree _A : Optional[Any] = rmdir _A : Dict = chdir @contextlib.contextmanager def lowerCAmelCase__ ( lowerCamelCase : int ): def signal_handler(lowerCamelCase : str ,lowerCamelCase : Any ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL ,lowerCamelCase ) signal.signal(signal.SIGALRM ,lowerCamelCase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL ,0 ) @contextlib.contextmanager def lowerCAmelCase__ ( ): _A : Any = WriteOnlyStringIO() with contextlib.redirect_stdout(lowerCamelCase ): with contextlib.redirect_stderr(lowerCamelCase ): with redirect_stdin(lowerCamelCase ): yield @contextlib.contextmanager def lowerCAmelCase__ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(lowerCamelCase ): yield dirname class __lowerCamelCase ( a_ ): """simple docstring""" pass class __lowerCamelCase ( io.StringIO ): """simple docstring""" def A ( self : Tuple , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Dict): raise OSError def A ( self : Optional[int] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Optional[Any]): raise OSError def A ( self : Optional[int] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[int]): raise OSError def A ( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : Tuple): return False class __lowerCamelCase ( contextlib._RedirectStream ): # type: ignore """simple docstring""" a = "stdin" @contextlib.contextmanager def lowerCAmelCase__ ( lowerCamelCase : Tuple ): if root == ".": yield return _A : Any = os.getcwd() os.chdir(lowerCamelCase ) try: yield except BaseException as exc: raise exc finally: os.chdir(lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : List[Any]=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS ,(maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA ,(maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK ,(maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins _A : List[Any] = None _A : Dict = None import os _A : Union[str, Any] = '1' _A : int = None _A : Optional[int] = None _A : int = None _A : Any = None _A : Optional[int] = None _A : Union[str, Any] = None _A : List[Any] = None _A : int = None _A : List[Any] = None _A : Tuple = None _A : Any = None _A : Tuple = None _A : Optional[int] = None _A : Optional[Any] = None _A : str = None _A : Dict = None _A : List[str] = None _A : Union[str, Any] = None _A : Union[str, Any] = None _A : str = None _A : str = None _A : str = None _A : Any = None _A : Union[str, Any] = None _A : str = None _A : List[str] = None _A : Union[str, Any] = None import shutil _A : int = None _A : Any = None _A : List[Any] = None import subprocess _A : Optional[Any] = None # type: ignore _A : List[Any] = None import sys _A : Any = None _A : Tuple = None _A : str = None _A : Tuple = None _A : List[str] = None
227
1
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class UpperCamelCase__ (lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : str = MvpTokenizer lowerCamelCase_ : List[Any] = MvpTokenizerFast lowerCamelCase_ : str = True lowerCamelCase_ : str = filter_roberta_detectors def _lowercase ( self ) -> Any: super().setUp() lowerCamelCase : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowerCamelCase : Union[str, Any] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) lowerCamelCase : Union[str, Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCamelCase : Optional[Any] = {"unk_token": "<unk>"} lowerCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCamelCase__ ) ) def _lowercase ( self , **UpperCamelCase__ ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self , **UpperCamelCase__ ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ ) -> Tuple: return "lower newer", "lower newer" @cached_property def _lowercase ( self ) -> Tuple: return MvpTokenizer.from_pretrained("RUCAIBox/mvp" ) @cached_property def _lowercase ( self ) -> Optional[Any]: return MvpTokenizerFast.from_pretrained("RUCAIBox/mvp" ) @require_torch def _lowercase ( self ) -> List[str]: lowerCamelCase : Optional[Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowerCamelCase : Dict = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase : Union[str, Any] = tokenizer(UpperCamelCase__ , max_length=len(UpperCamelCase__ ) , padding=UpperCamelCase__ , return_tensors="pt" ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) # Test that special tokens are reset @require_torch def _lowercase ( self ) -> List[Any]: lowerCamelCase : str = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase : str = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors="pt" ) # check if input_ids are returned and no labels self.assertIn("input_ids" , UpperCamelCase__ ) self.assertIn("attention_mask" , UpperCamelCase__ ) self.assertNotIn("labels" , UpperCamelCase__ ) self.assertNotIn("decoder_attention_mask" , UpperCamelCase__ ) @require_torch def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : List[str] = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase : Optional[Any] = tokenizer(text_target=UpperCamelCase__ , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def _lowercase ( self ) -> Dict: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase : Union[str, Any] = tokenizer( ["I am a small frog" * 1024, "I am a small frog"] , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors="pt" ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def _lowercase ( self ) -> int: lowerCamelCase : str = ["A long paragraph for summarization."] lowerCamelCase : List[str] = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase : str = tokenizer(UpperCamelCase__ , text_target=UpperCamelCase__ , return_tensors="pt" ) lowerCamelCase : Union[str, Any] = inputs["input_ids"] lowerCamelCase : List[str] = inputs["labels"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def _lowercase ( self ) -> Optional[Any]: pass def _lowercase ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase : List[Any] = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase : Optional[Any] = "A, <mask> AllenNLP sentence." lowerCamelCase : str = tokenizer_r.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) lowerCamelCase : List[Any] = tokenizer_p.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowerCamelCase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowerCamelCase : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( UpperCamelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
48
'''simple docstring''' lowerCAmelCase : str =''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase : int =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase : List[str] ={ '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
223
0
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = SwinConfig() __SCREAMING_SNAKE_CASE = swin_name.split("_" ) __SCREAMING_SNAKE_CASE = name_split[1] __SCREAMING_SNAKE_CASE = int(name_split[4] ) __SCREAMING_SNAKE_CASE = int(name_split[3][-1] ) if model_size == "tiny": __SCREAMING_SNAKE_CASE = 96 __SCREAMING_SNAKE_CASE = (2, 2, 6, 2) __SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "small": __SCREAMING_SNAKE_CASE = 96 __SCREAMING_SNAKE_CASE = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "base": __SCREAMING_SNAKE_CASE = 128 __SCREAMING_SNAKE_CASE = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE = (4, 8, 16, 32) else: __SCREAMING_SNAKE_CASE = 192 __SCREAMING_SNAKE_CASE = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE = (6, 12, 24, 48) if "in22k" in swin_name: __SCREAMING_SNAKE_CASE = 2_1841 else: __SCREAMING_SNAKE_CASE = 1000 __SCREAMING_SNAKE_CASE = "huggingface/label-files" __SCREAMING_SNAKE_CASE = "imagenet-1k-id2label.json" __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="dataset" ) , "r" ) ) __SCREAMING_SNAKE_CASE = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = img_size __SCREAMING_SNAKE_CASE = num_classes __SCREAMING_SNAKE_CASE = embed_dim __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = num_heads __SCREAMING_SNAKE_CASE = window_size return config def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __SCREAMING_SNAKE_CASE = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __SCREAMING_SNAKE_CASE = "encoder." + name if "attn.proj" in name: __SCREAMING_SNAKE_CASE = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __SCREAMING_SNAKE_CASE = name.replace("attn" , "attention.self" ) if "norm1" in name: __SCREAMING_SNAKE_CASE = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __SCREAMING_SNAKE_CASE = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __SCREAMING_SNAKE_CASE = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __SCREAMING_SNAKE_CASE = name.replace("mlp.fc2" , "output.dense" ) if name == "norm.weight": __SCREAMING_SNAKE_CASE = "layernorm.weight" if name == "norm.bias": __SCREAMING_SNAKE_CASE = "layernorm.bias" if "head" in name: __SCREAMING_SNAKE_CASE = name.replace("head" , "classifier" ) else: __SCREAMING_SNAKE_CASE = "swin." + name return name def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE = orig_state_dict.pop(lowerCAmelCase_ ) if "mask" in key: continue elif "qkv" in key: __SCREAMING_SNAKE_CASE = key.split("." ) __SCREAMING_SNAKE_CASE = int(key_split[1] ) __SCREAMING_SNAKE_CASE = int(key_split[3] ) __SCREAMING_SNAKE_CASE = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __SCREAMING_SNAKE_CASE = val[:dim, :] __SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE = val[-dim:, :] else: __SCREAMING_SNAKE_CASE = val[ :dim ] __SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE = val[ -dim: ] else: __SCREAMING_SNAKE_CASE = val return orig_state_dict def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = timm.create_model(lowerCAmelCase_ , pretrained=lowerCAmelCase_ ) timm_model.eval() __SCREAMING_SNAKE_CASE = get_swin_config(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = SwinForImageClassification(lowerCAmelCase_ ) model.eval() __SCREAMING_SNAKE_CASE = convert_state_dict(timm_model.state_dict() , lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_" , "-" ) ) ) __SCREAMING_SNAKE_CASE = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) __SCREAMING_SNAKE_CASE = image_processor(images=lowerCAmelCase_ , return_tensors="pt" ) __SCREAMING_SNAKE_CASE = timm_model(inputs["pixel_values"] ) __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase_ ).logits assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) print(f"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a__ : List[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
195
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [0 for i in range(r + 1 )] # nc0 = 1 __SCREAMING_SNAKE_CASE = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __SCREAMING_SNAKE_CASE = min(lowerCAmelCase_ , lowerCAmelCase_ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
195
1
def UpperCamelCase_( lowerCamelCase_ ) -> list[int]: if num <= 0: raise ValueError('Input must be a positive integer' ) _lowercase : str = [True] * (num + 1) _lowercase : str = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowerCamelCase_ ): _lowercase : Dict = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : int = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
21
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : int = args.pruning_method lowercase__ : Tuple = args.threshold lowercase__ : str = args.model_name_or_path.rstrip('/' ) lowercase__ : List[Any] = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) lowercase__ : Optional[Any] = torch.load(os.path.join(_lowerCAmelCase , 'pytorch_model.bin' ) ) lowercase__ : List[str] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowercase__ : Tuple = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: lowercase__ : List[str] = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: lowercase__ : Optional[Any] = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": lowercase__ : Optional[Any] = MagnitudeBinarizer.apply(inputs=_lowerCAmelCase , threshold=_lowerCAmelCase ) lowercase__ : Optional[int] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue lowercase__ : Optional[Any] = name[:-6] lowercase__ : Optional[int] = model[f"""{prefix_}mask_scores"""] lowercase__ : Any = TopKBinarizer.apply(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : List[Any] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowercase__ : Any = name[:-6] lowercase__ : Optional[Any] = model[f"""{prefix_}mask_scores"""] lowercase__ : Tuple = ThresholdBinarizer.apply(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase__ : List[str] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue lowercase__ : Union[str, Any] = name[:-6] lowercase__ : Optional[int] = model[f"""{prefix_}mask_scores"""] lowercase__ , lowercase__ : Tuple = -0.1, 1.1 lowercase__ : Optional[Any] = torch.sigmoid(_lowerCAmelCase ) lowercase__ : Optional[Any] = s * (r - l) + l lowercase__ : Optional[Any] = s_bar.clamp(min=0.0 , max=1.0 ) lowercase__ : Union[str, Any] = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: lowercase__ : Union[str, Any] = os.path.join( os.path.dirname(_lowerCAmelCase ) , f"""bertarized_{os.path.basename(_lowerCAmelCase )}""" ) if not os.path.isdir(_lowerCAmelCase ): shutil.copytree(_lowerCAmelCase , _lowerCAmelCase ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) _UpperCamelCase : Dict = parser.parse_args() main(args)
77
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate _UpperCAmelCase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _UpperCAmelCase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
326
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = [False] * len(A__ ) __lowerCamelCase = [-1] * len(A__ ) def dfs(A__ : str , A__ : Tuple ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(A__ , 1 - c ) for i in range(len(A__ ) ): if not visited[i]: dfs(A__ , 0 ) for i in range(len(A__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCAmelCase_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
12
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = StableDiffusionInpaintPipeline UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : int = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase__ : Union[str, Any] = frozenset([]) def lowerCAmelCase__ ( self: str ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) __lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __lowerCamelCase = CLIPTextModel(UpperCamelCase_ ) __lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) __lowerCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self: str ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = StableDiffusionInpaintPipeline(**UpperCamelCase_ ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = sd_pipe(**UpperCamelCase_ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: int ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCAmelCase__ ( self: int ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = PNDMScheduler.from_pretrained(UpperCamelCase_ , subfolder="""scheduler""" ) __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , scheduler=UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type="""np""" , ) __lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
12
1
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self :Dict )-> Dict: A__ = [] def UpperCAmelCase_ ( self :str , lowercase_ :int , lowercase_ :int , lowercase_ :List[str] , **lowercase_ :Tuple )-> int: self.events.append("on_init_end" ) def UpperCAmelCase_ ( self :Tuple , lowercase_ :Union[str, Any] , lowercase_ :Optional[int] , lowercase_ :Optional[Any] , **lowercase_ :Union[str, Any] )-> Union[str, Any]: self.events.append("on_train_begin" ) def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :Any , lowercase_ :Optional[Any] , lowercase_ :Tuple , **lowercase_ :Dict )-> str: self.events.append("on_train_end" ) def UpperCAmelCase_ ( self :List[Any] , lowercase_ :Any , lowercase_ :Any , lowercase_ :Dict , **lowercase_ :Optional[Any] )-> str: self.events.append("on_epoch_begin" ) def UpperCAmelCase_ ( self :Dict , lowercase_ :Optional[Any] , lowercase_ :List[str] , lowercase_ :Optional[Any] , **lowercase_ :Optional[Any] )-> List[Any]: self.events.append("on_epoch_end" ) def UpperCAmelCase_ ( self :Dict , lowercase_ :Any , lowercase_ :int , lowercase_ :Optional[int] , **lowercase_ :int )-> List[Any]: self.events.append("on_step_begin" ) def UpperCAmelCase_ ( self :str , lowercase_ :Optional[int] , lowercase_ :Optional[int] , lowercase_ :int , **lowercase_ :Union[str, Any] )-> List[str]: self.events.append("on_step_end" ) def UpperCAmelCase_ ( self :Dict , lowercase_ :Any , lowercase_ :int , lowercase_ :Any , **lowercase_ :int )-> List[Any]: self.events.append("on_evaluate" ) def UpperCAmelCase_ ( self :Any , lowercase_ :str , lowercase_ :List[Any] , lowercase_ :Optional[Any] , **lowercase_ :str )-> str: self.events.append("on_predict" ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :Any , lowercase_ :List[Any] , lowercase_ :List[str] , **lowercase_ :str )-> List[Any]: self.events.append("on_save" ) def UpperCAmelCase_ ( self :List[Any] , lowercase_ :Tuple , lowercase_ :List[Any] , lowercase_ :str , **lowercase_ :str )-> Tuple: self.events.append("on_log" ) def UpperCAmelCase_ ( self :List[str] , lowercase_ :Any , lowercase_ :str , lowercase_ :Optional[Any] , **lowercase_ :str )-> Optional[Any]: self.events.append("on_prediction_step" ) @require_torch class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :int )-> Optional[int]: A__ = tempfile.mkdtemp() def UpperCAmelCase_ ( self :Optional[Any] )-> str: shutil.rmtree(self.output_dir ) def UpperCAmelCase_ ( self :Tuple , lowercase_ :Union[str, Any]=0 , lowercase_ :Any=0 , lowercase_ :Dict=64 , lowercase_ :Optional[Any]=64 , lowercase_ :List[str]=None , lowercase_ :Tuple=False , **lowercase_ :Union[str, Any] )-> Tuple: A__ = RegressionDataset(length=_SCREAMING_SNAKE_CASE ) A__ = RegressionDataset(length=_SCREAMING_SNAKE_CASE ) A__ = RegressionModelConfig(a=_SCREAMING_SNAKE_CASE , b=_SCREAMING_SNAKE_CASE ) A__ = RegressionPreTrainedModel(_SCREAMING_SNAKE_CASE ) A__ = TrainingArguments(self.output_dir , disable_tqdm=_SCREAMING_SNAKE_CASE , report_to=[] , **_SCREAMING_SNAKE_CASE ) return Trainer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , callbacks=_SCREAMING_SNAKE_CASE , ) def UpperCAmelCase_ ( self :Tuple , lowercase_ :int , lowercase_ :List[Any] )-> Dict: self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) # Order doesn't matter A__ = sorted(_SCREAMING_SNAKE_CASE , key=lambda lowercase_ : cb.__name__ if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ ) A__ = sorted(_SCREAMING_SNAKE_CASE , key=lambda lowercase_ : cb.__name__ if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ ) for cba, cba in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(_SCREAMING_SNAKE_CASE , cba.__class__ ) elif not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(cba.__class__ , _SCREAMING_SNAKE_CASE ) else: self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self :str , lowercase_ :str )-> Tuple: A__ = ["on_init_end", "on_train_begin"] A__ = 0 A__ = len(trainer.get_eval_dataloader() ) A__ = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs ): expected_events.append("on_epoch_begin" ) for _ in range(_SCREAMING_SNAKE_CASE ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save" ) expected_events.append("on_epoch_end" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def UpperCAmelCase_ ( self :Union[str, Any] )-> List[Any]: A__ = self.get_trainer() A__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) # Callbacks passed at init are added to the default callbacks A__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(_SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback A__ = self.get_trainer(disable_tqdm=_SCREAMING_SNAKE_CASE ) A__ = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self :List[Any] )-> Optional[Any]: A__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] A__ = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(_SCREAMING_SNAKE_CASE ) expected_callbacks.remove(_SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) A__ = self.get_trainer() A__ = trainer.pop_callback(_SCREAMING_SNAKE_CASE ) self.assertEqual(cb.__class__ , _SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) trainer.add_callback(_SCREAMING_SNAKE_CASE ) expected_callbacks.insert(0 , _SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) # We can also add, pop, or remove by instance A__ = self.get_trainer() A__ = trainer.callback_handler.callbacks[0] trainer.remove_callback(_SCREAMING_SNAKE_CASE ) expected_callbacks.remove(_SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) A__ = self.get_trainer() A__ = trainer.callback_handler.callbacks[0] A__ = trainer.pop_callback(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) trainer.add_callback(_SCREAMING_SNAKE_CASE ) expected_callbacks.insert(0 , _SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self :Any )-> List[str]: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" , category=_SCREAMING_SNAKE_CASE ) A__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() A__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(_SCREAMING_SNAKE_CASE , self.get_expected_events(_SCREAMING_SNAKE_CASE ) ) # Independent log/save/eval A__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() A__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(_SCREAMING_SNAKE_CASE , self.get_expected_events(_SCREAMING_SNAKE_CASE ) ) A__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() A__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(_SCREAMING_SNAKE_CASE , self.get_expected_events(_SCREAMING_SNAKE_CASE ) ) A__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" ) trainer.train() A__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(_SCREAMING_SNAKE_CASE , self.get_expected_events(_SCREAMING_SNAKE_CASE ) ) A__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" ) trainer.train() A__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(_SCREAMING_SNAKE_CASE , self.get_expected_events(_SCREAMING_SNAKE_CASE ) ) # A bit of everything A__ = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , ) trainer.train() A__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(_SCREAMING_SNAKE_CASE , self.get_expected_events(_SCREAMING_SNAKE_CASE ) ) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning" ) as warn_mock: A__ = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(_SCREAMING_SNAKE_CASE ) in warn_mock.call_args[0][0]
