code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A__ : Tuple = """platform""" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def _snake_case ( lowerCamelCase__ : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : str=None , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Union[str, Any]=None , ) -> Optional[Any]: if attention_mask is None: lowerCamelCase_ : List[str] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase_ : List[Any] =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase_ : List[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase_ : int =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase_ : Tuple =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowercase__ : def __init__( self : Tuple , snake_case__ : str , snake_case__ : Optional[int]=13 , snake_case__ : str=7 , snake_case__ : List[str]=True , snake_case__ : Optional[int]=False , snake_case__ : List[Any]=99 , snake_case__ : Tuple=16 , snake_case__ : Optional[Any]=2 , snake_case__ : Tuple=4 , snake_case__ : Union[str, Any]=4 , snake_case__ : Optional[int]="gelu" , snake_case__ : int=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : Any=32 , snake_case__ : Any=2 , snake_case__ : Any=1 , snake_case__ : Tuple=0 , snake_case__ : Dict=0.02 , ): lowerCamelCase_ : int =parent lowerCamelCase_ : Any =batch_size lowerCamelCase_ : str =seq_length lowerCamelCase_ : List[str] =is_training lowerCamelCase_ : List[Any] =use_labels lowerCamelCase_ : str =vocab_size lowerCamelCase_ : Optional[int] =hidden_size lowerCamelCase_ : int =num_hidden_layers lowerCamelCase_ : int =num_attention_heads lowerCamelCase_ : Union[str, Any] =intermediate_size lowerCamelCase_ : Any =hidden_act lowerCamelCase_ : Dict =hidden_dropout_prob lowerCamelCase_ : int =attention_probs_dropout_prob lowerCamelCase_ : Tuple =max_position_embeddings lowerCamelCase_ : Optional[Any] =eos_token_id lowerCamelCase_ : Any =pad_token_id lowerCamelCase_ : str =bos_token_id lowerCamelCase_ : Union[str, Any] =initializer_range def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : Tuple =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCamelCase_ : List[str] =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCamelCase_ : Union[str, Any] =shift_tokens_right(UpperCAmelCase__ , 1 , 2 ) lowerCamelCase_ : Optional[int] =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase__ , ) lowerCamelCase_ : Optional[int] =prepare_blenderbot_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return config, inputs_dict def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ , lowerCamelCase_ : Dict =self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ ( self : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): lowerCamelCase_ : Dict =20 lowerCamelCase_ : Tuple =model_class_name(UpperCAmelCase__ ) lowerCamelCase_ : int =model.encode(inputs_dict["input_ids"] ) lowerCamelCase_ , lowerCamelCase_ : Dict =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase_ : Optional[Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase_ : Tuple =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) lowerCamelCase_ : List[str] =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase_ : List[Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) lowerCamelCase_ : Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCamelCase_ : List[str] =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase__ , ) lowerCamelCase_ : List[str] =model.decode(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase_ : Union[str, Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCAmelCase__ ( self : List[str] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Union[str, Any] ): lowerCamelCase_ : Any =20 lowerCamelCase_ : Dict =model_class_name(UpperCAmelCase__ ) lowerCamelCase_ : Optional[int] =model.encode(inputs_dict["input_ids"] ) lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase_ : Optional[int] =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCamelCase_ : Optional[int] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase_ : Optional[Any] =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase_ : Dict =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) lowerCamelCase_ : Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCamelCase_ : Tuple =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) lowerCamelCase_ : int =model.decode(UpperCAmelCase__ , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ ) lowerCamelCase_ : List[str] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowercase__ ( unittest.TestCase ): _UpperCAmelCase :List[Any] = 99 def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : str =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase_ : List[str] =input_ids.shape[0] lowerCamelCase_ : Optional[int] =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any =self._get_config_and_data() lowerCamelCase_ : str =FlaxBlenderbotSmallForConditionalGeneration(UpperCAmelCase__ ) lowerCamelCase_ : Optional[Any] =lm_model(input_ids=UpperCAmelCase__ ) lowerCamelCase_ : List[Any] =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : Optional[int] =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase_ : int =FlaxBlenderbotSmallForConditionalGeneration(UpperCAmelCase__ ) lowerCamelCase_ : List[Any] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowerCamelCase_ : Tuple =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowerCamelCase_ : Union[str, Any] =lm_model(input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ ) lowerCamelCase_ : Union[str, Any] =(*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase__ ) def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : List[str] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowerCamelCase_ : Optional[Any] =shift_tokens_right(UpperCAmelCase__ , 1 , 2 ) lowerCamelCase_ : List[str] =np.equal(UpperCAmelCase__ , 1 ).astype(np.floataa ).sum() lowerCamelCase_ : Any =np.equal(UpperCAmelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCAmelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowercase__ ( UpperCAmelCase__, unittest.TestCase, UpperCAmelCase__ ): _UpperCAmelCase :Optional[int] = True _UpperCAmelCase :List[str] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _UpperCAmelCase :List[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : Tuple =FlaxBlenderbotSmallModelTester(self ) def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ , lowerCamelCase_ : Tuple =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ , lowerCamelCase_ : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_ : Union[str, Any] =self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase_ : Tuple =model_class(UpperCAmelCase__ ) @jax.jit def encode_jitted(snake_case__ : Tuple , snake_case__ : List[Any]=None , **snake_case__ : str ): return model.encode(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): lowerCamelCase_ : Optional[int] =encode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCamelCase_ : str =encode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ , lowerCamelCase_ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_ : Optional[int] =model_class(UpperCAmelCase__ ) lowerCamelCase_ : Union[str, Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) lowerCamelCase_ : Optional[Any] ={ "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(snake_case__ : int , snake_case__ : Any , snake_case__ : Any ): return model.decode( decoder_input_ids=UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , encoder_outputs=UpperCAmelCase__ , ) with self.subTest("JIT Enabled" ): lowerCamelCase_ : int =decode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCamelCase_ : Union[str, Any] =decode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase__ ( self : Any ): for model_class_name in self.all_model_classes: lowerCamelCase_ : Dict =model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase_ : List[Any] =np.ones((1, 1) ) * model.config.eos_token_id lowerCamelCase_ : Optional[int] =model(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ )
144
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
import torch from torch import nn class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Union[str, Any]=False ): super().__init__() SCREAMING_SNAKE_CASE : List[str] = n_token SCREAMING_SNAKE_CASE : List[Any] = d_embed SCREAMING_SNAKE_CASE : str = d_proj SCREAMING_SNAKE_CASE : Optional[Any] = cutoffs + [n_token] SCREAMING_SNAKE_CASE : Tuple = [0] + self.cutoffs SCREAMING_SNAKE_CASE : int = div_val SCREAMING_SNAKE_CASE : Any = self.cutoffs[0] SCREAMING_SNAKE_CASE : List[str] = len(self.cutoffs ) - 1 SCREAMING_SNAKE_CASE : Dict = self.shortlist_size + self.n_clusters if self.n_clusters > 0: SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.zeros(self.n_clusters ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.ModuleList() SCREAMING_SNAKE_CASE : str = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_A , _A ) ) ) else: self.out_projs.append(_A ) self.out_layers.append(nn.Linear(_A , _A ) ) else: for i in range(len(self.cutoffs ) ): SCREAMING_SNAKE_CASE : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE : List[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_A , _A ) ) ) self.out_layers.append(nn.Linear(_A , r_idx - l_idx ) ) SCREAMING_SNAKE_CASE : int = keep_order def _A ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int ): if proj is None: SCREAMING_SNAKE_CASE : List[str] = nn.functional.linear(_A , _A , bias=_A ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: SCREAMING_SNAKE_CASE : List[str] = nn.functional.linear(_A , proj.t().contiguous() ) SCREAMING_SNAKE_CASE : int = nn.functional.linear(_A , _A , bias=_A ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _A ( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[Any]=False ): if labels is not None: # Shift so that tokens < n predict n SCREAMING_SNAKE_CASE : int = hidden[..., :-1, :].contiguous() SCREAMING_SNAKE_CASE : Union[str, Any] = labels[..., 1:].contiguous() SCREAMING_SNAKE_CASE : Tuple = hidden.view(-1 , hidden.size(-1 ) ) SCREAMING_SNAKE_CASE : Optional[int] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: SCREAMING_SNAKE_CASE : Optional[Any] = self._compute_logit(_A , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: SCREAMING_SNAKE_CASE : Any = labels != -100 SCREAMING_SNAKE_CASE : Any = torch.zeros_like(_A , dtype=hidden.dtype , device=hidden.device ) SCREAMING_SNAKE_CASE : str = ( -nn.functional.log_softmax(_A , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: SCREAMING_SNAKE_CASE : Optional[Any] = nn.functional.log_softmax(_A , dim=-1 ) else: # construct weights and biases SCREAMING_SNAKE_CASE : Any = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: SCREAMING_SNAKE_CASE : str = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE : str = self.out_layers[0].weight[l_idx:r_idx] SCREAMING_SNAKE_CASE : List[Any] = self.out_layers[0].bias[l_idx:r_idx] else: SCREAMING_SNAKE_CASE : int = self.out_layers[i].weight SCREAMING_SNAKE_CASE : List[Any] = self.out_layers[i].bias if i == 0: SCREAMING_SNAKE_CASE : List[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_A ) biases.append(_A ) SCREAMING_SNAKE_CASE : Tuple = weights[0], biases[0], self.out_projs[0] SCREAMING_SNAKE_CASE : Optional[int] = self._compute_logit(_A , _A , _A , _A ) SCREAMING_SNAKE_CASE : Tuple = nn.functional.log_softmax(_A , dim=1 ) if labels is None: SCREAMING_SNAKE_CASE : int = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: SCREAMING_SNAKE_CASE : int = torch.zeros_like(_A , dtype=hidden.dtype , device=hidden.device ) SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : List[Any] = [0] + self.cutoffs for i in range(len(_A ) - 1 ): SCREAMING_SNAKE_CASE : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: SCREAMING_SNAKE_CASE : Tuple = (labels >= l_idx) & (labels < r_idx) SCREAMING_SNAKE_CASE : Any = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue SCREAMING_SNAKE_CASE : List[Any] = labels.index_select(0 , _A ) - l_idx SCREAMING_SNAKE_CASE : Optional[Any] = head_logprob.index_select(0 , _A ) SCREAMING_SNAKE_CASE : int = hidden.index_select(0 , _A ) else: SCREAMING_SNAKE_CASE : List[Any] = hidden if i == 0: if labels is not None: SCREAMING_SNAKE_CASE : Optional[Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: SCREAMING_SNAKE_CASE : List[Any] = head_logprob[:, : self.cutoffs[0]] else: SCREAMING_SNAKE_CASE : Dict = weights[i], biases[i], self.out_projs[i] SCREAMING_SNAKE_CASE : Any = self._compute_logit(_A , _A , _A , _A ) SCREAMING_SNAKE_CASE : List[Any] = nn.functional.log_softmax(_A , dim=1 ) SCREAMING_SNAKE_CASE : Optional[int] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: SCREAMING_SNAKE_CASE : Any = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: SCREAMING_SNAKE_CASE : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i SCREAMING_SNAKE_CASE : List[Any] = logprob_i if labels is not None: if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0 , _A , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _A ( self : Optional[Any] , UpperCAmelCase_ : Dict ): if self.n_clusters == 0: SCREAMING_SNAKE_CASE : Dict = self._compute_logit(_A , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(_A , dim=-1 ) else: # construct weights and biases SCREAMING_SNAKE_CASE : Any = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: SCREAMING_SNAKE_CASE : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE : str = self.out_layers[0].weight[l_idx:r_idx] SCREAMING_SNAKE_CASE : int = self.out_layers[0].bias[l_idx:r_idx] else: SCREAMING_SNAKE_CASE : Any = self.out_layers[i].weight SCREAMING_SNAKE_CASE : List[Any] = self.out_layers[i].bias if i == 0: SCREAMING_SNAKE_CASE : int = torch.cat([weight_i, self.cluster_weight] , dim=0 ) SCREAMING_SNAKE_CASE : List[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_A ) biases.append(_A ) SCREAMING_SNAKE_CASE : Union[str, Any] = weights[0], biases[0], self.out_projs[0] SCREAMING_SNAKE_CASE : Optional[Any] = self._compute_logit(_A , _A , _A , _A ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) SCREAMING_SNAKE_CASE : int = nn.functional.log_softmax(_A , dim=1 ) SCREAMING_SNAKE_CASE : List[str] = [0] + self.cutoffs for i in range(len(_A ) - 1 ): SCREAMING_SNAKE_CASE : List[Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: SCREAMING_SNAKE_CASE : List[Any] = head_logprob[:, : self.cutoffs[0]] else: SCREAMING_SNAKE_CASE : Dict = weights[i], biases[i], self.out_projs[i] SCREAMING_SNAKE_CASE : Optional[int] = self._compute_logit(_A , _A , _A , _A ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.functional.log_softmax(_A , dim=1 ) SCREAMING_SNAKE_CASE : List[str] = head_logprob[:, -i] + tail_logprob_i SCREAMING_SNAKE_CASE : str = logprob_i return out
357
def lowerCamelCase__ ( lowercase , lowercase = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = length or len(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : str = True return list_data if not swapped else bubble_sort(lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
"""simple docstring""" from __future__ import annotations from typing import Any def A_ ( _lowercase ): '''simple docstring''' create_state_space_tree(_lowercase, [], 0 ) def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' if index == len(_lowercase ): print(_lowercase ) return create_state_space_tree(_lowercase, _lowercase, index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_lowercase, _lowercase, index + 1 ) current_subsequence.pop() if __name__ == "__main__": __a = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
66
"""simple docstring""" import math class lowerCamelCase : '''simple docstring''' def lowerCAmelCase_ ( self: Tuple , snake_case: list[list[float]] , snake_case: list[int] ) -> int: snake_case_ :Any = 0.0 snake_case_ :Tuple = 0.0 for i in range(len(snake_case ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCAmelCase_ ( self: Optional[int] , snake_case: list[list[int | float]] , snake_case: list[int] , snake_case: int , snake_case: float ) -> list[list[int | float]]: for i in range(len(snake_case ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def A_ ( ): '''simple docstring''' snake_case_ :Dict = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case_ :List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case_ :Optional[Any] = SelfOrganizingMap() snake_case_ :Dict = 3 snake_case_ :Dict = 0.5 for _ in range(_lowercase ): for j in range(len(_lowercase ) ): # training sample snake_case_ :List[Any] = training_samples[j] # Compute the winning vector snake_case_ :Optional[int] = self_organizing_map.get_winner(_lowercase, _lowercase ) # Update the winning vector snake_case_ :List[str] = self_organizing_map.update(_lowercase, _lowercase, _lowercase, _lowercase ) # classify test sample snake_case_ :str = [0, 0, 0, 1] snake_case_ :List[Any] = self_organizing_map.get_winner(_lowercase, _lowercase ) # results print(f"""Clusters that the test sample belongs to : {winner}""" ) print(f"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
66
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
219
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def a ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) UpperCamelCase__ :Union[str, Any] = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(__a ) # Let's go UpperCamelCase__ :Optional[int] = parser.parse_args() if not hasattr(__a , '''func''' ): parser.print_help() exit(1 ) # Run UpperCamelCase__ :Optional[int] = args.func(__a ) service.run() if __name__ == "__main__": main()
219
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class snake_case : """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] =BlenderbotSmallConfig SCREAMING_SNAKE_CASE_ : List[str] ={} SCREAMING_SNAKE_CASE_ : List[Any] ="""gelu""" def __init__( self : Any , __A : Tuple , __A : Optional[Any]=1_3 , __A : Optional[int]=7 , __A : List[str]=True , __A : List[str]=False , __A : Union[str, Any]=9_9 , __A : int=3_2 , __A : int=2 , __A : Any=4 , __A : Optional[int]=3_7 , __A : Union[str, Any]=0.1 , __A : List[str]=0.1 , __A : int=2_0 , __A : List[str]=2 , __A : int=1 , __A : Dict=0 , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id def _lowerCamelCase ( self : Dict ): __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCamelCase = prepare_blenderbot_small_inputs_dict(_A , _A , _A ) return config, inputs_dict def _lowerCamelCase ( self : Union[str, Any] , __A : Any , __A : Any ): __UpperCamelCase = TFBlenderbotSmallModel(config=_A ).get_decoder() __UpperCamelCase = inputs_dict["""input_ids"""] __UpperCamelCase = input_ids[:1, :] __UpperCamelCase = inputs_dict["""attention_mask"""][:1, :] __UpperCamelCase = inputs_dict["""head_mask"""] __UpperCamelCase = 1 # first forward pass __UpperCamelCase = model(_A , attention_mask=_A , head_mask=_A , use_cache=_A ) __UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __UpperCamelCase = model(_A , attention_mask=_A )[0] __UpperCamelCase = model(_A , attention_mask=_A , past_key_values=_A )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] __UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_A , _A , rtol=1e-3 ) def lowercase__ ( __lowercase : List[Any] , __lowercase : List[str] , __lowercase : Any , __lowercase : str=None , __lowercase : Optional[Any]=None , __lowercase : Dict=None , __lowercase : List[Any]=None , __lowercase : Tuple=None , ) -> Dict: """simple docstring""" if attention_mask is None: __UpperCamelCase = tf.cast(tf.math.not_equal(_lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class snake_case ( __a , __a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] =( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =(TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : List[str] =( { """conversational""": TFBlenderbotSmallForConditionalGeneration, """feature-extraction""": TFBlenderbotSmallModel, """summarization""": TFBlenderbotSmallForConditionalGeneration, """text2text-generation""": TFBlenderbotSmallForConditionalGeneration, """translation""": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : List[Any] =True SCREAMING_SNAKE_CASE_ : int =False SCREAMING_SNAKE_CASE_ : Any =False def _lowerCamelCase ( self : Dict ): __UpperCamelCase = TFBlenderbotSmallModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=_A ) def _lowerCamelCase ( self : Any ): self.config_tester.run_common_tests() def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_A ) @require_tokenizers @require_tf class snake_case ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] =[ """Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like """ """ i'm going to throw up.\nand why is that?""" ] SCREAMING_SNAKE_CASE_ : Tuple ="""facebook/blenderbot_small-90M""" @cached_property def _lowerCamelCase ( self : Optional[int] ): return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) @cached_property def _lowerCamelCase ( self : str ): __UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = self.tokenizer(self.src_text , return_tensors='tf' ) __UpperCamelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_A , ) __UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_A )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
53
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : int = 3, _lowerCAmelCase : int = 7, _lowerCAmelCase : int = 1000000 ) -> int: _UpperCAmelCase : Dict = 0 _UpperCAmelCase : int = 1 for current_denominator in range(1, limit + 1 ): _UpperCAmelCase : Union[str, Any] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _UpperCAmelCase : Optional[Any] = current_numerator _UpperCAmelCase : str = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
246
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : List[Any] = { '''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ '''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LiltForQuestionAnswering''', '''LiltForSequenceClassification''', '''LiltForTokenClassification''', '''LiltModel''', '''LiltPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] ) -> Dict: A_ : Optional[Any] = 0 if start < end: A_ : Tuple = randint(_lowerCAmelCase , _lowerCAmelCase ) A_ : str = a[end] A_ : Optional[Any] = a[pivot] A_ : List[str] = temp A_ , A_ : int = _in_place_partition(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) count += _in_place_quick_sort(_lowerCAmelCase , _lowerCAmelCase , p - 1 ) count += _in_place_quick_sort(_lowerCAmelCase , p + 1 , _lowerCAmelCase ) return count def __snake_case ( _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> str: A_ : Union[str, Any] = 0 A_ : List[str] = randint(_lowerCAmelCase , _lowerCAmelCase ) A_ : str = a[end] A_ : str = a[pivot] A_ : Any = temp A_ : int = start - 1 for index in range(_lowerCAmelCase , _lowerCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value A_ : Union[str, Any] = new_pivot_index + 1 A_ : Union[str, Any] = a[new_pivot_index] A_ : Union[str, Any] = a[index] A_ : Union[str, Any] = temp A_ : Tuple = a[new_pivot_index + 1] A_ : Optional[int] = a[end] A_ : Dict = temp return new_pivot_index + 1, count _lowerCAmelCase : List[str] = TemporaryFile() _lowerCAmelCase : int = 100 # 1000 elements are to be sorted _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = 0, 1 # mean and standard deviation _lowerCAmelCase : int = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array _lowerCAmelCase : Optional[Any] = np.load(outfile) _lowerCAmelCase : Optional[int] = len(M) - 1 _lowerCAmelCase : Union[str, Any] = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
70
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class lowercase ( unittest.TestCase ): def A__ ( self ,A__): lowercase = 3 lowercase = 2_5_0 lowercase = ids_tensor((batch_size, length) ,UpperCamelCase__) lowercase = torch.ones((batch_size, length) ,device=UpperCamelCase__ ,dtype=torch.float) / length return input_ids, scores def A__ ( self): lowercase , lowercase = self._get_tensors(5) lowercase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0), MaxTimeCriteria(max_time=0.1), ]) self.assertFalse(criteria(UpperCamelCase__ ,UpperCamelCase__)) lowercase , lowercase = self._get_tensors(9) self.assertFalse(criteria(UpperCamelCase__ ,UpperCamelCase__)) lowercase , lowercase = self._get_tensors(1_0) self.assertTrue(criteria(UpperCamelCase__ ,UpperCamelCase__)) def A__ ( self): lowercase = MaxLengthCriteria(max_length=1_0) lowercase , lowercase = self._get_tensors(5) self.assertFalse(criteria(UpperCamelCase__ ,UpperCamelCase__)) lowercase , lowercase = self._get_tensors(9) self.assertFalse(criteria(UpperCamelCase__ ,UpperCamelCase__)) lowercase , lowercase = self._get_tensors(1_0) self.assertTrue(criteria(UpperCamelCase__ ,UpperCamelCase__)) def A__ ( self): lowercase = MaxNewTokensCriteria(start_length=5 ,max_new_tokens=5) lowercase , lowercase = self._get_tensors(5) self.assertFalse(criteria(UpperCamelCase__ ,UpperCamelCase__)) lowercase , lowercase = self._get_tensors(9) self.assertFalse(criteria(UpperCamelCase__ ,UpperCamelCase__)) lowercase , lowercase = self._get_tensors(1_0) self.assertTrue(criteria(UpperCamelCase__ ,UpperCamelCase__)) lowercase = StoppingCriteriaList([criteria]) self.assertEqual(criteria_list.max_length ,1_0) def A__ ( self): lowercase , lowercase = self._get_tensors(5) lowercase = MaxTimeCriteria(max_time=0.1) self.assertFalse(criteria(UpperCamelCase__ ,UpperCamelCase__)) lowercase = MaxTimeCriteria(max_time=0.1 ,initial_timestamp=time.time() - 0.2) self.assertTrue(criteria(UpperCamelCase__ ,UpperCamelCase__)) def A__ ( self): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0)]) ,1_0) with self.assertWarns(UpperCamelCase__): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0)]) ,1_1) lowercase = validate_stopping_criteria(StoppingCriteriaList() ,1_1) self.assertEqual(len(UpperCamelCase__) ,1)
101
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=('''DownBlock2D''', '''AttnDownBlock2D'''), up_block_types=('''AttnUpBlock2D''', '''UpBlock2D'''), ) return model def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.dummy_uncond_unet lowerCAmelCase_ = KarrasVeScheduler() lowerCAmelCase_ = KarrasVePipeline(unet=UpperCamelCase__, scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(num_inference_steps=2, generator=UpperCamelCase__, output_type='''numpy''' ).images lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(num_inference_steps=2, generator=UpperCamelCase__, output_type='''numpy''', return_dict=UpperCamelCase__ )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = '''google/ncsnpp-celebahq-256''' lowerCAmelCase_ = UNetaDModel.from_pretrained(UpperCamelCase__ ) lowerCAmelCase_ = KarrasVeScheduler() lowerCAmelCase_ = KarrasVePipeline(unet=UpperCamelCase__, scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(num_inference_steps=20, generator=UpperCamelCase__, output_type='''numpy''' ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase_ = np.array([0.578, 0.5_811, 0.5_924, 0.5_809, 0.587, 0.5_886, 0.5_861, 0.5_802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
278
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :str = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys lowerCAmelCase :Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
369
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCAmelCase :Optional[Any] = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" if isinstance(lowerCAmelCase , torch.Tensor ): return image elif isinstance(lowerCAmelCase , PIL.Image.Image ): __magic_name__ : List[Any] = [image] __magic_name__ : List[Any] = [trans(img.convert('RGB' ) ) for img in image] __magic_name__ : Dict = torch.stack(lowerCAmelCase ) return image class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , _A : str , _A : int ) -> Dict: super().__init__() # make sure scheduler can always be converted to DDIM __magic_name__ : Optional[int] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_A , scheduler=_A ) def __lowerCAmelCase ( self : Union[str, Any] , _A : Union[str, Any] ) -> Optional[int]: if strength < 0 or strength > 1: raise ValueError(F'The value of strength should in [0.0, 1.0] but is {strength}' ) def __lowerCAmelCase ( self : Any , _A : List[str] , _A : Optional[Any] , _A : int ) -> List[Any]: # get the original timestep using init_timestep __magic_name__ : Tuple = min(int(num_inference_steps * strength ) , _A ) __magic_name__ : Any = max(num_inference_steps - init_timestep , 0 ) __magic_name__ : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __lowerCAmelCase ( self : Any , _A : str , _A : Optional[int] , _A : Tuple , _A : List[str] , _A : str , _A : Optional[int]=None ) -> Dict: if not isinstance(_A , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_A )}' ) __magic_name__ : Union[str, Any] = image.to(device=_A , dtype=_A ) if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(_A )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) __magic_name__ : Tuple = init_latents.shape __magic_name__ : Any = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) # get latents print('add noise to latents at timestep' , _A ) __magic_name__ : List[str] = self.scheduler.add_noise(_A , _A , _A ) __magic_name__ : List[str] = init_latents return latents @torch.no_grad() def __call__( self : Tuple , _A : Union[torch.FloatTensor, PIL.Image.Image] = None , _A : float = 0.8 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : float = 0.0 , _A : int = 50 , _A : Optional[bool] = None , _A : Optional[str] = "pil" , _A : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: self.check_inputs(_A ) # 2. Preprocess image __magic_name__ : int = preprocess(_A ) # 3. set timesteps self.scheduler.set_timesteps(_A , device=self.device ) __magic_name__ , __magic_name__ : Dict = self.get_timesteps(_A , _A , self.device ) __magic_name__ : Dict = timesteps[:1].repeat(_A ) # 4. Prepare latent variables __magic_name__ : Optional[Any] = self.prepare_latents(_A , _A , _A , self.unet.dtype , self.device , _A ) __magic_name__ : Optional[Any] = latents # 5. Denoising loop for t in self.progress_bar(_A ): # 1. predict noise model_output __magic_name__ : Dict = self.unet(_A , _A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __magic_name__ : List[Any] = self.scheduler.step( _A , _A , _A , eta=_A , use_clipped_model_output=_A , generator=_A , ).prev_sample __magic_name__ : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) __magic_name__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __magic_name__ : Dict = self.numpy_to_pil(_A ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_A )
275
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PoolFormerFeatureExtractor'] a_ = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
249
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' model.train() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' set_seed(4_2 ) __UpperCAmelCase = RegressionModel() __UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # Test on distributed setup that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' __UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase = RegressionDataset(length=9_6 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if iteration < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if batch_num < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
0
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __magic_name__ : def __init__( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : int=2 , snake_case__ : Optional[Any]=True , snake_case__ : str=False , snake_case__ : Dict=1_0 , snake_case__ : List[Any]=3 , snake_case__ : List[Any]=3_2 * 8 , snake_case__ : int=3_2 * 8 , snake_case__ : Dict=4 , snake_case__ : Dict=6_4 , ): '''simple docstring''' lowercase :List[str] = parent lowercase :Tuple = batch_size lowercase :Tuple = is_training lowercase :List[Any] = use_auxiliary_loss lowercase :List[Any] = num_queries lowercase :str = num_channels lowercase :Tuple = min_size lowercase :Optional[int] = max_size lowercase :List[Any] = num_labels lowercase :Optional[int] = hidden_dim lowercase :Union[str, Any] = hidden_dim def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :List[str] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( snake_case__ ) lowercase :Dict = torch.ones([self.batch_size, self.min_size, self.max_size] , device=snake_case__ ) lowercase :str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=snake_case__ ) > 0.5 ).float() lowercase :Dict = (torch.rand((self.batch_size, self.num_labels) , device=snake_case__ ) > 0.5).long() lowercase :List[str] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __snake_case ( self : Optional[Any] ): '''simple docstring''' lowercase :Tuple = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowercase :Optional[Any] = self.num_queries lowercase :Any = self.num_labels lowercase :int = [1, 1, 1, 1] lowercase :Union[str, Any] = self.num_channels lowercase :str = 6_4 lowercase :Optional[int] = 1_2_8 lowercase :Tuple = self.hidden_dim lowercase :Union[str, Any] = self.hidden_dim lowercase :Optional[int] = self.hidden_dim return config def __snake_case ( self : Tuple ): '''simple docstring''' lowercase , lowercase , lowercase , lowercase , lowercase :List[str] = self.prepare_config_and_inputs() lowercase :Optional[Any] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def __snake_case ( self : Any , snake_case__ : Any , snake_case__ : List[Any] ): '''simple docstring''' lowercase :Optional[Any] = output.encoder_hidden_states lowercase :int = output.pixel_decoder_hidden_states lowercase :List[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(snake_case__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case__ ) , config.decoder_layers ) def __snake_case ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : List[Any]=False ): '''simple docstring''' with torch.no_grad(): lowercase :Tuple = MaskaFormerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :Optional[Any] = model(pixel_values=snake_case__ , pixel_mask=snake_case__ ) lowercase :Optional[int] = model(snake_case__ , output_hidden_states=snake_case__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(snake_case__ , snake_case__ ) def __snake_case ( self : int , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Any , snake_case__ : Optional[int] ): '''simple docstring''' lowercase :Optional[int] = MaskaFormerForUniversalSegmentation(config=snake_case__ ) model.to(snake_case__ ) model.eval() def comm_check_on_output(snake_case__ : str ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowercase :Any = model(pixel_values=snake_case__ , pixel_mask=snake_case__ ) lowercase :Dict = model(snake_case__ ) comm_check_on_output(snake_case__ ) lowercase :List[Any] = model( pixel_values=snake_case__ , pixel_mask=snake_case__ , mask_labels=snake_case__ , class_labels=snake_case__ ) comm_check_on_output(snake_case__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __A : Optional[int] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __A : List[str] = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} __A : Union[str, Any] = False __A : str = False __A : Optional[int] = False __A : str = False def __snake_case ( self : int ): '''simple docstring''' lowercase :Tuple = MaskaFormerModelTester(self ) lowercase :List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def __snake_case ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase , lowercase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case__ , **snake_case__ , output_hidden_states=snake_case__ ) def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*snake_case__ ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def __snake_case ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def __snake_case ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def __snake_case ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def __snake_case ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __snake_case ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __snake_case ( self : Optional[int] ): '''simple docstring''' pass def __snake_case ( self : List[str] ): '''simple docstring''' lowercase , lowercase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :List[str] = model_class(snake_case__ ) lowercase :str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase :Union[str, Any] = [*signature.parameters.keys()] lowercase :List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case__ ) @slow def __snake_case ( self : Optional[int] ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowercase :Dict = MaskaFormerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __snake_case ( self : Any ): '''simple docstring''' lowercase :List[Any] = (self.model_tester.min_size,) * 2 lowercase :Optional[int] = { '''pixel_values''': torch.randn((2, 3, *size) , device=snake_case__ ), '''mask_labels''': torch.randn((2, 1_0, *size) , device=snake_case__ ), '''class_labels''': torch.zeros(2 , 1_0 , device=snake_case__ ).long(), } lowercase :Tuple = self.model_tester.get_config() lowercase :str = MaskaFormerForUniversalSegmentation(snake_case__ ).to(snake_case__ ) lowercase :Dict = model(**snake_case__ ) self.assertTrue(outputs.loss is not None ) def __snake_case ( self : int ): '''simple docstring''' lowercase , lowercase :str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case__ , **snake_case__ , output_hidden_states=snake_case__ ) def __snake_case ( self : int ): '''simple docstring''' lowercase , lowercase :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :List[str] = model_class(snake_case__ ).to(snake_case__ ) lowercase :int = model(**snake_case__ , output_attentions=snake_case__ ) self.assertTrue(outputs.attentions is not None ) def __snake_case ( self : Optional[int] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase :Tuple = self.all_model_classes[1] lowercase , lowercase , lowercase , lowercase , lowercase :Optional[Any] = self.model_tester.prepare_config_and_inputs() lowercase :Any = model_class(snake_case__ ) model.to(snake_case__ ) model.train() lowercase :str = model(snake_case__ , mask_labels=snake_case__ , class_labels=snake_case__ ).loss loss.backward() def __snake_case ( self : int ): '''simple docstring''' lowercase :Optional[Any] = self.all_model_classes[1] lowercase , lowercase , lowercase , lowercase , lowercase :Any = self.model_tester.prepare_config_and_inputs() lowercase :Optional[Any] = True lowercase :Union[str, Any] = True lowercase :Any = model_class(snake_case__ ).to(snake_case__ ) model.train() lowercase :Tuple = model(snake_case__ , mask_labels=snake_case__ , class_labels=snake_case__ ) lowercase :int = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase :Tuple = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowercase :str = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase :Union[str, Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=snake_case__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase = 1E-4 def lowerCamelCase () -> Tuple: lowercase :List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_vision @slow class __magic_name__ ( unittest.TestCase ): @cached_property def __snake_case ( self : Optional[Any] ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def __snake_case ( self : Any ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __snake_case ( self : Optional[Any] ): '''simple docstring''' lowercase :int = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(snake_case__ ) lowercase :Any = self.default_image_processor lowercase :int = prepare_img() lowercase :int = image_processor(snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) lowercase :List[str] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(snake_case__ , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): lowercase :Any = model(**snake_case__ ) lowercase :Dict = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(snake_case__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) lowercase :Optional[Any] = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(snake_case__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) lowercase :Any = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(snake_case__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , snake_case__ , atol=snake_case__ ) ) def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(snake_case__ ).eval() lowercase :int = self.default_image_processor lowercase :List[Any] = prepare_img() lowercase :Optional[int] = image_processor(snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) lowercase :List[str] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(snake_case__ , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): lowercase :Union[str, Any] = model(**snake_case__ ) # masks_queries_logits lowercase :List[str] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowercase :Optional[Any] = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] lowercase :Union[str, Any] = torch.tensor(snake_case__ ).to(snake_case__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) # class_queries_logits lowercase :List[str] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowercase :List[str] = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case__ , atol=snake_case__ ) ) def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(snake_case__ ).eval() lowercase :List[str] = self.default_image_processor lowercase :Union[str, Any] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='''pt''' , ) lowercase :Any = inputs['''pixel_values'''].to(snake_case__ ) lowercase :List[Any] = [el.to(snake_case__ ) for el in inputs['''mask_labels''']] lowercase :Optional[Any] = [el.to(snake_case__ ) for el in inputs['''class_labels''']] with torch.no_grad(): lowercase :Dict = model(**snake_case__ ) self.assertTrue(outputs.loss is not None )