364
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : List[Any] ="examples/" __lowerCAmelCase : Dict ={ "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] ={ "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : str ="README.md" def UpperCamelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] ): with open(_lowerCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: A__ = f.read() A__, A__ = REPLACE_PATTERNS[pattern] A__ = replace.replace("VERSION" , _lowerCamelCase ) A__ = re_pattern.sub(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : int ): for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , pattern="examples" ) def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def UpperCamelCase ( ): A__ = "🤗 Transformers currently provides the following architectures" A__ = "1. Want to contribute a new model?" with open(_lowerCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: A__ = f.readlines() # Find the start of the list. A__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 A__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): A__ = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_lowerCamelCase ) def UpperCamelCase ( ): with open(REPLACE_FILES["init"] , "r" ) as f: A__ = f.read() A__ = REPLACE_PATTERNS["init"][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Dict=False ): A__ = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: A__ = default_version.base_version elif patch: A__ = F"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: A__ = F"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. A__ = input(F"Which version are you releasing? [{default_version}]" ) if len(_lowerCamelCase ) == 0: A__ = default_version print(F"Updating version to {version}." ) global_version_update(_lowerCamelCase , patch=_lowerCamelCase ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def UpperCamelCase ( ): A__ = get_version() A__ = F"{current_version.major}.{current_version.minor + 1}.0.dev0" A__ = current_version.base_version # Check with the user we got that right. A__ = input(F"Which version are we developing now? [{dev_version}]" ) if len(_lowerCamelCase ) == 0: A__ = dev_version print(F"Updating version to {version}." ) global_version_update(_lowerCamelCase ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : int =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
123
0
from __future__ import annotations def a( A : list[int | str] ) -> None: """simple docstring""" create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] ) def a( A : list[int | str] , A : list[int | str] , A : int , A : list[int] , ) -> None: """simple docstring""" if index == len(A ): print(A ) return for i in range(len(A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) a = True create_state_space_tree(A , A , index + 1 , A ) current_sequence.pop() a = False _lowercase: list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) _lowercase: list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
227
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class _lowercase ( lowerCAmelCase ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self , lowerCamelCase_ = 1 , lowerCamelCase_ = None , lowerCamelCase_ = 50 , lowerCamelCase_ = "pil" , lowerCamelCase_ = True , **lowerCamelCase_ , ): """simple docstring""" a = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=lowerCamelCase_ , ) a = image.to(self.device ) # set step values self.scheduler.set_timesteps(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output a = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 a = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample a = (image / 2 + 0.5).clamp(0 , 1 ) a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=lowerCamelCase_ ), "This is a local test"
227
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__=False ): """simple docstring""" A = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A = "" else: A = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) A = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[ : config.hidden_size, : ] A = in_proj_bias[: config.hidden_size] A = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A = in_proj_weight[ -config.hidden_size :, : ] A = in_proj_bias[-config.hidden_size :] def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. A = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" A = dct.pop(__snake_case ) A = val def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" A = ViTMSNConfig() A = 1_000 A = "datasets/huggingface/label-files" A = "imagenet-1k-id2label.json" A = json.load(open(hf_hub_download(__snake_case , __snake_case ) , "r" ) ) A = {int(__snake_case ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: A = 384 A = 1_536 A = 6 elif "l16" in checkpoint_url: A = 1_024 A = 4_096 A = 24 A = 16 A = 0.1 elif "b4" in checkpoint_url: A = 4 elif "l7" in checkpoint_url: A = 7 A = 1_024 A = 4_096 A = 24 A = 16 A = 0.1 A = ViTMSNModel(__snake_case ) A = torch.hub.load_state_dict_from_url(__snake_case , map_location="cpu" )["target_encoder"] A = ViTImageProcessor(size=config.image_size ) remove_projection_head(__snake_case ) A = create_rename_keys(__snake_case , base_model=__snake_case ) for src, dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) read_in_q_k_v(__snake_case , __snake_case , base_model=__snake_case ) model.load_state_dict(__snake_case ) model.eval() A = "http://images.cocodataset.org/val2017/000000039769.jpg" A = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) A = ViTImageProcessor( size=config.image_size , image_mean=__snake_case , image_std=__snake_case ) A = image_processor(images=__snake_case , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) A = model(**__snake_case ) A = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: A = torch.tensor([[-1.09_15, -1.48_76, -1.18_09]] ) elif "b16" in checkpoint_url: A = torch.tensor([[14.28_89, -18.90_45, 11.72_81]] ) elif "l16" in checkpoint_url: A = torch.tensor([[41.50_28, -22.86_81, 45.64_75]] ) elif "b4" in checkpoint_url: A = torch.tensor([[-4.38_68, 5.29_32, -0.41_37]] ) else: A = torch.tensor([[-0.17_92, -0.64_65, 2.42_63]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __snake_case , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__snake_case ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __A : Dict = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
363
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A : int = logging.get_logger(__name__) __A : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } __A : str = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models A = "lm_head" A = getattr(lowercase__ , lowercase__ ) if weight_type is not None: A = getattr(lowercase__ , lowercase__ ).shape else: A = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" A = [] A = fairseq_model.state_dict() A = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( lowercase__ , lowercase__ , lowercase__ , lowercase__ , hf_model.config.feat_extract_norm == "group" , ) A = True else: for key, mapped_key in MAPPING.items(): A = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A = True if "*" in mapped_key: A = name.split(lowercase__ )[0].split("." )[-2] A = mapped_key.replace("*" , lowercase__ ) if "weight_g" in name: A = "weight_g" elif "weight_v" in name: A = "weight_v" elif "bias" in name: A = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj A = "weight" else: A = None set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) continue if not is_used: unused_weights.append(lowercase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" A = full_name.split("conv_layers." )[-1] A = name.split("." ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) A = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) A = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) A = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) A = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase__ ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=True ): """simple docstring""" if config_path is not None: A = UniSpeechConfig.from_pretrained(lowercase__ ) else: A = UniSpeechConfig() if is_finetuned: if dict_path: A = Dictionary.load_from_json(lowercase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A = target_dict.pad_index A = target_dict.bos_index A = target_dict.eos_index A = len(target_dict.symbols ) A = os.path.join(lowercase__ , "vocab.json" ) if not os.path.isdir(lowercase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowercase__ ) ) return os.makedirs(lowercase__ , exist_ok=lowercase__ ) A = target_dict.indices # fairseq has the <pad> and <s> switched A = 42 A = 43 with open(lowercase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowercase__ , lowercase__ ) A = WavaVecaPhonemeCTCTokenizer( lowercase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowercase__ , ) A = True if config.feat_extract_norm == "layer" else False A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowercase__ , return_attention_mask=lowercase__ , ) A = WavaVecaProcessor(feature_extractor=lowercase__ , tokenizer=lowercase__ ) processor.save_pretrained(lowercase__ ) A = UniSpeechForCTC(lowercase__ ) else: A = UniSpeechForPreTraining(lowercase__ ) if is_finetuned: A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A = model[0].eval() recursively_load_weights(lowercase__ , lowercase__ , lowercase__ ) hf_unispeech.save_pretrained(lowercase__ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __A : int = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
57
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = tempfile.mkdtemp() lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) lowercase = { 'do_resize': True, 'size': {'height': 224, 'width': 224}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], 'do_convert_rgb': True, } lowercase = os.path.join(self.tmpdirname , snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_tokenizer() lowercase = self.get_rust_tokenizer() lowercase = self.get_image_processor() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) processor_slow.save_pretrained(self.tmpdirname ) lowercase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case ) lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) processor_fast.save_pretrained(self.tmpdirname ) lowercase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , snake_case ) self.assertIsInstance(processor_fast.tokenizer , snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , snake_case ) self.assertIsInstance(processor_fast.image_processor , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) lowercase = self.get_image_processor(do_normalize=snake_case ) lowercase = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=snake_case ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = self.prepare_image_inputs() lowercase = image_processor(snake_case , return_tensors='np' ) lowercase = processor(images=snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = 'Alexandra,T-shirt的价格是15便士。' lowercase = processor(text=snake_case ) lowercase = tokenizer(snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = 'Alexandra,T-shirt的价格是15便士。' lowercase = self.prepare_image_inputs() lowercase = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.batch_decode(snake_case ) lowercase = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = 'Alexandra,T-shirt的价格是15便士。' lowercase = self.prepare_image_inputs() lowercase = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
195
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = 1.5 lowercase = int(factor * num_class_images ) lowercase = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=__SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=__SCREAMING_SNAKE_CASE ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: lowercase = client.query(text=__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) >= factor * num_class_images or num_images > 1e4: break else: lowercase = int(factor * num_images ) lowercase = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=__SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 , ) lowercase = 0 lowercase = 0 lowercase = tqdm(desc='downloading real regularization images' , total=__SCREAMING_SNAKE_CASE ) with open(F'''{class_data_dir}/caption.txt''' , 'w' ) as fa, open(F'''{class_data_dir}/urls.txt''' , 'w' ) as fa, open( F'''{class_data_dir}/images.txt''' , 'w' ) as fa: while total < num_class_images: lowercase = class_images[count] count += 1 try: lowercase = requests.get(images['url'] ) if img.status_code == 200: lowercase = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCAmelCase_ ( ): lowercase = argparse.ArgumentParser('' , add_help=__SCREAMING_SNAKE_CASE ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE ) parser.add_argument('--class_data_dir' , help='path to save images' , required=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE ) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=__SCREAMING_SNAKE_CASE ) return parser.parse_args() if __name__ == "__main__": UpperCAmelCase = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
195
1
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = torch.load(_lowerCamelCase , map_location="cpu" ) if "model" in sd.keys(): _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" )["model"] # pop unnecessary weights _lowerCAmelCase : Optional[int] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCAmelCase : Any = sd.pop(_lowerCamelCase ) _lowerCAmelCase : List[str] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCAmelCase : Dict = sd[key] # We split QKV in separate Q,K,V _lowerCAmelCase : str = key.replace(".qkv_proj." , ".q_proj." ) _lowerCAmelCase : Dict = key.replace(".qkv_proj." , ".k_proj." ) _lowerCAmelCase : Union[str, Any] = key.replace(".qkv_proj." , ".v_proj." ) _lowerCAmelCase : int = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = torch.split(_lowerCamelCase , depth // 3 , dim=0 ) _lowerCAmelCase : Tuple = q _lowerCAmelCase : Dict = k _lowerCAmelCase : Optional[int] = v del sd[key] return sd @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Tuple = load_checkpoint(_lowerCamelCase ) if config is not None: _lowerCAmelCase : Any = OPTConfig.from_pretrained(_lowerCamelCase ) else: _lowerCAmelCase : List[Any] = OPTConfig() _lowerCAmelCase : str = OPTModel(_lowerCamelCase ).half().eval() model.load_state_dict(_lowerCamelCase ) # Check results Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") _snake_case = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
300
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
1
def lowerCAmelCase__( lowercase : float , lowercase : float , lowercase : int ) -> float: if principal <= 0: raise Exception("Principal borrowed must be > 0" ) if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0" ) if years_to_repay <= 0 or not isinstance(lowercase , lowercase ): raise Exception("Years to repay must be an integer > 0" ) # Yearly rate is divided by 12 to get monthly rate __snake_case : Optional[Any] = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __snake_case : Tuple = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
326
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _UpperCamelCase = 4 _UpperCamelCase = 3 class _lowerCamelCase ( a ): """simple docstring""" pass def lowerCAmelCase__( lowercase : List[str] ) -> Any: for shard in shards: for i in range(lowercase ): yield {"i": i, "shard": shard} def lowerCAmelCase__( ) -> Optional[int]: __snake_case : List[Any] = int(os.environ["RANK"] ) __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : List[str] = ArgumentParser() parser.add_argument("--streaming" , type=lowercase ) parser.add_argument("--local_rank" , type=lowercase ) parser.add_argument("--num_workers" , type=lowercase , default=0 ) __snake_case : Any = parser.parse_args() __snake_case : Dict = args.streaming __snake_case : Union[str, Any] = args.num_workers __snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]} __snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase ) if not streaming: __snake_case : Any = Dataset.from_list(list(lowercase ) ) __snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase ) __snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase ) __snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __snake_case : Dict = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
326