172
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase (a_ :Optional[int] , a_ :Union[str, Any] , a_ :Optional[Any]=None) -> List[Any]: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F"""{torch_layer} layer.weight does not match""" lowercase :int = nn.Parameter(a_) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"""{torch_layer} layer.bias does not match""" lowercase :Tuple = nn.Parameter(a_) def lowerCamelCase (a_ :int , a_ :Any , a_ :Optional[int]) -> List[Any]: # set torch weights for 1-to-1 comparison lowercase :str = np.asarray(weights[0]) lowercase :List[Any] = np.asarray(weights[1]) lowercase :Optional[int] = np.asarray(weights[2]) set_param( torch_layer.self_attention.query_key , torch.tensor(a_).transpose(1 , 2).contiguous().view(-1 , a_) , ) set_param( torch_layer.self_attention.value , torch.tensor(a_).transpose(1 , 2).contiguous().view(-1 , a_) , ) set_param( torch_layer.output.dense , torch.tensor(a_).view(-1 , a_).contiguous().transpose(0 , 1) , ) def lowerCamelCase (a_ :str , a_ :Any , a_ :Union[str, Any]) -> Dict: # set torch weights for 1-to-1 comparison lowercase :str = np.asarray(weights[0]) lowercase :Dict = np.asarray(weights[1]) lowercase :Dict = np.asarray(weights[2]) lowercase :Optional[Any] = np.asarray(weights[3]) set_param( torch_layer.self_attention.query , torch.tensor(a_).transpose(1 , 2).contiguous().view(-1 , a_) , ) set_param( torch_layer.self_attention.key , torch.tensor(a_).transpose(1 , 2).contiguous().view(-1 , a_) , ) set_param( torch_layer.self_attention.value , torch.tensor(a_).transpose(1 , 2).contiguous().view(-1 , a_) , ) set_param( torch_layer.output.dense , torch.tensor(a_).view(-1 , a_).contiguous().transpose(0 , 1) , ) def lowerCamelCase (a_ :Union[str, Any] , a_ :Dict , a_ :Optional[int]) -> Optional[Any]: # layernorm 1 lowercase :Optional[int] = weights[0][0][0] lowercase :Union[str, Any] = np.asarray(layer_norm_a[0]) lowercase :List[str] = np.asarray(layer_norm_a[1]) set_param( torch_block.attention.layer_norm , torch.tensor(a_) , torch.tensor(a_) , ) # lsh weights + output lowercase :Optional[Any] = weights[0][1] if len(a_) < 4: set_layer_weights_in_torch_lsh(a_ , torch_block.attention , a_) else: set_layer_weights_in_torch_local(a_ , torch_block.attention , a_) # intermediate weighs lowercase :Optional[int] = weights[2][0][1][2] # Chunked Feed Forward if len(a_) == 4: lowercase :int = intermediate_weights[2] # layernorm 2 lowercase :int = np.asarray(intermediate_weights[0][0]) lowercase :Union[str, Any] = np.asarray(intermediate_weights[0][1]) set_param( torch_block.feed_forward.layer_norm , torch.tensor(a_) , torch.tensor(a_) , ) # intermediate dense lowercase :Dict = np.asarray(intermediate_weights[1][0]) lowercase :Optional[Any] = np.asarray(intermediate_weights[1][1]) set_param( torch_block.feed_forward.dense.dense , torch.tensor(a_).transpose(0 , 1).contiguous() , torch.tensor(a_) , ) # intermediate out lowercase :Union[str, Any] = np.asarray(intermediate_weights[4][0]) lowercase :Tuple = np.asarray(intermediate_weights[4][1]) set_param( torch_block.feed_forward.output.dense , torch.tensor(a_).transpose(0 , 1).contiguous() , torch.tensor(a_) , ) def lowerCamelCase (a_ :Tuple , a_ :Dict , a_ :Tuple) -> str: # reformer model lowercase :Union[str, Any] = torch_model.reformer # word embeds lowercase :Tuple = np.asarray(weights[1]) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(a_) , ) if isinstance(weights[3] , a_): lowercase :str = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights)): lowercase :List[str] = np.asarray(weights[3][emb_idx][0]) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"""{position_embeddings[emb_idx]} emb does not match""" lowercase :int = nn.Parameter(torch.tensor(a_)) lowercase :Dict = weights[5] assert len(torch_model_reformer.encoder.layers) * 4 == len( a_), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers): lowercase :Optional[int] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(a_ , a_ , a_) # output layer norm lowercase :Dict = np.asarray(weights[7][0]) lowercase :Optional[Any] = np.asarray(weights[7][1]) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(a_) , torch.tensor(a_) , ) # output embeddings lowercase :str = np.asarray(weights[9][0]) lowercase :Union[str, Any] = np.asarray(weights[9][1]) set_param( torch_model.lm_head.decoder , torch.tensor(a_).transpose(0 , 1).contiguous() , torch.tensor(a_) , ) def lowerCamelCase (a_ :Optional[Any] , a_ :List[Any] , a_ :Tuple) -> Union[str, Any]: # Initialise PyTorch model lowercase :Optional[Any] = ReformerConfig.from_json_file(a_) print(F"""Building PyTorch model from configuration: {config}""") lowercase :Dict = ReformerModelWithLMHead(a_) with open(a_ , '''rb''') as f: lowercase :Tuple = pickle.load(a_)['''weights'''] set_model_weights_in_torch(a_ , a_ , config.hidden_size) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , a_) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
172
1
from PIL import Image def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image ) -> Image: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = image.size SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = image.load() for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = pixels[j, i] mean += pixel mean //= width * height for j in range(__UpperCamelCase ): for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = 2_55 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __lowerCamelCase : List[str] = mean_threshold(Image.open('''path_to_image''').convert('''L''')) image.save('''output_image_path''')
219
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __lowerCamelCase : List[str] = object() # For specifying empty leaf dict `{}` __lowerCamelCase : Optional[int] = object() def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(__UpperCamelCase ) - len(__UpperCamelCase ) + 1 ): SCREAMING_SNAKE_CASE__ = [x.match(__UpperCamelCase ) for x, y in zip(__UpperCamelCase , ks[i:] )] if matches and all(__UpperCamelCase ): return True return False def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> List[str]: """simple docstring""" def replace(__UpperCamelCase : Tuple , __UpperCamelCase : Any ): for rule, replacement in rules: if _match(__UpperCamelCase , __UpperCamelCase ): return replacement return val return replace def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""" , __UpperCamelCase )), (("transformer", "wte", "embedding"), P("""mp""" , __UpperCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__UpperCamelCase , """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""" , __UpperCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__UpperCamelCase , """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""" , __UpperCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = _get_partition_rules() SCREAMING_SNAKE_CASE__ = _replacement_rules(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = {k: _unmatched for k in flatten_dict(__UpperCamelCase )} SCREAMING_SNAKE_CASE__ = {k: replace(__UpperCamelCase , __UpperCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__UpperCamelCase ) )
219
1
'''simple docstring''' import requests _lowerCamelCase : Dict = 'YOUR API KEY' def __a ( UpperCAmelCase , UpperCAmelCase = giphy_api_key ) ->list: """simple docstring""" A = """+""".join(query.split() ) A = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" A = requests.get(UpperCAmelCase ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
370
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Optional[Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowerCAmelCase ) try: pickle.loads(pickle.dumps(_lowerCAmelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
337
0
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [0 for i in range(r + 1 )] # nc0 = 1 _lowerCAmelCase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _lowerCAmelCase = min(lowerCAmelCase , lowerCAmelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
70
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A__ : Any =logging.get_logger(__name__) A__ : List[Any] ='''▁''' A__ : Optional[int] ={'''vocab_file''': '''sentencepiece.bpe.model'''} A__ : Union[str, Any] ={ '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } A__ : Dict ={ '''facebook/nllb-200-distilled-600M''': 10_24, } # fmt: off A__ : Union[str, Any] =['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class UpperCAmelCase ( snake_case_ ): _lowercase: int = VOCAB_FILES_NAMES _lowercase: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase: Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase: str = ['''input_ids''', '''attention_mask'''] _lowercase: List[int] = [] _lowercase: List[int] = [] def __init__( self : int , __snake_case : Optional[Any] , __snake_case : Dict="<s>" , __snake_case : Optional[int]="</s>" , __snake_case : Dict="</s>" , __snake_case : str="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : List[Any]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Optional[Dict[str, Any]] = None , __snake_case : str=None , __snake_case : str=False , **__snake_case : List[Any] , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase = legacy_behaviour super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , tokenizer_file=__snake_case , src_lang=__snake_case , tgt_lang=__snake_case , additional_special_tokens=__snake_case , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__snake_case , **__snake_case , ) _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) _lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase = 1 _lowerCAmelCase = len(self.sp_model ) _lowerCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__snake_case ) } _lowerCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} _lowerCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowerCAmelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _lowerCAmelCase = src_lang if src_lang is not None else """eng_Latn""" _lowerCAmelCase = self.lang_code_to_id[self._src_lang] _lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ) -> List[str]: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None _lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict , __snake_case : Optional[Any] ) -> Dict: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowercase__ ( self : List[Any] ) -> Any: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase__ ( self : int ) -> str: return self._src_lang @src_lang.setter def lowercase__ ( self : Dict , __snake_case : str ) -> None: _lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase__ ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) _lowerCAmelCase = [1] * len(self.prefix_tokens ) _lowerCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__snake_case )) + suffix_ones return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones def lowercase__ ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase__ ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : List[str] , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Optional[str] , __snake_case : Optional[str] , **__snake_case : Optional[int] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase = src_lang _lowerCAmelCase = self(__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , **__snake_case ) _lowerCAmelCase = self.convert_tokens_to_ids(__snake_case ) _lowerCAmelCase = tgt_lang_id return inputs def lowercase__ ( self : List[Any] ) -> Optional[int]: _lowerCAmelCase = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self : Optional[int] , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def lowercase__ ( self : Optional[Any] , __snake_case : Union[str, Any] ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase = self.sp_model.PieceToId(__snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase__ ( self : List[Any] , __snake_case : Union[str, Any] ) -> Optional[int]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self : Optional[int] , __snake_case : Union[str, Any] ) -> str: _lowerCAmelCase = """""".join(__snake_case ).replace(__snake_case , """ """ ).strip() return out_string def lowercase__ ( self : str , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , """wb""" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,) def lowercase__ ( self : Optional[Any] , __snake_case : List[str] , __snake_case : str = "eng_Latn" , __snake_case : Optional[List[str]] = None , __snake_case : str = "fra_Latn" , **__snake_case : Optional[int] , ) -> BatchEncoding: _lowerCAmelCase = src_lang _lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(__snake_case , __snake_case , **__snake_case ) def lowercase__ ( self : str ) -> Tuple: return self.set_src_lang_special_tokens(self.src_lang ) def lowercase__ ( self : Dict ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase__ ( self : str , __snake_case : int ) -> None: _lowerCAmelCase = self.lang_code_to_id[src_lang] if self.legacy_behaviour: _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase = [self.cur_lang_code] _lowerCAmelCase = [self.eos_token_id] def lowercase__ ( self : Any , __snake_case : str ) -> None: _lowerCAmelCase = self.lang_code_to_id[lang] if self.legacy_behaviour: _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase = [self.cur_lang_code] _lowerCAmelCase = [self.eos_token_id]
70
1
'''simple docstring''' def lowercase (_A = 1_0_0_0_0_0_0 ): """simple docstring""" _lowerCAmelCase : Any = set(range(3 , _A , 2 ) ) primes.add(2 ) for p in range(3 , _A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _A , _A ) ) ) _lowerCAmelCase : Union[str, Any] = [float(_A ) for n in range(limit + 1 )] for p in primes: for n in range(_A , limit + 1 , _A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
25
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "trajectory_transformer" __magic_name__ = ["past_key_values"] __magic_name__ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = action_weight _lowerCAmelCase : Optional[int] = reward_weight _lowerCAmelCase : Union[str, Any] = value_weight _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Tuple = block_size _lowerCAmelCase : List[Any] = action_dim _lowerCAmelCase : List[Any] = observation_dim _lowerCAmelCase : Union[str, Any] = transition_dim _lowerCAmelCase : Tuple = learning_rate _lowerCAmelCase : int = n_layer _lowerCAmelCase : Any = n_head _lowerCAmelCase : Tuple = n_embd _lowerCAmelCase : Optional[Any] = embd_pdrop _lowerCAmelCase : Union[str, Any] = attn_pdrop _lowerCAmelCase : Any = resid_pdrop _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = kaiming_initializer_range _lowerCAmelCase : List[Any] = use_cache super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
25
1
"""simple docstring""" import requests snake_case_ = """""" # <-- Put your OpenWeatherMap appid here! snake_case_ = """https://api.openweathermap.org/data/2.5/""" def _lowerCAmelCase ( lowercase_ = "Chicago" , lowercase_ = APPID ): return requests.get(URL_BASE + 'weather' , params=locals() ).json() def _lowerCAmelCase ( lowercase_ = "Kolkata, India" , lowercase_ = APPID ): return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def _lowerCAmelCase ( lowercase_ = 5_5.6_8 , lowercase_ = 1_2.5_7 , lowercase_ = APPID ): return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: snake_case_ = input("""Enter a location:""").strip() if location: pprint(current_weather(location)) else: break
78
def _lowercase ( lowercase__ = 2_0_0 ): __lowerCAmelCase : Union[str, Any] = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] __lowerCAmelCase : Dict = [0] * (pence + 1) __lowerCAmelCase : Optional[int] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
275
0
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , __lowerCamelCase ) a = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: a = dataset_size < in_memory_max_size else: a = False a = is_small_dataset(__lowerCamelCase ) assert result == expected
347
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Optional[int] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
347
1
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> Optional[int]: '''simple docstring''' __snake_case : List[str] = [] __snake_case : Optional[Any] = set({'(', '[', '{'} ) __snake_case : Union[str, Any] = set({')', ']', '}'} ) __snake_case : Tuple = {'{': '}', '[': ']', '(': ')'} for i in range(len(UpperCAmelCase_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(UpperCAmelCase_ ) == 0 or (len(UpperCAmelCase_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(UpperCAmelCase_ ) == 0 def __UpperCAmelCase ( ) -> Any: '''simple docstring''' __snake_case : Optional[Any] = input('Enter sequence of brackets: ' ) if is_balanced(UpperCAmelCase_ ): print(UpperCAmelCase_ , 'is balanced' ) else: print(UpperCAmelCase_ , 'is not balanced' ) if __name__ == "__main__": main()
172
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[int]= logging.get_logger(__name__) _a : Dict= {"vocab_file": "spiece.model"} _a : int= { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } _a : int= { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } _a : Optional[Any]= "▁" class UpperCamelCase ( lowercase ): UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self : Optional[Any] , _A : List[str] , _A : int=True , _A : Optional[int]=True , _A : Any=False , _A : str="[CLS]" , _A : Dict="[SEP]" , _A : Any="<unk>" , _A : List[Any]="[SEP]" , _A : Any="<pad>" , _A : List[str]="[CLS]" , _A : int="[MASK]" , _A : Optional[Dict[str, Any]] = None , **_A : List[str] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __snake_case : Dict = ( AddedToken(_A , lstrip=_A , rstrip=_A , normalized=_A) if isinstance(_A , _A) else mask_token ) __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __snake_case : Optional[int] = do_lower_case __snake_case : Any = remove_space __snake_case : Any = keep_accents __snake_case : Dict = vocab_file __snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_A) @property def _lowercase (self : str) -> Optional[Any]: return len(self.sp_model) def _lowercase (self : Dict) -> List[str]: __snake_case : int = {self.convert_ids_to_tokens(_A): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self : Optional[int]) -> int: __snake_case : List[Any] = self.__dict__.copy() __snake_case : Any = None return state def __setstate__(self : Union[str, Any] , _A : Optional[Any]) -> int: __snake_case : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __snake_case : Optional[int] = {} __snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowercase (self : Tuple , _A : int) -> int: if self.remove_space: __snake_case : int = ' '.join(inputs.strip().split()) else: __snake_case : str = inputs __snake_case : Optional[int] = outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: __snake_case : Tuple = unicodedata.normalize('NFKD' , _A) __snake_case : Optional[Any] = ''.join([c for c in outputs if not unicodedata.combining(_A)]) if self.do_lower_case: __snake_case : Union[str, Any] = outputs.lower() return outputs def _lowercase (self : Any , _A : str) -> List[str]: __snake_case : Union[str, Any] = self.preprocess_text(_A) __snake_case : Optional[Any] = self.sp_model.encode(_A , out_type=_A) __snake_case : Tuple = [] for piece in pieces: if len(_A) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): __snake_case : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __snake_case : Any = cur_pieces[1:] else: __snake_case : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_A) else: new_pieces.append(_A) return new_pieces def _lowercase (self : Optional[Any] , _A : List[str]) -> int: return self.sp_model.PieceToId(_A) def _lowercase (self : Optional[int] , _A : Tuple) -> Union[str, Any]: return self.sp_model.IdToPiece(_A) def _lowercase (self : Union[str, Any] , _A : Union[str, Any]) -> Dict: __snake_case : Any = [] __snake_case : Dict = '' __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A) + token __snake_case : List[str] = True __snake_case : int = [] else: current_sub_tokens.append(_A) __snake_case : int = False out_string += self.sp_model.decode(_A) return out_string.strip() def _lowercase (self : List[Any] , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : Dict = [self.sep_token_id] __snake_case : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase (self : Tuple , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A) if token_ids_a is not None: return [1] + ([0] * len(_A)) + [1] + ([0] * len(_A)) + [1] return [1] + ([0] * len(_A)) + [1] def _lowercase (self : str , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : int = [self.sep_token_id] __snake_case : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowercase (self : Optional[Any] , _A : str , _A : Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_A): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return __snake_case : Optional[Any] = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_A) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _A) elif not os.path.isfile(self.vocab_file): with open(_A , 'wb') as fi: __snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A) return (out_vocab_file,)
172
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = "microsoft/speecht5_tts" A : List[Any] = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) A : str = "text_reader" A : Optional[Any] = SpeechTaProcessor A : Any = SpeechTaForTextToSpeech A : Optional[Any] = SpeechTaHifiGan A : str = ["text"] A : Union[str, Any] = ["audio"] def snake_case__ ( self : List[Any] ): if self.post_processor is None: __snake_case : Tuple = """microsoft/speecht5_hifigan""" super().setup() def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ): __snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) __snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) __snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ): with torch.no_grad(): return self.model.generate_speech(**_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): with torch.no_grad(): return self.post_processor(_lowerCAmelCase ).cpu().detach()
20
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
1
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _A = { # 1536-bit 5: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 2048-bit 14: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AACAA68FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 3072-bit 15: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 4096-bit 16: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199""" + """FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 6144-bit 17: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08""" + """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B""" + """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9""" + """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6""" + """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8""" + """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C""" + """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718""" + """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D""" + """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D""" + """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226""" + """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC""" + """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26""" + """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB""" + """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2""" + """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127""" + """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406""" + """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918""" + """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151""" + """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03""" + """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F""" + """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B""" + """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632""" + """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E""" + """6DCC4024FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 8192-bit 18: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD""" + """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831""" + """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B""" + """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF""" + """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6""" + """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3""" + """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328""" + """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C""" + """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE""" + """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4""" + """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300""" + """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568""" + """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9""" + """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B""" + """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A""" + """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36""" + """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1""" + """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92""" + """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47""" + """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71""" + """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, } class lowerCamelCase : '''simple docstring''' def __init__(self , _lowerCamelCase = 14 ): """simple docstring""" if group not in primes: raise ValueError("""Unsupported Group""" ) UpperCAmelCase__ : Any = primes[group]['''prime'''] UpperCAmelCase__ : List[str] = primes[group]['''generator'''] UpperCAmelCase__ : Tuple = int(hexlify(urandom(32 ) ) , base=16 ) def _a (self ): """simple docstring""" return hex(self.__private_key )[2:] def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = pow(self.generator , self.__private_key , self.prime ) return hex(SCREAMING_SNAKE_CASE__ )[2:] def _a (self , _lowerCamelCase ): """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(SCREAMING_SNAKE_CASE__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = int(SCREAMING_SNAKE_CASE__ , base=16 ) if not self.is_valid_public_key(SCREAMING_SNAKE_CASE__ ): raise ValueError("""Invalid public key""" ) UpperCAmelCase__ : Optional[int] = pow(SCREAMING_SNAKE_CASE__ , self.__private_key , self.prime ) return shaaaa(str(SCREAMING_SNAKE_CASE__ ).encode() ).hexdigest() @staticmethod def _a (_lowerCamelCase , _lowerCamelCase ): """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(SCREAMING_SNAKE_CASE__ , (prime - 1) // 2 , SCREAMING_SNAKE_CASE__ ) == 1 ) @staticmethod def _a (_lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 14 ): """simple docstring""" UpperCAmelCase__ : Any = int(SCREAMING_SNAKE_CASE__ , base=16 ) UpperCAmelCase__ : Dict = int(SCREAMING_SNAKE_CASE__ , base=16 ) UpperCAmelCase__ : Dict = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError("""Invalid public key""" ) UpperCAmelCase__ : Union[str, Any] = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return shaaaa(str(SCREAMING_SNAKE_CASE__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
171
from typing import List from .keymap import KEYMAP, get_character def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" def decorator(_UpperCamelCase ): lowercase : str = getattr(_UpperCamelCase, '''handle_key''', [] ) handle += [key] setattr(_UpperCamelCase, '''handle_key''', _UpperCamelCase ) return func return decorator def __lowercase ( *_UpperCamelCase ) ->Any: """simple docstring""" def decorator(_UpperCamelCase ): lowercase : List[Any] = getattr(_UpperCamelCase, '''handle_key''', [] ) handle += keys setattr(_UpperCamelCase, '''handle_key''', _UpperCamelCase ) return func return decorator class __SCREAMING_SNAKE_CASE ( A__ ): def __new__( cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : str = super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not hasattr(SCREAMING_SNAKE_CASE__ , '''key_handler''' ): setattr(SCREAMING_SNAKE_CASE__ , '''key_handler''' , {} ) setattr(SCREAMING_SNAKE_CASE__ , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): lowercase : Dict = getattr(SCREAMING_SNAKE_CASE__ , '''handle_key''' , [] ) for key in handled_keys: lowercase : List[Any] = value return new_cls @staticmethod def __lowerCamelCase ( cls ): lowercase : Dict = get_character() if char != KEYMAP["undefined"]: lowercase : Optional[int] = ord(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = cls.key_handler.get(SCREAMING_SNAKE_CASE__ ) if handler: lowercase : Tuple = char return handler(cls ) else: return None def __lowercase ( cls ) ->Any: """simple docstring""" return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
337
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _A = logging.get_logger(__name__) _A = OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) _A = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowercase_ ( __UpperCAmelCase ) -> List[Any]: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCAmelCase__ : str = model_type_to_module_name(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = importlib.import_module(f""".{module_name}""" , """transformers.models""" ) try: return getattr(__UpperCAmelCase , __UpperCAmelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__UpperCAmelCase , """__name__""" , __UpperCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCAmelCase__ : Union[str, Any] = importlib.import_module("""transformers""" ) if hasattr(__UpperCAmelCase , __UpperCAmelCase ): return getattr(__UpperCAmelCase , __UpperCAmelCase ) return None def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , **__UpperCAmelCase , ) -> Optional[Any]: lowerCAmelCase__ : Union[str, Any] = get_file_from_repo( __UpperCAmelCase , __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , resume_download=__UpperCAmelCase , proxies=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , revision=__UpperCAmelCase , local_files_only=__UpperCAmelCase , ) if resolved_config_file is None: logger.info( """Could not locate the image processor configuration file, will try to use the model config instead.""" ) return {} with open(__UpperCAmelCase , encoding="""utf-8""" ) as reader: return json.load(__UpperCAmelCase ) class _lowerCamelCase : def __init__( self : Tuple ) -> List[Any]: """simple docstring""" raise EnvironmentError( """AutoImageProcessor is designed to be instantiated """ """using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(UpperCamelCase ) def _lowerCAmelCase ( cls : List[Any] , UpperCamelCase : int , **UpperCamelCase : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Dict = kwargs.pop("""config""" , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = kwargs.pop("""trust_remote_code""" , UpperCamelCase ) lowerCAmelCase__ : List[str] = True lowerCAmelCase__ , lowerCAmelCase__ : int = ImageProcessingMixin.get_image_processor_dict(UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = config_dict.get("""image_processor_type""" , UpperCamelCase ) lowerCAmelCase__ : Any = None if "AutoImageProcessor" in config_dict.get("""auto_map""" , {} ): lowerCAmelCase__ : Optional[Any] = config_dict["""auto_map"""]["""AutoImageProcessor"""] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: lowerCAmelCase__ : Optional[Any] = config_dict.pop("""feature_extractor_type""" , UpperCamelCase ) if feature_extractor_class is not None: logger.warning( """Could not find image processor class in the image processor config or the model config. Loading""" """ based on pattern matching with the model's feature extractor configuration.""" ) lowerCAmelCase__ : List[str] = feature_extractor_class.replace("""FeatureExtractor""" , """ImageProcessor""" ) if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): lowerCAmelCase__ : int = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] lowerCAmelCase__ : Union[str, Any] = feature_extractor_auto_map.replace("""FeatureExtractor""" , """ImageProcessor""" ) logger.warning( """Could not find image processor auto map in the image processor config or the model config.""" """ Loading based on pattern matching with the model's feature extractor configuration.""" ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : str = AutoConfig.from_pretrained(UpperCamelCase , **UpperCamelCase ) # It could be in `config.image_processor_type`` lowerCAmelCase__ : Any = getattr(UpperCamelCase , """image_processor_type""" , UpperCamelCase ) if hasattr(UpperCamelCase , """auto_map""" ) and "AutoImageProcessor" in config.auto_map: lowerCAmelCase__ : Tuple = config.auto_map["""AutoImageProcessor"""] if image_processor_class is not None: lowerCAmelCase__ : int = image_processor_class_from_name(UpperCamelCase ) lowerCAmelCase__ : Dict = image_processor_auto_map is not None lowerCAmelCase__ : Any = image_processor_class is not None or type(UpperCamelCase ) in IMAGE_PROCESSOR_MAPPING lowerCAmelCase__ : Tuple = resolve_trust_remote_code( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if has_remote_code and trust_remote_code: lowerCAmelCase__ : Optional[int] = get_class_from_dynamic_module( UpperCamelCase , UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : str = kwargs.pop("""code_revision""" , UpperCamelCase ) if os.path.isdir(UpperCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(UpperCamelCase , **UpperCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(UpperCamelCase , **UpperCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(UpperCamelCase ) in IMAGE_PROCESSOR_MAPPING: lowerCAmelCase__ : int = IMAGE_PROCESSOR_MAPPING[type(UpperCamelCase )] return image_processor_class.from_dict(UpperCamelCase , **UpperCamelCase ) raise ValueError( f"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ f"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def _lowerCAmelCase ( UpperCamelCase : Optional[Any] , UpperCamelCase : str ) -> Union[str, Any]: """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(UpperCamelCase , UpperCamelCase )
212
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a_ ): _lowerCamelCase :Dict = ["image_processor", "tokenizer"] _lowerCamelCase :Dict = "BlipImageProcessor" _lowerCamelCase :Any = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[Any] = False super().__init__(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = self.image_processor def __call__( self : int , UpperCamelCase : ImageInput = None , UpperCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[bool, str, PaddingStrategy] = False , UpperCamelCase : Union[bool, str, TruncationStrategy] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : int = 0 , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[str, TensorType]] = None , **UpperCamelCase : Optional[int] , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase__ : Any = self.tokenizer lowerCAmelCase__ : Optional[int] = self.tokenizer( text=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) return text_encoding # add pixel_values lowerCAmelCase__ : Tuple = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase ) if text is not None: lowerCAmelCase__ : Optional[int] = self.tokenizer( text=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) else: lowerCAmelCase__ : Tuple = None if text_encoding is not None: encoding_image_processor.update(UpperCamelCase ) return encoding_image_processor def _lowerCAmelCase ( self : int , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : List[str] ) -> Dict: """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] , *UpperCamelCase : Tuple , **UpperCamelCase : List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.tokenizer.model_input_names lowerCAmelCase__ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
212
1
"""simple docstring""" from typing import Any import numpy as np def lowercase_ ( _snake_case ): return np.array_equal(_snake_case ,matrix.conjugate().T ) def lowercase_ ( _snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = v.conjugate().T SCREAMING_SNAKE_CASE__ : str = v_star.dot(_snake_case ) assert isinstance(_snake_case ,np.ndarray ) return (v_star_dot.dot(_snake_case )) / (v_star.dot(_snake_case )) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : List[Any] = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) SCREAMING_SNAKE_CASE__ : Dict = np.array([[1], [2], [3]] ) assert is_hermitian(_snake_case ), f'''{a} is not hermitian.''' print(rayleigh_quotient(_snake_case ,_snake_case ) ) SCREAMING_SNAKE_CASE__ : Any = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_snake_case ), f'''{a} is not hermitian.''' assert rayleigh_quotient(_snake_case ,_snake_case ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
25
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ : List[str] = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase__ : List[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = SavedModel() SCREAMING_SNAKE_CASE__ : Dict = [] with open(os.path.join(_snake_case ,"""utils""" ,"""tf_ops""" ,"""onnx.json""" ) ) as f: SCREAMING_SNAKE_CASE__ : Any = json.load(_snake_case )["""opsets"""] for i in range(1 ,opset + 1 ): onnx_ops.extend(onnx_opsets[str(_snake_case )] ) with open(_snake_case ,"""rb""" ) as f: saved_model.ParseFromString(f.read() ) SCREAMING_SNAKE_CASE__ : List[str] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want SCREAMING_SNAKE_CASE__ : int = sorted(_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_snake_case ) if strict and len(_snake_case ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(_snake_case ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*_snake_case ,sep="""\n""" ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=1_2, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase__ : Dict = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
25
1
from __future__ import annotations from typing import Any class A_ : '''simple docstring''' def __init__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = num_of_nodes UpperCAmelCase_ : list[list[int]] = [] UpperCAmelCase_ : dict[int, int] = {} def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: UpperCAmelCase_ : Optional[int] = self.find_component(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if component_size[u_node] <= component_size[v_node]: UpperCAmelCase_ : Optional[Any] = v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_ ) elif component_size[u_node] >= component_size[v_node]: UpperCAmelCase_ : Optional[Any] = self.find_component(lowercase_ ) component_size[u_node] += component_size[v_node] self.set_component(lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) UpperCAmelCase_ : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: UpperCAmelCase_ : str = edge UpperCAmelCase_ : Dict = self.m_component[u] UpperCAmelCase_ : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): UpperCAmelCase_ : List[Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Tuple = edge UpperCAmelCase_ : List[Any] = self.m_component[u] UpperCAmelCase_ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 UpperCAmelCase_ : List[Any] = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __a ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
368
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _a = object() # For specifying empty leaf dict `{}` _a = object() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ): UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )] if matches and all(__lowerCamelCase ): return True return False def __a ( __lowerCamelCase ): def replace(__lowerCamelCase, __lowerCamelCase ): for rule, replacement in rules: if _match(__lowerCamelCase, __lowerCamelCase ): return replacement return val return replace def __a ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )), (("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )), (("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = _get_partition_rules() UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase ) UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )} UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCamelCase ) )
23
0
"""simple docstring""" import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , _SCREAMING_SNAKE_CASE ) snake_case_ = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: snake_case_ = dataset_size < in_memory_max_size else: snake_case_ = False snake_case_ = is_small_dataset(_SCREAMING_SNAKE_CASE ) assert result == expected
347
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , ) -> Optional[Any]: snake_case_ = bnb_quantization_config.load_in_abit snake_case_ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) snake_case_ = [] # custom device map if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1: snake_case_ = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: snake_case_ = get_keys_to_not_convert(_SCREAMING_SNAKE_CASE ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_SCREAMING_SNAKE_CASE ) snake_case_ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: snake_case_ = [] snake_case_ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_SCREAMING_SNAKE_CASE ) # compatibility with peft snake_case_ = load_in_abit snake_case_ = load_in_abit snake_case_ = get_parameter_device(_SCREAMING_SNAKE_CASE ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) snake_case_ = replace_with_bnb_layers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , modules_to_not_convert=_SCREAMING_SNAKE_CASE ) # convert param to the right dtype snake_case_ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: snake_case_ = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_SCREAMING_SNAKE_CASE ): param.to(_SCREAMING_SNAKE_CASE ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): snake_case_ = replace_with_bnb_layers( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , modules_to_not_convert=_SCREAMING_SNAKE_CASE ) snake_case_ = get_quantized_model_device_map( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_memory=_SCREAMING_SNAKE_CASE , no_split_module_classes=_SCREAMING_SNAKE_CASE , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): snake_case_ = True snake_case_ = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=_SCREAMING_SNAKE_CASE , offload_state_dict=_SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_SCREAMING_SNAKE_CASE , device_map=_SCREAMING_SNAKE_CASE , offload_dir=_SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Tuple: if device_map is None: if torch.cuda.is_available(): snake_case_ = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) snake_case_ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) snake_case_ = {} snake_case_ = special_dtypes snake_case_ = no_split_module_classes snake_case_ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": snake_case_ = get_balanced_memory( _SCREAMING_SNAKE_CASE , low_zero=(device_map == """balanced_low_0""") , max_memory=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) snake_case_ = max_memory snake_case_ = infer_auto_device_map(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # check if don't have any quantized module on the cpu snake_case_ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules snake_case_ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Tuple: if modules_to_not_convert is None: snake_case_ = [] snake_case_ , snake_case_ = _replace_with_bnb_layers( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> List[Any]: snake_case_ = False for name, module in model.named_children(): if current_key_name is None: snake_case_ = [] current_key_name.append(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` snake_case_ = """.""".join(_SCREAMING_SNAKE_CASE ) snake_case_ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: snake_case_ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: snake_case_ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: snake_case_ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) snake_case_ = module.weight.data if module.bias is not None: snake_case_ = module.bias.data bnb_module.requires_grad_(_SCREAMING_SNAKE_CASE ) setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = True if len(list(module.children() ) ) > 0: snake_case_ , snake_case_ = _replace_with_bnb_layers( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _a ( _SCREAMING_SNAKE_CASE ) -> Any: # Create a copy of the model with init_empty_weights(): snake_case_ = deepcopy(_SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` snake_case_ = find_tied_parameters(_SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: snake_case_ = sum(_SCREAMING_SNAKE_CASE , [] ) snake_case_ = len(_SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model snake_case_ = False if hasattr(_SCREAMING_SNAKE_CASE , """base_model_prefix""" ): snake_case_ = not hasattr(_SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head snake_case_ = list(model.named_children() ) snake_case_ = [list_modules[-1][0]] # add last module together with tied weights snake_case_ = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) snake_case_ = list(set(_SCREAMING_SNAKE_CASE ) ) + list(_SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys snake_case_ = [""".weight""", """.bias"""] snake_case_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: snake_case_ = name.replace(_SCREAMING_SNAKE_CASE , """""" ) filtered_module_names.append(_SCREAMING_SNAKE_CASE ) return filtered_module_names def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: for m in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ): return True return False def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: return next(parameter.parameters() ).device def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0 , dtype=_SCREAMING_SNAKE_CASE , value=_SCREAMING_SNAKE_CASE ) snake_case_ = param_name snake_case_ = model if "." in tensor_name: snake_case_ = tensor_name.split(""".""" ) for split in splits[:-1]: snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) snake_case_ = new_module snake_case_ = splits[-1] # offload weights snake_case_ = False offload_weight(module._parameters[tensor_name] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE , ) else: offload_weight(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) offload_weight(_SCREAMING_SNAKE_CASE , param_name.replace("""weight""" , """SCB""" ) , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) set_module_tensor_to_device(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """meta""" , dtype=_SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
347
1
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging UpperCAmelCase = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __magic_name__ ( lowerCamelCase__ ): def __init__( self : str , snake_case__ : int = 1_0_1 ): '''simple docstring''' lowercase :Union[str, Any] = length def __len__( self : Optional[int] ): '''simple docstring''' return self.length def __getitem__( self : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' return i class __magic_name__ : def __call__( self : str , snake_case__ : Any ): '''simple docstring''' return {"input_ids": torch.tensor(lowercase__ ), "labels": torch.tensor(lowercase__ )} class __magic_name__ ( nn.Module ): def __init__( self : Optional[int] ): '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. lowercase :int = nn.Linear(1_2_0 , 8_0 ) def __snake_case ( self : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[int]=None ): '''simple docstring''' if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class __magic_name__ ( lowerCamelCase__ ): @require_torch_neuroncore def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :Optional[Any] = f"""--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n """.split() lowercase :List[str] = self.get_auto_remove_tmp_dir() lowercase :Optional[int] = f"""--output_dir {output_dir}""".split() lowercase :Optional[Any] = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowercase__ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class __magic_name__ ( lowerCamelCase__ ): @require_torch_multi_gpu def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :str = f"""--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n """.split() lowercase :int = self.get_auto_remove_tmp_dir() lowercase :Dict = f"""--output_dir {output_dir}""".split() lowercase :str = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowercase__ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py UpperCAmelCase = HfArgumentParser((TrainingArguments,)) UpperCAmelCase = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: UpperCAmelCase = DummyDataset(dataset_length) def lowerCamelCase (a_ :Union[str, Any]) -> Union[str, Any]: lowercase :int = list(range(len(A__))) lowercase :Union[str, Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' F"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""") return {"success": success} UpperCAmelCase = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) UpperCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) UpperCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) UpperCAmelCase = 2 UpperCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) UpperCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) UpperCAmelCase = None
358
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class __magic_name__ ( __UpperCAmelCase ): __A : Tuple = "swin2sr" __A : Dict = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[str] , snake_case__ : List[str]=6_4 , snake_case__ : Union[str, Any]=1 , snake_case__ : Tuple=3 , snake_case__ : int=1_8_0 , snake_case__ : Union[str, Any]=[6, 6, 6, 6, 6, 6] , snake_case__ : List[str]=[6, 6, 6, 6, 6, 6] , snake_case__ : Tuple=8 , snake_case__ : List[Any]=2.0 , snake_case__ : Any=True , snake_case__ : Dict=0.0 , snake_case__ : Dict=0.0 , snake_case__ : Dict=0.1 , snake_case__ : Dict="gelu" , snake_case__ : Optional[int]=False , snake_case__ : Any=0.02 , snake_case__ : Any=1e-5 , snake_case__ : Optional[int]=2 , snake_case__ : Optional[int]=1.0 , snake_case__ : Optional[Any]="1conv" , snake_case__ : List[str]="pixelshuffle" , **snake_case__ : Tuple , ): '''simple docstring''' super().__init__(**snake_case__ ) lowercase :Dict = image_size lowercase :List[str] = patch_size lowercase :Tuple = num_channels lowercase :int = embed_dim lowercase :Any = depths lowercase :Union[str, Any] = len(snake_case__ ) lowercase :List[str] = num_heads lowercase :int = window_size lowercase :Tuple = mlp_ratio lowercase :List[Any] = qkv_bias lowercase :Optional[int] = hidden_dropout_prob lowercase :Tuple = attention_probs_dropout_prob lowercase :Tuple = drop_path_rate lowercase :Optional[Any] = hidden_act lowercase :Union[str, Any] = use_absolute_embeddings lowercase :Dict = layer_norm_eps lowercase :Optional[Any] = initializer_range lowercase :Optional[Any] = upscale lowercase :Any = img_range lowercase :Optional[int] = resi_connection lowercase :Union[str, Any] = upsampler
172
0
lowercase : Union[str, Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case( ) -> None: lowercase : Tuple = input("""Enter message: """ ) lowercase : Dict = input("""Enter key [alphanumeric]: """ ) lowercase : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): lowercase : Optional[Any] = """encrypt""" lowercase : Optional[int] = encrypt_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif mode.lower().startswith("""d""" ): lowercase : List[Any] = """decrypt""" lowercase : Union[str, Any] = decrypt_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(f"\n{mode.title()}ed message:" ) print(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: return translate_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """encrypt""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: return translate_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """decrypt""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : str = [] lowercase : Tuple = 0 lowercase : Tuple = key.upper() for symbol in message: lowercase : int = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(SCREAMING_SNAKE_CASE__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(SCREAMING_SNAKE_CASE__ ): lowercase : str = 0 else: translated.append(SCREAMING_SNAKE_CASE__ ) return "".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
20
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Union[str, Any] = [] embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", f"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", f"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", f"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", f"stage{idx}.patch_embed.norm.bias", ) ) return embed def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Optional[Any] = [] attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", f"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", f"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", f"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", f"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", f"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", f"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", f"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", f"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", f"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", f"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", f"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", f"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Optional[Any] = [] token.append((f"cvt.encoder.stages.{idx}.cls_token", """stage2.cls_token""") ) return token def _snake_case( ) -> Dict: lowercase : Optional[Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Any = """imagenet-1k-id2label.json""" lowercase : List[str] = 1_000 lowercase : int = """huggingface/label-files""" lowercase : Union[str, Any] = num_labels lowercase : Optional[Any] = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) ) , """r""" ) ) lowercase : List[Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} lowercase : Dict = idalabel lowercase : List[str] = {v: k for k, v in idalabel.items()} lowercase : List[str] = CvtConfig(num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": lowercase : Tuple = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": lowercase : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase : int = [2, 2, 20] lowercase : Optional[int] = [3, 12, 16] lowercase : str = [192, 768, 1_024] lowercase : Union[str, Any] = CvtForImageClassification(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) lowercase : Optional[Any] = image_size lowercase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device("""cpu""" ) ) lowercase : Optional[Any] = OrderedDict() lowercase : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase : Optional[Any] = list_of_state_dict + cls_token(SCREAMING_SNAKE_CASE__ ) lowercase : str = list_of_state_dict + embeddings(SCREAMING_SNAKE_CASE__ ) for cnt in range(config.depth[idx] ): lowercase : List[str] = list_of_state_dict + attention(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): lowercase : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=384, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : Optional[int] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
20
1
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowercase = logging.get_logger(__name__) class __lowercase ( A ): '''simple docstring''' def __init__( self : List[str] , *_a : Any , **_a : str ): warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
35
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
35
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 200 ) -> int: lowerCAmelCase__ : int = [1, 2, 5, 10, 20, 50, 100, 200] lowerCAmelCase__ : Dict = [0] * (pence + 1) lowerCAmelCase__ : Tuple = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(SCREAMING_SNAKE_CASE_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
212
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowerCamelCase__ = False @skip_mps class A__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = StableDiffusionAttendAndExcitePipeline lowercase = False lowercase = TEXT_TO_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def _lowerCamelCase ( cls : Tuple ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(a ) @classmethod def _lowerCamelCase ( cls : Any ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a , ) lowerCAmelCase__ : Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=a , set_alpha_to_one=a , ) torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) lowerCAmelCase__ : str = CLIPTextModel(a ) lowerCAmelCase__ : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase__ : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowerCamelCase ( self : Union[str, Any] , a : Tuple , a : Union[str, Any]=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : List[str] = torch.manual_seed(a ) else: lowerCAmelCase__ : Any = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Optional[int] = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : Optional[int] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(a ) lowerCAmelCase__ : Union[str, Any] = pipe(**a ).images lowerCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) lowerCAmelCase__ : Dict = np.array( [0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] ) lowerCAmelCase__ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a , 1E-3 ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def _lowerCamelCase ( self : Any ): '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class A__ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : List[str] ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(a ) @classmethod def _lowerCamelCase ( cls : List[str] ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(a ) def _lowerCamelCase ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[str] = torch.manual_seed(51 ) lowerCAmelCase__ : Any = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=a , torch_dtype=torch.floataa ) pipe.to('cuda' ) lowerCAmelCase__ : Optional[int] = 'a painting of an elephant with glasses' lowerCAmelCase__ : Any = [5, 7] lowerCAmelCase__ : Optional[Any] = pipe( prompt=a , token_indices=a , guidance_scale=7.5 , generator=a , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] lowerCAmelCase__ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
212
1
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class lowercase_ ( nn.Module ): def __init__( self ): super().__init__() _snake_case : int = nn.Linear(3 , 4 ) _snake_case : int = nn.BatchNormad(4 ) _snake_case : int = nn.Linear(4 , 5 ) def UpperCamelCase ( self , lowercase_ ): return self.lineara(self.batchnorm(self.lineara(lowercase_ ) ) ) class lowercase_ ( unittest.TestCase ): def UpperCamelCase ( self ): _snake_case : Optional[int] = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase_ , model.state_dict() ) _snake_case : List[str] = os.path.join(lowercase_ , "index.json" ) self.assertTrue(os.path.isfile(lowercase_ ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: _snake_case : Any = os.path.join(lowercase_ , f"""{key}.dat""" ) self.assertTrue(os.path.isfile(lowercase_ ) ) # TODO: add tests on the fact weights are properly loaded def UpperCamelCase ( self ): _snake_case : Any = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: _snake_case : int = torch.randn(2 , 3 , dtype=lowercase_ ) with TemporaryDirectory() as tmp_dir: _snake_case : int = offload_weight(lowercase_ , "weight" , lowercase_ , {} ) _snake_case : int = os.path.join(lowercase_ , "weight.dat" ) self.assertTrue(os.path.isfile(lowercase_ ) ) self.assertDictEqual(lowercase_ , {"weight": {"shape": [2, 3], "dtype": str(lowercase_ ).split("." )[1]}} ) _snake_case : Dict = load_offloaded_weight(lowercase_ , index["weight"] ) self.assertTrue(torch.equal(lowercase_ , lowercase_ ) ) def UpperCamelCase ( self ): _snake_case : Dict = ModelForTest() _snake_case : int = model.state_dict() _snake_case : int = {k: v for k, v in state_dict.items() if "linear2" not in k} _snake_case : Tuple = {k: v for k, v in state_dict.items() if "linear2" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase_ , lowercase_ ) _snake_case : Tuple = OffloadedWeightsLoader(state_dict=lowercase_ , save_folder=lowercase_ ) # Every key is there with the right value self.assertEqual(sorted(lowercase_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowercase_ , weight_map[key] ) ) _snake_case : Union[str, Any] = {k: v for k, v in state_dict.items() if "weight" in k} _snake_case : str = {k: v for k, v in state_dict.items() if "weight" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase_ , lowercase_ ) _snake_case : Any = OffloadedWeightsLoader(state_dict=lowercase_ , save_folder=lowercase_ ) # Every key is there with the right value self.assertEqual(sorted(lowercase_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowercase_ , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase_ , lowercase_ ) # Duplicates are removed _snake_case : int = OffloadedWeightsLoader(state_dict=lowercase_ , save_folder=lowercase_ ) # Every key is there with the right value self.assertEqual(sorted(lowercase_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowercase_ , weight_map[key] ) ) def UpperCamelCase ( self ): _snake_case : Any = {"a.1": 0, "a.10": 1, "a.2": 2} _snake_case : Optional[Any] = extract_submodules_state_dict(lowercase_ , ["a.1", "a.2"] ) self.assertDictEqual(lowercase_ , {"a.1": 0, "a.2": 2} ) _snake_case : Tuple = {"a.1.a": 0, "a.10.a": 1, "a.2.a": 2} _snake_case : str = extract_submodules_state_dict(lowercase_ , ["a.1", "a.2"] ) self.assertDictEqual(lowercase_ , {"a.1.a": 0, "a.2.a": 2} )
352
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) @dataclass class lowercase_ ( __snake_case ): _lowerCamelCase = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **lowercase_ ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _snake_case : List[str] = deprecated_arg[3:] _snake_case : Optional[int] = not kwargs.pop(lowercase_ ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) _snake_case : Tuple = kwargs.pop("tpu_name" , self.tpu_name ) _snake_case : Any = kwargs.pop("device_idx" , self.device_idx ) _snake_case : List[str] = kwargs.pop("eager_mode" , self.eager_mode ) _snake_case : List[str] = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**lowercase_ ) _lowerCamelCase = field( default=__snake_case , metadata={'help': 'Name of TPU'} , ) _lowerCamelCase = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) _lowerCamelCase = field(default=__snake_case , metadata={'help': 'Benchmark models in eager model.'} ) _lowerCamelCase = field( default=__snake_case , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) _snake_case : str = None if self.tpu: try: if self.tpu_name: _snake_case : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _snake_case : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _snake_case : Union[str, Any] = None return tpu @cached_property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _snake_case : List[str] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) _snake_case : Any = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU _snake_case : Any = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) return self._setup_strategy @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCamelCase ( self ): return self.n_gpu > 0
284
0
__lowerCamelCase : List[str] = [0, 2, 4, 6, 8] __lowerCamelCase : Any = [1, 3, 5, 7, 9] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : list[int] , __UpperCamelCase : int ) -> int: """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 SCREAMING_SNAKE_CASE__ = 0 for digit in range(10 ): SCREAMING_SNAKE_CASE__ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , _lowerCAmelCase , _lowerCAmelCase ) return result SCREAMING_SNAKE_CASE__ = 0 for digita in range(10 ): SCREAMING_SNAKE_CASE__ = digita if (remainder + digita) % 2 == 0: SCREAMING_SNAKE_CASE__ = ODD_DIGITS else: SCREAMING_SNAKE_CASE__ = EVEN_DIGITS for digita in other_parity_digits: SCREAMING_SNAKE_CASE__ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , _lowerCAmelCase , _lowerCAmelCase , ) return result def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 9 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(_lowerCAmelCase , 0 , [0] * length , _lowerCAmelCase ) return result if __name__ == "__main__": print(F"""{solution() = }""")
219
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case ) UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )] UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[str] ) -> Dict: UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case ) UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Tuple = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__snake_case ) == num_samples def A ( self : List[Any] ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : Any = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : int = num_samples * [prompt] UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Tuple = shard(__snake_case ) UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def A ( self : int ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : List[str] = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : int ) -> Any: UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) UpperCAmelCase : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[int] = jax.device_count() UpperCAmelCase : List[str] = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : str = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : int = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , ) UpperCAmelCase : Tuple = scheduler.create_state() UpperCAmelCase : Dict = scheduler_state UpperCAmelCase : str = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : int = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Any = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : str = replicate(__snake_case ) UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def A ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , ) UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[str] = shard(__snake_case ) UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , ) UpperCAmelCase : int = replicate(__snake_case ) UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[Any] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : int = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
0
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging _UpperCamelCase = logging.get_logger(__name__) def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_snake_case ) == len(_snake_case ), F'''{len(_snake_case )} != {len(_snake_case )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) _UpperCamelCase = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } _UpperCamelCase = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _a ( _snake_case , _snake_case ): """simple docstring""" try: UpperCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(_snake_case ) ) def _a ( _snake_case , _snake_case ): """simple docstring""" if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(_snake_case ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _a ( _snake_case , _snake_case = "student" , _snake_case = None , _snake_case = None , _snake_case=False , _snake_case=None , _snake_case=None , **_snake_case , ): """simple docstring""" UpperCAmelCase = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(_snake_case , _snake_case ): AutoTokenizer.from_pretrained(_snake_case ).save_pretrained(_snake_case ) # purely for convenience UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ).eval() else: assert isinstance(_snake_case , _snake_case ), F'''teacher must be a model or string got type {type(_snake_case )}''' UpperCAmelCase = teacher.config.to_diff_dict() try: UpperCAmelCase , UpperCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCAmelCase = teacher_e if d is None: UpperCAmelCase = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): UpperCAmelCase , UpperCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCAmelCase , UpperCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCAmelCase = teacher_e if d is None: UpperCAmelCase = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_snake_case ) # Copy weights UpperCAmelCase = teacher.config_class(**_snake_case ) UpperCAmelCase = AutoModelForSeqaSeqLM.from_config(_snake_case ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCAmelCase = student.load_state_dict(teacher.state_dict() , strict=_snake_case ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCAmelCase , UpperCAmelCase = list(range(_snake_case ) ), list(range(_snake_case ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(_snake_case ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCAmelCase = pick_layers_to_copy(_snake_case , _snake_case ) if d_layers_to_copy is None: UpperCAmelCase = pick_layers_to_copy(_snake_case , _snake_case ) try: if hasattr( _snake_case , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _snake_case ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _snake_case ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _snake_case ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _snake_case ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _snake_case ) copy_layers(teacher.decoder.block , student.decoder.block , _snake_case ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) UpperCAmelCase = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(_snake_case ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
366