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = tempfile.mkdtemp() # fmt: off A_ = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on A_ = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A_ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] A_ = {"""unk_token""": """<unk>"""} A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase__ ) ) A_ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } A_ = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , **UpperCamelCase__ ) -> str: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def snake_case_ ( self , **UpperCamelCase__ ) -> Any: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.get_tokenizer() A_ = self.get_rust_tokenizer() A_ = self.get_image_processor() A_ = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) A_ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase__ ) A_ = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) A_ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase__ ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A_ = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) A_ = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) A_ = self.prepare_image_inputs() A_ = image_processor(UpperCamelCase__ , return_tensors="""np""" ) A_ = processor(images=UpperCamelCase__ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) A_ = """lower newer""" A_ = processor(text=UpperCamelCase__ ) A_ = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) A_ = """lower newer""" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ = processor.batch_decode(UpperCamelCase__ ) A_ = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) A_ = """lower newer""" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
101
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A__ : def __init__( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = str(id_ ) A_ = None A_ = None A_ = [] A_ = {} # {vertex:distance} def __lt__( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.key < other.key def __repr__( self ) -> Dict: '''simple docstring''' return self.id def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' self.neighbors.append(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = weight def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], UpperCAmelCase__ ) graph[b - 1].add_edge(graph[a - 1], UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> list: A_ = [] for u in graph: A_ = math.inf A_ = None A_ = 0 A_ = graph[:] while q: A_ = min(UpperCAmelCase__ ) q.remove(UpperCAmelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): A_ = u A_ = u.edges[v.id] for i in range(1, len(UpperCAmelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Iterator[tuple]: for u in graph: A_ = math.inf A_ = None A_ = 0 A_ = list(UpperCAmelCase__ ) hq.heapify(UpperCAmelCase__ ) while h: A_ = hq.heappop(UpperCAmelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): A_ = u A_ = u.edges[v.id] hq.heapify(UpperCAmelCase__ ) for i in range(1, len(UpperCAmelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
101
1
'''simple docstring''' import numpy as np def __snake_case ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float = 1E-1_2 , UpperCAmelCase_ : int = 100 , ): assert np.shape(UpperCAmelCase_ )[0] == np.shape(UpperCAmelCase_ )[1] # Ensure proper dimensionality. assert np.shape(UpperCAmelCase_ )[0] == np.shape(UpperCAmelCase_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(UpperCAmelCase_ ) == np.iscomplexobj(UpperCAmelCase_ ) lowerCamelCase_ = np.iscomplexobj(UpperCAmelCase_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(UpperCAmelCase_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. lowerCamelCase_ = False lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 1E1_2 while not convergence: # Multiple matrix by the vector. lowerCamelCase_ = np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) # Normalize the resulting output vector. lowerCamelCase_ = w / np.linalg.norm(UpperCAmelCase_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lowerCamelCase_ = vector.conj().T if is_complex else vector.T lowerCamelCase_ = np.dot(UpperCAmelCase_ , np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Check convergence. lowerCamelCase_ = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: lowerCamelCase_ = True lowerCamelCase_ = lambda_ if is_complex: lowerCamelCase_ = np.real(lambda_ ) return lambda_, vector def __snake_case ( ): lowerCamelCase_ = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) lowerCamelCase_ = np.array([41, 4, 20] ) lowerCamelCase_ = real_input_matrix.astype(np.complexaaa ) lowerCamelCase_ = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T lowerCamelCase_ = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": lowerCamelCase_ = real_input_matrix lowerCamelCase_ = real_vector elif problem_type == "complex": lowerCamelCase_ = complex_input_matrix lowerCamelCase_ = complex_vector # Our implementation. lowerCamelCase_ ,lowerCamelCase_ = power_iteration(UpperCAmelCase_ , UpperCAmelCase_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). lowerCamelCase_ ,lowerCamelCase_ = np.linalg.eigh(UpperCAmelCase_ ) # Last eigenvalue is the maximum one. lowerCamelCase_ = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. lowerCamelCase_ = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(UpperCAmelCase_ ) - np.abs(UpperCAmelCase_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
55
from __future__ import annotations def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : int = [] __snake_case , __snake_case : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __snake_case : Tuple = result + left + right return input_list def lowerCAmelCase_ ( __lowerCamelCase ): if len(__lowerCamelCase ) <= 1: return input_list __snake_case : Optional[Any] = list(__lowerCamelCase ) # iteration for two-way merging __snake_case : Dict = 2 while p <= len(__lowerCamelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ): __snake_case : Union[str, Any] = i __snake_case : int = i + p - 1 __snake_case : Optional[int] = (low + high + 1) // 2 __snake_case : Any = merge(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # final merge of last two parts if p * 2 >= len(__lowerCamelCase ): __snake_case : Optional[Any] = i __snake_case : Dict = merge(__lowerCamelCase , 0 , __lowerCamelCase , len(__lowerCamelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _snake_case : int = input("Enter numbers separated by a comma:\n").strip() if user_input == "": _snake_case : str = [] else: _snake_case : int = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
123
0
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = 1.5 __UpperCamelCase = int(factor * num_class_images ) __UpperCamelCase = ClipClient( url="""https://knn.laion.ai/knn-service""" ,indice_name="""laion_400m""" ,num_images=a__ ,aesthetic_weight=0.1 ) os.makedirs(f"{class_data_dir}/images" ,exist_ok=a__ ) if len(list(Path(f"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: __UpperCamelCase = client.query(text=a__ ) if len(a__ ) >= factor * num_class_images or num_images > 1E4: break else: __UpperCamelCase = int(factor * num_images ) __UpperCamelCase = ClipClient( url="""https://knn.laion.ai/knn-service""" ,indice_name="""laion_400m""" ,num_images=a__ ,aesthetic_weight=0.1 ,) __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = tqdm(desc="""downloading real regularization images""" ,total=a__ ) with open(f"{class_data_dir}/caption.txt" ,"""w""" ) as fa, open(f"{class_data_dir}/urls.txt" ,"""w""" ) as fa, open( f"{class_data_dir}/images.txt" ,"""w""" ) as fa: while total < num_class_images: __UpperCamelCase = class_images[count] count += 1 try: __UpperCamelCase = requests.get(images["""url"""] ) if img.status_code == 200: __UpperCamelCase = Image.open(BytesIO(img.content ) ) with open(f"{class_data_dir}/images/{total}.jpg" ,"""wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(f"{class_data_dir}/images/{total}.jpg" + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def _lowercase ( ): '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser("""""" ,add_help=a__ ) parser.add_argument("""--class_prompt""" ,help="""text prompt to retrieve images""" ,required=a__ ,type=a__ ) parser.add_argument("""--class_data_dir""" ,help="""path to save images""" ,required=a__ ,type=a__ ) parser.add_argument("""--num_class_images""" ,help="""number of images to download""" ,default=200 ,type=a__ ) return parser.parse_args() if __name__ == "__main__": a__ : Optional[Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
371
'''simple docstring''' def _lowercase ( __A ): '''simple docstring''' if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
243
0
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __snake_case ( ): lowerCamelCase_ = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" lowerCamelCase_ = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ).convert("RGB" ) return image def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def __snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict ): lowerCamelCase_ = dct.pop(UpperCAmelCase_ ) lowerCamelCase_ = val def __snake_case ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCamelCase_ = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) lowerCamelCase_ = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict lowerCamelCase_ = torch.cat((q_bias, torch.zeros_like(UpperCAmelCase_ , requires_grad=UpperCAmelCase_ ), v_bias) ) lowerCamelCase_ = qkv_bias def __snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ): lowerCamelCase_ = 364 if "coco" in model_name else 224 lowerCamelCase_ = BlipaVisionConfig(image_size=UpperCAmelCase_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowerCamelCase_ = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=UpperCAmelCase_ ).to_dict() elif "opt-6.7b" in model_name: lowerCamelCase_ = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=UpperCAmelCase_ ).to_dict() elif "t5-xl" in model_name: lowerCamelCase_ = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCamelCase_ = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() lowerCamelCase_ = BlipaConfig(vision_config=UpperCAmelCase_ , text_config=UpperCAmelCase_ ) return config, image_size @torch.no_grad() def __snake_case ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Union[str, Any]=False ): lowerCamelCase_ = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) lowerCamelCase_ = tokenizer("\n" , add_special_tokens=UpperCAmelCase_ ).input_ids[0] lowerCamelCase_ ,lowerCamelCase_ = get_blipa_config(UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) lowerCamelCase_ = BlipaForConditionalGeneration(UpperCAmelCase_ ).eval() lowerCamelCase_ = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } lowerCamelCase_ ,lowerCamelCase_ = model_name_to_original[model_name] # load original model print("Loading original model..." ) lowerCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = load_model_and_preprocess( name=UpperCAmelCase_ , model_type=UpperCAmelCase_ , is_eval=UpperCAmelCase_ , device=UpperCAmelCase_ ) original_model.eval() print("Done!" ) # update state dict keys lowerCamelCase_ = original_model.state_dict() lowerCamelCase_ = create_rename_keys(UpperCAmelCase_ ) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCamelCase_ = state_dict.pop(UpperCAmelCase_ ) if key.startswith("Qformer.bert" ): lowerCamelCase_ = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: lowerCamelCase_ = key.replace("self" , "attention" ) if "opt_proj" in key: lowerCamelCase_ = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: lowerCamelCase_ = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): lowerCamelCase_ = key.replace("opt" , "language" ) if key.startswith("t5" ): lowerCamelCase_ = key.replace("t5" , "language" ) lowerCamelCase_ = val # read in qv biases read_in_q_v_bias(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase_ ,lowerCamelCase_ = hf_model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) assert len(UpperCAmelCase_ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowerCamelCase_ = load_demo_image() lowerCamelCase_ = vis_processors["eval"](UpperCAmelCase_ ).unsqueeze(0 ).to(UpperCAmelCase_ ) lowerCamelCase_ = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(UpperCAmelCase_ ) # create processor lowerCamelCase_ = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=UpperCAmelCase_ , image_std=UpperCAmelCase_ ) lowerCamelCase_ = BlipaProcessor(image_processor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) lowerCamelCase_ = processor(images=UpperCAmelCase_ , return_tensors="pt" ).pixel_values.to(UpperCAmelCase_ ) # make sure processor creates exact same pixel values assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) original_model.to(UpperCAmelCase_ ) hf_model.to(UpperCAmelCase_ ) with torch.no_grad(): if "opt" in model_name: lowerCamelCase_ = original_model({"image": original_pixel_values, "text_input": [""]} ).logits lowerCamelCase_ = hf_model(UpperCAmelCase_ , UpperCAmelCase_ ).logits else: lowerCamelCase_ = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits lowerCamelCase_ = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) lowerCamelCase_ = hf_model(UpperCAmelCase_ , UpperCAmelCase_ , labels=UpperCAmelCase_ ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowerCamelCase_ = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=UpperCAmelCase_ ) assert torch.allclose(logits[0, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowerCamelCase_ = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=UpperCAmelCase_ ) else: # cast to same type lowerCamelCase_ = logits.dtype assert torch.allclose(original_logits.to(UpperCAmelCase_ ) , UpperCAmelCase_ , atol=1E-2 ) print("Looks ok!" ) print("Generating a caption..." ) lowerCamelCase_ = "" lowerCamelCase_ = tokenizer(UpperCAmelCase_ , return_tensors="pt" ).input_ids.to(UpperCAmelCase_ ) lowerCamelCase_ = original_model.generate({"image": original_pixel_values} ) lowerCamelCase_ = hf_model.generate( UpperCAmelCase_ , UpperCAmelCase_ , do_sample=UpperCAmelCase_ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , UpperCAmelCase_ ) lowerCamelCase_ = input_ids.shape[1] lowerCamelCase_ = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=UpperCAmelCase_ ) lowerCamelCase_ = [text.strip() for text in output_text] print("HF generation:" , UpperCAmelCase_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCAmelCase_ ) hf_model.save_pretrained(UpperCAmelCase_ ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() a_ : Optional[Any] = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) a_ : Any = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
55
"""simple docstring""" import argparse import os import re import packaging.version A : Any = "examples/" A : Optional[Any] = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } A : Optional[int] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } A : List[Any] = "README.md" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' with open(_UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase , __lowerCAmelCase = REPLACE_PATTERNS[pattern] __lowerCAmelCase = replace.replace("VERSION" , _UpperCamelCase ) __lowerCAmelCase = re_pattern.sub(_UpperCamelCase , _UpperCamelCase ) with open(_UpperCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' for folder, directories, fnames in os.walk(_UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase , pattern="examples" ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not patch: update_version_in_examples(_UpperCamelCase ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = "🤗 Transformers currently provides the following architectures" __lowerCAmelCase = "1. Want to contribute a new model?" with open(_UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.readlines() # Find the start of the list. __lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): __lowerCAmelCase = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(_UpperCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_UpperCamelCase ) def _lowerCamelCase ( ): '''simple docstring''' with open(REPLACE_FILES["init"] , "r" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase = REPLACE_PATTERNS["init"][0].search(_UpperCamelCase ).groups()[0] return packaging.version.parse(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase=False ): '''simple docstring''' __lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: __lowerCAmelCase = default_version.base_version elif patch: __lowerCAmelCase = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: __lowerCAmelCase = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. __lowerCAmelCase = input(f"Which version are you releasing? [{default_version}]" ) if len(_UpperCamelCase ) == 0: __lowerCAmelCase = default_version print(f"Updating version to {version}." ) global_version_update(_UpperCamelCase , patch=_UpperCamelCase ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = get_version() __lowerCAmelCase = f"{current_version.major}.{current_version.minor + 1}.0.dev0" __lowerCAmelCase = current_version.base_version # Check with the user we got that right. __lowerCAmelCase = input(f"Which version are we developing now? [{dev_version}]" ) if len(_UpperCamelCase ) == 0: __lowerCAmelCase = dev_version print(f"Updating version to {version}." ) global_version_update(_UpperCamelCase ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") A : Dict = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
57
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class lowercase ( __snake_case ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """roberta""" def __init__( self , _snake_case=5_0265 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3072 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=2 , _snake_case=0.02 , _snake_case=1e-12 , _snake_case=1 , _snake_case=0 , _snake_case=2 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ) -> int: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache UpperCAmelCase = classifier_dropout class lowercase ( __snake_case ): '''simple docstring''' @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
370
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __magic_name__ = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
152
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : List[Any] = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[Any] = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
300
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = (DDPMScheduler,) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , **snake_case :str ): '''simple docstring''' A_ : Dict = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**snake_case ) return config def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case , beta_end=snake_case ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.check_over_configs(thresholding=snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case , prediction_type=snake_case , sample_max_value=snake_case , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Tuple = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : List[str] = scheduler_class(**snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : int = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : int = scheduler_class(**snake_case ) A_ : Tuple = len(snake_case ) A_ : List[str] = self.dummy_model() A_ : Optional[Any] = self.dummy_sample_deter A_ : List[str] = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Tuple = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Dict = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : Optional[int] = pred_prev_sample A_ : Tuple = torch.sum(torch.abs(snake_case ) ) A_ : str = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Optional[int] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config(prediction_type="v_prediction" ) A_ : List[str] = scheduler_class(**snake_case ) A_ : int = len(snake_case ) A_ : Dict = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Any = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Optional[int] = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Tuple = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : List[str] = pred_prev_sample A_ : Optional[Any] = torch.sum(torch.abs(snake_case ) ) A_ : List[str] = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Dict = scheduler_class(**snake_case ) A_ : Optional[int] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case ) A_ : Optional[int] = scheduler.timesteps for i, timestep in enumerate(snake_case ): if i == len(snake_case ) - 1: A_ : str = -1 else: A_ : List[str] = timesteps[i + 1] A_ : Optional[int] = scheduler.previous_timestep(snake_case ) A_ : List[str] = prev_t.item() self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Optional[Any] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config() A_ : Tuple = scheduler_class(**snake_case ) A_ : List[str] = [100, 87, 50, 51, 0] with self.assertRaises(snake_case , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Any = self.scheduler_classes[0] A_ : Union[str, Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Union[str, Any] = [100, 87, 50, 1, 0] A_ : Optional[int] = len(snake_case ) with self.assertRaises(snake_case , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=snake_case , timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=snake_case )