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def _a ( _snake_case ): """simple docstring""" if isinstance(_snake_case , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_snake_case , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_snake_case ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = ['''pixel_values'''] def __init__( self ,A = True ,A = None ,A = PILImageResampling.BILINEAR ,A = True ,A = None ,A = True ,A = 1 / 255 ,A = True ,A = True ,A = None ,A = None ,**A ,): super().__init__(**A ) UpperCAmelCase = size if size is not None else {"""shortest_edge""": 256} UpperCAmelCase = get_size_dict(A ,default_to_square=A ) UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase = get_size_dict(A ,param_name="""crop_size""" ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = offset UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCamelCase ( self ,A ,A ,A = PILImageResampling.BILINEAR ,A = None ,**A ,): UpperCAmelCase = get_size_dict(A ,default_to_square=A ) if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(A ,size["""shortest_edge"""] ,default_to_square=A ) elif "height" in size and "width" in size: UpperCAmelCase = (size["""height"""], size["""width"""]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(A ,size=A ,resample=A ,data_format=A ,**A ) def _UpperCamelCase ( self ,A ,A ,A = None ,**A ,): UpperCAmelCase = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(A ,size=(size["""height"""], size["""width"""]) ,data_format=A ,**A ) def _UpperCamelCase ( self ,A ,A ,A = True ,A = None ,**A ,): UpperCAmelCase = image.astype(np.floataa ) if offset: UpperCAmelCase = image - (scale / 2) return rescale(A ,scale=A ,data_format=A ,**A ) def _UpperCamelCase ( self ,A ,A ,A ,A = None ,**A ,): return normalize(A ,mean=A ,std=A ,data_format=A ,**A ) def _UpperCamelCase ( self ,A ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = ChannelDimension.FIRST ,): if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. UpperCAmelCase = to_numpy_array(A ) if do_resize: UpperCAmelCase = self.resize(image=A ,size=A ,resample=A ) if do_center_crop: UpperCAmelCase = self.center_crop(A ,size=A ) if do_rescale: UpperCAmelCase = self.rescale(image=A ,scale=A ,offset=A ) if do_normalize: UpperCAmelCase = self.normalize(image=A ,mean=A ,std=A ) UpperCAmelCase = to_channel_dimension_format(A ,A ) return image def _UpperCamelCase ( self ,A ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = ChannelDimension.FIRST ,**A ,): UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = offset if offset is not None else self.offset UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(A ,default_to_square=A ) UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(A ,param_name="""crop_size""" ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) UpperCAmelCase = make_batched(A ) UpperCAmelCase = [ [ self._preprocess_image( image=A ,do_resize=A ,size=A ,resample=A ,do_center_crop=A ,crop_size=A ,do_rescale=A ,rescale_factor=A ,offset=A ,do_normalize=A ,image_mean=A ,image_std=A ,data_format=A ,) for img in video ] for video in videos ] UpperCAmelCase = {"""pixel_values""": videos} return BatchFeature(data=A ,tensor_type=A )
234
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case :List[Any] = logging.get_logger(__name__) __snake_case :Dict = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class _A ( __UpperCAmelCase ): UpperCamelCase__ : Tuple = '''mobilenet_v2''' def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple=3 , __SCREAMING_SNAKE_CASE : int=224 , __SCREAMING_SNAKE_CASE : Optional[int]=1.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=8 , __SCREAMING_SNAKE_CASE : List[Any]=8 , __SCREAMING_SNAKE_CASE : int=6 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict="relu6" , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict=0.8 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : Dict=0.0_01 , __SCREAMING_SNAKE_CASE : Dict=255 , **__SCREAMING_SNAKE_CASE : Optional[int] , ): '''simple docstring''' super().__init__(**__SCREAMING_SNAKE_CASE) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''') __a = num_channels __a = image_size __a = depth_multiplier __a = depth_divisible_by __a = min_depth __a = expand_ratio __a = output_stride __a = first_layer_is_expansion __a = finegrained_output __a = hidden_act __a = tf_padding __a = classifier_dropout_prob __a = initializer_range __a = layer_norm_eps __a = semantic_loss_ignore_index class _A ( __UpperCAmelCase ): UpperCamelCase__ : Any = version.parse('''1.11''' ) @property def _lowerCamelCase ( self : Dict): '''simple docstring''' return OrderedDict([('''pixel_values''', {0: '''batch'''})]) @property def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})]) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})]) @property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return 1E-4
49
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase ( lowercase ): UpperCAmelCase : Any = """Wav2Vec2FeatureExtractor""" UpperCAmelCase : List[str] = """AutoTokenizer""" def __init__(self : int , _A : List[str] , _A : str) -> str: super().__init__(_A , _A) __snake_case : Tuple = self.feature_extractor __snake_case : str = False @classmethod def _lowercase (cls : Union[str, Any] , _A : Optional[Any] , **_A : str) -> List[Any]: try: return super().from_pretrained(_A , **_A) except OSError: warnings.warn( f"Loading a tokenizer inside {cls.__name__} from a config that does not" ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' , _A , ) __snake_case : List[str] = WavaVecaFeatureExtractor.from_pretrained(_A , **_A) __snake_case : Any = WavaVecaCTCTokenizer.from_pretrained(_A , **_A) return cls(feature_extractor=_A , tokenizer=_A) def __call__(self : int , *_A : List[Any] , **_A : str) -> str: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.') __snake_case : int = kwargs.pop('raw_speech') else: __snake_case : Optional[Any] = kwargs.pop('audio' , _A) __snake_case : Tuple = kwargs.pop('sampling_rate' , _A) __snake_case : Any = kwargs.pop('text' , _A) if len(_A) > 0: __snake_case : Any = args[0] __snake_case : Dict = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.') if audio is not None: __snake_case : str = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A) if text is not None: __snake_case : List[str] = self.tokenizer(_A , **_A) if text is None: return inputs elif audio is None: return encodings else: __snake_case : List[str] = encodings['input_ids'] return inputs def _lowercase (self : str , *_A : Optional[Any] , **_A : int) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A) __snake_case : Optional[int] = kwargs.pop('input_features' , _A) __snake_case : List[Any] = kwargs.pop('labels' , _A) if len(_A) > 0: __snake_case : Tuple = args[0] __snake_case : Union[str, Any] = args[1:] if input_features is not None: __snake_case : Optional[Any] = self.feature_extractor.pad(_A , *_A , **_A) if labels is not None: __snake_case : Tuple = self.tokenizer.pad(_A , **_A) if labels is None: return input_features elif input_features is None: return labels else: __snake_case : str = labels['input_ids'] return input_features def _lowercase (self : Union[str, Any] , *_A : Any , **_A : List[Any]) -> List[Any]: return self.tokenizer.batch_decode(*_A , **_A) def _lowercase (self : Union[str, Any] , *_A : Dict , **_A : Union[str, Any]) -> Any: return self.tokenizer.decode(*_A , **_A) @contextmanager def _lowercase (self : List[str]) -> int: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.') __snake_case : Dict = True __snake_case : Union[str, Any] = self.tokenizer yield __snake_case : Optional[Any] = self.feature_extractor __snake_case : int = False
172
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _lowercase: Any = { "169M": 12, "430M": 24, "1B5": 24, "3B": 32, "7B": 32, "14B": 40, } _lowercase: Any = { "169M": 768, "430M": 1024, "1B5": 2048, "3B": 2560, "7B": 4096, "14B": 5120, } def a( A : Optional[int] ) -> List[Any]: """simple docstring""" a = list(state_dict.keys() ) for name in state_dict_keys: a = state_dict.pop(__UpperCamelCase ) # emb -> embedding if name.startswith("emb." ): a = name.replace("emb." , "embeddings." ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("blocks.0.ln0" ): a = name.replace("blocks.0.ln0" , "blocks.0.pre_ln" ) # att -> attention a = re.sub(r"blocks\.(\d+)\.att" , r"blocks.\1.attention" , __UpperCamelCase ) # ffn -> feed_forward a = re.sub(r"blocks\.(\d+)\.ffn" , r"blocks.\1.feed_forward" , __UpperCamelCase ) # time_mix_k -> time_mix_key and reshape if name.endswith(".time_mix_k" ): a = name.replace(".time_mix_k" , ".time_mix_key" ) # time_mix_v -> time_mix_value and reshape if name.endswith(".time_mix_v" ): a = name.replace(".time_mix_v" , ".time_mix_value" ) # time_mix_r -> time_mix_key and reshape if name.endswith(".time_mix_r" ): a = name.replace(".time_mix_r" , ".time_mix_receptance" ) if name != "head.weight": a = "rwkv." + name a = weight return state_dict def a( A : Optional[int] , A : Any , A : Optional[int] , A : List[str]=None , A : str=None , A : Optional[int]=False , A : int=None ) -> int: """simple docstring""" if tokenizer_file is None: print("No `--tokenizer_file` provided, we will use the default tokenizer." ) a = 5_0277 a = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b" ) else: a = PreTrainedTokenizerFast(tokenizer_file=__UpperCamelCase ) a = len(__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) # 2. Build the config a = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: a = candidate break if size is None: raise ValueError("Could not infer the size, please provide it with the `--size` argument." ) if size not in possible_sizes: raise ValueError(f'''`size` should be one of {possible_sizes}, got {size}.''' ) a = RwkvConfig( vocab_size=__UpperCamelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__UpperCamelCase ) # 3. Download model file then convert state_dict a = hf_hub_download(__UpperCamelCase , __UpperCamelCase ) a = torch.load(__UpperCamelCase , map_location="cpu" ) a = convert_state_dict(__UpperCamelCase ) # 4. Split in shards and save a , a = shard_checkpoint(__UpperCamelCase ) for shard_file, shard in shards.items(): torch.save(__UpperCamelCase , os.path.join(__UpperCamelCase , __UpperCamelCase ) ) if index is not None: a = os.path.join(__UpperCamelCase , __UpperCamelCase ) # Save the index as well with open(__UpperCamelCase , "w" , encoding="utf-8" ) as f: a = json.dumps(__UpperCamelCase , indent=2 , sort_keys=__UpperCamelCase ) + "\n" f.write(__UpperCamelCase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( "Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model." ) a = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: a = torch.load(os.path.join(__UpperCamelCase , __UpperCamelCase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__UpperCamelCase , __UpperCamelCase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("Please provide a `model_name` to push the model to the Hub." ) a = AutoModelForCausalLM.from_pretrained(__UpperCamelCase ) model.push_to_hub(__UpperCamelCase , max_shard_size="2GB" ) tokenizer.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": _lowercase: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--repo_id", default=None, type=str, required=True, help="Repo ID from which to pull the checkpoint." ) parser.add_argument( "--checkpoint_file", default=None, type=str, required=True, help="Name of the checkpoint file in the repo." ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="Where to save the converted model." ) parser.add_argument( "--tokenizer_file", default=None, type=str, help="Path to the tokenizer file to use (if not provided, only the model is converted).", ) parser.add_argument( "--size", default=None, type=str, help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Push to the Hub the converted model.", ) parser.add_argument( "--model_name", default=None, type=str, help="Name of the pushed model on the Hub, including the username / organization.", ) _lowercase: Optional[Any] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
368
import math from numpy import inf from scipy.integrate import quad def a( A : float ) -> float: """simple docstring""" if num <= 0: raise ValueError("math domain error" ) return quad(A , 0 , A , args=(A) )[0] def a( A : float , A : float ) -> float: """simple docstring""" return math.pow(A , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
71
0
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __a = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: snake_case__ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: snake_case__ : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case__ : int = value elif weight_type == "weight_g": snake_case__ : List[str] = value elif weight_type == "weight_v": snake_case__ : List[str] = value elif weight_type == "bias": snake_case__ : Optional[Any] = value else: snake_case__ : str = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Any: snake_case__ : Union[str, Any] = [] snake_case__ : Dict = fairseq_model.state_dict() snake_case__ : List[Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case__ : Optional[int] = None for name, value in fairseq_dict.items(): snake_case__ : List[Any] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case__ : Union[str, Any] = True elif name.split(""".""" )[0] == "proj": snake_case__ : Tuple = fairseq_model.proj snake_case__ : int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case__ : Optional[Any] = True if "*" in mapped_key: snake_case__ : Optional[int] = name.split(_lowerCAmelCase )[0].split(""".""" )[-2] snake_case__ : Tuple = mapped_key.replace("""*""" , _lowerCAmelCase ) if "weight_g" in name: snake_case__ : str = """weight_g""" elif "weight_v" in name: snake_case__ : int = """weight_v""" elif "bias" in name: snake_case__ : Dict = """bias""" elif "weight" in name: snake_case__ : Union[str, Any] = """weight""" else: snake_case__ : Union[str, Any] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) return proj_weight def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: snake_case__ : int = full_name.split("""conv_layers.""" )[-1] snake_case__ : Dict = name.split(""".""" ) snake_case__ : Any = int(items[0] ) snake_case__ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) snake_case__ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) snake_case__ : str = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) snake_case__ : Union[str, Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) snake_case__ : int = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ , snake_case__ : str = emb.weight.shape snake_case__ : List[str] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) snake_case__ : List[str] = emb.weight.data return lin_layer def __snake_case( _lowerCAmelCase ) -> Optional[Any]: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: snake_case__ : int = f.readlines() snake_case__ : List[Any] = [line.split(""" """ )[0] for line in lines] snake_case__ : Union[str, Any] = len(_lowerCAmelCase ) snake_case__ : Any = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(_lowerCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> int: snake_case__ : Optional[Any] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) snake_case__ : Optional[Any] = SpeechaTextaConfig.from_pretrained( _lowerCAmelCase , vocab_size=_lowerCAmelCase , decoder_layers=_lowerCAmelCase , do_stable_layer_norm=_lowerCAmelCase ) snake_case__ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() # set weights for wav2vec2 encoder snake_case__ : Optional[Any] = WavaVecaModel(_lowerCAmelCase ) snake_case__ : Dict = recursively_load_weights_wavaveca(model.encoder , _lowerCAmelCase ) snake_case__ : Optional[Any] = SpeechaTextaForCausalLM(_lowerCAmelCase ) snake_case__ , snake_case__ : Tuple = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCAmelCase ) # set output linear layer unexpected_keys.remove("""embed_out""" ) snake_case__ : Tuple = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(f"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) snake_case__ : List[Any] = SpeechEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) snake_case__ : Tuple = False # add projection layer snake_case__ : Union[str, Any] = nn.Parameter(projection_layer.weight ) snake_case__ : int = nn.Parameter(projection_layer.bias ) snake_case__ : Tuple = create_vocab_dict(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , """vocab.json""" ) , """w""" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Tuple = SpeechaTextaTokenizer(os.path.join(_lowerCAmelCase , """vocab.json""" ) ) tokenizer.save_pretrained(_lowerCAmelCase ) snake_case__ : Optional[Any] = hf_wavavec.config.to_dict() snake_case__ : Tuple = tokenizer.pad_token_id snake_case__ : Optional[Any] = tokenizer.bos_token_id snake_case__ : int = tokenizer.eos_token_id snake_case__ : str = """speech_to_text_2""" snake_case__ : List[Any] = """wav2vec2""" snake_case__ : List[str] = SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) feature_extractor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
35
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json", # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "glpn" def __init__( self : Optional[Any] , snake_case_ : List[str]=3 , snake_case_ : Dict=4 , snake_case_ : List[Any]=[2, 2, 2, 2] , snake_case_ : int=[8, 4, 2, 1] , snake_case_ : List[str]=[32, 64, 160, 256] , snake_case_ : Tuple=[7, 3, 3, 3] , snake_case_ : List[Any]=[4, 2, 2, 2] , snake_case_ : Tuple=[1, 2, 5, 8] , snake_case_ : List[str]=[4, 4, 4, 4] , snake_case_ : Optional[int]="gelu" , snake_case_ : Dict=0.0 , snake_case_ : Union[str, Any]=0.0 , snake_case_ : List[Any]=0.02 , snake_case_ : Tuple=0.1 , snake_case_ : Any=1E-6 , snake_case_ : Dict=64 , snake_case_ : Tuple=10 , snake_case_ : List[Any]=-1 , **snake_case_ : Optional[Any] , ): super().__init__(**snake_case_ ) snake_case__ : Optional[Any] = num_channels snake_case__ : Dict = num_encoder_blocks snake_case__ : Tuple = depths snake_case__ : Union[str, Any] = sr_ratios snake_case__ : Tuple = hidden_sizes snake_case__ : Optional[Any] = patch_sizes snake_case__ : int = strides snake_case__ : List[Any] = mlp_ratios snake_case__ : Optional[int] = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : str = initializer_range snake_case__ : List[str] = drop_path_rate snake_case__ : int = layer_norm_eps snake_case__ : Tuple = decoder_hidden_size snake_case__ : List[Any] = max_depth snake_case__ : Dict = head_in_index
35
1
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowercase__ ( __UpperCamelCase )-> List[str]: UpperCamelCase = SwinConfig() UpperCamelCase = swin_name.split("""_""" ) UpperCamelCase = name_split[1] UpperCamelCase = int(name_split[4] ) UpperCamelCase = int(name_split[3][-1] ) if model_size == "tiny": UpperCamelCase = 96 UpperCamelCase = (2, 2, 6, 2) UpperCamelCase = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase = 96 UpperCamelCase = (2, 2, 18, 2) UpperCamelCase = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase = 128 UpperCamelCase = (2, 2, 18, 2) UpperCamelCase = (4, 8, 16, 32) else: UpperCamelCase = 192 UpperCamelCase = (2, 2, 18, 2) UpperCamelCase = (6, 12, 24, 48) if "in22k" in swin_name: UpperCamelCase = 21841 else: UpperCamelCase = 1000 UpperCamelCase = """huggingface/label-files""" UpperCamelCase = """imagenet-1k-id2label.json""" UpperCamelCase = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase = {int(__UpperCamelCase ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = img_size UpperCamelCase = num_classes UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = num_heads UpperCamelCase = window_size return config def lowercase__ ( __UpperCamelCase )-> Tuple: if "patch_embed.proj" in name: UpperCamelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: UpperCamelCase = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: UpperCamelCase = """encoder.""" + name if "attn.proj" in name: UpperCamelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: UpperCamelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: UpperCamelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCamelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: UpperCamelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCamelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": UpperCamelCase = """layernorm.weight""" if name == "norm.bias": UpperCamelCase = """layernorm.bias""" if "head" in name: UpperCamelCase = name.replace("""head""" , """classifier""" ) else: UpperCamelCase = """swin.""" + name return name def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> List[str]: for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(__UpperCamelCase ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase = key.split(""".""" ) UpperCamelCase = int(key_split[1] ) UpperCamelCase = int(key_split[3] ) UpperCamelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[ dim : dim * 2, : ] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val[ :dim ] UpperCamelCase = val[ dim : dim * 2 ] UpperCamelCase = val[ -dim: ] else: UpperCamelCase = val return orig_state_dict def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> int: UpperCamelCase = timm.create_model(__UpperCamelCase , pretrained=__UpperCamelCase ) timm_model.eval() UpperCamelCase = get_swin_config(__UpperCamelCase ) UpperCamelCase = SwinForImageClassification(__UpperCamelCase ) model.eval() UpperCamelCase = convert_state_dict(timm_model.state_dict() , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) UpperCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) UpperCamelCase = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) UpperCamelCase = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ) UpperCamelCase = timm_model(inputs["""pixel_values"""] ) UpperCamelCase = model(**__UpperCamelCase ).logits assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) print(F"Saving model {swin_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swin_name', default='swin_tiny_patch4_window7_224', type=str, help='Name of the Swin timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
183
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class a_ ( unittest.TestCase ): def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = ["""a""", """b""", """c"""] # Defaults to last layer if both are None UpperCamelCase ,UpperCamelCase = get_aligned_output_features_output_indices(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , ["""c"""] ) self.assertEqual(_SCREAMING_SNAKE_CASE , [2] ) # Out indices set to match out features UpperCamelCase ,UpperCamelCase = get_aligned_output_features_output_indices(["""a""", """c"""] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , ["""a""", """c"""] ) self.assertEqual(_SCREAMING_SNAKE_CASE , [0, 2] ) # Out features set to match out indices UpperCamelCase ,UpperCamelCase = get_aligned_output_features_output_indices(_SCREAMING_SNAKE_CASE , [0, 2] , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , ["""a""", """c"""] ) self.assertEqual(_SCREAMING_SNAKE_CASE , [0, 2] ) # Out features selected from negative indices UpperCamelCase ,UpperCamelCase = get_aligned_output_features_output_indices(_SCREAMING_SNAKE_CASE , [-3, -1] , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , ["""a""", """c"""] ) self.assertEqual(_SCREAMING_SNAKE_CASE , [-3, -1] ) def A__ ( self ) -> str: """simple docstring""" with self.assertRaises(_SCREAMING_SNAKE_CASE ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _SCREAMING_SNAKE_CASE ) # Out features must be a list with self.assertRaises(_SCREAMING_SNAKE_CASE ): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""] ) # Out features must be a subset of stage names with self.assertRaises(_SCREAMING_SNAKE_CASE ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""] ) # Out indices must be a list or tuple with self.assertRaises(_SCREAMING_SNAKE_CASE ): verify_out_features_out_indices(_SCREAMING_SNAKE_CASE , 0 , ["""a""", """b"""] ) # Out indices must be a subset of stage names with self.assertRaises(_SCREAMING_SNAKE_CASE ): verify_out_features_out_indices(_SCREAMING_SNAKE_CASE , (0, 1) , ["""a"""] ) # Out features and out indices must be the same length with self.assertRaises(_SCREAMING_SNAKE_CASE ): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""] ) # Out features should match out indices with self.assertRaises(_SCREAMING_SNAKE_CASE ): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""] ) # Out features and out indices should be in order with self.assertRaises(_SCREAMING_SNAKE_CASE ): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""] ) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""] ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = BackboneMixin() UpperCamelCase = ["""a""", """b""", """c"""] UpperCamelCase = ["""a""", """c"""] UpperCamelCase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly UpperCamelCase = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""] ) self.assertEqual(backbone.out_indices , [0, 1] ) UpperCamelCase = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [-3, -1] )
183
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ : Any = logging.get_logger(__name__) lowerCAmelCase__ : Union[str, Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class snake_case ( _UpperCamelCase ): """simple docstring""" snake_case__ = "mobilenet_v1" def __init__( self : Optional[Any] ,lowerCamelCase__ : List[Any]=3 ,lowerCamelCase__ : Tuple=224 ,lowerCamelCase__ : List[Any]=1.0 ,lowerCamelCase__ : List[Any]=8 ,lowerCamelCase__ : int="relu6" ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : Optional[Any]=0.9_9_9 ,lowerCamelCase__ : Dict=0.0_2 ,lowerCamelCase__ : Union[str, Any]=0.0_0_1 ,**lowerCamelCase__ : Tuple ,): super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) UpperCAmelCase__ = num_channels UpperCAmelCase__ = image_size UpperCAmelCase__ = depth_multiplier UpperCAmelCase__ = min_depth UpperCAmelCase__ = hidden_act UpperCAmelCase__ = tf_padding UpperCAmelCase__ = classifier_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps class snake_case ( _UpperCamelCase ): """simple docstring""" snake_case__ = version.parse("1.11" ) @property def __lowerCAmelCase ( self : int ): return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def __lowerCAmelCase ( self : List[Any] ): if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def __lowerCAmelCase ( self : Dict ): return 1e-4
98
from __future__ import annotations import math def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : bool, lowerCAmelCase_ : list[int], lowerCAmelCase_ : float ): if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(lowerCAmelCase_ ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), ) return min( minimax(depth + 1, node_index * 2, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), ) def a_ ( ): __lowerCAmelCase = [90, 23, 6, 33, 21, 65, 123, 3_4423] __lowerCAmelCase = math.log(len(lowerCAmelCase_ ), 2 ) print('Optimal value : ', end='' ) print(minimax(0, 0, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
284
0
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Dict: '''simple docstring''' UpperCAmelCase : Dict =[0 for i in range(r + 1 )] # nc0 = 1 UpperCAmelCase : Any =1 for i in range(1 , n + 1 ): # to compute current row from previous row. UpperCAmelCase : Any =min(__lowerCAmelCase , __lowerCAmelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
78
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : str = """rwkv""" __lowerCamelCase : str = {"""max_position_embeddings""": """context_length"""} def __init__( self , snake_case__=5_0277 , snake_case__=1024 , snake_case__=4096 , snake_case__=32 , snake_case__=None , snake_case__=None , snake_case__=1e-5 , snake_case__=0 , snake_case__=0 , snake_case__=6 , snake_case__=False , snake_case__=True , **snake_case__ , ) -> List[str]: '''simple docstring''' UpperCAmelCase : int =vocab_size UpperCAmelCase : List[str] =context_length UpperCAmelCase : Any =hidden_size UpperCAmelCase : Tuple =num_hidden_layers UpperCAmelCase : str =attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase : List[Any] =intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase : Optional[int] =layer_norm_epsilon UpperCAmelCase : int =rescale_every UpperCAmelCase : Any =use_cache UpperCAmelCase : List[str] =bos_token_id UpperCAmelCase : Any =eos_token_id super().__init__( tie_word_embeddings=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
78
1
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple=() , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[int]="no" , _lowerCAmelCase : Dict="29500" ) -> str: UpperCAmelCase : List[str] = False UpperCAmelCase : Dict = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCAmelCase : Dict = True elif "IPython" in sys.modules: UpperCAmelCase : Optional[int] = "google.colab" in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCAmelCase : List[str] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __lowerCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCAmelCase : Union[str, Any] = 8 UpperCAmelCase : int = PrepareForLaunch(__lowerCAmelCase , distributed_type='''TPU''' ) print(f"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(__lowerCAmelCase , args=__lowerCAmelCase , nprocs=__lowerCAmelCase , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__lowerCAmelCase ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__lowerCAmelCase , master_addr='''127.0.01''' , master_port=__lowerCAmelCase , mixed_precision=__lowerCAmelCase ): UpperCAmelCase : Dict = PrepareForLaunch(__lowerCAmelCase , distributed_type='''MULTI_GPU''' ) print(f"""Launching training on {num_processes} GPUs.""" ) try: start_processes(__lowerCAmelCase , args=__lowerCAmelCase , nprocs=__lowerCAmelCase , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCAmelCase : int = "1" print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple=() , _lowerCAmelCase : Union[str, Any]=2 ) -> Optional[int]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__lowerCAmelCase , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCAmelCase : Dict = PrepareForLaunch(__lowerCAmelCase , debug=__lowerCAmelCase ) start_processes(__lowerCAmelCase , args=__lowerCAmelCase , nprocs=__lowerCAmelCase , start_method='''fork''' )
23
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[str] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = emb.weight.shape _UpperCAmelCase : str = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = emb.weight.data return lin_layer def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=None ): _UpperCAmelCase : int = {} for old_key in state_dict.keys(): _UpperCAmelCase : Tuple = old_key if "moe_layer.experts." in key: if expert_idx is not None: _UpperCAmelCase : Optional[int] = key.replace("moe_layer.experts.0" , F"""ffn.experts.expert_{expert_idx}""" ) else: _UpperCAmelCase : Any = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: _UpperCAmelCase : List[Any] = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: _UpperCAmelCase : Tuple = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: _UpperCAmelCase : List[Any] = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: _UpperCAmelCase : List[Any] = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: _UpperCAmelCase : Any = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: _UpperCAmelCase : int = key.replace("final_layer_norm" , "ff_layer_norm" ) _UpperCAmelCase : Tuple = state_dict[old_key] return new_dict def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = WEIGHTS_NAME ): _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Optional[Any] = 0 os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) for expert in range(__lowerCAmelCase ): _UpperCAmelCase : Tuple = switch_checkpoint_path + F"""-rank-{expert}.pt""" if os.path.isfile(__lowerCAmelCase ): _UpperCAmelCase : Tuple = torch.load(__lowerCAmelCase )["model"] remove_ignore_keys_(__lowerCAmelCase ) _UpperCAmelCase : Dict = rename_fairseq_keys(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : List[str] = os.path.join( __lowerCAmelCase , weights_name.replace(".bin" , F"""-{len(__lowerCAmelCase )+1:05d}-of-???.bin""" ) ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowerCAmelCase )[0]].dtype ) # Add the last block _UpperCAmelCase : Tuple = os.path.join(__lowerCAmelCase , weights_name.replace(".bin" , F"""-{len(__lowerCAmelCase )+1:05d}-of-???.bin""" ) ) _UpperCAmelCase : Union[str, Any] = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = rename_fairseq_keys(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Any = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowerCAmelCase ) == 1: _UpperCAmelCase : List[str] = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowerCAmelCase , __lowerCAmelCase ) # Otherwise, let's build the index _UpperCAmelCase : Union[str, Any] = {} for idx, shard in enumerate(__lowerCAmelCase ): _UpperCAmelCase : Tuple = weights_name.replace(".bin" , F"""-{idx+1:05d}-of-{len(__lowerCAmelCase ):05d}.bin""" ) _UpperCAmelCase : List[Any] = os.path.join(__lowerCAmelCase , weights_name.replace(".bin" , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) for key in shard: _UpperCAmelCase : List[Any] = shard_file # Add the metadata _UpperCAmelCase : Any = {"total_size": total_size} _UpperCAmelCase : List[str] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _UpperCAmelCase : Tuple = json.dumps(__lowerCAmelCase , indent=2 , sort_keys=__lowerCAmelCase ) + "\n" f.write(__lowerCAmelCase ) return metadata, index if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ ,lowerCamelCase__ = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowerCamelCase__ = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCamelCase__ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
234
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar A : List[Any] = TypeVar("T") class lowerCamelCase (Generic[T] ): """simple docstring""" def __init__( self : Optional[int] , __magic_name__ : list[T] , __magic_name__ : Callable[[T, T], T] ) -> None: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = len(__magic_name__ ) SCREAMING_SNAKE_CASE_ = [any_type for _ in range(self.N )] + arr SCREAMING_SNAKE_CASE_ = fnc self.build() def __A ( self : Tuple ) -> None: for p in range(self.N - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE_ = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __A ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : T ) -> None: p += self.N SCREAMING_SNAKE_CASE_ = v while p > 1: SCREAMING_SNAKE_CASE_ = p // 2 SCREAMING_SNAKE_CASE_ = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __A ( self : int , __magic_name__ : int , __magic_name__ : int ) -> T | None: # noqa: E741 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = l + self.N, r + self.N SCREAMING_SNAKE_CASE_ = None while l <= r: if l % 2 == 1: SCREAMING_SNAKE_CASE_ = self.st[l] if res is None else self.fn(__magic_name__ , self.st[l] ) if r % 2 == 0: SCREAMING_SNAKE_CASE_ = self.st[r] if res is None else self.fn(__magic_name__ , self.st[r] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce A : Tuple = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] A : Optional[int] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } A : Dict = SegmentTree(test_array, min) A : Optional[int] = SegmentTree(test_array, max) A : Any = SegmentTree(test_array, lambda a, b: a + b) def a__ ( ): for i in range(len(__UpperCamelCase ) ): for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE_ = reduce(__UpperCamelCase , test_array[i : j + 1] ) SCREAMING_SNAKE_CASE_ = reduce(__UpperCamelCase , test_array[i : j + 1] ) SCREAMING_SNAKE_CASE_ = reduce(lambda __UpperCamelCase , __UpperCamelCase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__UpperCamelCase , __UpperCamelCase ) assert max_range == max_segment_tree.query(__UpperCamelCase , __UpperCamelCase ) assert sum_range == sum_segment_tree.query(__UpperCamelCase , __UpperCamelCase ) test_all_segments() for index, value in test_updates.items(): A : List[Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
305
from __future__ import annotations import numpy as np def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.shape(__UpperCamelCase ) if rows != columns: SCREAMING_SNAKE_CASE_ = ( "'table' has to be of square shaped array but got a " F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) SCREAMING_SNAKE_CASE_ = (table[i][j] - total) / upper[j][j] SCREAMING_SNAKE_CASE_ = 1 for j in range(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
305
1
'''simple docstring''' import numpy as np class lowercase__ : def __init__( self : Any ): '''simple docstring''' _UpperCamelCase : Dict = (0, 0) _UpperCamelCase : str = None _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : List[Any] = 0 _UpperCamelCase : str = 0 def __eq__( self : Dict ,lowerCamelCase__ : Dict ): '''simple docstring''' return self.position == cell.position def UpperCamelCase_ ( self : Any ): '''simple docstring''' print(self.position ) class lowercase__ : def __init__( self : List[Any] ,lowerCamelCase__ : Tuple=(5, 5) ): '''simple docstring''' _UpperCamelCase : Optional[Any] = np.zeros(lowerCamelCase__ ) _UpperCamelCase : Tuple = world_size[0] _UpperCamelCase : Dict = world_size[1] def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' print(self.w ) def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : Optional[int] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] _UpperCamelCase : Any = cell.position[0] _UpperCamelCase : Any = cell.position[1] _UpperCamelCase : Tuple = [] for n in neughbour_cord: _UpperCamelCase : str = current_x + n[0] _UpperCamelCase : Optional[int] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: _UpperCamelCase : List[str] = Cell() _UpperCamelCase : Dict = (x, y) _UpperCamelCase : Union[str, Any] = cell neighbours.append(lowerCamelCase__ ) return neighbours def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Dict = [] _UpperCamelCase : List[str] = [] _open.append(UpperCAmelCase_ ) while _open: _UpperCamelCase : int = np.argmin([n.f for n in _open] ) _UpperCamelCase : int = _open[min_f] _closed.append(_open.pop(UpperCAmelCase_ ) ) if current == goal: break for n in world.get_neigbours(UpperCAmelCase_ ): for c in _closed: if c == n: continue _UpperCamelCase : str = current.g + 1 _UpperCamelCase , _UpperCamelCase : str = n.position _UpperCamelCase , _UpperCamelCase : Optional[Any] = goal.position _UpperCamelCase : Optional[Any] = (ya - ya) ** 2 + (xa - xa) ** 2 _UpperCamelCase : List[Any] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = [] while current.parent is not None: path.append(current.position ) _UpperCamelCase : Union[str, Any] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": snake_case_ : str = Gridworld() # Start position and goal snake_case_ : Optional[int] = Cell() snake_case_ : Dict = (0, 0) snake_case_ : str = Cell() snake_case_ : Optional[Any] = (4, 4) print(F"""path from {start.position} to {goal.position}""") snake_case_ : Union[str, Any] = astar(world, start, goal) # Just for visual reasons. for i in s: snake_case_ : Optional[int] = 1 print(world.w)