300
1
from math import ceil, sqrt def __UpperCamelCase ( _A : int = 1000000 ) ->int: """simple docstring""" lowerCamelCase_ =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase_ =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase_ =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F"""{solution() = }""")
49
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =SMALL_MODEL_IDENTIFIER lowerCamelCase_ ="""pt""" lowerCamelCase_ ="""tf""" def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> List[str]: lowerCamelCase_ =AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Optional[Any]: lowerCamelCase_ =TFAutoModel.from_pretrained(self.test_model , from_pt=_SCREAMING_SNAKE_CASE ) model_tf.save_pretrained(_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ ="""mock_framework""" # Framework provided - return whatever the user provides lowerCamelCase_ =FeaturesManager.determine_framework(self.test_model , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =FeaturesManager.determine_framework(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =FeaturesManager.determine_framework(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Tuple: # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =FeaturesManager.determine_framework(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =FeaturesManager.determine_framework(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_SCREAMING_SNAKE_CASE ): lowerCamelCase_ =FeaturesManager.determine_framework(_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =MagicMock(return_value=_SCREAMING_SNAKE_CASE ) with patch("""transformers.onnx.features.is_tf_available""" , _SCREAMING_SNAKE_CASE ): lowerCamelCase_ =FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_SCREAMING_SNAKE_CASE , self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowerCamelCase_ =MagicMock(return_value=_SCREAMING_SNAKE_CASE ) with patch("""transformers.onnx.features.is_torch_available""" , _SCREAMING_SNAKE_CASE ): lowerCamelCase_ =FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_SCREAMING_SNAKE_CASE , self.framework_tf ) # Both in environment -> use PyTorch lowerCamelCase_ =MagicMock(return_value=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =MagicMock(return_value=_SCREAMING_SNAKE_CASE ) with patch("""transformers.onnx.features.is_tf_available""" , _SCREAMING_SNAKE_CASE ), patch( """transformers.onnx.features.is_torch_available""" , _SCREAMING_SNAKE_CASE ): lowerCamelCase_ =FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_SCREAMING_SNAKE_CASE , self.framework_pt ) # Both not in environment -> raise error lowerCamelCase_ =MagicMock(return_value=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =MagicMock(return_value=_SCREAMING_SNAKE_CASE ) with patch("""transformers.onnx.features.is_tf_available""" , _SCREAMING_SNAKE_CASE ), patch( """transformers.onnx.features.is_torch_available""" , _SCREAMING_SNAKE_CASE ): with self.assertRaises(_SCREAMING_SNAKE_CASE ): lowerCamelCase_ =FeaturesManager.determine_framework(self.test_model )
49
1
from __future__ import annotations from random import random class lowercase : def __init__( self ,A__ = None): lowercase = value lowercase = random() lowercase = None lowercase = None def __repr__( self): from pprint import pformat if self.left is None and self.right is None: return f'\'{self.value}: {self.prior:.5}\'' else: return pformat( {f'{self.value}: {self.prior:.5}': (self.left, self.right)} ,indent=1) def __str__( self): lowercase = str(self.value) + ''' ''' lowercase = str(self.left or '''''') lowercase = str(self.right or '''''') return value + left + right def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowercase , lowercase = split(root.left , lowerCAmelCase__ ) return left, root else: lowercase , lowercase = split(root.right , lowerCAmelCase__ ) return root, right def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowercase = merge(left.right , lowerCAmelCase__ ) return left else: lowercase = merge(lowerCAmelCase__ , right.left ) return right def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = Node(lowerCAmelCase__ ) lowercase , lowercase = split(lowerCAmelCase__ , lowerCAmelCase__ ) return merge(merge(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase , lowercase = split(lowerCAmelCase__ , value - 1 ) lowercase , lowercase = split(lowerCAmelCase__ , lowerCAmelCase__ ) return merge(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' for arg in args.split(): if arg[0] == "+": lowercase = insert(lowerCAmelCase__ , int(arg[1:] ) ) elif arg[0] == "-": lowercase = erase(lowerCAmelCase__ , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def UpperCamelCase ( ): '''simple docstring''' lowercase = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) lowercase = input() while args != "q": lowercase = interact_treap(lowerCAmelCase__ , lowerCAmelCase__ ) print(lowerCAmelCase__ ) lowercase = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
101
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Optional[Any] =IFPipeline lowercase_ : List[str] =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} lowercase_ : List[str] =TEXT_TO_IMAGE_BATCH_PARAMS lowercase_ : int =PipelineTesterMixin.required_optional_params - {'''latents'''} def A__ ( self): return self._get_dummy_components() def A__ ( self ,A__ ,A__=0): if str(A__).startswith('''mps'''): lowercase = torch.manual_seed(A__) else: lowercase = torch.Generator(device=A__).manual_seed(A__) lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def A__ ( self): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' ,reason='''float16 requires CUDA''') def A__ ( self): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1) def A__ ( self): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def A__ ( self): self._test_save_load_local() def A__ ( self): self._test_inference_batch_single_identical( expected_max_diff=1E-2 ,) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def A__ ( self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def A__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self): # if lowercase = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' ,variant='''fp16''' ,torch_dtype=torch.floataa) lowercase = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' ,variant='''fp16''' ,torch_dtype=torch.floataa ,text_encoder=A__ ,tokenizer=A__) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''') lowercase , lowercase = pipe_a.encode_prompt('''anime turtle''' ,device='''cuda''') del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowercase = None lowercase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(A__ ,A__ ,A__ ,A__) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowercase = IFImgaImgPipeline(**pipe_a.components) lowercase = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(A__ ,A__ ,A__ ,A__) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowercase = IFInpaintingPipeline(**pipe_a.components) lowercase = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(A__ ,A__ ,A__ ,A__) def A__ ( self ,A__ ,A__ ,A__ ,A__): # pipeline 1 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,num_inference_steps=2 ,generator=A__ ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''') assert_mean_pixel_difference(A__ ,A__) # pipeline 2 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,generator=A__ ,num_inference_steps=2 ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''') assert_mean_pixel_difference(A__ ,A__) def A__ ( self ,A__ ,A__ ,A__ ,A__): # pipeline 1 _start_torch_memory_measurement() lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,num_inference_steps=2 ,generator=A__ ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''') assert_mean_pixel_difference(A__ ,A__) # pipeline 2 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,original_image=A__ ,generator=A__ ,num_inference_steps=2 ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''') assert_mean_pixel_difference(A__ ,A__) def A__ ( self ,A__ ,A__ ,A__ ,A__): # pipeline 1 _start_torch_memory_measurement() lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(1)).to(A__) lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,mask_image=A__ ,num_inference_steps=2 ,generator=A__ ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''') assert_mean_pixel_difference(A__ ,A__) # pipeline 2 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) ,rng=random.Random(1)).to(A__) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,mask_image=A__ ,original_image=A__ ,generator=A__ ,num_inference_steps=2 ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''') assert_mean_pixel_difference(A__ ,A__) def UpperCamelCase ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
101
1
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class a : def __init__( self :Optional[Any] ,__lowercase :Optional[Any] ,__lowercase :Optional[int]=1_3 ,__lowercase :Union[str, Any]=7 ,__lowercase :int=True ,__lowercase :Optional[int]=True ,__lowercase :Tuple=False ,__lowercase :List[str]=True ,__lowercase :Optional[Any]=9_9 ,__lowercase :str=3_2 ,__lowercase :Any=5 ,__lowercase :Optional[int]=4 ,__lowercase :Optional[int]=3_7 ,__lowercase :Optional[Any]="gelu" ,__lowercase :int=0.1 ,__lowercase :str=0.1 ,__lowercase :List[str]=5_1_2 ,__lowercase :int=1_6 ,__lowercase :Optional[int]=2 ,__lowercase :int=0.02 ,__lowercase :Any=3 ,__lowercase :List[str]=4 ,__lowercase :int=None ,): snake_case__ : Dict = parent snake_case__ : int = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Any = is_training snake_case__ : Optional[Any] = use_input_mask snake_case__ : Tuple = use_token_type_ids snake_case__ : Union[str, Any] = use_labels snake_case__ : Optional[Any] = vocab_size snake_case__ : str = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Union[str, Any] = intermediate_size snake_case__ : Any = hidden_act snake_case__ : List[Any] = hidden_dropout_prob snake_case__ : Tuple = attention_probs_dropout_prob snake_case__ : Union[str, Any] = max_position_embeddings snake_case__ : Dict = type_vocab_size snake_case__ : Any = type_sequence_label_size snake_case__ : Any = initializer_range snake_case__ : int = num_labels snake_case__ : Optional[int] = num_choices snake_case__ : Any = scope def __lowerCamelCase ( self :int ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ : Optional[int] = None if self.use_input_mask: snake_case__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : List[Any] = None if self.use_token_type_ids: snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) snake_case__ : str = None snake_case__ : Tuple = None snake_case__ : Optional[int] = None if self.use_labels: snake_case__ : int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case__ : Union[str, Any] = ids_tensor([self.batch_size] ,self.num_choices ) snake_case__ : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self :Tuple ): return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowercase ,initializer_range=self.initializer_range ,) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :Tuple ,__lowercase :Tuple ,__lowercase :Union[str, Any] ,__lowercase :Union[str, Any] ,__lowercase :Any ,__lowercase :Optional[Any] ,__lowercase :Tuple ): snake_case__ : Union[str, Any] = LlamaModel(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Optional[int] = model(__lowercase ,attention_mask=__lowercase ) snake_case__ : List[str] = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :List[str] ,__lowercase :Union[str, Any] ,__lowercase :str ,__lowercase :Any ,__lowercase :Tuple ,__lowercase :List[Any] ,__lowercase :str ,__lowercase :Tuple ,__lowercase :Tuple ,): snake_case__ : Any = True snake_case__ : Any = LlamaModel(__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Dict = model( __lowercase ,attention_mask=__lowercase ,encoder_hidden_states=__lowercase ,encoder_attention_mask=__lowercase ,) snake_case__ : Optional[Any] = model( __lowercase ,attention_mask=__lowercase ,encoder_hidden_states=__lowercase ,) snake_case__ : str = model(__lowercase ,attention_mask=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :Union[str, Any] ,__lowercase :List[Any] ,__lowercase :Any ,__lowercase :Dict ,__lowercase :Union[str, Any] ,__lowercase :Union[str, Any] ,__lowercase :List[str] ,__lowercase :int ,__lowercase :str ,): snake_case__ : int = LlamaForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Optional[Any] = model(__lowercase ,attention_mask=__lowercase ,labels=__lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :Optional[Any] ,__lowercase :Union[str, Any] ,__lowercase :Optional[int] ,__lowercase :List[str] ,__lowercase :List[str] ,__lowercase :List[Any] ,__lowercase :List[Any] ,__lowercase :Union[str, Any] ,__lowercase :Optional[int] ,): snake_case__ : Tuple = True snake_case__ : Optional[int] = True snake_case__ : List[str] = LlamaForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() # first forward pass snake_case__ : List[str] = model( __lowercase ,attention_mask=__lowercase ,encoder_hidden_states=__lowercase ,encoder_attention_mask=__lowercase ,use_cache=__lowercase ,) snake_case__ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ : List[Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) snake_case__ : int = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and snake_case__ : Any = torch.cat([input_ids, next_tokens] ,dim=-1 ) snake_case__ : str = torch.cat([input_mask, next_mask] ,dim=-1 ) snake_case__ : Any = model( __lowercase ,attention_mask=__lowercase ,encoder_hidden_states=__lowercase ,encoder_attention_mask=__lowercase ,output_hidden_states=__lowercase ,)['''hidden_states'''][0] snake_case__ : Dict = model( __lowercase ,attention_mask=__lowercase ,encoder_hidden_states=__lowercase ,encoder_attention_mask=__lowercase ,past_key_values=__lowercase ,output_hidden_states=__lowercase ,)['''hidden_states'''][0] # select random slice snake_case__ : List[str] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() snake_case__ : str = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase ,__lowercase ,atol=1e-3 ) ) def __lowerCamelCase ( self :Dict ): snake_case__ : List[str] = self.prepare_config_and_inputs() ( snake_case__ ) : int = config_and_inputs snake_case__ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __lowerCAmelCase : Dict = (LlamaForCausalLM,) if is_torch_available() else () __lowerCAmelCase : Any = ( { """feature-extraction""": LlamaModel, """text-classification""": LlamaForSequenceClassification, """text-generation""": LlamaForCausalLM, """zero-shot""": LlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : Optional[Any] = False def __lowerCamelCase ( self :Dict ): snake_case__ : Dict = LlamaModelTester(self ) snake_case__ : List[str] = ConfigTester(self ,config_class=__lowercase ,hidden_size=3_7 ) def __lowerCamelCase ( self :str ): self.config_tester.run_common_tests() def __lowerCamelCase ( self :int ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def __lowerCamelCase ( self :str ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ : Union[str, Any] = type self.model_tester.create_and_check_model(*__lowercase ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Tuple = 3 snake_case__ : List[str] = input_dict['''input_ids'''] snake_case__ : str = input_ids.ne(1 ).to(__lowercase ) snake_case__ : Any = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) snake_case__ : Union[str, Any] = LlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Optional[Any] = model(__lowercase ,attention_mask=__lowercase ,labels=__lowercase ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self :int ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : str = 3 snake_case__ : List[Any] = '''single_label_classification''' snake_case__ : int = input_dict['''input_ids'''] snake_case__ : List[str] = input_ids.ne(1 ).to(__lowercase ) snake_case__ : Tuple = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) snake_case__ : Dict = LlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Optional[Any] = model(__lowercase ,attention_mask=__lowercase ,labels=__lowercase ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self :str ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : str = 3 snake_case__ : List[Any] = '''multi_label_classification''' snake_case__ : Dict = input_dict['''input_ids'''] snake_case__ : str = input_ids.ne(1 ).to(__lowercase ) snake_case__ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case__ : Union[str, Any] = LlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Any = model(__lowercase ,attention_mask=__lowercase ,labels=__lowercase ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def __lowerCamelCase ( self :List[str] ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __lowerCamelCase ( self :Dict ,__lowercase :List[str] ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = ids_tensor([1, 1_0] ,config.vocab_size ) snake_case__ : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : Union[str, Any] = LlamaModel(__lowercase ) original_model.to(__lowercase ) original_model.eval() snake_case__ : Union[str, Any] = original_model(__lowercase ).last_hidden_state snake_case__ : List[Any] = original_model(__lowercase ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : Tuple = {'''type''': scaling_type, '''factor''': 10.0} snake_case__ : List[Any] = LlamaModel(__lowercase ) scaled_model.to(__lowercase ) scaled_model.eval() snake_case__ : List[str] = scaled_model(__lowercase ).last_hidden_state snake_case__ : int = scaled_model(__lowercase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowercase ,__lowercase ,atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__lowercase ,__lowercase ,atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowercase ,__lowercase ,atol=1e-5 ) ) @require_torch class a ( unittest.TestCase ): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __lowerCamelCase ( self :Tuple ): snake_case__ : int = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] snake_case__ : List[str] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' ,device_map='''auto''' ) snake_case__ : List[Any] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 snake_case__ : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,__lowercase ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ : Optional[int] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] ,__lowercase ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __lowerCamelCase ( self :str ): snake_case__ : Optional[Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] snake_case__ : Optional[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' ,device_map='''auto''' ) snake_case__ : Any = model(torch.tensor(__lowercase ) ) # Expected mean on dim = -1 snake_case__ : Optional[int] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,__lowercase ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ : Dict = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] ,__lowercase ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Optional[Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] snake_case__ : Any = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ,device_map='''auto''' ) snake_case__ : Union[str, Any] = model(torch.tensor(__lowercase ) ) # Expected mean on dim = -1 snake_case__ : str = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,__lowercase ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ : Optional[int] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,__lowercase ,atol=1e-2 ,rtol=1e-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def __lowerCamelCase ( self :int ): snake_case__ : Optional[Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] snake_case__ : Optional[int] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' ,device_map='''auto''' ) snake_case__ : Optional[Any] = model(torch.tensor(__lowercase ) ) snake_case__ : str = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,__lowercase ,atol=1e-2 ,rtol=1e-2 ) # fmt: off snake_case__ : str = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] ,__lowercase ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip('''Model is curently gated''' ) @slow def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Optional[Any] = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' snake_case__ : Optional[Any] = '''Simply put, the theory of relativity states that ''' snake_case__ : Tuple = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) snake_case__ : Dict = tokenizer.encode(__lowercase ,return_tensors='''pt''' ) snake_case__ : str = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' ,device_map='''sequential''' ,use_safetensors=__lowercase ) # greedy generation outputs snake_case__ : List[str] = model.generate(__lowercase ,max_new_tokens=6_4 ,top_p=__lowercase ,temperature=1 ,do_sample=__lowercase ) snake_case__ : List[str] = tokenizer.decode(generated_ids[0] ,skip_special_tokens=__lowercase ) self.assertEqual(__lowercase ,__lowercase )