83
import random def A ( a_ ,a_ ,a_ = False ) -> dict: __UpperCamelCase : dict ={i: [] for i in range(a_ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(a_ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(a_ ): for j in range(i + 1 ,a_ ): if random.random() < probability: graph[i].append(a_ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(a_ ) return graph def A ( a_ ) -> dict: return { i: [j for j in range(a_ ) if i != j] for i in range(a_ ) } if __name__ == "__main__": import doctest doctest.testmod()
71
0
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCAmelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCAmelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] lowerCAmelCase : set[int] = {ord(char) for char in VALID_CHARS} lowerCAmelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A_( A : list[int] , A : tuple[int, ...]): UpperCamelCase = "" UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(A) , A): UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(A) return decoded def A_( A : list[int]): UpperCamelCase = [] for key in product(A , repeat=3): UpperCamelCase = try_key(A , A) if encoded is not None: possibles.append(A) return possibles def A_( A : list[str] , A : str): return [possible for possible in possibles if common_word in possible.lower()] def A_( A : str = "p059_cipher.txt"): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = Path(A).parent.joinpath(A).read_text(encoding='utf-8') UpperCamelCase = [int(A) for number in data.strip().split(',')] UpperCamelCase = filter_valid_chars(A) for common_word in COMMON_WORDS: UpperCamelCase = filter_common_word(A , A) if len(A) == 1: break UpperCamelCase = possibles[0] return sum(ord(A) for char in decoded_text) if __name__ == "__main__": print(f"""{solution() = }""")
251
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : Any = logging.get_logger(__name__) # General docstring lowerCAmelCase : Tuple = 'MobileNetV1Config' # Base docstring lowerCAmelCase : Dict = 'google/mobilenet_v1_1.0_224' lowerCAmelCase : Any = [1, 10_24, 7, 7] # Image classification docstring lowerCAmelCase : Optional[Any] = 'google/mobilenet_v1_1.0_224' lowerCAmelCase : List[str] = 'tabby, tabby cat' lowerCAmelCase : str = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_( A : Union[str, Any] , A : Optional[Any] , A : Optional[Any]=None): UpperCamelCase = {} if isinstance(A , A): UpperCamelCase = model.mobilenet_va else: UpperCamelCase = model UpperCamelCase = 'MobilenetV1/Conv2d_0/' UpperCamelCase = backbone.conv_stem.convolution.weight UpperCamelCase = backbone.conv_stem.normalization.bias UpperCamelCase = backbone.conv_stem.normalization.weight UpperCamelCase = backbone.conv_stem.normalization.running_mean UpperCamelCase = backbone.conv_stem.normalization.running_var for i in range(13): UpperCamelCase = i + 1 UpperCamelCase = i * 2 UpperCamelCase = backbone.layer[pt_index] UpperCamelCase = f'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' UpperCamelCase = pointer.convolution.weight UpperCamelCase = pointer.normalization.bias UpperCamelCase = pointer.normalization.weight UpperCamelCase = pointer.normalization.running_mean UpperCamelCase = pointer.normalization.running_var UpperCamelCase = backbone.layer[pt_index + 1] UpperCamelCase = f'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' UpperCamelCase = pointer.convolution.weight UpperCamelCase = pointer.normalization.bias UpperCamelCase = pointer.normalization.weight UpperCamelCase = pointer.normalization.running_mean UpperCamelCase = pointer.normalization.running_var if isinstance(A , A): UpperCamelCase = 'MobilenetV1/Logits/Conv2d_1c_1x1/' UpperCamelCase = model.classifier.weight UpperCamelCase = model.classifier.bias return tf_to_pt_map def A_( A : int , A : str , A : Optional[int]): try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.') raise # Load weights from TF model UpperCamelCase = tf.train.list_variables(A) UpperCamelCase = {} for name, shape in init_vars: logger.info(f'''Loading TF weight {name} with shape {shape}''') UpperCamelCase = tf.train.load_variable(A , A) UpperCamelCase = array # Build TF to PyTorch weights loading map UpperCamelCase = _build_tf_to_pytorch_map(A , A , A) for name, pointer in tf_to_pt_map.items(): logger.info(f'''Importing {name}''') if name not in tf_weights: logger.info(f'''{name} not in tf pre-trained weights, skipping''') continue UpperCamelCase = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise') UpperCamelCase = np.transpose(A , (2, 3, 0, 1)) elif "weights" in name: logger.info('Transposing') if len(pointer.shape) == 2: # copying into linear layer UpperCamelCase = array.squeeze().transpose() else: UpperCamelCase = np.transpose(A , (3, 2, 0, 1)) if pointer.shape != array.shape: raise ValueError(f'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''') logger.info(f'''Initialize PyTorch weight {name} {array.shape}''') UpperCamelCase = torch.from_numpy(A) tf_weights.pop(A , A) tf_weights.pop(name + '/RMSProp' , A) tf_weights.pop(name + '/RMSProp_1' , A) tf_weights.pop(name + '/ExponentialMovingAverage' , A) logger.info(f'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys())}''') return model def A_( A : torch.Tensor , A : nn.Convad): UpperCamelCase , UpperCamelCase = features.shape[-2:] UpperCamelCase , UpperCamelCase = conv_layer.stride UpperCamelCase , UpperCamelCase = conv_layer.kernel_size if in_height % stride_height == 0: UpperCamelCase = max(kernel_height - stride_height , 0) else: UpperCamelCase = max(kernel_height - (in_height % stride_height) , 0) if in_width % stride_width == 0: UpperCamelCase = max(kernel_width - stride_width , 0) else: UpperCamelCase = max(kernel_width - (in_width % stride_width) , 0) UpperCamelCase = pad_along_width // 2 UpperCamelCase = pad_along_width - pad_left UpperCamelCase = pad_along_height // 2 UpperCamelCase = pad_along_height - pad_top UpperCamelCase = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(A , A , 'constant' , 0.0) class SCREAMING_SNAKE_CASE__ ( nn.Module): def __init__( self , A_ , A_ , A_ , A_ , A_ = 1 , A_ = 1 , A_ = False , A_ = True , A_ = True , )-> None: '''simple docstring''' super().__init__() UpperCamelCase = config if in_channels % groups != 0: raise ValueError(F'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(F'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) UpperCamelCase = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) UpperCamelCase = nn.Convad( in_channels=A_ , out_channels=A_ , kernel_size=A_ , stride=A_ , padding=A_ , groups=A_ , bias=A_ , padding_mode='zeros' , ) if use_normalization: UpperCamelCase = nn.BatchNormad( num_features=A_ , eps=config.layer_norm_eps , momentum=0.9_997 , affine=A_ , track_running_stats=A_ , ) else: UpperCamelCase = None if use_activation: if isinstance(A_ , A_ ): UpperCamelCase = ACTaFN[use_activation] elif isinstance(config.hidden_act , A_ ): UpperCamelCase = ACTaFN[config.hidden_act] else: UpperCamelCase = config.hidden_act else: UpperCamelCase = None def UpperCAmelCase_ ( self , A_ )-> torch.Tensor: '''simple docstring''' if self.config.tf_padding: UpperCamelCase = apply_tf_padding(A_ , self.convolution ) UpperCamelCase = self.convolution(A_ ) if self.normalization is not None: UpperCamelCase = self.normalization(A_ ) if self.activation is not None: UpperCamelCase = self.activation(A_ ) return features class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = MobileNetVaConfig lowerCAmelCase_ = load_tf_weights_in_mobilenet_va lowerCAmelCase_ = """mobilenet_v1""" lowerCAmelCase_ = """pixel_values""" lowerCAmelCase_ = False def UpperCAmelCase_ ( self , A_ )-> None: '''simple docstring''' if isinstance(A_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(A_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowerCAmelCase : Union[str, Any] = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase : Union[str, Any] = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , A_ = True )-> Union[str, Any]: '''simple docstring''' super().__init__(A_ ) UpperCamelCase = config UpperCamelCase = 32 UpperCamelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) UpperCamelCase = MobileNetVaConvLayer( A_ , in_channels=config.num_channels , out_channels=A_ , kernel_size=3 , stride=2 , ) UpperCamelCase = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] UpperCamelCase = nn.ModuleList() for i in range(13 ): UpperCamelCase = out_channels if strides[i] == 2 or i == 0: depth *= 2 UpperCamelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( A_ , in_channels=A_ , out_channels=A_ , kernel_size=3 , stride=strides[i] , groups=A_ , ) ) self.layer.append( MobileNetVaConvLayer( A_ , in_channels=A_ , out_channels=A_ , kernel_size=1 , ) ) UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCAmelCase_ ( self , A_ )-> Tuple: '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , )-> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) UpperCamelCase = self.conv_stem(A_ ) UpperCamelCase = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): UpperCamelCase = layer_module(A_ ) if output_hidden_states: UpperCamelCase = all_hidden_states + (hidden_states,) UpperCamelCase = hidden_states if self.pooler is not None: UpperCamelCase = torch.flatten(self.pooler(A_ ) , start_dim=1 ) else: UpperCamelCase = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=A_ , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ )-> None: '''simple docstring''' super().__init__(A_ ) UpperCamelCase = config.num_labels UpperCamelCase = MobileNetVaModel(A_ ) UpperCamelCase = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head UpperCamelCase = nn.Dropout(config.classifier_dropout_prob , inplace=A_ ) UpperCamelCase = nn.Linear(A_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , A_ = None , )-> Union[tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.mobilenet_va(A_ , output_hidden_states=A_ , return_dict=A_ ) UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase = self.classifier(self.dropout(A_ ) ) UpperCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase = 'single_label_classification' else: UpperCamelCase = 'multi_label_classification' if self.config.problem_type == "regression": UpperCamelCase = MSELoss() if self.num_labels == 1: UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase = loss_fct(A_ , A_ ) elif self.config.problem_type == "single_label_classification": UpperCamelCase = CrossEntropyLoss() UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase = BCEWithLogitsLoss() UpperCamelCase = loss_fct(A_ , A_ ) if not return_dict: UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=A_ , logits=A_ , hidden_states=outputs.hidden_states , )
251
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a ( __snake_case ): SCREAMING_SNAKE_CASE : Dict = """Salesforce/blip-image-captioning-base""" SCREAMING_SNAKE_CASE : int = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) SCREAMING_SNAKE_CASE : Optional[int] = """image_captioner""" SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForVisionaSeq SCREAMING_SNAKE_CASE : int = ["""image"""] SCREAMING_SNAKE_CASE : Optional[Any] = ["""text"""] def __init__( self : Optional[Any] , *__SCREAMING_SNAKE_CASE : Optional[Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: requires_backends(self , ['vision'] ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : "Image" ) -> Dict: return self.pre_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) def UpperCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple ) -> str: return self.model.generate(**__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: return self.pre_processor.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )[0].strip()
183
"""simple docstring""" import os def lowerCamelCase__ ( ) -> List[Any]: with open(os.path.dirname(_lowerCamelCase ) + '/grid.txt' ) as f: lowerCamelCase_ = [] # noqa: E741 for _ in range(20 ): l.append([int(_lowerCamelCase ) for x in f.readline().split()] ) lowerCamelCase_ = 0 # right for i in range(20 ): for j in range(17 ): lowerCamelCase_ = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowerCamelCase_ = temp # down for i in range(17 ): for j in range(20 ): lowerCamelCase_ = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowerCamelCase_ = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowerCamelCase_ = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowerCamelCase_ = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowerCamelCase_ = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowerCamelCase_ = temp return maximum if __name__ == "__main__": print(solution())
183
1
'''simple docstring''' from __future__ import annotations UpperCamelCase_ : Tuple = list[list[int]] # assigning initial values to the grid UpperCamelCase_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCamelCase_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __a ( _UpperCamelCase: Matrix , _UpperCamelCase: int , _UpperCamelCase: int , _UpperCamelCase: int ) -> Union[str, Any]: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __a ( _UpperCamelCase: Matrix ) -> Tuple: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __a ( _UpperCamelCase: Matrix ) -> Union[str, Any]: """simple docstring""" if location := find_empty_location(lowerCamelCase_ ): _snake_case = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): _snake_case = digit if sudoku(lowerCamelCase_ ) is not None: return grid _snake_case = 0 return None def __a ( _UpperCamelCase: Matrix ) -> Optional[int]: """simple docstring""" for row in grid: for cell in row: print(lowerCamelCase_ , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') UpperCamelCase_ : Tuple = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
358
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __a ( _UpperCamelCase: Tuple , _UpperCamelCase: Optional[int] , _UpperCamelCase: Optional[int]=None , **_UpperCamelCase: Any ) -> Optional[Any]: """simple docstring""" _snake_case = [x.strip() for x in open(_UpperCamelCase ).readlines()] _snake_case = [x.strip() for x in open(_UpperCamelCase ).readlines()][: len(_UpperCamelCase )] _snake_case = calculate_rouge(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) if save_path is not None: save_json(_UpperCamelCase , _UpperCamelCase , indent=_UpperCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
142
0
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html snake_case_ = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , ): if attention_mask is None: UpperCAmelCase = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: UpperCAmelCase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: UpperCAmelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A_ : """simple docstring""" def __init__( self :Optional[int] , lowercase_ :Optional[int] , lowercase_ :List[str]=13 , lowercase_ :Optional[int]=7 , lowercase_ :Dict=True , lowercase_ :Union[str, Any]=False , lowercase_ :Optional[int]=99 , lowercase_ :Dict=16 , lowercase_ :List[Any]=2 , lowercase_ :str=4 , lowercase_ :Any=4 , lowercase_ :str="gelu" , lowercase_ :Optional[int]=0.1 , lowercase_ :int=0.1 , lowercase_ :Tuple=32 , lowercase_ :Tuple=2 , lowercase_ :List[str]=1 , lowercase_ :Dict=0 , lowercase_ :Optional[int]=0.02 , ) -> List[str]: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = initializer_range def UpperCAmelCase__ ( self :int ) -> Dict: UpperCAmelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) UpperCAmelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) UpperCAmelCase = shift_tokens_right(lowercase_ , 1 , 2 ) UpperCAmelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase_ , ) UpperCAmelCase = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def UpperCAmelCase__ ( self :str ) -> Any: UpperCAmelCase , UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ ( self :int , lowercase_ :int , lowercase_ :str , lowercase_ :int ) -> Any: UpperCAmelCase = 20 UpperCAmelCase = model_class_name(lowercase_ ) UpperCAmelCase = model.encode(inputs_dict['input_ids'] ) UpperCAmelCase , UpperCAmelCase = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) UpperCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , ) UpperCAmelCase = model.decode(lowercase_ , lowercase_ ) UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def UpperCAmelCase__ ( self :int , lowercase_ :Any , lowercase_ :List[str] , lowercase_ :Any ) -> Dict: UpperCAmelCase = 20 UpperCAmelCase = model_class_name(lowercase_ ) UpperCAmelCase = model.encode(inputs_dict['input_ids'] ) UpperCAmelCase , UpperCAmelCase = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) UpperCAmelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , ) UpperCAmelCase = model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_ ) UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) @require_flax class A_ ( unittest.TestCase ): """simple docstring""" __UpperCamelCase = 99 def UpperCAmelCase__ ( self :List[Any] ) -> Any: UpperCAmelCase = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) UpperCAmelCase = input_ids.shape[0] UpperCAmelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCAmelCase__ ( self :Union[str, Any] ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_config_and_data() UpperCAmelCase = FlaxBlenderbotForConditionalGeneration(lowercase_ ) UpperCAmelCase = lm_model(input_ids=lowercase_ ) UpperCAmelCase = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , lowercase_ ) def UpperCAmelCase__ ( self :Tuple ) -> Optional[int]: UpperCAmelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) UpperCAmelCase = FlaxBlenderbotForConditionalGeneration(lowercase_ ) UpperCAmelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) UpperCAmelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) UpperCAmelCase = lm_model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ) UpperCAmelCase = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , lowercase_ ) def UpperCAmelCase__ ( self :str ) -> List[Any]: UpperCAmelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) UpperCAmelCase = shift_tokens_right(lowercase_ , 1 , 2 ) UpperCAmelCase = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() UpperCAmelCase = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowercase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase , SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = True __UpperCamelCase = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __UpperCamelCase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def UpperCAmelCase__ ( self :Any ) -> Optional[int]: UpperCAmelCase = FlaxBlenderbotModelTester(self ) def UpperCAmelCase__ ( self :Dict ) -> Dict: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Tuple ) -> Dict: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :int ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowercase_ , lowercase_ ) UpperCAmelCase = model_class(lowercase_ ) @jax.jit def encode_jitted(lowercase_ :Dict , lowercase_ :Any=None , **lowercase_ :Optional[int] ): return model.encode(input_ids=lowercase_ , attention_mask=lowercase_ ) with self.subTest('JIT Enabled' ): UpperCAmelCase = encode_jitted(**lowercase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCAmelCase = encode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase__ ( self :str ) -> Tuple: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = model_class(lowercase_ ) UpperCAmelCase = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) UpperCAmelCase = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(lowercase_ :str , lowercase_ :str , lowercase_ :Union[str, Any] ): return model.decode( decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , ) with self.subTest('JIT Enabled' ): UpperCAmelCase = decode_jitted(**lowercase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCAmelCase = decode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase__ ( self :List[Any] ) -> Optional[Any]: for model_class_name in self.all_model_classes: UpperCAmelCase = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCAmelCase = np.ones((1, 1) ) * model.config.eos_token_id UpperCAmelCase = model(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def UpperCAmelCase__ ( self :Union[str, Any] ) -> List[Any]: UpperCAmelCase = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} UpperCAmelCase = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} UpperCAmelCase = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=lowercase_ ) UpperCAmelCase = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) UpperCAmelCase = ['Sam'] UpperCAmelCase = tokenizer(lowercase_ , return_tensors='jax' ) UpperCAmelCase = model.generate(**lowercase_ , **lowercase_ ) UpperCAmelCase = 'Sam is a great name. It means "sun" in Gaelic.' UpperCAmelCase = tokenizer.batch_decode(lowercase_ , **lowercase_ ) assert generated_txt[0].strip() == tgt_text
78
"""simple docstring""" import requests snake_case_ = """""" # <-- Put your OpenWeatherMap appid here! snake_case_ = """https://api.openweathermap.org/data/2.5/""" def _lowerCAmelCase ( lowercase_ = "Chicago" , lowercase_ = APPID ): return requests.get(URL_BASE + 'weather' , params=locals() ).json() def _lowerCAmelCase ( lowercase_ = "Kolkata, India" , lowercase_ = APPID ): return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def _lowerCAmelCase ( lowercase_ = 5_5.6_8 , lowercase_ = 1_2.5_7 , lowercase_ = APPID ): return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: snake_case_ = input("""Enter a location:""").strip() if location: pprint(current_weather(location)) else: break
78
1
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = 0 UpperCAmelCase__ : bool = False UpperCAmelCase__ : float = 3.0 class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Any: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=A_ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def _a ( self ) -> Union[str, Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. __UpperCamelCase =GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase =Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase =accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , A_ ) @require_multi_gpu def _a ( self ) -> Optional[int]: __UpperCamelCase =['torchrun', f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(A_ , env=os.environ.copy() ) if __name__ == "__main__": _A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) _A = Accelerator(kwargs_handlers=[ddp_scaler]) _A = torch.nn.Linear(100, 200) _A = accelerator.prepare(model) # Check the values changed in kwargs _A = '' _A = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
117
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : torch.FloatTensor UpperCAmelCase__ : Optional[torch.FloatTensor] = None def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int=0.999 , SCREAMING_SNAKE_CASE__ : str="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __UpperCamelCase =[] for i in range(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =i / num_diffusion_timesteps __UpperCamelCase =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) return torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) class UpperCAmelCase__ ( A_ , A_ ): """simple docstring""" @register_to_config def __init__( self , A_ = 1000 , A_ = "fixed_small_log" , A_ = True , A_ = 1.0 , A_ = "epsilon" , A_ = "squaredcos_cap_v2" , ) -> Tuple: if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' ) __UpperCamelCase =betas_for_alpha_bar(A_ ) __UpperCamelCase =1.0 - self.betas __UpperCamelCase =torch.cumprod(self.alphas , dim=0 ) __UpperCamelCase =torch.tensor(1.0 ) # standard deviation of the initial noise distribution __UpperCamelCase =1.0 # setable values __UpperCamelCase =None __UpperCamelCase =torch.from_numpy(np.arange(0 , A_ )[::-1].copy() ) __UpperCamelCase =variance_type def _a ( self , A_ , A_ = None ) -> torch.FloatTensor: return sample def _a ( self , A_ , A_ = None ) -> Tuple: __UpperCamelCase =num_inference_steps __UpperCamelCase =(self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __UpperCamelCase =(np.arange(0 , A_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __UpperCamelCase =torch.from_numpy(A_ ).to(A_ ) def _a ( self , A_ , A_=None , A_=None , A_=None ) -> List[Any]: if prev_timestep is None: __UpperCamelCase =t - 1 __UpperCamelCase =self.alphas_cumprod[t] __UpperCamelCase =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __UpperCamelCase =1 - alpha_prod_t __UpperCamelCase =1 - alpha_prod_t_prev if prev_timestep == t - 1: __UpperCamelCase =self.betas[t] else: __UpperCamelCase =1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __UpperCamelCase =beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __UpperCamelCase =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __UpperCamelCase =torch.log(torch.clamp(A_ , min=1E-20 ) ) __UpperCamelCase =torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __UpperCamelCase =variance.log() __UpperCamelCase =beta.log() __UpperCamelCase =(predicted_variance + 1) / 2 __UpperCamelCase =frac * max_log + (1 - frac) * min_log return variance def _a ( self , A_ , A_ , A_ , A_ = None , A_=None , A_ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: __UpperCamelCase =timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __UpperCamelCase , __UpperCamelCase =torch.split(A_ , sample.shape[1] , dim=1 ) else: __UpperCamelCase =None # 1. compute alphas, betas if prev_timestep is None: __UpperCamelCase =t - 1 __UpperCamelCase =self.alphas_cumprod[t] __UpperCamelCase =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __UpperCamelCase =1 - alpha_prod_t __UpperCamelCase =1 - alpha_prod_t_prev if prev_timestep == t - 1: __UpperCamelCase =self.betas[t] __UpperCamelCase =self.alphas[t] else: __UpperCamelCase =1 - alpha_prod_t / alpha_prod_t_prev __UpperCamelCase =1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __UpperCamelCase =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __UpperCamelCase =model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' ' for the UnCLIPScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __UpperCamelCase =torch.clamp( A_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCamelCase =(alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __UpperCamelCase =alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCamelCase =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __UpperCamelCase =0 if t > 0: __UpperCamelCase =randn_tensor( model_output.shape , dtype=model_output.dtype , generator=A_ , device=model_output.device ) __UpperCamelCase =self._get_variance( A_ , predicted_variance=A_ , prev_timestep=A_ , ) if self.variance_type == "fixed_small_log": __UpperCamelCase =variance elif self.variance_type == "learned_range": __UpperCamelCase =(0.5 * variance).exp() else: raise ValueError( f'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' ' for the UnCLIPScheduler.' ) __UpperCamelCase =variance * variance_noise __UpperCamelCase =pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=A_ , pred_original_sample=A_ ) def _a ( self , A_ , A_ , A_ , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples __UpperCamelCase =self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __UpperCamelCase =timesteps.to(original_samples.device ) __UpperCamelCase =alphas_cumprod[timesteps] ** 0.5 __UpperCamelCase =sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __UpperCamelCase =sqrt_alpha_prod.unsqueeze(-1 ) __UpperCamelCase =(1 - alphas_cumprod[timesteps]) ** 0.5 __UpperCamelCase =sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __UpperCamelCase =sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __UpperCamelCase =sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
117
1
import qiskit def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> qiskit.result.counts.Counts: """simple docstring""" lowercase__ = qiskit.Aer.get_backend("""aer_simulator""" ) lowercase__ = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator lowercase__ = qiskit.execute(__magic_name__ , __magic_name__ , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__magic_name__ ) if __name__ == "__main__": A : Union[str, Any] = half_adder(1, 1) print(F'Half Adder Output Qubit Counts: {counts}')
305
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
1
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCamelCase__ ( a ) -> Any: _A: str = FileLock(str(tmpdir / '''foo.lock''' ) ) _A: Optional[int] = FileLock(str(tmpdir / '''foo.lock''' ) ) _A: Any = 0.01 with locka.acquire(): with pytest.raises(__lowerCamelCase ): _A: int = time.time() locka.acquire(__lowerCamelCase ) assert time.time() - _start > timeout def lowerCamelCase__ ( a ) -> str: _A: List[str] = '''a''' * 10_00 + '''.lock''' _A: str = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(__lowerCamelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 _A: str = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__lowerCamelCase ): locka.acquire(0 )
368
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = GPTSanJapaneseTokenizer __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = {'''do_clean_text''': False, '''add_prefix_space''': False} def __magic_name__ ( self : Any ): """simple docstring""" super().setUp() # fmt: off _A: Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on _A: Union[str, Any] = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 _A: str = {'''unk_token''': '''<unk>'''} _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCAmelCase_ ) ) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A , _A: Optional[int] = self.get_input_output_texts(lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: Tuple = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def __magic_name__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Dict ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.get_tokenizer() # Testing tokenization _A: List[Any] = '''こんにちは、世界。 こんばんは、㔺界。''' _A: Dict = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] _A: List[Any] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens _A: Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens _A: Dict = tokens + [tokenizer.unk_token] _A: str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = self.get_tokenizer() # Testing tokenization _A: Optional[int] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' _A: str = '''こんにちは、、、、世界。こんばんは、、、、世界。''' _A: Tuple = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Union[str, Any] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。こんばんは、世界。😀''' _A: List[Any] = tokenizer.encode(prefix_text + input_text ) _A: Optional[Any] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) _A: List[Any] = tokenizer.encode(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.decode(lowerCAmelCase_ ) _A: Any = tokenizer.decode(lowerCAmelCase_ ) _A: Dict = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Optional[int] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: Any = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: int = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: Optional[Any] = [1] + [0] * (len_prefix + len_text + 1) _A: Any = [1] * (len_prefix + len_text + 1) + [0] _A: Optional[int] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _A: Optional[Any] = tokenizer(prefix_text + input_text ).token_type_ids _A: List[str] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids _A: Dict = tokenizer(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ).token_type_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: List[Any] = tokenizer.encode('''あンいワ''' ) _A: Any = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) _A: Union[str, Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: Optional[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] _A: Optional[int] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.batch_encode_plus(lowerCAmelCase_ , padding=lowerCAmelCase_ ) # fmt: off _A: Tuple = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _A: Optional[int] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _A: Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCAmelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __magic_name__ ( self : Tuple ): """simple docstring""" # tokenizer has no padding token pass
301
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : int = '''mgp-str''' def __init__( self, A=[32, 128], A=4, A=3, A=27, A=38, A=50_257, A=30_522, A=768, A=12, A=12, A=4.0, A=True, A=False, A=1E-5, A=0.0, A=0.0, A=0.0, A=False, A=0.02, **A, ): '''simple docstring''' super().__init__(**A ) SCREAMING_SNAKE_CASE : Any = image_size SCREAMING_SNAKE_CASE : Optional[int] = patch_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : int = max_token_length SCREAMING_SNAKE_CASE : Union[str, Any] = num_character_labels SCREAMING_SNAKE_CASE : Optional[int] = num_bpe_labels SCREAMING_SNAKE_CASE : Union[str, Any] = num_wordpiece_labels SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = mlp_ratio SCREAMING_SNAKE_CASE : List[Any] = distilled SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[int] = drop_rate SCREAMING_SNAKE_CASE : Any = qkv_bias SCREAMING_SNAKE_CASE : List[Any] = attn_drop_rate SCREAMING_SNAKE_CASE : List[str] = drop_path_rate SCREAMING_SNAKE_CASE : str = output_aa_attentions SCREAMING_SNAKE_CASE : List[str] = initializer_range
251
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase_ = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
251
1
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : str = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowerCAmelCase : Tuple = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } lowerCAmelCase : Dict = {"""facebook/blenderbot-3B""": 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowercase (): """simple docstring""" _lowerCAmelCase : Union[str, Any] = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _lowerCAmelCase : Union[str, Any] = bs[:] _lowerCAmelCase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 _lowerCAmelCase : str = [chr(_A ) for n in cs] return dict(zip(_A , _A ) ) def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = set() _lowerCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Union[str, Any] = char return pairs class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["input_ids", "attention_mask"] def __init__( self , snake_case__ , snake_case__ , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Any = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token _lowerCAmelCase : List[str] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token _lowerCAmelCase : int = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token _lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token _lowerCAmelCase : Any = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token _lowerCAmelCase : Any = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , **snake_case__ , ) with open(snake_case__ , encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : str = json.load(snake_case__ ) _lowerCAmelCase : List[Any] = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Dict = errors # how to handle errors in decoding _lowerCAmelCase : int = bytes_to_unicode() _lowerCAmelCase : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(snake_case__ , encoding='utf-8' ) as merges_handle: _lowerCAmelCase : str = merges_handle.read().split('\n' )[1:-1] _lowerCAmelCase : str = [tuple(merge.split() ) for merge in bpe_merges] _lowerCAmelCase : Tuple = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) _lowerCAmelCase : List[str] = {} _lowerCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCAmelCase : Optional[int] = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a ( self ): '''simple docstring''' return len(self.encoder ) def a ( self ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def a ( self , snake_case__ ): '''simple docstring''' if token in self.cache: return self.cache[token] _lowerCAmelCase : Optional[Any] = tuple(snake_case__ ) _lowerCAmelCase : Tuple = get_pairs(snake_case__ ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase : Optional[Any] = bigram _lowerCAmelCase : Tuple = [] _lowerCAmelCase : str = 0 while i < len(snake_case__ ): try: _lowerCAmelCase : List[Any] = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : str = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : List[str] = tuple(snake_case__ ) _lowerCAmelCase : int = new_word if len(snake_case__ ) == 1: break else: _lowerCAmelCase : Tuple = get_pairs(snake_case__ ) _lowerCAmelCase : Union[str, Any] = ' '.join(snake_case__ ) _lowerCAmelCase : Union[str, Any] = word return word def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = [] for token in re.findall(self.pat , snake_case__ ): _lowerCAmelCase : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case__ ).split(' ' ) ) return bpe_tokens def a ( self , snake_case__ ): '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def a ( self , snake_case__ ): '''simple docstring''' return self.decoder.get(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = ''.join(snake_case__ ) _lowerCAmelCase : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCAmelCase : Any = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + '\n' ) _lowerCAmelCase : int = 0 with open(snake_case__ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Tuple = token_index writer.write(' '.join(snake_case__ ) + '\n' ) index += 1 return vocab_file, merge_file def a ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : List[str] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a ( self , snake_case__ , snake_case__=False , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case__ ) > 0 and not text[0].isspace()): _lowerCAmelCase : Tuple = ' ' + text return (text, kwargs) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(snake_case__ ) _lowerCAmelCase : List[Any] = ' '.join(snake_case__ ) _lowerCAmelCase : str = self.encode(snake_case__ ) if len(snake_case__ ) > self.model_max_length: _lowerCAmelCase : Any = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mobilenet_v2" def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.02 , snake_case__=0.001 , snake_case__=255 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : List[Any] = depth_multiplier _lowerCAmelCase : List[Any] = depth_divisible_by _lowerCAmelCase : Optional[Any] = min_depth _lowerCAmelCase : str = expand_ratio _lowerCAmelCase : str = output_stride _lowerCAmelCase : Any = first_layer_is_expansion _lowerCAmelCase : int = finegrained_output _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[str] = tf_padding _lowerCAmelCase : Optional[int] = classifier_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : str = semantic_loss_ignore_index class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = version.parse("1.11" ) @property def a ( self ): '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' return 1E-4
25
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Any = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[str] = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[int] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
142
0
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): __lowerCAmelCase = 0.00 __lowerCAmelCase = 0 for resistor in resistors: if resistor <= 0: __lowerCAmelCase = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCAmelCase_ ) first_sum += 1 / float(lowerCAmelCase_ ) index += 1 return 1 / first_sum def a_ ( lowerCAmelCase_ : list[float] ): __lowerCAmelCase = 0.00 __lowerCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __lowerCAmelCase = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCAmelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
207
import mpmath # for roots of unity import numpy as np class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None ) -> List[Any]: # Input as list __lowerCAmelCase = list(poly_a or [0] )[:] __lowerCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __lowerCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() __lowerCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 __lowerCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform __lowerCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product __lowerCAmelCase = self.__multiply() def lowercase ( self : Optional[int] , lowerCAmelCase_ : str ) -> Optional[int]: __lowerCAmelCase = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(lowerCAmelCase_ ) <= 1: return dft[0] # __lowerCAmelCase = self.c_max_length // 2 while next_ncol > 0: __lowerCAmelCase = [[] for i in range(lowerCAmelCase_ )] __lowerCAmelCase = self.root**next_ncol # First half of next step __lowerCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCAmelCase_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step __lowerCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCAmelCase_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update __lowerCAmelCase = new_dft __lowerCAmelCase = next_ncol // 2 return dft[0] def lowercase ( self : Optional[int] ) -> Any: __lowerCAmelCase = self.__dft('A' ) __lowerCAmelCase = self.__dft('B' ) __lowerCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT __lowerCAmelCase = 2 while next_ncol <= self.c_max_length: __lowerCAmelCase = [[] for i in range(lowerCAmelCase_ )] __lowerCAmelCase = self.root ** (next_ncol // 2) __lowerCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update __lowerCAmelCase = new_inverse_c next_ncol *= 2 # Unpack __lowerCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> int: __lowerCAmelCase = 'A = ' + ' + '.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) ) __lowerCAmelCase = 'B = ' + ' + '.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) ) __lowerCAmelCase = 'A*B = ' + ' + '.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) ) return f"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
207
1
import random class A_ : @staticmethod def _lowerCAmelCase (_UpperCamelCase :str )-> tuple[list[int], list[int]]: __A = [ord(_UpperCamelCase ) for i in text] __A = [] __A = [] for i in plain: __A = random.randint(1 , 300 ) __A = (i + k) * k cipher.append(_UpperCamelCase ) key.append(_UpperCamelCase ) return cipher, key @staticmethod def _lowerCAmelCase (_UpperCamelCase :list[int] , _UpperCamelCase :list[int] )-> str: __A = [] for i in range(len(_UpperCamelCase ) ): __A = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_UpperCamelCase ) ) return "".join(_UpperCamelCase ) if __name__ == "__main__": snake_case__ , snake_case__ : Union[str, Any] = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
117
from __future__ import annotations def _a ( lowerCamelCase: list[float] , lowerCamelCase: Tuple ) -> List[str]: '''simple docstring''' print(F"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(lowerCamelCase ): print(F"""{i}\t\t{d}""" ) def _a ( lowerCamelCase: list[dict[str, int]] , lowerCamelCase: list[float] , lowerCamelCase: int ) -> Union[str, Any]: '''simple docstring''' for j in range(lowerCamelCase ): __A , __A , __A = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _a ( lowerCamelCase: list[dict[str, int]] , lowerCamelCase: int , lowerCamelCase: int , lowerCamelCase: int ) -> list[float]: '''simple docstring''' __A = [float('''inf''' )] * vertex_count __A = 0.0 for _ in range(vertex_count - 1 ): for j in range(lowerCamelCase ): __A , __A , __A = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __A = distance[u] + w __A = check_negative_cycle(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : Dict = int(input('Enter number of vertices: ').strip()) snake_case__ : Optional[int] = int(input('Enter number of edges: ').strip()) snake_case__ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('Edge ', i + 1) snake_case__ , snake_case__ , snake_case__ : Dict = ( int(x) for x in input('Enter source, destination, weight: ').strip().split(' ') ) snake_case__ : List[Any] = {'src': src, 'dst': dest, 'weight': weight} snake_case__ : Union[str, Any] = int(input('\nEnter shortest path source:').strip()) snake_case__ : List[Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
117
1
__magic_name__: dict[tuple[int, int, int], int] = {} def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __magic_name__ : Union[str, Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __magic_name__ : Any = _calculate(days - 1, _A, late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __magic_name__ : Union[str, Any] = _calculate(days - 1, absent + 1, 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __magic_name__ : Tuple = _calculate(days - 1, _A, 0 ) __magic_name__ : List[Any] = state_late + state_absent + state_ontime __magic_name__ : List[Any] = prizestrings return prizestrings def UpperCamelCase ( _A = 30 ): """simple docstring""" return _calculate(_A, absent=0, late=0 ) if __name__ == "__main__": print(solution())
138
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __magic_name__: Tuple = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Dict = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: int = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys __magic_name__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
138
1
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) __A : str = parser.parse_args() __A : List[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __A : Dict = CLIPImageProcessor() __A : Union[str, Any] = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') __A : List[str] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
33
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) SCREAMING_SNAKE_CASE_ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_dataset(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_metric(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_names(_lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert list(infos.keys() ) == expected_configs __lowerCAmelCase = expected_configs[0] assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
301
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } __lowerCAmelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def UpperCAmelCase_ (__a : Optional[int] , __a : Dict , __a : Optional[Any] , __a : str , __a : Tuple ): """simple docstring""" for attribute in key.split('.' ): _a : List[str] = getattr(__a , __a ) if weight_type is not None: _a : Optional[Any] = getattr(__a , __a ).shape else: _a : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _a : Tuple = value elif weight_type == "weight_g": _a : Optional[Any] = value elif weight_type == "weight_v": _a : Tuple = value elif weight_type == "bias": _a : str = value elif weight_type == "running_mean": _a : List[Any] = value elif weight_type == "running_var": _a : str = value elif weight_type == "num_batches_tracked": _a : List[str] = value elif weight_type == "inv_freq": _a : Optional[int] = value else: _a : Dict = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCAmelCase_ (__a : str , __a : List[str] , __a : Dict ): """simple docstring""" _a : str = [] _a : Optional[int] = fairseq_model.state_dict() _a : Optional[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _a : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == 'group' , ) _a : List[str] = True else: for key, mapped_key in MAPPING.items(): _a : int = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _a : Tuple = True if "*" in mapped_key: _a : List[str] = name.split(__a )[0].split('.' )[-2] _a : int = mapped_key.replace('*' , __a ) if "pos_bias_u" in name: _a : List[Any] = None elif "pos_bias_v" in name: _a : str = None elif "weight_g" in name: _a : Optional[Any] = 'weight_g' elif "weight_v" in name: _a : Optional[int] = 'weight_v' elif "bias" in name: _a : Tuple = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _a : List[str] = 'weight' elif "running_mean" in name: _a : Optional[int] = 'running_mean' elif "inv_freq" in name: _a : Dict = 'inv_freq' elif "running_var" in name: _a : Any = 'running_var' elif "num_batches_tracked" in name: _a : List[str] = 'num_batches_tracked' else: _a : int = None set_recursively(__a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCAmelCase_ (__a : str , __a : Union[str, Any] , __a : Any , __a : Union[str, Any] , __a : Union[str, Any] ): """simple docstring""" _a : Tuple = full_name.split('conv_layers.' )[-1] _a : Optional[Any] = name.split('.' ) _a : Optional[int] = int(items[0] ) _a : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _a : Dict = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _a : Dict = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _a : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _a : Optional[int] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def UpperCAmelCase_ (__a : Tuple , __a : Optional[Any] , __a : List[Any]=None , __a : List[Any]=None , __a : Dict=True ): """simple docstring""" if config_path is not None: _a : int = WavaVecaConformerConfig.from_pretrained(__a , hidden_act='swish' ) else: _a : Tuple = WavaVecaConformerConfig() if "rope" in checkpoint_path: _a : Union[str, Any] = 'rotary' if is_finetuned: if dict_path: _a : Dict = Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a : Optional[int] = target_dict.pad_index _a : List[str] = target_dict.bos_index _a : int = target_dict.eos_index _a : Tuple = len(target_dict.symbols ) _a : List[str] = os.path.join(__a , 'vocab.json' ) if not os.path.isdir(__a ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__a ) ) return os.makedirs(__a , exist_ok=__a ) _a : Union[str, Any] = target_dict.indices # fairseq has the <pad> and <s> switched _a : int = 0 _a : Optional[Any] = 1 with open(__a , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__a , __a ) _a : Any = WavaVecaCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__a , ) _a : Union[str, Any] = True if config.feat_extract_norm == 'layer' else False _a : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) _a : Optional[Any] = WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) _a : int = WavaVecaConformerForCTC(__a ) else: _a : Dict = WavaVecaConformerForPreTraining(__a ) if is_finetuned: _a, _a, _a : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _a : Optional[int] = argparse.Namespace(task='audio_pretraining' ) _a : Optional[int] = fairseq.tasks.setup_task(__a ) _a, _a, _a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__a ) _a : List[str] = model[0].eval() recursively_load_weights(__a , __a , not is_finetuned ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCAmelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
5
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_2_8, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 5_0, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 1_0, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 1_0, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase ( cls : Optional[Any] ): '''simple docstring''' _a : List[Any] = TOKEN HfFolder.save_token(_a ) @classmethod def __lowercase ( cls : List[Any] ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-config' ) except HTTPError: pass def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('test-config' ,use_auth_token=self._token ) _a : Optional[Any] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ,repo_id='test-config' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Tuple = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' ,use_auth_token=self._token ) _a : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a ,repo_id='valid_org/test-config-org' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : List[Any] ): '''simple docstring''' CustomConfig.register_for_auto_class() _a : Optional[Any] = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map ,{'AutoConfig': 'custom_configuration.CustomConfig'} ) _a : int = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" ,trust_remote_code=_a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ ,'CustomConfig' ) self.assertEqual(new_config.attribute ,42 ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _a : int = c.n_embd + 1 # int _a : str = c.resid_pdrop + 1.0 # float _a : Dict = not c.scale_attn_weights # bool _a : List[Any] = c.summary_type + 'foo' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(_a ,c.n_embd ,'mismatch for key: n_embd' ) self.assertEqual(_a ,c.resid_pdrop ,'mismatch for key: resid_pdrop' ) self.assertEqual(_a ,c.scale_attn_weights ,'mismatch for key: scale_attn_weights' ) self.assertEqual(_a ,c.summary_type ,'mismatch for key: summary_type' ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : int = PretrainedConfig() _a : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _a ,['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _a : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(_a ,_a )] if len(_a ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F""" {', '.join(_a )}.""" ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(_a ): # config is in subfolder, the following should not work without specifying the subfolder _a : List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _a : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ,subfolder='bert' ) self.assertIsNotNone(_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : List[Any] = mock.Mock() _a : Any = 500 _a : Any = {} _a : Any = HTTPError _a : List[Any] = {} # Download this model to make sure it's in the cache. _a : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' ,return_value=_a ) as mock_head: _a : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : int = AutoConfig.from_pretrained('bert-base-cased' ) _a : List[str] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_a ) _a : str = 2 json.dump(configuration.to_dict() ,open(os.path.join(_a ,'config.4.0.0.json' ) ,'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _a : Tuple = ['config.42.0.0.json'] _a : int = 768 configuration.save_pretrained(_a ) shutil.move(os.path.join(_a ,'config.4.0.0.json' ) ,os.path.join(_a ,'config.42.0.0.json' ) ) _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,768 ) def __lowercase ( self : str ): '''simple docstring''' _a : Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers _a : Optional[int] = 'v4.0.0' _a, _a : Tuple = new_transformers.models.auto.AutoConfig.from_pretrained( _a ,return_unused_kwargs=_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_a ,{} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _a : str = 'v3.0.0' _a : Optional[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(_a ) self.assertEqual(old_configuration.hidden_size ,768 )
5
1
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> Tuple: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden _lowercase =deepcopy(SCREAMING_SNAKE_CASE__ ) elif os.path.exists(SCREAMING_SNAKE_CASE__ ): with io.open(SCREAMING_SNAKE_CASE__ , '''r''' , encoding='''utf-8''' ) as f: _lowercase =json.load(SCREAMING_SNAKE_CASE__ ) else: try: _lowercase =baseaa.urlsafe_baadecode(SCREAMING_SNAKE_CASE__ ).decode('''utf-8''' ) _lowercase =json.loads(SCREAMING_SNAKE_CASE__ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}" ) _lowercase =config self.set_stage_and_offload() def __A (self ) -> str: _lowercase =self.get_value('''zero_optimization.stage''' , -1 ) # offload _lowercase =False if self.is_zeroa() or self.is_zeroa(): _lowercase =set(['''cpu''', '''nvme'''] ) _lowercase =set( [ self.get_value('''zero_optimization.offload_optimizer.device''' ), self.get_value('''zero_optimization.offload_param.device''' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: _lowercase =True def __A (self , UpperCAmelCase ) -> Any: _lowercase =self.config # find the config node of interest if it exists _lowercase =ds_key_long.split('''.''' ) _lowercase =nodes.pop() for node in nodes: _lowercase =config.get(SCREAMING_SNAKE_CASE__ ) if config is None: return None, ds_key return config, ds_key def __A (self , UpperCAmelCase , UpperCAmelCase=None ) -> Dict: _lowercase =self.find_config_node(SCREAMING_SNAKE_CASE__ ) if config is None: return default return config.get(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A (self , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]: _lowercase =self.config # find the config node of interest if it exists _lowercase =ds_key_long.split('''.''' ) for node in nodes: _lowercase =config _lowercase =config.get(SCREAMING_SNAKE_CASE__ ) if config is None: if must_exist: raise ValueError(f"Can\'t find {ds_key_long} entry in the config: {self.config}" ) else: return # if found remove it if parent_config is not None: parent_config.pop(SCREAMING_SNAKE_CASE__ ) def __A (self , UpperCAmelCase ) -> Any: _lowercase =self.get_value(SCREAMING_SNAKE_CASE__ ) return False if value is None else bool(SCREAMING_SNAKE_CASE__ ) def __A (self , UpperCAmelCase ) -> int: _lowercase =self.get_value(SCREAMING_SNAKE_CASE__ ) return False if value is None else not bool(SCREAMING_SNAKE_CASE__ ) def __A (self ) -> List[Any]: return self._stage == 2 def __A (self ) -> List[Any]: return self._stage == 3 def __A (self ) -> Optional[Any]: return self._offload class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> Dict: _lowercase =engine def __A (self , UpperCAmelCase , **UpperCAmelCase ) -> Any: self.engine.backward(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class lowerCamelCase__ ( a__): def __init__(self , UpperCAmelCase ) -> Union[str, Any]: super().__init__(SCREAMING_SNAKE_CASE__ , device_placement=SCREAMING_SNAKE_CASE__ , scaler=SCREAMING_SNAKE_CASE__ ) _lowercase =hasattr(self.optimizer , '''overflow''' ) def __A (self , UpperCAmelCase=None ) -> Optional[Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def __A (self ) -> Optional[Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def __A (self ) -> Optional[int]: if self.__has_overflow__: return self.optimizer.overflow return False class lowerCamelCase__ ( a__): def __init__(self , UpperCAmelCase , UpperCAmelCase ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A (self ) -> Optional[int]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=0.001 , UpperCAmelCase=0 , **UpperCAmelCase ) -> Dict: _lowercase =params _lowercase =lr _lowercase =weight_decay _lowercase =kwargs class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=0 , **UpperCAmelCase ) -> Dict: _lowercase =optimizer _lowercase =total_num_steps _lowercase =warmup_num_steps _lowercase =kwargs
5
"""simple docstring""" import math import unittest def lowercase_ ( _snake_case ): assert isinstance(_snake_case ,_snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(_snake_case ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Dict: """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
25
0
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = MobileBertTokenizer lowerCAmelCase__ = MobileBertTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = filter_non_english lowerCAmelCase__ = 'google/mobilebert-uncased' def lowercase_ ( self : Any ): '''simple docstring''' super().setUp() UpperCAmelCase__ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCAmelCase__ : Any = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def lowercase_ ( self : List[Any] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : str = '''UNwant\u00E9d,running''' UpperCAmelCase__ : Union[str, Any] = '''unwanted, running''' return input_text, output_text def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase__ : int = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [9, 6, 7, 12, 10, 11] ) def lowercase_ ( self : Tuple ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase__ : List[str] = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase__ : Any = '''UNwant\u00E9d,running''' UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize(_A ) UpperCAmelCase__ : Any = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Optional[Any] = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : Optional[int] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : List[str] = self.get_rust_tokenizer() UpperCAmelCase__ : Union[str, Any] = tokenizer.encode(_A ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) # With lower casing UpperCAmelCase__ : str = self.get_tokenizer(do_lower_case=_A ) UpperCAmelCase__ : Dict = self.get_rust_tokenizer(do_lower_case=_A ) UpperCAmelCase__ : Union[str, Any] = '''UNwant\u00E9d,running''' UpperCAmelCase__ : int = tokenizer.tokenize(_A ) UpperCAmelCase__ : Optional[int] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Tuple = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Optional[int] = self.get_rust_tokenizer() UpperCAmelCase__ : Any = tokenizer.encode(_A ) UpperCAmelCase__ : Any = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : str = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = BasicTokenizer(do_lower_case=_A , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] UpperCAmelCase__ : Dict = {} for i, token in enumerate(_A ): UpperCAmelCase__ : str = i UpperCAmelCase__ : Dict = WordpieceTokenizer(vocab=_A , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def lowercase_ ( self : Any ): '''simple docstring''' self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def lowercase_ ( self : str ): '''simple docstring''' self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = self.get_tokenizer() UpperCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) UpperCAmelCase__ : List[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=_A ) UpperCAmelCase__ : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_A ) UpperCAmelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(_A ) UpperCAmelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def lowercase_ ( self : int ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Tuple = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase__ : int = tokenizer_r.encode_plus( _A , return_attention_mask=_A , return_token_type_ids=_A , return_offsets_mapping=_A , add_special_tokens=_A , ) UpperCAmelCase__ : Union[str, Any] = tokenizer_r.do_lower_case if hasattr(_A , '''do_lower_case''' ) else False UpperCAmelCase__ : Optional[int] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ['''的''', '''人''', '''有'''] UpperCAmelCase__ : Optional[int] = ''''''.join(_A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : List[str] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : List[Any] = tokenizer_r.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : str = tokenizer_r.convert_ids_to_tokens(_A ) UpperCAmelCase__ : str = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : int = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : int = tokenizer_r.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : List[str] = tokenizer_p.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : List[str] = tokenizer_r.convert_ids_to_tokens(_A ) UpperCAmelCase__ : Tuple = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase__ : int = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(_A ) ] self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A )
356
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } UpperCamelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : int = value elif weight_type == "weight_g": UpperCAmelCase__ : Dict = value elif weight_type == "weight_v": UpperCAmelCase__ : List[str] = value elif weight_type == "bias": UpperCAmelCase__ : Tuple = value else: UpperCAmelCase__ : Tuple = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Dict = fairseq_model.state_dict() UpperCAmelCase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ : Any = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : str = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ : List[str] = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : str = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Optional[int] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : List[str] = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Dict = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ : Tuple = '''weight''' else: UpperCAmelCase__ : Optional[Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : Tuple = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Union[str, Any] = int(items[0] ) UpperCAmelCase__ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ) -> Any: if config_path is not None: UpperCAmelCase__ : Any = UniSpeechSatConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : int = UniSpeechSatConfig() UpperCAmelCase__ : Tuple = '''''' if is_finetuned: UpperCAmelCase__ : Optional[int] = UniSpeechSatForCTC(lowerCAmelCase__ ) else: UpperCAmelCase__ : List[Any] = UniSpeechSatForPreTraining(lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) UpperCAmelCase__ : Union[str, Any] = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCamelCase__ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
299
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A__ : List[Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys A__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
207
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = CTRLTokenizer lowercase__ = False lowercase__ = False def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__ = {'''unk_token''': '''<unk>'''} lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase ) ) def lowercase__ ( self : Union[str, Any], **lowerCamelCase : Dict ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : Dict, lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = '''adapt react readapt apt''' lowercase__ = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = CTRLTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) lowercase__ = '''adapt react readapt apt''' lowercase__ = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__ = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) lowercase__ = tokens + [tokenizer.unk_token] lowercase__ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ), lowerCamelCase )
207
1
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = "" ) -> str: lowercase__: Dict = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' lowercase__: Any = BeautifulSoup(requests.get(__UpperCAmelCase ).text , '''html.parser''' ) lowercase__: List[Any] = soup.find_all('''td''' , attrs='''titleColumn''' ) lowercase__: Union[str, Any] = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__UpperCAmelCase , __UpperCAmelCase ) } def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = "IMDb_Top_250_Movies.csv" ) -> Any: lowercase__: Any = get_imdb_top_aaa_movies() with open(__UpperCAmelCase , '''w''' , newline='''''' ) as out_file: lowercase__: int = csv.writer(__UpperCAmelCase ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
366
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
2
0
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> list[list]: '''simple docstring''' lowerCAmelCase : List[Any] = current_set.copy() for row_index, row in enumerate(_UpperCAmelCase ): lowerCAmelCase : int = row[0] for column_index, column in enumerate(_UpperCAmelCase ): if magnitude == 0: lowerCAmelCase : Optional[Any] = column continue lowerCAmelCase : str = column / magnitude # Subtract to cancel term lowerCAmelCase : str = current_set[0] lowerCAmelCase : Tuple = [first_row] lowerCAmelCase : Any = current_set[1::] for row in current_set: lowerCAmelCase : List[Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_UpperCAmelCase ) continue for column_index in range(len(_UpperCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_UpperCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowerCAmelCase : Optional[Any] = final_set[0] lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : List[Any] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowerCAmelCase : List[str] = simplify(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, _UpperCAmelCase ) lowerCAmelCase : Optional[int] = resultant return final_set def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) lowerCAmelCase : Any = len(_UpperCAmelCase ) + 1 if any(len(_UpperCAmelCase ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(_UpperCAmelCase, (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(_UpperCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] lowerCAmelCase : int = equations.copy() if any(0 in row for row in data_set ): lowerCAmelCase : List[Any] = data_set.copy() lowerCAmelCase : Dict = [] for row_index, row in enumerate(_UpperCAmelCase ): if 0 not in row: lowerCAmelCase : Tuple = data_set.pop(_UpperCAmelCase ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0, _UpperCAmelCase ) lowerCAmelCase : int = data_set.copy() lowerCAmelCase : Tuple = simplify(_UpperCAmelCase ) lowerCAmelCase : int = simplified[::-1] lowerCAmelCase : list = [] for row in simplified: lowerCAmelCase : List[Any] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowerCAmelCase : str = row.copy()[: len(_UpperCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_UpperCAmelCase ) == 0: solutions.append(0 ) continue lowerCAmelCase : List[Any] = temp_row[1::] lowerCAmelCase : List[Any] = temp_row[::-1] for column_index, column in enumerate(_UpperCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = [] for item in solutions: final.append(float(round(_UpperCAmelCase, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __A : int = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
138
from torch import nn def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"Unsupported activation function: {act_fn}" )
138
1
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() __lowercase: List[Any] = logging.get_logger(__name__) __lowercase: Any = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear", "self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed", "self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __lowercase: Tuple = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> Dict: '''simple docstring''' for attribute in key.split("." ): UpperCamelCase__ = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: UpperCamelCase__ = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: UpperCamelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ = value elif weight_type == "weight_g": UpperCamelCase__ = value elif weight_type == "weight_v": UpperCamelCase__ = value elif weight_type == "bias": UpperCamelCase__ = value else: UpperCamelCase__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = fairseq_model.state_dict() UpperCamelCase__ = hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == "group" , ) UpperCamelCase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCamelCase__ = True if "*" in mapped_key: UpperCamelCase__ = name.split(_UpperCamelCase )[0].split("." )[-2] UpperCamelCase__ = mapped_key.replace("*" , _UpperCamelCase ) if "weight_g" in name: UpperCamelCase__ = "weight_g" elif "weight_v" in name: UpperCamelCase__ = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: UpperCamelCase__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ = "weight" else: UpperCamelCase__ = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] ) -> str: '''simple docstring''' UpperCamelCase__ = full_name.split("conv_layers." )[-1] UpperCamelCase__ = name.split("." ) UpperCamelCase__ = int(items[0] ) UpperCamelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any]=None ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = torch.load(_UpperCamelCase ) UpperCamelCase__ = WavLMConfigOrig(checkpoint["cfg"] ) UpperCamelCase__ = WavLMOrig(_UpperCamelCase ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: UpperCamelCase__ = WavLMConfig.from_pretrained(_UpperCamelCase ) else: UpperCamelCase__ = WavLMConfig() UpperCamelCase__ = WavLMModel(_UpperCamelCase ) recursively_load_weights(_UpperCamelCase , _UpperCamelCase ) hf_wavlm.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __lowercase: List[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __lowercase: Tuple = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
31
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.mean(1 ) # Centralize the data of class i UpperCamelCase__ = data - column_reshape(_UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_UpperCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = features.mean(1 ) UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.shape[1] UpperCamelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' if features.any(): UpperCamelCase__ = features.mean(1 ) # Center the dataset UpperCamelCase__ = features - np.reshape(_UpperCamelCase , (data_mean.size, 1) ) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) / features.shape[1] UpperCamelCase__ , UpperCamelCase__ = np.linalg.eigh(_UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase__ = np.dot(filtered_eigenvectors.T , _UpperCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase__ , UpperCamelCase__ = eigh( covariance_between_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , covariance_within_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) UpperCamelCase__ = eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = np.linalg.svd(_UpperCamelCase ) UpperCamelCase__ = svd_matrix[:, 0:dimensions] UpperCamelCase__ = np.dot(filtered_svd_matrix.T , _UpperCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCamelCase__ = np.array([0, 0, 0, 1, 1] ) UpperCamelCase__ = 2 UpperCamelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = linear_discriminant_analysis( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if isinstance(_UpperCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCamelCase__ = 2 UpperCamelCase__ = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = principal_component_analysis(_UpperCamelCase , _UpperCamelCase ) if not np.allclose(_UpperCamelCase , _UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
31