364
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class a ( unittest.TestCase ): def __init__( self :Optional[Any] ,__lowercase :List[Any] ,__lowercase :Tuple=7 ,__lowercase :Optional[Any]=3 ,__lowercase :Dict=3_0 ,__lowercase :Union[str, Any]=4_0_0 ,__lowercase :Optional[int]=True ,__lowercase :int=None ,__lowercase :int=0.9 ,__lowercase :Optional[int]=None ,__lowercase :Dict=True ,__lowercase :str=[0.5, 0.5, 0.5] ,__lowercase :str=[0.5, 0.5, 0.5] ,): snake_case__ : List[Any] = size if size is not None else {'''shortest_edge''': 3_0} snake_case__ : Any = crop_size if crop_size is not None else {'''height''': 3_0, '''width''': 3_0} snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Tuple = num_channels snake_case__ : List[Any] = min_resolution snake_case__ : int = max_resolution snake_case__ : str = do_resize_and_center_crop snake_case__ : Dict = size snake_case__ : Union[str, Any] = crop_pct snake_case__ : List[str] = crop_size snake_case__ : Optional[Any] = do_normalize snake_case__ : Tuple = image_mean snake_case__ : List[str] = image_std def __lowerCamelCase ( self :Any ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Any = PoolFormerImageProcessor if is_vision_available() else None def __lowerCamelCase ( self :List[str] ): snake_case__ : Tuple = PoolFormerImageProcessingTester(self ) @property def __lowerCamelCase ( self :Any ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self :Tuple ): snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase ,'''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(__lowercase ,'''size''' ) ) self.assertTrue(hasattr(__lowercase ,'''crop_pct''' ) ) self.assertTrue(hasattr(__lowercase ,'''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase ,'''image_mean''' ) ) self.assertTrue(hasattr(__lowercase ,'''image_std''' ) ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 3_0} ) self.assertEqual(image_processor.crop_size ,{'''height''': 3_0, '''width''': 3_0} ) snake_case__ : int = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ,crop_size=8_4 ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size ,{'''height''': 8_4, '''width''': 8_4} ) def __lowerCamelCase ( self :int ): pass def __lowerCamelCase ( self :Optional[Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched snake_case__ : Union[str, Any] = image_processing(__lowercase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def __lowerCamelCase ( self :List[str] ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowercase ,numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,np.ndarray ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched snake_case__ : str = image_processing(__lowercase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def __lowerCamelCase ( self :Optional[Any] ): # Initialize image_processing snake_case__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowercase ,torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,torch.Tensor ) # Test not batched input snake_case__ : Dict = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched snake_case__ : str = image_processing(__lowercase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,)
44
0
"""simple docstring""" def _A ( lowercase ): """simple docstring""" if not isinstance(lowercase , lowercase ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) a =0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
81
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" return " ".join( "".join(word[::-1] ) if len(UpperCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
243
0
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase): def __init__( self: Optional[Any] , *UpperCamelCase_: Optional[int] , **UpperCamelCase_: int ): warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
29
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [[0 for _ in range(A__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCamelCase = 1 for n in range(m + 1 ): for k in range(1 , A__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase_ = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCAmelCase_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
1
"""simple docstring""" print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
105
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , lowerCamelCase , ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = RobertaConfig snake_case_ = """roberta""" def __init__( self : Any , __lowercase : Union[str, Any] ) -> Optional[int]: super().__init__(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =RobertaEmbeddings(__lowercase ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , lowerCamelCase , ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = RobertaConfig snake_case_ = """roberta""" def __init__( self : Tuple , __lowercase : Dict ) -> Dict: super().__init__(__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =config.num_labels SCREAMING_SNAKE_CASE__ : Union[str, Any] =config.num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[Any] =DeeRobertaModel(__lowercase ) SCREAMING_SNAKE_CASE__ : int =nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE__ : Dict =nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__lowercase ) def __magic_name__ ( self : str , __lowercase : Optional[int]=None , __lowercase : Tuple=None , __lowercase : List[str]=None , __lowercase : Optional[int]=None , __lowercase : Optional[Any]=None , __lowercase : Optional[Any]=None , __lowercase : List[str]=None , __lowercase : Optional[int]=-1 , __lowercase : str=False , ) -> str: SCREAMING_SNAKE_CASE__ : List[str] =self.num_layers try: SCREAMING_SNAKE_CASE__ : List[str] =self.roberta( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , position_ids=__lowercase , head_mask=__lowercase , inputs_embeds=__lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =outputs[1] SCREAMING_SNAKE_CASE__ : Optional[int] =self.dropout(__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =self.classifier(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: SCREAMING_SNAKE_CASE__ : Union[str, Any] =e.message SCREAMING_SNAKE_CASE__ : Any =e.exit_layer SCREAMING_SNAKE_CASE__ : List[Any] =outputs[0] if not self.training: SCREAMING_SNAKE_CASE__ : Union[str, Any] =entropy(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =[] SCREAMING_SNAKE_CASE__ : str =[] if labels is not None: if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE__ : Optional[int] =MSELoss() SCREAMING_SNAKE_CASE__ : str =loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ : List[Any] =CrossEntropyLoss() SCREAMING_SNAKE_CASE__ : List[str] =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits SCREAMING_SNAKE_CASE__ : Any =[] for highway_exit in outputs[-1]: SCREAMING_SNAKE_CASE__ : Optional[Any] =highway_exit[0] if not self.training: highway_logits_all.append(__lowercase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE__ : List[str] =MSELoss() SCREAMING_SNAKE_CASE__ : int =loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ : Dict =CrossEntropyLoss() SCREAMING_SNAKE_CASE__ : Optional[int] =loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__lowercase ) if train_highway: SCREAMING_SNAKE_CASE__ : str =(sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: SCREAMING_SNAKE_CASE__ : List[str] =(loss,) + outputs if not self.training: SCREAMING_SNAKE_CASE__ : Tuple =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: SCREAMING_SNAKE_CASE__ : str =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
152
0
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS lowercase__ = logging.get_logger(__name__) lowercase__ = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class UpperCamelCase__ ( __lowerCAmelCase ): def __init__(self : Dict , snake_case_ : str=None , snake_case_ : List[str]=None , *snake_case_ : Union[str, Any] , **snake_case_ : Tuple ): super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if config is None: assert isinstance(self.model , lowerCamelCase__ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f" {self.model.__class__}" ) __a : Union[str, Any] = self.model.config else: __a : List[Any] = config __a : Dict = data_args __a : str = self.config.tgt_vocab_size if isinstance(self.config , lowerCamelCase__ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for" ''' padding..''' ) if self.args.label_smoothing == 0: __a : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss __a : Optional[Any] = label_smoothed_nll_loss def lowerCAmelCase (self : List[Any] , snake_case_ : int ): if self.optimizer is None: __a : List[str] = ['''bias''', '''LayerNorm.weight'''] __a : Optional[Any] = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] __a : Optional[int] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: __a : int = Adafactor __a : Union[str, Any] = {'''scale_parameter''': False, '''relative_step''': False} else: __a : Tuple = AdamW __a : List[Any] = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } __a : str = self.args.learning_rate if self.sharded_ddp: __a : str = OSS( params=lowerCamelCase__ , optim=lowerCamelCase__ , **lowerCamelCase__ , ) else: __a : int = optimizer_cls(lowerCamelCase__ , **lowerCamelCase__ ) if self.lr_scheduler is None: __a : Optional[int] = self._get_lr_scheduler(lowerCamelCase__ ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def lowerCAmelCase (self : List[Any] , snake_case_ : Union[str, Any] ): __a : Union[str, Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": __a : str = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": __a : str = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: __a : str = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=lowerCamelCase__ ) return scheduler def lowerCAmelCase (self : Any ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCAmelCase (self : Optional[Any] , snake_case_ : str , snake_case_ : List[str] , snake_case_ : int ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token __a : Any = model(**lowerCamelCase__ , use_cache=lowerCamelCase__ )[0] __a : int = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models __a : List[Any] = model(**lowerCamelCase__ , labels=lowerCamelCase__ , use_cache=lowerCamelCase__ )[:2] else: # compute label smoothed loss __a : Optional[Any] = model(**lowerCamelCase__ , use_cache=lowerCamelCase__ )[0] __a : List[Any] = torch.nn.functional.log_softmax(lowerCamelCase__ , dim=-1 ) __a : Dict = self.loss_fn(lowerCamelCase__ , lowerCamelCase__ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowerCAmelCase (self : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : List[str] ): __a : Tuple = inputs.pop('''labels''' ) __a : Tuple = self._compute_loss(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return loss def lowerCAmelCase (self : List[Any] , snake_case_ : nn.Module , snake_case_ : Dict[str, Union[torch.Tensor, Any]] , snake_case_ : bool , snake_case_ : Optional[List[str]] = None , ): __a : Dict = self._prepare_inputs(lowerCamelCase__ ) __a : Dict = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: __a : Tuple = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **lowerCamelCase__ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: __a : Any = self._pad_tensors_to_max_len(lowerCamelCase__ , gen_kwargs['''max_length'''] ) __a : Optional[Any] = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data __a : str = self._compute_loss(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __a : Union[str, Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) __a : Tuple = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: __a : int = self._pad_tensors_to_max_len(lowerCamelCase__ , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def lowerCAmelCase (self : int , snake_case_ : Tuple , snake_case_ : str ): __a : Optional[int] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' f" padded to `max_length`={max_length}" ) __a : List[str] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) __a : Optional[Any] = tensor return padded_tensor
357
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__ ( __lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = PhobertTokenizer _SCREAMING_SNAKE_CASE : int = False def lowerCAmelCase (self : Optional[int] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a : Optional[int] = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] __a : Tuple = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) __a : int = ['''#version: 0.2''', '''l à</w>'''] __a : List[Any] = {'''unk_token''': '''<unk>'''} __a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n" ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(snake_case_ ) ) def lowerCAmelCase (self : Union[str, Any] , **snake_case_ : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase (self : Any , snake_case_ : Dict ): __a : Union[str, Any] = '''Tôi là VinAI Research''' __a : int = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def lowerCAmelCase (self : Optional[Any] ): __a : Optional[int] = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a : Any = '''Tôi là VinAI Research''' __a : Union[str, Any] = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() __a : List[str] = tokenizer.tokenize(snake_case_ ) print(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __a : str = tokens + [tokenizer.unk_token] __a : str = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ )
90
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__UpperCAmelCase ) ,'''Tatoeba directory does not exist.''' ) class _A ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : str): '''simple docstring''' __a = tempfile.mkdtemp() return TatoebaConverter(save_dir=__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Dict): '''simple docstring''' self.resolver.convert_models(['''heb-eng''']) @slow def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a , __a = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=__SCREAMING_SNAKE_CASE) assert mmeta["long_pair"] == "heb-eng"
49
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Initialise PyTorch model __a = BigBirdConfig.from_json_file(_UpperCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: __a = BigBirdForQuestionAnswering(_UpperCAmelCase ) else: __a = BigBirdForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(_UpperCAmelCase , _UpperCAmelCase , is_trivia_qa=_UpperCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __snake_case :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) __snake_case :Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
49
1
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase = logging.getLogger(__name__) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) __UpperCamelCase = parser.parse_args() logger.info(f'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: __UpperCamelCase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') __UpperCamelCase = Counter() for tk_ids in data: counter.update(tk_ids) __UpperCamelCase = [0] * args.vocab_size for k, v in counter.items(): __UpperCamelCase = v logger.info(f'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
38
"""simple docstring""" from __future__ import annotations from collections.abc import MutableSequence class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if len(lowerCAmelCase__ ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) SCREAMING_SNAKE_CASE = list(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = degree def __add__( self , lowerCAmelCase__ ) -> Polynomial: if self.degree > polynomial_a.degree: SCREAMING_SNAKE_CASE = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCAmelCase__ ) def __sub__( self , lowerCAmelCase__ ) -> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ) -> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , lowerCAmelCase__ ) -> Polynomial: SCREAMING_SNAKE_CASE = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ ) -> int | float: SCREAMING_SNAKE_CASE = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ) -> str: SCREAMING_SNAKE_CASE = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCAmelCase__ ) return polynomial def __repr__( self ) -> str: return self.__str__() def __A ( self ) -> Polynomial: SCREAMING_SNAKE_CASE = [0] * self.degree for i in range(self.degree ): SCREAMING_SNAKE_CASE = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ = 0 ) -> Polynomial: SCREAMING_SNAKE_CASE = [0] * (self.degree + 2) SCREAMING_SNAKE_CASE = constant for i in range(self.degree + 1 ): SCREAMING_SNAKE_CASE = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCAmelCase__ ) def __eq__( self , lowerCAmelCase__ ) -> bool: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , lowerCAmelCase__ ) -> bool: return not self.__eq__(lowerCAmelCase__ )
38
1
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase_ ( __UpperCAmelCase: Any , __UpperCAmelCase: List[Any] , __UpperCAmelCase: int , __UpperCAmelCase: Optional[int] , __UpperCAmelCase: Any ) -> int: # Load configuration defined in the metadata file with open(_lowerCamelCase ) as metadata_file: UpperCamelCase__ : Tuple = json.load(_lowerCamelCase ) UpperCamelCase__ : Dict = LukeConfig(use_entity_aware_attention=_lowerCamelCase , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path UpperCamelCase__ : List[Any] = torch.load(_lowerCamelCase , map_location='''cpu''' ) # Load the entity vocab file UpperCamelCase__ : Optional[int] = load_entity_vocab(_lowerCamelCase ) UpperCamelCase__ : List[Any] = RobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks UpperCamelCase__ : Optional[Any] = AddedToken('''<ent>''' , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) UpperCamelCase__ : Optional[int] = AddedToken('''<ent2>''' , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase , LukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase__ : List[Any] = LukeTokenizer.from_pretrained(_lowerCamelCase ) # Initialize the embeddings of the special tokens UpperCamelCase__ : Optional[Any] = state_dict["""embeddings.word_embeddings.weight"""] UpperCamelCase__ : Optional[Any] = word_emb[tokenizer.convert_tokens_to_ids(['''@'''] )[0]].unsqueeze(0 ) UpperCamelCase__ : Dict = word_emb[tokenizer.convert_tokens_to_ids(['''#'''] )[0]].unsqueeze(0 ) UpperCamelCase__ : Tuple = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCamelCase__ : Any = f"encoder.layer.{layer_index}.attention.self." UpperCamelCase__ : str = state_dict[prefix + matrix_name] UpperCamelCase__ : Dict = state_dict[prefix + matrix_name] UpperCamelCase__ : Optional[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCamelCase__ : Union[str, Any] = state_dict["""entity_embeddings.entity_embeddings.weight"""] UpperCamelCase__ : Dict = entity_emb[entity_vocab["""[MASK]"""]] UpperCamelCase__ : int = LukeModel(config=_lowerCamelCase ).eval() UpperCamelCase__ : str = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) if not (len(_lowerCamelCase ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f"Missing keys {', '.join(_lowerCamelCase )}. Expected only missing embeddings.position_ids" ) if not (all(key.startswith('''entity_predictions''' ) or key.startswith('''lm_head''' ) for key in unexpected_keys )): raise ValueError( '''Unexpected keys''' f" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}" ) # Check outputs UpperCamelCase__ : List[Any] = LukeTokenizer.from_pretrained(_lowerCamelCase , task='''entity_classification''' ) UpperCamelCase__ : int = ( """Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the""" """ new world number one avoid a humiliating second- round exit at Wimbledon .""" ) UpperCamelCase__ : Dict = (39, 42) UpperCamelCase__ : Optional[Any] = tokenizer(_lowerCamelCase , entity_spans=[span] , add_prefix_space=_lowerCamelCase , return_tensors='''pt''' ) UpperCamelCase__ : List[str] = model(**_lowerCamelCase ) # Verify word hidden states if model_size == "large": UpperCamelCase__ : List[str] = torch.Size((1, 42, 1024) ) UpperCamelCase__ : List[str] = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base UpperCamelCase__ : int = torch.Size((1, 42, 768) ) UpperCamelCase__ : Tuple = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": UpperCamelCase__ : Optional[int] = torch.Size((1, 1, 1024) ) UpperCamelCase__ : Tuple = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base UpperCamelCase__ : Optional[int] = torch.Size((1, 1, 768) ) UpperCamelCase__ : Dict = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_lowerCamelCase ) ) model.save_pretrained(_lowerCamelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> Dict: UpperCamelCase__ : List[str] = {} with open(_lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(_lowerCamelCase ): UpperCamelCase__ : Optional[int] = line.rstrip().split('''\t''' ) UpperCamelCase__ : Any = index return entity_vocab if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) UpperCAmelCase_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
201
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=False , a__=True , a__="None" , a__=3 , a__=4 , a__=None , ): _lowerCAmelCase : Dict = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : List[Any] = seq_length _lowerCAmelCase : Dict = is_training _lowerCAmelCase : Dict = use_input_mask _lowerCAmelCase : int = use_token_type_ids _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Tuple = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : List[str] = type_vocab_size _lowerCAmelCase : Tuple = type_sequence_label_size _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Union[str, Any] = num_labels _lowerCAmelCase : Optional[Any] = num_choices _lowerCAmelCase : Tuple = relative_attention _lowerCAmelCase : Tuple = position_biased_input _lowerCAmelCase : Dict = pos_att_type _lowerCAmelCase : Any = scope def __A ( self ): _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = None if self.use_input_mask: _lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _lowerCAmelCase : str = None if self.use_token_type_ids: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Any = None if self.use_labels: _lowerCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __A ( self , a__ ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Union[str, Any] = DebertaVaModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : List[Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ )[0] _lowerCAmelCase : List[Any] = model(a__ , token_type_ids=a__ )[0] _lowerCAmelCase : Any = model(a__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[str] = DebertaVaForMaskedLM(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = self.num_labels _lowerCAmelCase : int = DebertaVaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(a__ ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : str = DebertaVaForTokenClassification(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Any = DebertaVaForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Dict = model( a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Union[str, Any] = DebertaVaForMultipleChoice(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : List[str] = model( a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ): _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase : str = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : Optional[Any] = True _UpperCamelCase : List[Any] = False _UpperCamelCase : List[Any] = False _UpperCamelCase : Dict = False _UpperCamelCase : Tuple = False def __A ( self ): _lowerCAmelCase : Optional[Any] = DebertaVaModelTester(self ) _lowerCAmelCase : Any = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*a__ ) def __A ( self ): _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*a__ ) def __A ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*a__ ) def __A ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*a__ ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*a__ ) @slow def __A ( self ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Tuple = DebertaVaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def __A ( self ): pass @slow def __A ( self ): _lowerCAmelCase : Union[str, Any] = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) _lowerCAmelCase : Dict = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCAmelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(a__ , attention_mask=a__ )[0] # compare the actual values for a slice. _lowerCAmelCase : str = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a__ , atol=1e-4 ) , F"{output[:, 1:4, 1:4]}" )
44
0
"""simple docstring""" class _UpperCAmelCase: def __init__( self , __a , __a , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = name _UpperCamelCase = value _UpperCamelCase = weight def __repr__( self) -> List[str]: '''simple docstring''' return F'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return self.value def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return self.name def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.weight def UpperCAmelCase ( self) -> Any: '''simple docstring''' return self.value / self.weight def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = [] for i in range(len(__snake_case ) ): menu.append(Things(name[i], value[i], weight[i] ) ) return menu def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = sorted(__snake_case, key=__snake_case, reverse=__snake_case ) _UpperCamelCase = [] _UpperCamelCase , _UpperCamelCase = 0.0, 0.0 for i in range(len(__snake_case ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
100
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , __a=10_00 , ) -> str: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = range_bbox def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) # convert bbox to numpy since TF does not support item assignment _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCamelCase = bbox[i, j, 3] _UpperCamelCase = bbox[i, j, 1] _UpperCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCamelCase = bbox[i, j, 2] _UpperCamelCase = bbox[i, j, 0] _UpperCamelCase = t _UpperCamelCase = tf.convert_to_tensor(__a) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = TFLayoutLMModel(config=__a) _UpperCamelCase = model(__a , __a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , __a , token_type_ids=__a) _UpperCamelCase = model(__a , __a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFLayoutLMForMaskedLM(config=__a) _UpperCamelCase = model(__a , __a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a) -> int: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = TFLayoutLMForSequenceClassification(config=__a) _UpperCamelCase = model(__a , __a , attention_mask=__a , token_type_ids=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = TFLayoutLMForTokenClassification(config=__a) _UpperCamelCase = model(__a , __a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFLayoutLMForQuestionAnswering(config=__a) _UpperCamelCase = model(__a , __a , attention_mask=__a , token_type_ids=__a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) lowercase__ = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) lowercase__ = False lowercase__ = True lowercase__ = 10 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFLayoutLMModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> str: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a) @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFLayoutLMModel.from_pretrained(__a) self.assertIsNotNone(__a) @unittest.skip('''Onnx compliancy broke with TF 2.10''') def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' pass def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 _UpperCamelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _UpperCamelCase = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 _UpperCamelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _UpperCamelCase = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = TFLayoutLMModel.from_pretrained('''microsoft/layoutlm-base-uncased''') _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = prepare_layoutlm_batch_inputs() # forward pass _UpperCamelCase = model(input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a) # test the sequence output on [0, :3, :3] _UpperCamelCase = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-3)) # test the pooled output on [1, :3] _UpperCamelCase = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552]) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , __a , atol=1e-3)) @slow def UpperCAmelCase ( self) -> Any: '''simple docstring''' # initialize model with randomly initialized sequence classification head _UpperCamelCase = TFLayoutLMForSequenceClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=2) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = prepare_layoutlm_batch_inputs() # forward pass _UpperCamelCase = model( input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a , labels=tf.convert_to_tensor([1, 1]) , ) # test whether we get a loss as a scalar _UpperCamelCase = outputs.loss _UpperCamelCase = (2,) self.assertEqual(loss.shape , __a) # test the shape of the logits _UpperCamelCase = outputs.logits _UpperCamelCase = (2, 2) self.assertEqual(logits.shape , __a) @slow def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' # initialize model with randomly initialized token classification head _UpperCamelCase = TFLayoutLMForTokenClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=13) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = prepare_layoutlm_batch_inputs() # forward pass _UpperCamelCase = model( input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a , labels=__a) # test the shape of the logits _UpperCamelCase = outputs.logits _UpperCamelCase = tf.convert_to_tensor((2, 25, 13)) self.assertEqual(logits.shape , __a) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' # initialize model with randomly initialized token classification head _UpperCamelCase = TFLayoutLMForQuestionAnswering.from_pretrained('''microsoft/layoutlm-base-uncased''') _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = prepare_layoutlm_batch_inputs() # forward pass _UpperCamelCase = model(input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a) # test the shape of the logits _UpperCamelCase = tf.convert_to_tensor((2, 25)) self.assertEqual(outputs.start_logits.shape , __a) self.assertEqual(outputs.end_logits.shape , __a)
100
1
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase (_snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : int = CLIPTokenizer _snake_case : Tuple = CLIPTokenizerFast _snake_case : List[Any] = True _snake_case : Dict = {} _snake_case : Optional[int] = False def __UpperCAmelCase ( self ) -> Tuple: super().setUp() # fmt: off UpperCAmelCase_ : str = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCAmelCase_ : Optional[int] = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) UpperCAmelCase_ : Tuple = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] UpperCAmelCase_ : Any = {'unk_token': '<unk>'} UpperCAmelCase_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCamelCase ) ) def __UpperCAmelCase ( self , **_UpperCamelCase ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __UpperCAmelCase ( self , **_UpperCamelCase ) -> Any: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Any: UpperCAmelCase_ : List[str] = 'lower newer' UpperCAmelCase_ : Any = 'lower newer' return input_text, output_text def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : List[Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase_ : Tuple = 'lower newer' UpperCAmelCase_ : Any = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] UpperCAmelCase_ : Optional[int] = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = tokens + [tokenizer.unk_token] UpperCAmelCase_ : List[Any] = [1_0, 2, 1_6, 9, 3, 2, 1_6, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , _UpperCamelCase ) @require_ftfy def __UpperCAmelCase ( self ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase_ : int = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' UpperCAmelCase_ : str = tokenizer_s.tokenize(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCAmelCase_ : Any = 'xa\u0303y' + ' ' + 'x\xe3y' UpperCAmelCase_ : Optional[int] = tokenizer_s.tokenize(_UpperCamelCase ) UpperCAmelCase_ : Any = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) # Test that the tokenization is identical on unicode of space type UpperCAmelCase_ : int = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCAmelCase_ : Optional[Any] = tokenizer_s.tokenize(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) # Test that the tokenization is identical on unicode of line break type UpperCAmelCase_ : str = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCAmelCase_ : Any = tokenizer_s.tokenize(_UpperCamelCase ) UpperCAmelCase_ : int = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Dict: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase_ : Optional[int] = f"{text_of_1_token} {text_of_1_token}" UpperCAmelCase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , ) UpperCAmelCase_ : int = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) UpperCAmelCase_ : Optional[int] = f" {text}" UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , ) UpperCAmelCase_ : int = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ) + 1, 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) def __UpperCAmelCase ( self ) -> Any: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_UpperCamelCase ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def __UpperCAmelCase ( self ) -> Optional[Any]: super().test_tokenization_python_rust_equals() def __UpperCAmelCase ( self ) -> List[Any]: # CLIP always lower cases letters pass
29
def lowercase__ ( __snake_case : list ): '''simple docstring''' for i in range(len(__snake_case ) - 1 , 0 , -1 ): UpperCAmelCase_ : Dict = False for j in range(__snake_case , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: UpperCAmelCase_ , UpperCAmelCase_ : Any = unsorted[j - 1], unsorted[j] UpperCAmelCase_ : int = True for j in range(__snake_case ): if unsorted[j] > unsorted[j + 1]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = unsorted[j + 1], unsorted[j] UpperCAmelCase_ : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() __UpperCAmelCase = [int(item) for item in user_input.split(',')] print(F'{cocktail_shaker_sort(unsorted) = }')
29
1
"""simple docstring""" from math import ceil def lowerCAmelCase (__UpperCamelCase : List[str] , __UpperCamelCase : str ): """simple docstring""" __UpperCamelCase =list(range(0 , snake_case_ ) ) __UpperCamelCase =[item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __UpperCamelCase =[] for i in device_map_blocks: if device_map_blocks.count(snake_case_ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(snake_case_ ) # Missing blocks __UpperCamelCase =[i for i in blocks if i not in device_map_blocks] __UpperCamelCase =[i for i in device_map_blocks if i not in blocks] if len(snake_case_ ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(snake_case_ ) ) if len(snake_case_ ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(snake_case_ ) ) if len(snake_case_ ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(snake_case_ ) ) def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] ): """simple docstring""" __UpperCamelCase =list(range(snake_case_ ) ) __UpperCamelCase =int(ceil(n_layers / len(snake_case_ ) ) ) __UpperCamelCase =[layers[i : i + n_blocks] for i in range(0 , snake_case_ , snake_case_ )] return dict(zip(snake_case_ , snake_case_ ) )
355