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } UpperCAmelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Dict: """simple docstring""" for attribute in key.split('''.''' ): _lowercase =getattr(__snake_case , __snake_case ) if weight_type is not None: _lowercase =getattr(__snake_case , __snake_case ).shape else: _lowercase =hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _lowercase =value elif weight_type == "weight_g": _lowercase =value elif weight_type == "weight_v": _lowercase =value elif weight_type == "bias": _lowercase =value elif weight_type == "running_mean": _lowercase =value elif weight_type == "running_var": _lowercase =value elif weight_type == "num_batches_tracked": _lowercase =value elif weight_type == "inv_freq": _lowercase =value else: _lowercase =value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" _lowercase =[] _lowercase =fairseq_model.state_dict() _lowercase =hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _lowercase =False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == '''group''' , ) _lowercase =True else: for key, mapped_key in MAPPING.items(): _lowercase ='''wav2vec2_conformer.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowercase =True if "*" in mapped_key: _lowercase =name.split(__snake_case )[0].split('''.''' )[-2] _lowercase =mapped_key.replace('''*''' , __snake_case ) if "pos_bias_u" in name: _lowercase =None elif "pos_bias_v" in name: _lowercase =None elif "weight_g" in name: _lowercase ='''weight_g''' elif "weight_v" in name: _lowercase ='''weight_v''' elif "bias" in name: _lowercase ='''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowercase ='''weight''' elif "running_mean" in name: _lowercase ='''running_mean''' elif "inv_freq" in name: _lowercase ='''inv_freq''' elif "running_var" in name: _lowercase ='''running_var''' elif "num_batches_tracked" in name: _lowercase ='''num_batches_tracked''' else: _lowercase =None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F"Unused weights: {unused_weights}" ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> str: """simple docstring""" _lowercase =full_name.split('''conv_layers.''' )[-1] _lowercase =name.split('''.''' ) _lowercase =int(items[0] ) _lowercase =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowercase =value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowercase =value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) _lowercase =value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) _lowercase =value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__snake_case ) @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=None , __snake_case=None , __snake_case=True ) -> str: """simple docstring""" if config_path is not None: _lowercase =WavaVecaConformerConfig.from_pretrained(__snake_case , hidden_act='''swish''' ) else: _lowercase =WavaVecaConformerConfig() if "rope" in checkpoint_path: _lowercase ='''rotary''' if is_finetuned: if dict_path: _lowercase =Dictionary.load(__snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowercase =target_dict.pad_index _lowercase =target_dict.bos_index _lowercase =target_dict.eos_index _lowercase =len(target_dict.symbols ) _lowercase =os.path.join(__snake_case , '''vocab.json''' ) if not os.path.isdir(__snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__snake_case ) ) return os.makedirs(__snake_case , exist_ok=__snake_case ) _lowercase =target_dict.indices # fairseq has the <pad> and <s> switched _lowercase =0 _lowercase =1 with open(__snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__snake_case , __snake_case ) _lowercase =WavaVecaCTCTokenizer( __snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__snake_case , ) _lowercase =True if config.feat_extract_norm == '''layer''' else False _lowercase =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , ) _lowercase =WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) processor.save_pretrained(__snake_case ) _lowercase =WavaVecaConformerForCTC(__snake_case ) else: _lowercase =WavaVecaConformerForPreTraining(__snake_case ) if is_finetuned: _lowercase , _lowercase , _lowercase =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _lowercase =argparse.Namespace(task='''audio_pretraining''' ) _lowercase =fairseq.tasks.setup_task(__snake_case ) _lowercase , _lowercase , _lowercase =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__snake_case ) _lowercase =model[0].eval() recursively_load_weights(__snake_case , __snake_case , not is_finetuned ) hf_wavavec.save_pretrained(__snake_case ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCAmelCase__ = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
5
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__(self , UpperCAmelCase=2_0_0_0 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=1e-3 ) -> List[str]: _lowercase =None _lowercase =None _lowercase =None def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> str: _lowercase =torch.linspace(1 , self.config.sampling_eps , UpperCAmelCase , device=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowercase =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowercase =std.flatten() while len(std.shape ) < len(score.shape ): _lowercase =std.unsqueeze(-1 ) _lowercase =-score / std # compute _lowercase =-1.0 / len(self.timesteps ) _lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowercase =beta_t.unsqueeze(-1 ) _lowercase =-0.5 * beta_t * x _lowercase =torch.sqrt(UpperCAmelCase ) _lowercase =drift - diffusion**2 * score _lowercase =x + drift * dt # add noise _lowercase =randn_tensor(x.shape , layout=x.layout , generator=UpperCAmelCase , device=x.device , dtype=x.dtype ) _lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self ) -> str: return self.config.num_train_timesteps
5
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case__ : Union[str, Any] = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys snake_case__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
250
0
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: Any = logging.get_logger(__name__) # pylint: disable=invalid-name A: Dict = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def _snake_case ( UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : Any=8 ): UpperCAmelCase : Any = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[Any]: '''simple docstring''' super().__init__() self.register_modules( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , movq=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' if latents is None: UpperCAmelCase : Optional[Any] = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase : Optional[int] = latents.to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=0 ) -> Optional[int]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) UpperCAmelCase : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=0 ) -> str: '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) UpperCAmelCase : int = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=_SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase : Union[str, Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase , UpperCAmelCase : Optional[Any] = cpu_offload_with_hook(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prev_module_hook=_SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. UpperCAmelCase : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_SCREAMING_SNAKE_CASE , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 4.0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : int = self._execution_device UpperCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[Any] = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) UpperCAmelCase : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[int] = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase : Union[str, Any] = image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) UpperCAmelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_SCREAMING_SNAKE_CASE ) self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = self.scheduler.timesteps UpperCAmelCase : Optional[int] = self.unet.config.in_channels UpperCAmelCase , UpperCAmelCase : Optional[int] = downscale_height_and_width(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.movq_scale_factor ) # create initial latent UpperCAmelCase : List[str] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.scheduler , ) for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : Any = {"""image_embeds""": image_embeds} UpperCAmelCase : Dict = self.unet( sample=_SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , added_cond_kwargs=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase , UpperCAmelCase : List[str] = noise_pred.chunk(2 ) UpperCAmelCase , UpperCAmelCase : Dict = variance_pred.chunk(2 ) UpperCAmelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Optional[int] = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , )[0] # post-processing UpperCAmelCase : str = self.movq.decode(_SCREAMING_SNAKE_CASE , force_not_quantize=_SCREAMING_SNAKE_CASE )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase : int = image * 0.5 + 0.5 UpperCAmelCase : Optional[int] = image.clamp(0 , 1 ) UpperCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase : Union[str, Any] = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
109
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
0
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _snake_case ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=_SCREAMING_SNAKE_CASE , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument("""--batch_size""" , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument("""--freeze""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument("""--learning_rate""" , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument("""--seed""" , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=_SCREAMING_SNAKE_CASE , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument("""--weight_decay""" , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument("""--output_dir""" , type=_SCREAMING_SNAKE_CASE , default="""./results""" ) return parser.parse_args() UpperCAmelCase = load('accuracy') def _snake_case ( _SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: """simple docstring""" lowerCAmelCase, lowerCAmelCase = eval_pred lowerCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class __snake_case( _lowerCAmelCase ): '''simple docstring''' def __init__( self , A_ ) -> None: super().__init__() lowerCAmelCase = trainer def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> Dict: if control.should_evaluate: lowerCAmelCase = deepcopy(A_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def _snake_case ( ) -> Tuple: """simple docstring""" lowerCAmelCase = get_args() set_seed(args.seed ) lowerCAmelCase = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) lowerCAmelCase = dataset.train_test_split(test_size=0.2 ) lowerCAmelCase = train_test["""test"""].train_test_split(test_size=0.5 ) lowerCAmelCase = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) lowerCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCAmelCase = tokenizer.eos_token lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) lowerCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): lowerCAmelCase = False lowerCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Optional[int] ): lowerCAmelCase = tokenizer(example["""src"""] , truncation=_SCREAMING_SNAKE_CASE , max_length=1_024 ) lowerCAmelCase = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } lowerCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation["""train"""].column_names , ) lowerCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) lowerCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print("""Training...""" ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
362
'''simple docstring''' class __snake_case( _lowerCAmelCase ): '''simple docstring''' pass class __snake_case( _lowerCAmelCase ): '''simple docstring''' pass class __snake_case: '''simple docstring''' def __init__( self ) -> int: lowerCAmelCase = [ [], [], [], ] def __snake_case ( self , A_ , A_ ) -> None: try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(A_ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __snake_case ( self ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ) -> str: return "\n".join(f'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class __snake_case: '''simple docstring''' def __init__( self ) -> Dict: lowerCAmelCase = [] def __snake_case ( self , A_ ) -> None: if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(A_ ) def __snake_case ( self ) -> int: if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: lowerCAmelCase = min(self.queue ) self.queue.remove(A_ ) return data def __str__( self ) -> str: return str(self.queue ) def _snake_case ( ) -> Tuple: """simple docstring""" lowerCAmelCase = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def _snake_case ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
187
0
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( a__ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def __a ( self ) -> Optional[int]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __a ( self ) -> Any: a : Union[str, Any] = ort.SessionOptions() a : Any = False return options def __a ( self ) -> Dict: a : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) a : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) a : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a : Optional[int] = "A red cat sitting on a park bench" a : Dict = np.random.RandomState(0 ) a : str = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCAmelCase__ , output_type="np" , ) a : Union[str, Any] = output.images a : str = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) a : int = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> Tuple: a : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) a : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) a : Dict = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) a : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a : List[Any] = "A red cat sitting on a park bench" a : List[Any] = np.random.RandomState(0 ) a : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCAmelCase__ , output_type="np" , ) a : Any = output.images a : List[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) a : Any = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
105
'''simple docstring''' class __lowerCAmelCase : # Public class to implement a graph '''simple docstring''' def __init__(self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = row lowercase__ = col lowercase__ = graph def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): # And finally, count all islands. '''simple docstring''' lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase ) count += 1 return count
2
0
import argparse import math import traceback import dateutil.parser as date_parser import requests def __lowerCamelCase ( UpperCAmelCase_ : Any ): """simple docstring""" a :int = {} a :List[Any] = job['''started_at'''] a :List[Any] = job['''completed_at'''] a :List[str] = date_parser.parse(UpperCAmelCase_ ) a :Dict = date_parser.parse(UpperCAmelCase_ ) a :Optional[int] = round((end_datetime - start_datetime).total_seconds() / 60.0 ) a :List[str] = start a :Optional[Any] = end a :List[Any] = duration_in_min return job_info def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any]=None ): """simple docstring""" a :str = None if token is not None: a :Optional[Any] = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} a :Optional[int] = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' a :str = requests.get(UpperCAmelCase_ , headers=UpperCAmelCase_ ).json() a :Tuple = {} try: job_time.update({job['''name''']: extract_time_from_single_job(UpperCAmelCase_ ) for job in result['''jobs''']} ) a :Tuple = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(UpperCAmelCase_ ): a :Union[str, Any] = requests.get(url + F'''&page={i + 2}''' , headers=UpperCAmelCase_ ).json() job_time.update({job['''name''']: extract_time_from_single_job(UpperCAmelCase_ ) for job in result['''jobs''']} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') snake_case : Union[str, Any] = parser.parse_args() snake_case : Union[str, Any] = get_job_time(args.workflow_run_id) snake_case : Optional[Any] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F"""{k}: {v["duration"]}""")
359
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'microsoft/speecht5_tts' SCREAMING_SNAKE_CASE__ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) SCREAMING_SNAKE_CASE__ = 'text_reader' SCREAMING_SNAKE_CASE__ = SpeechTaProcessor SCREAMING_SNAKE_CASE__ = SpeechTaForTextToSpeech SCREAMING_SNAKE_CASE__ = SpeechTaHifiGan SCREAMING_SNAKE_CASE__ = ['text'] SCREAMING_SNAKE_CASE__ = ['audio'] def SCREAMING_SNAKE_CASE__ ( self ): if self.post_processor is None: a :List[Any] = '''microsoft/speecht5_hifigan''' super().setup() def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=None ): a :Tuple = self.pre_processor(text=_lowerCamelCase , return_tensors='''pt''' , truncation=_lowerCamelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) a :List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) a :int = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): with torch.no_grad(): return self.model.generate_speech(**_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): with torch.no_grad(): return self.post_processor(_lowerCamelCase ).cpu().detach()
281
0
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __SCREAMING_SNAKE_CASE : Union[str, Any] = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def UpperCamelCase_ ( _UpperCAmelCase : Optional[int]=True ) -> Tuple: """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=snake_case__ ) ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = None __UpperCamelCase: int = None def _A ( self : str , A : str , A : List[Any] ): with TemporaryDirectory() as tmp_dir: _UpperCAmelCase : int = dataset_module_factory(A , cache_dir=A ) _UpperCAmelCase : List[Any] = import_main_class(dataset_module.module_path , dataset=A ) _UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=A , config_name=A , hash=dataset_module.hash , ) _UpperCAmelCase : Tuple = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=A ).replace(os.sep , "/" ), config.DATASET_INFO_FILENAME, ] ) _UpperCAmelCase : Optional[Any] = cached_path(A , cache_dir=A ) self.assertTrue(os.path.exists(A ) ) @pytest.mark.integration def UpperCamelCase_ ( _UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : int = tmp_path_factory.mktemp("test_hf_gcp" ) / "test_wikipedia_simple" _UpperCAmelCase : Union[str, Any] = dataset_module_factory("wikipedia" , cache_dir=_UpperCAmelCase ) _UpperCAmelCase : str = import_main_class(dataset_module.module_path ) _UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=_UpperCAmelCase , config_name="20220301.frr" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _UpperCAmelCase : Dict = None builder_instance.download_and_prepare() _UpperCAmelCase : List[str] = builder_instance.as_dataset() assert ds @pytest.mark.integration def UpperCamelCase_ ( _UpperCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : List[str] = dataset_module_factory("wikipedia" , cache_dir=_UpperCAmelCase ) _UpperCAmelCase : List[Any] = import_main_class(dataset_module.module_path , dataset=_UpperCAmelCase ) _UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=_UpperCAmelCase , config_name="20220301.frr" , hash=dataset_module.hash , ) _UpperCAmelCase : Dict = builder_instance.as_streaming_dataset() assert ds assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert "train" in ds assert isinstance(ds["train"] , _UpperCAmelCase ) assert next(iter(ds["train"] ) )
31
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] = """▁""" __SCREAMING_SNAKE_CASE : str = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __SCREAMING_SNAKE_CASE : int = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } __SCREAMING_SNAKE_CASE : str = { """google/pegasus-xsum""": 512, } class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[int] = VOCAB_FILES_NAMES __UpperCamelCase: Dict = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase: List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase: Optional[int] = PegasusTokenizer __UpperCamelCase: Optional[Any] = ["input_ids", "attention_mask"] def __init__( self : Dict , A : List[str]=None , A : Union[str, Any]=None , A : Optional[int]="<pad>" , A : Tuple="</s>" , A : Union[str, Any]="<unk>" , A : Union[str, Any]="<mask_2>" , A : Dict="<mask_1>" , A : Union[str, Any]=None , A : int=103 , **A : Optional[Any] , ): _UpperCAmelCase : Dict = offset if additional_special_tokens is not None: if not isinstance(A , A ): raise TypeError( F"""additional_special_tokens should be of type {type(A )}, but is""" F""" {type(A )}""" ) _UpperCAmelCase : Optional[int] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(A ) , self.offset - 1 ) ] if len(set(A ) ) != len(A ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) _UpperCAmelCase : Any = additional_special_tokens_extended else: _UpperCAmelCase : Dict = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( A , tokenizer_file=A , pad_token=A , eos_token=A , unk_token=A , mask_token=A , mask_token_sent=A , offset=A , additional_special_tokens=A , **A , ) _UpperCAmelCase : Optional[Any] = vocab_file _UpperCAmelCase : Optional[Any] = False if not self.vocab_file else True def _A ( self : List[str] , A : Optional[Any] ): _UpperCAmelCase : Any = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" F""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def _A ( self : str , A : List , A : Optional[List] = None , A : bool = False ): if already_has_special_tokens: return self._special_token_mask(A ) elif token_ids_a is None: return self._special_token_mask(A ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _A ( self : Optional[int] , A : Union[str, Any] , A : int=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _A ( self : Union[str, Any] , A : str , A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : List[Any] = os.path.join( A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
31
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { "configuration_longformer": [ "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerOnnxConfig", ], "tokenization_longformer": ["LongformerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["LongformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
137
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters _A = logging.get_logger(__name__) def lowercase_ ( A__ , A__ , A__ , A__=None , A__=None ) -> str: """simple docstring""" if "." in tensor_name: snake_case = tensor_name.split("." ) for split in splits[:-1]: snake_case = getattr(A__ , A__ ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) snake_case = new_module snake_case = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'{module} does not have a parameter or a buffer named {tensor_name}.' ) snake_case = tensor_name in module._buffers snake_case = getattr(A__ , A__ ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(F'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) snake_case = False snake_case = False if is_buffer or not is_bitsandbytes_available(): snake_case = False snake_case = False else: snake_case = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) snake_case = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: snake_case = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: snake_case = old_value.to(A__ ) elif isinstance(A__ , torch.Tensor ): snake_case = value.to("cpu" ) if value.dtype == torch.inta: snake_case = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: snake_case = torch.tensor(A__ , device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , A__ ) and fpaa_statistics is None: snake_case = new_value.T snake_case = old_value.__dict__ if is_abit: snake_case = bnb.nn.IntaParams(A__ , requires_grad=A__ , **A__ ).to(A__ ) elif is_abit: snake_case = bnb.nn.Paramsabit(A__ , requires_grad=A__ , **A__ ).to(A__ ) snake_case = new_value if fpaa_statistics is not None: setattr(module.weight , "SCB" , fpaa_statistics.to(A__ ) ) else: if value is None: snake_case = old_value.to(A__ ) elif isinstance(A__ , torch.Tensor ): snake_case = value.to(A__ ) else: snake_case = torch.tensor(A__ , device=A__ ) if is_buffer: snake_case = new_value else: snake_case = nn.Parameter(A__ , requires_grad=old_value.requires_grad ) snake_case = new_value def lowercase_ ( A__ , A__=None , A__=None , A__=None , A__=False ) -> Optional[Any]: """simple docstring""" for name, module in model.named_children(): if current_key_name is None: snake_case = [] current_key_name.append(A__ ) if (isinstance(A__ , nn.Linear ) or isinstance(A__ , A__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(A__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(A__ , A__ ): snake_case , snake_case = module.weight.shape else: snake_case = module.in_features snake_case = module.out_features if quantization_config.quantization_method() == "llm_int8": snake_case = bnb.nn.LinearabitLt( A__ , A__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) snake_case = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: snake_case = bnb.nn.Linearabit( A__ , A__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) snake_case = True # Store the module class in case we need to transpose the weight later snake_case = type(A__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(A__ ) if len(list(module.children() ) ) > 0: snake_case , snake_case = _replace_with_bnb_linear( A__ , A__ , A__ , A__ , has_been_replaced=A__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowercase_ ( A__ , A__=None , A__=None , A__=None ) -> List[str]: """simple docstring""" snake_case = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert snake_case , snake_case = _replace_with_bnb_linear( A__ , A__ , A__ , A__ ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def lowercase_ ( *A__ , **A__ ) -> Optional[int]: """simple docstring""" warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , A__ , ) return replace_with_bnb_linear(*A__ , **A__ ) def lowercase_ ( *A__ , **A__ ) -> Any: """simple docstring""" warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , A__ , ) return set_module_quantized_tensor_to_device(*A__ , **A__ ) def lowercase_ ( A__ ) -> Union[str, Any]: """simple docstring""" snake_case = deepcopy(A__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() snake_case = find_tied_parameters(A__ ) # For compatibility with Accelerate < 0.18 if isinstance(A__ , A__ ): snake_case = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: snake_case = sum(A__ , [] ) snake_case = len(A__ ) > 0 # Check if it is a base model snake_case = not hasattr(A__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head snake_case = list(model.named_children() ) snake_case = [list_modules[-1][0]] # add last module together with tied weights snake_case = set(A__ ) - set(A__ ) snake_case = list(set(A__ ) ) + list(A__ ) # remove ".weight" from the keys snake_case = [".weight", ".bias"] snake_case = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: snake_case = name.replace(A__ , "" ) filtered_module_names.append(A__ ) return filtered_module_names
137
1
from __future__ import annotations from math import pow, sqrt def UpperCamelCase( __UpperCamelCase : float ,__UpperCamelCase : float ,__UpperCamelCase : float ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(__UpperCamelCase ,2 ) - pow(__UpperCamelCase ,2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__UpperCamelCase ,2 ) - pow(__UpperCamelCase ,2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__UpperCamelCase ,2 ) + pow(__UpperCamelCase ,2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
103
'''simple docstring''' import os import pytest from attr import dataclass _snake_case = 'us-east-1' # defaults region @dataclass class a__ : _SCREAMING_SNAKE_CASE : str _SCREAMING_SNAKE_CASE : str = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _SCREAMING_SNAKE_CASE : Dict = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5500, } _SCREAMING_SNAKE_CASE : List[str] = {**hyperparameters, 'max_steps': 1000} @property def _lowerCamelCase ( self ): """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _lowerCamelCase ( self ): """simple docstring""" return f'''{self.framework}-transfromers-test''' @property def _lowerCamelCase ( self ): """simple docstring""" return f'''./tests/sagemaker/scripts/{self.framework}''' @property def _lowerCamelCase ( self ): """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def _A ( snake_case ) -> Tuple: _lowercase : List[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
250
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( A__ ): snake_case : Any = """markuplm""" def __init__( self , __lowerCAmelCase=30522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase=256 , __lowerCAmelCase=1024 , __lowerCAmelCase=216 , __lowerCAmelCase=1001 , __lowerCAmelCase=32 , __lowerCAmelCase=50 , __lowerCAmelCase="absolute" , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase , ): super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case , ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = use_cache UpperCamelCase__ = classifier_dropout # additional properties UpperCamelCase__ = max_depth UpperCamelCase__ = max_xpath_tag_unit_embeddings UpperCamelCase__ = max_xpath_subs_unit_embeddings UpperCamelCase__ = tag_pad_id UpperCamelCase__ = subs_pad_id UpperCamelCase__ = xpath_unit_hidden_size
353
UpperCamelCase__ = { "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) UpperCamelCase__ = { "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def _UpperCamelCase (a__ :float , a__ :str , a__ :str ): """simple docstring""" UpperCamelCase__ = from_type.lower().strip("""s""" ) UpperCamelCase__ = to_type.lower().strip("""s""" ) UpperCamelCase__ = UNIT_SYMBOL.get(a__ , a__ ) UpperCamelCase__ = UNIT_SYMBOL.get(a__ , a__ ) if from_sanitized not in METRIC_CONVERSION: UpperCamelCase__ = ( f"""Invalid 'from_type' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(a__ )}""" ) raise ValueError(a__ ) if to_sanitized not in METRIC_CONVERSION: UpperCamelCase__ = ( f"""Invalid 'to_type' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(a__ )}""" ) raise ValueError(a__ ) UpperCamelCase__ = METRIC_CONVERSION[from_sanitized] UpperCamelCase__ = METRIC_CONVERSION[to_sanitized] UpperCamelCase__ = 1 if from_exponent > to_exponent: UpperCamelCase__ = from_exponent - to_exponent else: UpperCamelCase__ = -(to_exponent - from_exponent) return value * pow(10 , a__ ) if __name__ == "__main__": from doctest import testmod testmod()
87
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCAmelCase: Any = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class a__( unittest.TestCase ): lowercase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowercase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowercase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def lowercase_ ( self : List[str] , __snake_case : str , __snake_case : List[Any] , __snake_case : Tuple ): a : Optional[Any] = ZeroShotClassificationPipeline( model=__lowercase , tokenizer=__lowercase , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def lowercase_ ( self : Any , __snake_case : Any , __snake_case : Union[str, Any] ): a : Union[str, Any] = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(__lowercase , {'sequence': ANY(__lowercase ), 'labels': [ANY(__lowercase )], 'scores': [ANY(__lowercase )]} ) # No kwarg a : Optional[Any] = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(__lowercase , {'sequence': ANY(__lowercase ), 'labels': [ANY(__lowercase )], 'scores': [ANY(__lowercase )]} ) a : List[str] = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(__lowercase , {'sequence': ANY(__lowercase ), 'labels': [ANY(__lowercase )], 'scores': [ANY(__lowercase )]} ) a : Optional[Any] = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( __lowercase , {'sequence': ANY(__lowercase ), 'labels': [ANY(__lowercase ), ANY(__lowercase )], 'scores': [ANY(__lowercase ), ANY(__lowercase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) a : Any = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( __lowercase , {'sequence': ANY(__lowercase ), 'labels': [ANY(__lowercase ), ANY(__lowercase )], 'scores': [ANY(__lowercase ), ANY(__lowercase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) a : Optional[Any] = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(__lowercase , {'sequence': ANY(__lowercase ), 'labels': [ANY(__lowercase )], 'scores': [ANY(__lowercase )]} ) # https://github.com/huggingface/transformers/issues/13846 a : List[Any] = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( __lowercase , [ {'sequence': ANY(__lowercase ), 'labels': [ANY(__lowercase ), ANY(__lowercase )], 'scores': [ANY(__lowercase ), ANY(__lowercase )]} for i in range(1 ) ] , ) a : int = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( __lowercase , [ {'sequence': ANY(__lowercase ), 'labels': [ANY(__lowercase ), ANY(__lowercase )], 'scores': [ANY(__lowercase ), ANY(__lowercase )]} for i in range(2 ) ] , ) with self.assertRaises(__lowercase ): classifier('' , candidate_labels='politics' ) with self.assertRaises(__lowercase ): classifier(__lowercase , candidate_labels='politics' ) with self.assertRaises(__lowercase ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(__lowercase ): classifier('Who are you voting for in 2020?' , candidate_labels=__lowercase ) with self.assertRaises(__lowercase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(__lowercase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=__lowercase , ) self.run_entailment_id(__lowercase ) def lowercase_ ( self : List[str] , __snake_case : Pipeline ): a : Tuple = zero_shot_classifier.model.config a : Any = config.labelaid a : List[str] = zero_shot_classifier.entailment_id a : Optional[Any] = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) a : Any = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) a : Union[str, Any] = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) a : Union[str, Any] = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) a : Union[str, Any] = original_labelaid self.assertEqual(__lowercase , zero_shot_classifier.entailment_id ) @require_torch def lowercase_ ( self : List[Any] ): a : Union[str, Any] = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 1_00 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def lowercase_ ( self : Optional[int] ): a : Dict = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) a : Tuple = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(__lowercase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @require_tf def lowercase_ ( self : List[Any] ): a : List[str] = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) a : Dict = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(__lowercase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @slow @require_torch def lowercase_ ( self : int ): a : Dict = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) a : Union[str, Any] = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(__lowercase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) a : str = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=__lowercase , ) self.assertEqual( nested_simplify(__lowercase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def lowercase_ ( self : Optional[int] ): a : List[Any] = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) a : Union[str, Any] = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(__lowercase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) a : Tuple = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=__lowercase , ) self.assertEqual( nested_simplify(__lowercase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , )
297