"""simple docstring""" import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer __lowercase = logging.getLogger(__name__) def lowerCAmelCase (): """simple docstring""" __UpperCamelCase =argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''' , type=__UpperCamelCase , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , ) parser.add_argument( '''--dataset_config''' , type=__UpperCamelCase , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''' , type=__UpperCamelCase , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , ) parser.add_argument( '''--shard_size''' , type=__UpperCamelCase , default=1_0_0_0 , help='''Number of entries to go in a single shard.''' , ) parser.add_argument('''--split''' , type=__UpperCamelCase , default='''train''' , choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''' , default=__UpperCamelCase , type=__UpperCamelCase , help='''Limit the number of shards (used for debugging).''' , ) parser.add_argument( '''--max_length''' , type=__UpperCamelCase , default=5_1_2 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''' , ) parser.add_argument( '''--output_dir''' , default='''tf-tpu''' , type=__UpperCamelCase , help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''' , ) __UpperCamelCase =parser.parse_args() return args def lowerCAmelCase (__UpperCamelCase : Tuple ): """simple docstring""" def fn(__UpperCamelCase : Union[str, Any] ): return tokenizer(examples['''text'''] ) return fn def lowerCAmelCase (__UpperCamelCase : str ): """simple docstring""" __UpperCamelCase =[] for i in range(len(tokenized_data['''input_ids'''] ) ): __UpperCamelCase ={ '''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), '''attention_mask''': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } __UpperCamelCase =tf.train.Features(feature=__UpperCamelCase ) __UpperCamelCase =tf.train.Example(features=__UpperCamelCase ) __UpperCamelCase =example.SerializeToString() records.append(__UpperCamelCase ) return records def lowerCAmelCase (__UpperCamelCase : Optional[int] ): """simple docstring""" __UpperCamelCase =datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: __UpperCamelCase =min(len(__UpperCamelCase ) , args.limit ) __UpperCamelCase =dataset.select(range(__UpperCamelCase ) ) print(F"""Limiting the dataset to {args.limit} entries.""" ) __UpperCamelCase =AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) __UpperCamelCase =os.path.join(args.output_dir , args.split ) if not os.path.exists(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) else: __UpperCamelCase =os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. __UpperCamelCase =tokenize_function(__UpperCamelCase ) __UpperCamelCase =dataset.map(__UpperCamelCase , batched=__UpperCamelCase , num_proc=4 , remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(__UpperCamelCase : Union[str, Any] ): # Concatenate all texts. __UpperCamelCase ={k: sum(examples[k] , [] ) for k in examples.keys()} __UpperCamelCase =len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 __UpperCamelCase =(total_length // args.max_length) * args.max_length # Split by chunks of max_len. __UpperCamelCase ={ k: [t[i : i + args.max_length] for i in range(0 , __UpperCamelCase , args.max_length )] for k, t in concatenated_examples.items() } return result __UpperCamelCase =dataset_tokenized.map(__UpperCamelCase , batched=__UpperCamelCase , batch_size=1_0_0_0 , num_proc=4 ) __UpperCamelCase =0 __UpperCamelCase =0 for shard in range(0 , len(__UpperCamelCase ) , args.shard_size ): __UpperCamelCase =grouped_dataset[shard : shard + args.shard_size] __UpperCamelCase =len(dataset_snapshot['''input_ids'''] ) __UpperCamelCase =os.path.join(__UpperCamelCase , F"""dataset-{shard_count}-{records_containing}.tfrecord""" ) __UpperCamelCase =get_serialized_examples(__UpperCamelCase ) with tf.io.TFRecordWriter(__UpperCamelCase ) as out_file: for i in range(len(__UpperCamelCase ) ): __UpperCamelCase =serialized_examples[i] out_file.write(__UpperCamelCase ) print('''Wrote file {} containing {} records'''.format(__UpperCamelCase , __UpperCamelCase ) ) shard_count += 1 total_records += records_containing with open(F"""split-{args.split}-records-count.txt""" , '''w''' ) as f: print(F"""Total {args.split} records: {total_records}""" , file=__UpperCamelCase ) if __name__ == "__main__": __lowercase = parse_args() main(args)
85
0
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _A ( __UpperCAmelCase ): def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = tempfile.mkdtemp() __a = 8 # DPR tok __a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , '''dpr_tokenizer''') os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE) __a = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) # BART tok __a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __a = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE)))) __a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __a = {'''unk_token''': '''<unk>'''} __a = os.path.join(self.tmpdirname , '''bart_tokenizer''') os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE) __a = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file''']) __a = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''')) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''')) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' shutil.rmtree(self.tmpdirname) @require_tokenizers def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = os.path.join(self.tmpdirname , '''rag_tokenizer''') __a = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict()) __a = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer()) rag_config.save_pretrained(__SCREAMING_SNAKE_CASE) rag_tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE) __a = RagTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE) self.assertIsInstance(new_rag_tokenizer.question_encoder , __SCREAMING_SNAKE_CASE) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab()) self.assertIsInstance(new_rag_tokenizer.generator , __SCREAMING_SNAKE_CASE) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab()) @slow def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = RagTokenizer.from_pretrained('''facebook/rag-token-nq''') __a = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] __a = tokenizer(__SCREAMING_SNAKE_CASE) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = RagTokenizer.from_pretrained('''facebook/rag-sequence-nq''') __a = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] __a = tokenizer(__SCREAMING_SNAKE_CASE) self.assertIsNotNone(__SCREAMING_SNAKE_CASE)
49
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=3 , lowerCamelCase__=16 , lowerCamelCase__=[32, 64, 128] , lowerCamelCase__=[1, 2, 1] , lowerCamelCase__=[2, 2, 4] , lowerCamelCase__=2 , lowerCamelCase__=2.0 , lowerCamelCase__=True , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__="gelu" , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=0.02 , lowerCamelCase__=1e-5 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=10 , lowerCamelCase__=8 , lowerCamelCase__=["stage1", "stage2"] , lowerCamelCase__=[1, 2] , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = embed_dim __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = num_heads __lowerCamelCase = window_size __lowerCamelCase = mlp_ratio __lowerCamelCase = qkv_bias __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = drop_path_rate __lowerCamelCase = hidden_act __lowerCamelCase = use_absolute_embeddings __lowerCamelCase = patch_norm __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = is_training __lowerCamelCase = scope __lowerCamelCase = use_labels __lowerCamelCase = type_sequence_label_size __lowerCamelCase = encoder_stride __lowerCamelCase = out_features __lowerCamelCase = out_indices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> List[str]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = FocalNetModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCamelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = FocalNetBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __lowerCamelCase = None __lowerCamelCase = FocalNetBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = FocalNetForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCamelCase = 1 __lowerCamelCase = FocalNetForMaskedImageModeling(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = self.type_sequence_label_size __lowerCamelCase = FocalNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase = 1 __lowerCamelCase = FocalNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) snake_case_ = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FocalNetModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , embed_dim=37 , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> str: '''simple docstring''' return def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase__ ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' pass def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __lowerCamelCase = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # FocalNet has a different seq_length __lowerCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __lowerCamelCase = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = reshaped_hidden_states[0].shape __lowerCamelCase = ( reshaped_hidden_states[0].view(lowerCamelCase__ , lowerCamelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = 3 __lowerCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) @slow def lowercase_ ( self ) -> str: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = FocalNetModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: __lowerCamelCase = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits __lowerCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FocalNetBackbone,) if is_torch_available() else () snake_case_ = FocalNetConfig snake_case_ = False def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = FocalNetModelTester(self )
90
0
'''simple docstring''' import functools def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> int: # Validation if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not all(isinstance(__UpperCamelCase , __UpperCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__UpperCamelCase ) != 3 or not all(isinstance(__UpperCamelCase , __UpperCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__UpperCamelCase ) == 0: return 0 if min(__UpperCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__UpperCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) UpperCamelCase = set(__UpperCamelCase ) @functools.cache def dynamic_programming(__UpperCamelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
183
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a_ ( lowerCamelCase ): lowercase = """Salesforce/blip-image-captioning-base""" lowercase = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) lowercase = """image_captioner""" lowercase = AutoModelForVisionaSeq lowercase = ["""image"""] lowercase = ["""text"""] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" requires_backends(self , ["""vision"""] ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.pre_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.model.generate(**_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.pre_processor.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE )[0].strip()
183
1
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor UpperCAmelCase_ : Any = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( _a ): def __init__( self : Union[str, Any] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Any ): warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
38
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : Tuple = ShapEImgaImgPipeline snake_case__ : Optional[Any] = ["""image"""] snake_case__ : Union[str, Any] = ["""image"""] snake_case__ : Optional[Any] = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] snake_case__ : List[str] = False @property def _A ( self : Any ): return 32 @property def _A ( self : Any ): return 32 @property def _A ( self : Optional[Any] ): return self.time_input_dim * 4 @property def _A ( self : Union[str, Any] ): return 8 @property def _A ( self : int ): torch.manual_seed(0 ) UpperCamelCase :Union[str, Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) UpperCamelCase :Optional[int] = CLIPVisionModel(__lowerCamelCase ) return model @property def _A ( self : str ): UpperCamelCase :Optional[int] = CLIPImageProcessor( crop_size=224 , do_center_crop=__lowerCamelCase , do_normalize=__lowerCamelCase , do_resize=__lowerCamelCase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def _A ( self : Tuple ): torch.manual_seed(0 ) UpperCamelCase :Dict = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } UpperCamelCase :int = PriorTransformer(**__lowerCamelCase ) return model @property def _A ( self : Optional[int] ): torch.manual_seed(0 ) UpperCamelCase :str = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } UpperCamelCase :List[str] = ShapERenderer(**__lowerCamelCase ) return model def _A ( self : str ): UpperCamelCase :int = self.dummy_prior UpperCamelCase :Any = self.dummy_image_encoder UpperCamelCase :Dict = self.dummy_image_processor UpperCamelCase :List[Any] = self.dummy_renderer UpperCamelCase :int = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1_024 , prediction_type="""sample""" , use_karras_sigmas=__lowerCamelCase , clip_sample=__lowerCamelCase , clip_sample_range=1.0 , ) UpperCamelCase :Optional[Any] = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def _A ( self : int , __lowerCamelCase : int , __lowerCamelCase : Any=0 ): UpperCamelCase :Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) if str(__lowerCamelCase ).startswith("""mps""" ): UpperCamelCase :List[Any] = torch.manual_seed(__lowerCamelCase ) else: UpperCamelCase :Optional[int] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :Optional[Any] = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def _A ( self : List[str] ): UpperCamelCase :Dict = """cpu""" UpperCamelCase :List[Any] = self.get_dummy_components() UpperCamelCase :Optional[int] = self.pipeline_class(**__lowerCamelCase ) UpperCamelCase :int = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) UpperCamelCase :Dict = output.images[0] UpperCamelCase :List[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCamelCase :Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _A ( self : List[Any] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _A ( self : List[Any] ): UpperCamelCase :str = torch_device == """cpu""" UpperCamelCase :int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__lowerCamelCase , relax_max_difference=__lowerCamelCase , ) def _A ( self : List[Any] ): UpperCamelCase :List[Any] = self.get_dummy_components() UpperCamelCase :Optional[int] = self.pipeline_class(**__lowerCamelCase ) UpperCamelCase :List[Any] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Any = 1 UpperCamelCase :int = 2 UpperCamelCase :Union[str, Any] = self.get_dummy_inputs(__lowerCamelCase ) for key in inputs.keys(): if key in self.batch_params: UpperCamelCase :str = batch_size * [inputs[key]] UpperCamelCase :Optional[int] = pipe(**__lowerCamelCase , num_images_per_prompt=__lowerCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Any ): UpperCamelCase :Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) UpperCamelCase :Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) UpperCamelCase :Union[str, Any] = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) UpperCamelCase :List[str] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Optional[Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) UpperCamelCase :Optional[int] = pipe( __lowerCamelCase , generator=__lowerCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
38
1
import colorsys from PIL import Image # type: ignore def lowerCamelCase ( a_ , a_ , a_ ) -> float: lowerCAmelCase_ = x lowerCAmelCase_ = y for step in range(a_ ): # noqa: B007 lowerCAmelCase_ = a * a - b * b + x lowerCAmelCase_ = 2 * a * b + y lowerCAmelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase ( a_ ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase ( a_ ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(a_ , 1 , 1 ) ) def lowerCamelCase ( a_ = 800 , a_ = 600 , a_ = -0.6 , a_ = 0 , a_ = 3.2 , a_ = 50 , a_ = True , ) -> Image.Image: lowerCAmelCase_ = Image.new('RGB' , (image_width, image_height) ) lowerCAmelCase_ = img.load() # loop through the image-coordinates for image_x in range(a_ ): for image_y in range(a_ ): # determine the figure-coordinates based on the image-coordinates lowerCAmelCase_ = figure_width / image_width * image_height lowerCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCAmelCase_ = get_distance(a_ , a_ , a_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCAmelCase_ = get_color_coded_rgb(a_ ) else: lowerCAmelCase_ = get_black_and_white_rgb(a_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
371
def lowerCamelCase ( a_ , a_ ) -> List[Any]: lowerCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase ( a_ , a_ , a_ ) -> Union[str, Any]: lowerCAmelCase_ = 0 while b > 0: if b & 1: lowerCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
14
0
"""simple docstring""" from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __magic_name__ = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Optional[Any] = '''ernie_m''' __lowercase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , lowerCAmelCase__ = 2_5_0_0_0_2 , lowerCAmelCase__ = 7_6_8 , lowerCAmelCase__ = 1_2 , lowerCAmelCase__ = 1_2 , lowerCAmelCase__ = 3_0_7_2 , lowerCAmelCase__ = "gelu" , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 5_1_4 , lowerCAmelCase__ = 0.02 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 1E-05 , lowerCAmelCase__=None , lowerCAmelCase__=False , lowerCAmelCase__=0.0 , **lowerCAmelCase__ , ): super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = classifier_dropout __SCREAMING_SNAKE_CASE = is_decoder __SCREAMING_SNAKE_CASE = act_dropout
100
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Optional[Any] = KandinskyVaaImgaImgPipeline __lowercase : str = ['''image_embeds''', '''negative_image_embeds''', '''image'''] __lowercase : Dict = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] __lowercase : Tuple = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __lowercase : Tuple = False @property def snake_case_ ( self): return 3_2 @property def snake_case_ ( self): return 3_2 @property def snake_case_ ( self): return self.time_input_dim @property def snake_case_ ( self): return self.time_input_dim * 4 @property def snake_case_ ( self): return 1_0_0 @property def snake_case_ ( self): torch.manual_seed(0) __SCREAMING_SNAKE_CASE = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __SCREAMING_SNAKE_CASE = UNetaDConditionModel(**lowerCAmelCase__) return model @property def snake_case_ ( self): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self): torch.manual_seed(0) __SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs) return model def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.dummy_unet __SCREAMING_SNAKE_CASE = self.dummy_movq __SCREAMING_SNAKE_CASE = { """num_train_timesteps""": 1_0_0_0, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __SCREAMING_SNAKE_CASE = DDIMScheduler(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=0): __SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( lowerCAmelCase__) # create init_image __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1)[0] __SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(lowerCAmelCase__)).convert("""RGB""").resize((2_5_6, 2_5_6)) if str(lowerCAmelCase__).startswith("""mps"""): __SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 1_0, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """cpu""" __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(lowerCAmelCase__) , return_dict=lowerCAmelCase__ , )[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __SCREAMING_SNAKE_CASE = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""") __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""") __SCREAMING_SNAKE_CASE = """A red cartoon frog, 4k""" __SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa) pipe_prior.to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa) __SCREAMING_SNAKE_CASE = pipeline.to(lowerCAmelCase__) pipeline.set_progress_bar_config(disable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""").manual_seed(0) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __SCREAMING_SNAKE_CASE = pipeline( image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="""np""" , ) __SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
100
1
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def __lowerCamelCase ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] ): '''simple docstring''' lowerCamelCase = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) lowerCamelCase = DatasetInfosDict.from_directory(lowerCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ), ] , ) def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : DatasetInfo ): '''simple docstring''' lowerCamelCase = str(lowerCamelCase__ ) dataset_info.write_to_directory(lowerCamelCase__ ) lowerCamelCase = DatasetInfo.from_directory(lowerCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowerCamelCase__ , """dataset_info.json""" ) ) def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) lowerCamelCase = dataset_info._to_yaml_dict() assert sorted(lowerCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCamelCase = yaml.safe_dump(lowerCamelCase__ ) lowerCamelCase = yaml.safe_load(lowerCamelCase__ ) assert dataset_info_yaml_dict == reloaded def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = DatasetInfo() lowerCamelCase = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=42 ), """v2""": DatasetInfo(dataset_size=1337 ), } ), ] , ) def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : DatasetInfosDict ): '''simple docstring''' lowerCamelCase = str(lowerCamelCase__ ) dataset_infos_dict.write_to_directory(lowerCamelCase__ ) lowerCamelCase = DatasetInfosDict.from_directory(lowerCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCamelCase = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCamelCase = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowerCamelCase__ , """README.md""" ) )
66
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = tempfile.mkdtemp() lowerCamelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCamelCase = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } lowerCamelCase = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(A , A ) def __A ( self , **A ) -> Optional[Any]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **A ) def __A ( self , **A ) -> List[Any]: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **A ) def __A ( self , **A ) -> Optional[int]: '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **A ) def __A ( self ) -> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCamelCase = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.get_tokenizer() lowerCamelCase = self.get_rust_tokenizer() lowerCamelCase = self.get_image_processor() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=A ) lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCamelCase = self.get_image_processor(do_normalize=A , padding_value=1.0 ) lowerCamelCase = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = image_processor(A , return_tensors="""np""" ) lowerCamelCase = processor(images=A , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = """lower newer""" lowerCamelCase = processor(text=A ) lowerCamelCase = tokenizer(A , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = """lower newer""" lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase = processor.batch_decode(A ) lowerCamelCase = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = """lower newer""" lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
66
1
"""simple docstring""" def lowercase_ ( _snake_case ,_snake_case ): return 1 if input_a == input_a else 0 def lowercase_ ( ): assert xnor_gate(0 ,0 ) == 1 assert xnor_gate(0 ,1 ) == 0 assert xnor_gate(1 ,0 ) == 0 assert xnor_gate(1 ,1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
25
'''simple docstring''' import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _SCREAMING_SNAKE_CASE : Any = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _snake_case ( datasets.BuilderConfig ): lowerCAmelCase_ : Optional[datasets.Features] = None def UpperCamelCase_( snake_case : "pyspark.sql.DataFrame" , snake_case : List[int] , ): '''simple docstring''' import pyspark def generate_fn(): snake_case_ = df.select("*" , pyspark.sql.functions.spark_partition_id().alias("part_id" ) ) for partition_id in partition_order: snake_case_ = df_with_partition_id.select("*" ).where(f'part_id = {partition_id}' ).drop("part_id" ) snake_case_ = partition_df.collect() snake_case_ = 0 for row in rows: yield f'{partition_id}_{row_id}', row.asDict() row_id += 1 return generate_fn class _snake_case ( _BaseExamplesIterable ): def __init__( self , a__ , a__=None , ) -> Any: '''simple docstring''' snake_case_ = df snake_case_ = partition_order or range(self.df.rdd.getNumPartitions() ) snake_case_ = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ) -> Union[str, Any]: '''simple docstring''' yield from self.generate_examples_fn() def lowerCAmelCase__ ( self , a__ ) -> "SparkExamplesIterable": '''simple docstring''' snake_case_ = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(a__ ) return SparkExamplesIterable(self.df , partition_order=a__ ) def lowerCAmelCase__ ( self , a__ , a__ ) -> "SparkExamplesIterable": '''simple docstring''' snake_case_ = self.split_shard_indices_by_worker(a__ , a__ ) return SparkExamplesIterable(self.df , partition_order=a__ ) @property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' return len(self.partition_order ) class _snake_case ( datasets.DatasetBuilder ): lowerCAmelCase_ : Dict = SparkConfig def __init__( self , a__ , a__ = None , a__ = None , **a__ , ) -> str: '''simple docstring''' import pyspark snake_case_ = pyspark.sql.SparkSession.builder.getOrCreate() snake_case_ = df snake_case_ = working_dir super().__init__( cache_dir=a__ , config_name=str(self.df.semanticHash() ) , **a__ , ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' def create_cache_and_write_probe(a__ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=a__ ) snake_case_ = os.path.join(self._cache_dir , "fs_test" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(a__ , "a" ) return [probe_file] if self._spark.conf.get("spark.master" , "" ).startswith("local" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: snake_case_ = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(a__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( "When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir" ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self , a__ ) -> Optional[Any]: '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCAmelCase__ ( self , a__ ) -> Union[str, Any]: '''simple docstring''' import pyspark def get_arrow_batch_size(a__ ): for batch in it: yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]} ) snake_case_ = self.df.count() snake_case_ = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. snake_case_ = ( self.df.limit(a__ ) .repartition(1 ) .mapInArrow(a__ , "batch_bytes: long" ) .agg(pyspark.sql.functions.sum("batch_bytes" ).alias("sample_bytes" ) ) .collect()[0] .sample_bytes / sample_num_rows ) snake_case_ = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. snake_case_ = min(a__ , int(approx_total_size / max_shard_size ) ) snake_case_ = self.df.repartition(a__ ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: '''simple docstring''' import pyspark snake_case_ = ParquetWriter if file_format == "parquet" else ArrowWriter snake_case_ = os.path.join(self._working_dir , os.path.basename(a__ ) ) if self._working_dir else fpath snake_case_ = file_format == "parquet" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. snake_case_ = self.config.features snake_case_ = self._writer_batch_size snake_case_ = self._fs.storage_options def write_arrow(a__ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. snake_case_ = pyspark.TaskContext().taskAttemptId() snake_case_ = next(a__ , a__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["task_id", "num_examples", "num_bytes"] , ) snake_case_ = 0 snake_case_ = writer_class( features=a__ , path=working_fpath.replace("SSSSS" , F'{shard_id:05d}' ).replace("TTTTT" , F'{task_id:05d}' ) , writer_batch_size=a__ , storage_options=a__ , embed_local_files=a__ , ) snake_case_ = pa.Table.from_batches([first_batch] ) writer.write_table(a__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: snake_case_ , snake_case_ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) shard_id += 1 snake_case_ = writer_class( features=writer._features , path=working_fpath.replace("SSSSS" , F'{shard_id:05d}' ).replace("TTTTT" , F'{task_id:05d}' ) , writer_batch_size=a__ , storage_options=a__ , embed_local_files=a__ , ) snake_case_ = pa.Table.from_batches([batch] ) writer.write_table(a__ ) if writer._num_bytes > 0: snake_case_ , snake_case_ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(a__ ) ): snake_case_ = os.path.join(os.path.dirname(a__ ) , os.path.basename(a__ ) ) shutil.move(a__ , a__ ) snake_case_ = ( self.df.mapInArrow(a__ , "task_id: long, num_examples: long, num_bytes: long" ) .groupBy("task_id" ) .agg( pyspark.sql.functions.sum("num_examples" ).alias("total_num_examples" ) , pyspark.sql.functions.sum("num_bytes" ).alias("total_num_bytes" ) , pyspark.sql.functions.count("num_bytes" ).alias("num_shards" ) , pyspark.sql.functions.collect_list("num_examples" ).alias("shard_lengths" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCAmelCase__ ( self , a__ , a__ = "arrow" , a__ = None , a__ = None , **a__ , ) -> int: '''simple docstring''' self._validate_cache_dir() snake_case_ = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(a__ ) snake_case_ = not is_remote_filesystem(self._fs ) snake_case_ = os.path.join if is_local else posixpath.join snake_case_ = "-TTTTT-SSSSS-of-NNNNN" snake_case_ = F'{self.name}-{split_generator.name}{SUFFIX}.{file_format}' snake_case_ = path_join(self._output_dir , a__ ) snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 snake_case_ = [] snake_case_ = [] for task_id, content in self._prepare_split_single(a__ , a__ , a__ ): ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(a__ ) snake_case_ = total_num_examples snake_case_ = total_num_bytes # should rename everything at the end logger.debug(F'Renaming {total_shards} shards.' ) if total_shards > 1: snake_case_ = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. snake_case_ = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( a__ , a__ , a__ , ): rename( a__ , fpath.replace("SSSSS" , F'{shard_id:05d}' ).replace("TTTTT" , F'{task_id:05d}' ) , fpath.replace("TTTTT-SSSSS" , F'{global_shard_id:05d}' ).replace("NNNNN" , F'{total_shards:05d}' ) , ) snake_case_ = [] snake_case_ = 0 for i in range(len(a__ ) ): snake_case_ , snake_case_ = task_id_and_num_shards[i] for shard_id in range(a__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(a__ , len(a__ ) ).map(lambda a__ : _rename_shard(*a__ ) ).collect() else: # don't use any pattern snake_case_ = 0 snake_case_ = task_id_and_num_shards[0][0] self._rename( fpath.replace("SSSSS" , F'{shard_id:05d}' ).replace("TTTTT" , F'{task_id:05d}' ) , fpath.replace(a__ , "" ) , ) def lowerCAmelCase__ ( self , a__ , ) -> SparkExamplesIterable: '''simple docstring''' return SparkExamplesIterable(self.df )
85
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Tuple = '''poolformer''' def __init__( self, A=3, A=16, A=16, A=3, A=4.0, A=[2, 2, 6, 2], A=[64, 128, 320, 512], A=[7, 3, 3, 3], A=[4, 2, 2, 2], A=[2, 1, 1, 1], A=4, A=0.0, A="gelu", A=True, A=1E-5, A=0.02, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size SCREAMING_SNAKE_CASE : Tuple = stride SCREAMING_SNAKE_CASE : Dict = padding SCREAMING_SNAKE_CASE : List[Any] = pool_size SCREAMING_SNAKE_CASE : str = hidden_sizes SCREAMING_SNAKE_CASE : Any = mlp_ratio SCREAMING_SNAKE_CASE : int = depths SCREAMING_SNAKE_CASE : List[Any] = patch_sizes SCREAMING_SNAKE_CASE : Any = strides SCREAMING_SNAKE_CASE : Union[str, Any] = num_encoder_blocks SCREAMING_SNAKE_CASE : Tuple = drop_path_rate SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : List[str] = use_layer_scale SCREAMING_SNAKE_CASE : Union[str, Any] = layer_scale_init_value SCREAMING_SNAKE_CASE : Any = initializer_range super().__init__(**A ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Union[str, Any] = version.parse('''1.11''' ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return 2E-3
367
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Optional[int] = '''visual_bert''' def __init__( self, A=30_522, A=768, A=512, A=12, A=12, A=3_072, A="gelu", A=0.1, A=0.1, A=512, A=2, A=0.02, A=1E-12, A=False, A=True, A=1, A=0, A=2, **A, ): '''simple docstring''' super().__init__(pad_token_id=A, bos_token_id=A, eos_token_id=A, **A ) SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : int = visual_embedding_dim SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : str = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = bypass_transformer SCREAMING_SNAKE_CASE : Any = special_visual_initialize
246
0
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowerCamelCase__ ( _lowerCamelCase : int = 1000000 , _lowerCamelCase : int = 10 ) -> int: lowerCamelCase_ = defaultdict(_lowerCamelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCamelCase_ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowerCamelCase_ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_lowerCamelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'''{solution() = }''')
183
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase : int ) -> list[int]: lowerCamelCase_ = [True] * limit lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowerCamelCase_ = i * 2 while index < limit: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 , _lowerCamelCase , 2 ): if is_prime[i]: primes.append(_lowerCamelCase ) return primes def lowerCamelCase__ ( _lowerCamelCase : int = 1000000 ) -> int: lowerCamelCase_ = prime_sieve(_lowerCamelCase ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 for i in range(len(_lowerCamelCase ) ): for j in range(i + length , len(_lowerCamelCase ) ): lowerCamelCase_ = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowerCamelCase_ = j - i lowerCamelCase_ = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
183
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __A = '''pt''' elif is_tf_available(): __A = '''tf''' else: __A = '''jax''' class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Any = PerceiverTokenizer UpperCamelCase_ : str = False def UpperCamelCase_ ( self : str ) -> List[Any]: super().setUp() _snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ) -> List[Any]: return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def UpperCamelCase_ ( self : Optional[int] , **A__ : Union[str, Any] ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **A__ ) def UpperCamelCase_ ( self : Optional[int] , A__ : Union[str, Any] , A__ : Any=False , A__ : int=20 , A__ : Tuple=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _snake_case = [] for i in range(len(A__ ) ): try: _snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=A__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case = list(filter(lambda A__ : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , A__ ) ) _snake_case = list(filter(lambda A__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=A__ ) , A__ ) ) if max_length is not None and len(A__ ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(A__ ) < min_length and len(A__ ) > 0: while len(A__ ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(A__ , clean_up_tokenization_spaces=A__ ) if " " not in output_txt and len(A__ ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=A__ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=A__ ) ) if with_prefix_space: _snake_case = ''' ''' + output_txt _snake_case = tokenizer.encode(A__ , add_special_tokens=A__ ) return output_txt, output_ids def UpperCamelCase_ ( self : Optional[Any] ) -> str: _snake_case = self.perceiver_tokenizer _snake_case = '''Unicode €.''' _snake_case = tokenizer(A__ ) _snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , A__ ) # decoding _snake_case = tokenizer.decode(A__ ) self.assertEqual(A__ , '''[CLS]Unicode €.[SEP]''' ) _snake_case = tokenizer('''e è é ê ë''' ) _snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , A__ ) # decoding _snake_case = tokenizer.decode(A__ ) self.assertEqual(A__ , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def UpperCamelCase_ ( self : List[Any] ) -> int: _snake_case = self.perceiver_tokenizer _snake_case = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off _snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _snake_case = tokenizer(A__ , padding=A__ , return_tensors=A__ ) self.assertIsInstance(A__ , A__ ) if FRAMEWORK != "jax": _snake_case = list(batch.input_ids.numpy()[0] ) else: _snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(A__ , A__ ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def UpperCamelCase_ ( self : str ) -> Dict: _snake_case = self.perceiver_tokenizer _snake_case = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _snake_case = tokenizer(A__ , padding=A__ , return_tensors=A__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , A__ ) self.assertIn('''attention_mask''' , A__ ) self.assertNotIn('''decoder_input_ids''' , A__ ) self.assertNotIn('''decoder_attention_mask''' , A__ ) def UpperCamelCase_ ( self : Optional[int] ) -> Union[str, Any]: _snake_case = self.perceiver_tokenizer _snake_case = [ '''Summary of the text.''', '''Another summary.''', ] _snake_case = tokenizer( text_target=A__ , max_length=32 , padding='''max_length''' , truncation=A__ , return_tensors=A__ ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def UpperCamelCase_ ( self : int ) -> Optional[int]: # safety check on max_len default value so we are sure the test works _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ''' He is very happy, UNwant\u00E9d,running''' _snake_case = tokenizer.encode(A__ , add_special_tokens=A__ ) tokenizer.save_pretrained(A__ ) _snake_case = tokenizer.__class__.from_pretrained(A__ ) _snake_case = after_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) shutil.rmtree(A__ ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) _snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) _snake_case = tokenizer.encode(A__ , add_special_tokens=A__ ) tokenizer.save_pretrained(A__ ) _snake_case = tokenizer.__class__.from_pretrained(A__ ) _snake_case = after_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(A__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(A__ ) def UpperCamelCase_ ( self : Optional[Any] ) -> Tuple: _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(A__ ) with open(os.path.join(A__ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: _snake_case = json.load(A__ ) with open(os.path.join(A__ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: _snake_case = json.load(A__ ) _snake_case = [f"""<extra_id_{i}>""" for i in range(125 )] _snake_case = added_tokens_extra_ids + [ '''an_additional_special_token''' ] _snake_case = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(A__ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(A__ , A__ ) with open(os.path.join(A__ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(A__ , A__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained( A__ , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=A__ )] _snake_case = tokenizer_class.from_pretrained( A__ , additional_special_tokens=A__ , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def UpperCamelCase_ ( self : int ) -> Tuple: _snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def UpperCamelCase_ ( self : str ) -> Union[str, Any]: pass def UpperCamelCase_ ( self : Union[str, Any] ) -> List[str]: pass def UpperCamelCase_ ( self : str ) -> List[Any]: pass def UpperCamelCase_ ( self : Any ) -> str: pass def UpperCamelCase_ ( self : Tuple ) -> Optional[int]: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _snake_case = self.get_tokenizers(fast=A__ , do_lower_case=A__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _snake_case = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] _snake_case = tokenizer.convert_tokens_to_string(A__ ) self.assertIsInstance(A__ , A__ )
360
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
278
0