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowercase__ : Optional[int] = [ # (stable-diffusion, HF Diffusers) ("time_embed.0.weight", "time_embedding.linear_1.weight"), ("time_embed.0.bias", "time_embedding.linear_1.bias"), ("time_embed.2.weight", "time_embedding.linear_2.weight"), ("time_embed.2.bias", "time_embedding.linear_2.bias"), ("input_blocks.0.0.weight", "conv_in.weight"), ("input_blocks.0.0.bias", "conv_in.bias"), ("out.0.weight", "conv_norm_out.weight"), ("out.0.bias", "conv_norm_out.bias"), ("out.2.weight", "conv_out.weight"), ("out.2.bias", "conv_out.bias"), ] lowercase__ : List[Any] = [ # (stable-diffusion, HF Diffusers) ("in_layers.0", "norm1"), ("in_layers.2", "conv1"), ("out_layers.0", "norm2"), ("out_layers.3", "conv2"), ("emb_layers.1", "time_emb_proj"), ("skip_connection", "conv_shortcut"), ] lowercase__ : Optional[Any] = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowercase__ : str = f'''down_blocks.{i}.resnets.{j}.''' lowercase__ : Union[str, Any] = f'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowercase__ : Tuple = f'''down_blocks.{i}.attentions.{j}.''' lowercase__ : Dict = f'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowercase__ : List[Any] = f'''up_blocks.{i}.resnets.{j}.''' lowercase__ : int = f'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowercase__ : List[str] = f'''up_blocks.{i}.attentions.{j}.''' lowercase__ : Tuple = f'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowercase__ : List[str] = f'''down_blocks.{i}.downsamplers.0.conv.''' lowercase__ : Any = f'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowercase__ : Optional[int] = f'''up_blocks.{i}.upsamplers.0.''' lowercase__ : int = f'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowercase__ : Union[str, Any] = "mid_block.attentions.0." lowercase__ : List[Any] = "middle_block.1." unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowercase__ : Tuple = f'''mid_block.resnets.{j}.''' lowercase__ : List[str] = f'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: snake_case_ = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: snake_case_ = v.replace(_A , _A ) snake_case_ = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: snake_case_ = v.replace(_A , _A ) snake_case_ = v snake_case_ = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowercase__ : Dict = [ # (stable-diffusion, HF Diffusers) ("nin_shortcut", "conv_shortcut"), ("norm_out", "conv_norm_out"), ("mid.attn_1.", "mid_block.attentions.0."), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowercase__ : Any = f'''encoder.down_blocks.{i}.resnets.{j}.''' lowercase__ : List[Any] = f'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowercase__ : Optional[int] = f'''down_blocks.{i}.downsamplers.0.''' lowercase__ : Tuple = f'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowercase__ : List[str] = f'''up_blocks.{i}.upsamplers.0.''' lowercase__ : Optional[int] = f'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowercase__ : int = f'''decoder.up_blocks.{i}.resnets.{j}.''' lowercase__ : Union[str, Any] = f'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowercase__ : Dict = f'''mid_block.resnets.{i}.''' lowercase__ : int = f'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowercase__ : Optional[Any] = [ # (stable-diffusion, HF Diffusers) ("norm.", "group_norm."), ("q.", "query."), ("k.", "key."), ("v.", "value."), ("proj_out.", "proj_attn."), ] def lowerCamelCase__ ( _A ): '''simple docstring''' return w.reshape(*w.shape , 1 , 1 ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: snake_case_ = v.replace(_A , _A ) snake_case_ = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: snake_case_ = v.replace(_A , _A ) snake_case_ = v snake_case_ = {v: vae_state_dict[k] for k, v in mapping.items()} snake_case_ = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"mid.attn_1.{weight_name}.weight" in k: print(f"Reshaping {k} for SD format" ) snake_case_ = reshape_weight_for_sd(_A ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowercase__ : int = [ # (stable-diffusion, HF Diffusers) ("resblocks.", "text_model.encoder.layers."), ("ln_1", "layer_norm1"), ("ln_2", "layer_norm2"), (".c_fc.", ".fc1."), (".c_proj.", ".fc2."), (".attn", ".self_attn"), ("ln_final.", "transformer.text_model.final_layer_norm."), ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), ] lowercase__ : Dict = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowercase__ : Tuple = re.compile("|".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowercase__ : Dict = {"q": 0, "k": 1, "v": 2} def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = {} snake_case_ = {} snake_case_ = {} for k, v in text_enc_dict.items(): if ( k.endswith(".self_attn.q_proj.weight" ) or k.endswith(".self_attn.k_proj.weight" ) or k.endswith(".self_attn.v_proj.weight" ) ): snake_case_ = k[: -len(".q_proj.weight" )] snake_case_ = k[-len("q_proj.weight" )] if k_pre not in capture_qkv_weight: snake_case_ = [None, None, None] snake_case_ = v continue if ( k.endswith(".self_attn.q_proj.bias" ) or k.endswith(".self_attn.k_proj.bias" ) or k.endswith(".self_attn.v_proj.bias" ) ): snake_case_ = k[: -len(".q_proj.bias" )] snake_case_ = k[-len("q_proj.bias" )] if k_pre not in capture_qkv_bias: snake_case_ = [None, None, None] snake_case_ = v continue snake_case_ = textenc_pattern.sub(lambda _A : protected[re.escape(m.group(0 ) )] , _A ) snake_case_ = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) snake_case_ = textenc_pattern.sub(lambda _A : protected[re.escape(m.group(0 ) )] , _A ) snake_case_ = torch.cat(_A ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) snake_case_ = textenc_pattern.sub(lambda _A : protected[re.escape(m.group(0 ) )] , _A ) snake_case_ = torch.cat(_A ) return new_state_dict def lowerCamelCase__ ( _A ): '''simple docstring''' return text_enc_dict if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--use_safetensors", action="store_true", help="Save weights use safetensors, default is ckpt." ) lowercase__ : Dict = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowercase__ : Tuple = osp.join(args.model_path, "unet", "diffusion_pytorch_model.safetensors") lowercase__ : int = osp.join(args.model_path, "vae", "diffusion_pytorch_model.safetensors") lowercase__ : Any = osp.join(args.model_path, "text_encoder", "model.safetensors") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowercase__ : str = load_file(unet_path, device="cpu") else: lowercase__ : Optional[Any] = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin") lowercase__ : Any = torch.load(unet_path, map_location="cpu") if osp.exists(vae_path): lowercase__ : Tuple = load_file(vae_path, device="cpu") else: lowercase__ : Any = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin") lowercase__ : Dict = torch.load(vae_path, map_location="cpu") if osp.exists(text_enc_path): lowercase__ : Union[str, Any] = load_file(text_enc_path, device="cpu") else: lowercase__ : Union[str, Any] = osp.join(args.model_path, "text_encoder", "pytorch_model.bin") lowercase__ : Optional[int] = torch.load(text_enc_path, map_location="cpu") # Convert the UNet model lowercase__ : Dict = convert_unet_state_dict(unet_state_dict) lowercase__ : Any = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowercase__ : Dict = convert_vae_state_dict(vae_state_dict) lowercase__ : Union[str, Any] = {"first_stage_model." + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowercase__ : Optional[Any] = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowercase__ : Any = {"transformer." + k: v for k, v in text_enc_dict.items()} lowercase__ : List[Any] = convert_text_enc_state_dict_vaa(text_enc_dict) lowercase__ : List[str] = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()} else: lowercase__ : Tuple = convert_text_enc_state_dict(text_enc_dict) lowercase__ : Any = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowercase__ : Tuple = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowercase__ : Any = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowercase__ : Union[str, Any] = {"state_dict": state_dict} torch.save(state_dict, args.checkpoint_path)
187
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __lowerCamelCase : """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE : Tuple , ): _A : Optional[int] = parent _A : Optional[int] = 13 _A : Dict = 7 _A : Optional[int] = True _A : List[str] = True _A : List[Any] = True _A : Union[str, Any] = True _A : Any = True _A : Optional[int] = False _A : Any = False _A : str = False _A : Optional[Any] = 2 _A : Optional[int] = 99 _A : Any = 0 _A : List[Any] = 32 _A : int = 2 _A : Optional[Any] = 4 _A : Dict = 0.1 _A : Optional[Any] = 0.1 _A : str = 512 _A : Any = 16 _A : str = 2 _A : Dict = 0.02 _A : List[Any] = 3 _A : Optional[int] = 4 _A : Tuple = '''last''' _A : Any = True _A : Union[str, Any] = None _A : Tuple = 0 def A ( self : Optional[Any]): _A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _A : Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa) _A : Tuple = None if self.use_input_lengths: _A : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length _A : Any = None if self.use_token_type_ids: _A : int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) _A : Dict = None _A : List[str] = None _A : Union[str, Any] = None if self.use_labels: _A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _A : List[str] = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa) _A : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) _A : Optional[int] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def A ( self : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , ): _A : str = TFFlaubertModel(config=__lowercase) _A : List[str] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} _A : Optional[int] = model(__lowercase) _A : Optional[int] = [input_ids, input_mask] _A : Union[str, Any] = model(__lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , ): _A : str = TFFlaubertWithLMHeadModel(__lowercase) _A : List[str] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} _A : Optional[int] = model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A ( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , ): _A : Any = TFFlaubertForQuestionAnsweringSimple(__lowercase) _A : str = {'''input_ids''': input_ids, '''lengths''': input_lengths} _A : int = model(__lowercase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A ( self : Dict , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , ): _A : int = TFFlaubertForSequenceClassification(__lowercase) _A : List[Any] = {'''input_ids''': input_ids, '''lengths''': input_lengths} _A : Any = model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict , ): _A : Optional[int] = self.num_labels _A : int = TFFlaubertForTokenClassification(config=__lowercase) _A : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _A : Optional[Any] = model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A ( self : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , ): _A : Any = self.num_choices _A : Any = TFFlaubertForMultipleChoice(config=__lowercase) _A : List[str] = tf.tile(tf.expand_dims(__lowercase , 1) , (1, self.num_choices, 1)) _A : Optional[Any] = tf.tile(tf.expand_dims(__lowercase , 1) , (1, self.num_choices, 1)) _A : Tuple = tf.tile(tf.expand_dims(__lowercase , 1) , (1, self.num_choices, 1)) _A : Any = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _A : List[Any] = model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A ( self : int): _A : Optional[int] = self.prepare_config_and_inputs() ( _A ) : Any = config_and_inputs _A : int = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) a = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable a = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) a = False a = False def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def A ( self : int): _A : int = TFFlaubertModelTester(self) _A : Dict = ConfigTester(self , config_class=__lowercase , emb_dim=37) def A ( self : Tuple): self.config_tester.run_common_tests() def A ( self : List[Any]): _A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__lowercase) def A ( self : Union[str, Any]): _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__lowercase) def A ( self : Dict): _A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__lowercase) def A ( self : List[Any]): _A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__lowercase) def A ( self : int): _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__lowercase) def A ( self : Optional[int]): _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__lowercase) @slow def A ( self : List[str]): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Any = TFFlaubertModel.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) @require_tf @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A ( self : List[str]): _A : List[Any] = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased') _A : Tuple = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" _A : Union[str, Any] = model(__lowercase)[0] _A : str = tf.TensorShape((1, 8, 512)) self.assertEqual(output.shape , __lowercase) # compare the actual values for a slice. _A : Optional[int] = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4))
367
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A : Optional[int] = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
227
0
'''simple docstring''' def a ( __a ) -> list: '''simple docstring''' def merge(__a , __a ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_snake_case ) <= 1: return collection UpperCamelCase__ :Any = len(_snake_case ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
97
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class _snake_case : UpperCamelCase__ = LEDConfig UpperCamelCase__ = {} UpperCamelCase__ = 'gelu' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a=0.1 , _a=0.1 , _a=20 , _a=2 , _a=1 , _a=0 , _a=4 , ): __magic_name__ : int = parent __magic_name__ : Optional[int] = batch_size __magic_name__ : Tuple = seq_length __magic_name__ : List[Any] = is_training __magic_name__ : Dict = use_labels __magic_name__ : Optional[Any] = vocab_size __magic_name__ : int = hidden_size __magic_name__ : Optional[int] = num_hidden_layers __magic_name__ : Optional[int] = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Any = hidden_dropout_prob __magic_name__ : Optional[int] = attention_probs_dropout_prob __magic_name__ : List[str] = max_position_embeddings __magic_name__ : Any = eos_token_id __magic_name__ : str = pad_token_id __magic_name__ : int = bos_token_id __magic_name__ : Optional[int] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __magic_name__ : Tuple = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __magic_name__ : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __magic_name__ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __magic_name__ : int = tf.concat([input_ids, eos_tensor] , axis=1 ) __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __magic_name__ : List[str] = prepare_led_inputs_dict(_a , _a , _a ) __magic_name__ : Union[str, Any] = tf.concat( [tf.zeros_like(_a )[:, :-1], tf.ones_like(_a )[:, -1:]] , axis=-1 , ) __magic_name__ : List[Any] = global_attention_mask return config, inputs_dict def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : Dict = TFLEDModel(config=_a ).get_decoder() __magic_name__ : Optional[int] = inputs_dict["input_ids"] __magic_name__ : Union[str, Any] = input_ids[:1, :] __magic_name__ : str = inputs_dict["attention_mask"][:1, :] __magic_name__ : int = 1 # first forward pass __magic_name__ : Tuple = model(_a , attention_mask=_a , use_cache=_a ) __magic_name__ , __magic_name__ : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __magic_name__ : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __magic_name__ : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __magic_name__ : Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) __magic_name__ : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __magic_name__ : List[str] = model(_a , attention_mask=_a )[0] __magic_name__ : Dict = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __magic_name__ : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __magic_name__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] __magic_name__ : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def lowerCAmelCase_ ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Any , _snake_case : str=None , _snake_case : List[str]=None , _snake_case : int=None , _snake_case : Any=None , ) -> int: '''simple docstring''' if attention_mask is None: __magic_name__ : str = tf.cast(tf.math.not_equal(_snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __magic_name__ : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __magic_name__ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __magic_name__ : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class _snake_case ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCamelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCamelCase__ = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = TFLEDModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : List[str] = tf.zeros_like(inputs_dict["attention_mask"] ) __magic_name__ : Optional[Any] = 2 __magic_name__ : Tuple = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) __magic_name__ : Any = True __magic_name__ : str = self.model_tester.seq_length __magic_name__ : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_a ): __magic_name__ : str = outputs.decoder_attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_a ): __magic_name__ : Any = [t.numpy() for t in outputs.encoder_attentions] __magic_name__ : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : List[str] = False __magic_name__ : Tuple = False __magic_name__ : Optional[int] = model_class(_a ) __magic_name__ : str = model(self._prepare_for_class(_a , _a ) ) __magic_name__ : Any = len(_a ) self.assertEqual(config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) if self.is_encoder_decoder: __magic_name__ : Tuple = model_class(_a ) __magic_name__ : Optional[Any] = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(config.output_hidden_states , _a ) check_decoder_attentions_output(_a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ : Dict = True __magic_name__ : str = model_class(_a ) __magic_name__ : Any = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) # Check attention is always last and order is fine __magic_name__ : Union[str, Any] = True __magic_name__ : Union[str, Any] = True __magic_name__ : List[str] = model_class(_a ) __magic_name__ : Any = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_a ) ) self.assertEqual(model.config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self ): # TODO: Head-masking not yet implement pass def lowerCAmelCase_ ( _snake_case : int ) -> Optional[int]: '''simple docstring''' return tf.constant(_snake_case , dtype=tf.intaa ) snake_case : Optional[int] = 1E-4 @slow @require_tf class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here __magic_name__ : Optional[int] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __magic_name__ : str = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __magic_name__ : Any = prepare_led_inputs_dict(model.config , _a , _a ) __magic_name__ : List[Any] = model(**_a )[0] __magic_name__ : List[str] = (1, 1_024, 768) self.assertEqual(output.shape , _a ) # change to expected output here __magic_name__ : int = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1e-3 ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here __magic_name__ : int = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __magic_name__ : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __magic_name__ : Optional[Any] = prepare_led_inputs_dict(model.config , _a , _a ) __magic_name__ : Union[str, Any] = model(**_a )[0] __magic_name__ : Optional[int] = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , _a ) # change to expected output here __magic_name__ : str = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1e-3 , rtol=1e-3 )
281
0
"""simple docstring""" import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : int = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "conditional_detr" __UpperCamelCase = ["past_key_values"] __UpperCamelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , _a=True , _a=None , _a=3 , _a=300 , _a=6 , _a=2_048 , _a=8 , _a=6 , _a=2_048 , _a=8 , _a=0.0 , _a=0.0 , _a=True , _a="relu" , _a=256 , _a=0.1 , _a=0.0 , _a=0.0 , _a=0.02 , _a=1.0 , _a=False , _a="sine" , _a="resnet50" , _a=True , _a=False , _a=2 , _a=5 , _a=2 , _a=1 , _a=1 , _a=2 , _a=5 , _a=2 , _a=0.25 , **_a , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCamelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(_a , _a ): lowerCamelCase = backbone_config.get("""model_type""" ) lowerCamelCase = CONFIG_MAPPING[backbone_model_type] lowerCamelCase = config_class.from_dict(_a ) lowerCamelCase = use_timm_backbone lowerCamelCase = backbone_config lowerCamelCase = num_channels lowerCamelCase = num_queries lowerCamelCase = d_model lowerCamelCase = encoder_ffn_dim lowerCamelCase = encoder_layers lowerCamelCase = encoder_attention_heads lowerCamelCase = decoder_ffn_dim lowerCamelCase = decoder_layers lowerCamelCase = decoder_attention_heads lowerCamelCase = dropout lowerCamelCase = attention_dropout lowerCamelCase = activation_dropout lowerCamelCase = activation_function lowerCamelCase = init_std lowerCamelCase = init_xavier_std lowerCamelCase = encoder_layerdrop lowerCamelCase = decoder_layerdrop lowerCamelCase = encoder_layers lowerCamelCase = auxiliary_loss lowerCamelCase = position_embedding_type lowerCamelCase = backbone lowerCamelCase = use_pretrained_backbone lowerCamelCase = dilation # Hungarian matcher lowerCamelCase = class_cost lowerCamelCase = bbox_cost lowerCamelCase = giou_cost # Loss coefficients lowerCamelCase = mask_loss_coefficient lowerCamelCase = dice_loss_coefficient lowerCamelCase = cls_loss_coefficient lowerCamelCase = bbox_loss_coefficient lowerCamelCase = giou_loss_coefficient lowerCamelCase = focal_alpha super().__init__(is_encoder_decoder=_a , **_a ) @property def _lowerCAmelCase ( self ): """simple docstring""" return self.encoder_attention_heads @property def _lowerCAmelCase ( self ): """simple docstring""" return self.d_model def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCamelCase = self.backbone_config.to_dict() lowerCamelCase = self.__class__.model_type return output class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = version.parse("1.11" ) @property def _lowerCAmelCase ( self ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowerCAmelCase ( self ): """simple docstring""" return 1e-5 @property def _lowerCAmelCase ( self ): """simple docstring""" return 12
168
"""simple docstring""" import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def a__ ( snake_case__ ) -> Tuple: if hor == 1_28: lowerCamelCase = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase = (32, 1_28, 2_56) lowerCamelCase = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: lowerCamelCase = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase = (32, 64, 1_28, 2_56) lowerCamelCase = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") lowerCamelCase = torch.load(F'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' ) lowerCamelCase = model.state_dict() lowerCamelCase = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_55_36, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } lowerCamelCase = UNetaDModel(**snake_case__ ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) lowerCamelCase = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase = state_dict.pop(snake_case__ ) hf_value_function.load_state_dict(snake_case__ ) torch.save(hf_value_function.state_dict() , F'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' ) with open(F'hub/hopper-medium-v2/unet/hor{hor}/config.json' , """w""" ) as f: json.dump(snake_case__ , snake_case__ ) def a__ ( ) -> Optional[int]: lowerCamelCase = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 1_28, 2_56), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_55_36, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } lowerCamelCase = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) lowerCamelCase = model lowerCamelCase = UNetaDModel(**snake_case__ ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) lowerCamelCase = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase = state_dict.pop(snake_case__ ) hf_value_function.load_state_dict(snake_case__ ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(snake_case__ , snake_case__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
168
1
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', )) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', )) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', )) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', )) return embed def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', )) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', )) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''')) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''')) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''')) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''')) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''')) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''')) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''')) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''')) return attention_weights def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token')) return token def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = [] head.append(('layernorm.weight', 'norm.weight')) head.append(('layernorm.bias', 'norm.bias')) head.append(('classifier.weight', 'head.weight')) head.append(('classifier.bias', 'head.bias')) return head def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE = 1000 SCREAMING_SNAKE_CASE = 'huggingface/label-files' SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset')) , 'r')) SCREAMING_SNAKE_CASE = {int(_UpperCAmelCase): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1)[-1][4:6] == "13": SCREAMING_SNAKE_CASE = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1)[-1][4:6] == "21": SCREAMING_SNAKE_CASE = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: SCREAMING_SNAKE_CASE = [2, 2, 20] SCREAMING_SNAKE_CASE = [3, 12, 16] SCREAMING_SNAKE_CASE = [192, 768, 1024] SCREAMING_SNAKE_CASE = CvtForImageClassification(_UpperCAmelCase) SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k') SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location=torch.device('cpu')) SCREAMING_SNAKE_CASE = OrderedDict() SCREAMING_SNAKE_CASE = [] for idx in range(len(config.depth)): if config.cls_token[idx]: SCREAMING_SNAKE_CASE = list_of_state_dict + cls_token(_UpperCAmelCase) SCREAMING_SNAKE_CASE = list_of_state_dict + embeddings(_UpperCAmelCase) for cnt in range(config.depth[idx]): SCREAMING_SNAKE_CASE = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase) for i in range(len(_UpperCAmelCase)): SCREAMING_SNAKE_CASE = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase) model.save_pretrained(_UpperCAmelCase) image_processor.save_pretrained(_UpperCAmelCase) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": a_ : int = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=3_84, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) a_ : Optional[int] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
137
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int a_ : Optional[int] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _snake_case ( datasets.BuilderConfig ): _lowercase : Optional[datasets.Features] = None def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , ): import pyspark def generate_fn(): SCREAMING_SNAKE_CASE = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id')) for partition_id in partition_order: SCREAMING_SNAKE_CASE = df_with_partition_id.select('*').where(F'''part_id = {partition_id}''').drop('part_id') SCREAMING_SNAKE_CASE = partition_df.collect() SCREAMING_SNAKE_CASE = 0 for row in rows: yield F'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class _snake_case ( _BaseExamplesIterable ): def __init__( self , a , a=None , ) -> Tuple: SCREAMING_SNAKE_CASE = df SCREAMING_SNAKE_CASE = partition_order or range(self.df.rdd.getNumPartitions()) SCREAMING_SNAKE_CASE = _generate_iterable_examples(self.df , self.partition_order) def __iter__( self) -> Dict: yield from self.generate_examples_fn() def SCREAMING_SNAKE_CASE__ ( self , a) -> "SparkExamplesIterable": SCREAMING_SNAKE_CASE = list(range(self.df.rdd.getNumPartitions())) generator.shuffle(a) return SparkExamplesIterable(self.df , partition_order=a) def SCREAMING_SNAKE_CASE__ ( self , a , a) -> "SparkExamplesIterable": SCREAMING_SNAKE_CASE = self.split_shard_indices_by_worker(a , a) return SparkExamplesIterable(self.df , partition_order=a) @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return len(self.partition_order) class _snake_case ( datasets.DatasetBuilder ): _lowercase : int = SparkConfig def __init__( self , a , a = None , a = None , **a , ) -> List[str]: import pyspark SCREAMING_SNAKE_CASE = pyspark.sql.SparkSession.builder.getOrCreate() SCREAMING_SNAKE_CASE = df SCREAMING_SNAKE_CASE = working_dir super().__init__( cache_dir=a , config_name=str(self.df.semanticHash()) , **a , ) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: # Returns the path of the created file. def create_cache_and_write_probe(a): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=a) SCREAMING_SNAKE_CASE = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(a , 'a') return [probe_file] if self._spark.conf.get('spark.master' , '').startswith('local'): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: SCREAMING_SNAKE_CASE = ( self._spark.sparkContext.parallelize(range(1) , 1).mapPartitions(a).collect() ) if os.path.isfile(probe[0]): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir') def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE__ ( self , a) -> Dict: return [datasets.SplitGenerator(name=datasets.Split.TRAIN)] def SCREAMING_SNAKE_CASE__ ( self , a) -> Optional[int]: import pyspark def get_arrow_batch_size(a): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]}) SCREAMING_SNAKE_CASE = self.df.count() SCREAMING_SNAKE_CASE = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. SCREAMING_SNAKE_CASE = ( self.df.limit(a) .repartition(1) .mapInArrow(a , 'batch_bytes: long') .agg(pyspark.sql.functions.sum('batch_bytes').alias('sample_bytes')) .collect()[0] .sample_bytes / sample_num_rows ) SCREAMING_SNAKE_CASE = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. SCREAMING_SNAKE_CASE = min(a , int(approx_total_size / max_shard_size)) SCREAMING_SNAKE_CASE = self.df.repartition(a) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark SCREAMING_SNAKE_CASE = ParquetWriter if file_format == 'parquet' else ArrowWriter SCREAMING_SNAKE_CASE = os.path.join(self._working_dir , os.path.basename(a)) if self._working_dir else fpath SCREAMING_SNAKE_CASE = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. SCREAMING_SNAKE_CASE = self.config.features SCREAMING_SNAKE_CASE = self._writer_batch_size SCREAMING_SNAKE_CASE = self._fs.storage_options def write_arrow(a): # Within the same SparkContext, no two task attempts will share the same attempt ID. SCREAMING_SNAKE_CASE = pyspark.TaskContext().taskAttemptId() SCREAMING_SNAKE_CASE = next(a , a) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = writer_class( features=a , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''').replace('TTTTT' , f'''{task_id:05d}''') , writer_batch_size=a , storage_options=a , embed_local_files=a , ) SCREAMING_SNAKE_CASE = pa.Table.from_batches([first_batch]) writer.write_table(a) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 SCREAMING_SNAKE_CASE = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''').replace('TTTTT' , f'''{task_id:05d}''') , writer_batch_size=a , storage_options=a , embed_local_files=a , ) SCREAMING_SNAKE_CASE = pa.Table.from_batches([batch]) writer.write_table(a) if writer._num_bytes > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(a)): SCREAMING_SNAKE_CASE = os.path.join(os.path.dirname(a) , os.path.basename(a)) shutil.move(a , a) SCREAMING_SNAKE_CASE = ( self.df.mapInArrow(a , 'task_id: long, num_examples: long, num_bytes: long') .groupBy('task_id') .agg( pyspark.sql.functions.sum('num_examples').alias('total_num_examples') , pyspark.sql.functions.sum('num_bytes').alias('total_num_bytes') , pyspark.sql.functions.count('num_bytes').alias('num_shards') , pyspark.sql.functions.collect_list('num_examples').alias('shard_lengths') , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def SCREAMING_SNAKE_CASE__ ( self , a , a = "arrow" , a = None , a = None , **a , ) -> List[Any]: self._validate_cache_dir() SCREAMING_SNAKE_CASE = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE) self._repartition_df_if_needed(a) SCREAMING_SNAKE_CASE = not is_remote_filesystem(self._fs) SCREAMING_SNAKE_CASE = os.path.join if is_local else posixpath.join SCREAMING_SNAKE_CASE = '-TTTTT-SSSSS-of-NNNNN' SCREAMING_SNAKE_CASE = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' SCREAMING_SNAKE_CASE = path_join(self._output_dir , a) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for task_id, content in self._prepare_split_single(a , a , a): ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards)) all_shard_lengths.extend(a) SCREAMING_SNAKE_CASE = total_num_examples SCREAMING_SNAKE_CASE = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''') if total_shards > 1: SCREAMING_SNAKE_CASE = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. SCREAMING_SNAKE_CASE = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( a , a , a , ): rename( a , fpath.replace('SSSSS' , f'''{shard_id:05d}''').replace('TTTTT' , f'''{task_id:05d}''') , fpath.replace('TTTTT-SSSSS' , f'''{global_shard_id:05d}''').replace('NNNNN' , f'''{total_shards:05d}''') , ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 for i in range(len(a)): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = task_id_and_num_shards[i] for shard_id in range(a): args.append([task_id, shard_id, global_shard_id]) global_shard_id += 1 self._spark.sparkContext.parallelize(a , len(a)).map(lambda a: _rename_shard(*a)).collect() else: # don't use any pattern SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , f'''{shard_id:05d}''').replace('TTTTT' , f'''{task_id:05d}''') , fpath.replace(a , '') , ) def SCREAMING_SNAKE_CASE__ ( self , a , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df)
137
1
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
124
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = [R"h\.\d+\.attn\.bias", R"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : Tuple ,A : int ,A : int ,A : Optional[int] = None ,A : int = 5_02_57 ,A : int = 10_24 ,A : int = 7_68 ,A : int = 12 ,A : int = 12 ,A : Optional[int] = None ,A : str = "gelu_new" ,A : float = 0.1 ,A : float = 0.1 ,A : float = 0.1 ,A : float = 1E-5 ,A : float = 0.02 ,A : bool = True ,A : bool = True ,A : bool = False ,A : bool = False ,): super().__init__() __A = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) __A = prefix_inner_dim __A = prefix_hidden_dim __A = ( nn.Linear(self.prefix_inner_dim ,self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) __A = ( nn.Linear(self.prefix_hidden_dim ,A ) if self.prefix_hidden_dim is not None else nn.Identity() ) __A = GPTaConfig( vocab_size=A ,n_positions=A ,n_embd=A ,n_layer=A ,n_head=A ,n_inner=A ,activation_function=A ,resid_pdrop=A ,embd_pdrop=A ,attn_pdrop=A ,layer_norm_epsilon=A ,initializer_range=A ,scale_attn_weights=A ,use_cache=A ,scale_attn_by_inverse_layer_idx=A ,reorder_and_upcast_attn=A ,) __A = GPTaLMHeadModel(A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : torch.Tensor ,A : torch.Tensor ,A : Optional[torch.Tensor] = None ,A : Optional[torch.Tensor] = None ,): __A = self.transformer.transformer.wte(A ) __A = self.encode_prefix(A ) __A = self.decode_prefix(A ) __A = torch.cat((prefix_embeds, embedding_text) ,dim=1 ) if labels is not None: __A = self.get_dummy_token(input_ids.shape[0] ,input_ids.device ) __A = torch.cat((dummy_token, input_ids) ,dim=1 ) __A = self.transformer(inputs_embeds=A ,labels=A ,attention_mask=A ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def UpperCamelCase_ ( self : int ,A : int ,A : torch.device ): return torch.zeros(A ,self.prefix_length ,dtype=torch.intaa ,device=A ) def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any] ): return self.encode_prefix(A ) @torch.no_grad() def UpperCamelCase_ ( self : str ,A : List[str] ,A : List[Any] ,A : List[Any] ): __A = torch.split(A ,1 ,dim=0 ) __A = [] __A = [] for feature in features: __A = self.decode_prefix(feature.to(A ) ) # back to the clip feature # Only support beam search for now __A , __A = self.generate_beam( input_embeds=A ,device=A ,eos_token_id=A ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) __A = torch.stack(A ) __A = torch.stack(A ) return generated_tokens, generated_seq_lengths @torch.no_grad() def UpperCamelCase_ ( self : Tuple ,A : List[str]=None ,A : Dict=None ,A : Optional[int]=None ,A : int = 5 ,A : int = 67 ,A : float = 1.0 ,A : Optional[int] = None ,): __A = eos_token_id __A = None __A = None __A = torch.ones(A ,device=A ,dtype=torch.int ) __A = torch.zeros(A ,device=A ,dtype=torch.bool ) if input_embeds is not None: __A = input_embeds else: __A = self.transformer.transformer.wte(A ) for i in range(A ): __A = self.transformer(inputs_embeds=A ) __A = outputs.logits __A = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) __A = logits.softmax(-1 ).log() if scores is None: __A , __A = logits.topk(A ,-1 ) __A = generated.expand(A ,*generated.shape[1:] ) __A , __A = next_tokens.permute(1 ,0 ), scores.squeeze(0 ) if tokens is None: __A = next_tokens else: __A = tokens.expand(A ,*tokens.shape[1:] ) __A = torch.cat((tokens, next_tokens) ,dim=1 ) else: __A = -float(np.inf ) __A = 0 __A = scores[:, None] + logits seq_lengths[~is_stopped] += 1 __A = scores_sum / seq_lengths[:, None] __A , __A = scores_sum_average.view(-1 ).topk(A ,-1 ) __A = next_tokens // scores_sum.shape[1] __A = seq_lengths[next_tokens_source] __A = next_tokens % scores_sum.shape[1] __A = next_tokens.unsqueeze(1 ) __A = tokens[next_tokens_source] __A = torch.cat((tokens, next_tokens) ,dim=1 ) __A = generated[next_tokens_source] __A = scores_sum_average * seq_lengths __A = is_stopped[next_tokens_source] __A = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] ,1 ,-1 ) __A = torch.cat((generated, next_token_embed) ,dim=1 ) __A = is_stopped + next_tokens.eq(A ).squeeze() if is_stopped.all(): break __A = scores / seq_lengths __A = scores.argsort(descending=A ) # tokens tensors are already padded to max_seq_length __A = [tokens[i] for i in order] __A = torch.stack(A ,dim=0 ) __A = torch.tensor([seq_lengths[i] for i in order] ,dtype=seq_lengths.dtype ) return output_texts, seq_lengths
124
1
'''simple docstring''' import itertools import math def lowerCAmelCase_ ( snake_case_ : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = 2 while True: if is_prime(snake_case_ ): yield num num += 1 def lowerCAmelCase_ ( snake_case_ : int = 1_00_01 ) -> int: '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , snake_case_ ) ) if __name__ == "__main__": print(f"{solution() = }")
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
87
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger() @dataclass class _A : _SCREAMING_SNAKE_CASE : nn.Module _SCREAMING_SNAKE_CASE : List[nn.Module] = field(default_factory=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : list = field(default_factory=__SCREAMING_SNAKE_CASE ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[Any] = len(list(m.modules() ) ) == 1 or isinstance(__UpperCAmelCase , nn.Convad ) or isinstance(__UpperCAmelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase ) -> str: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__UpperCAmelCase ) [x.remove() for x in self.handles] return self @property def __A ( self ) -> Union[str, Any]: '''simple docstring''' # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda __UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _A : _SCREAMING_SNAKE_CASE : nn.Module _SCREAMING_SNAKE_CASE : nn.Module _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : List = field(default_factory=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : List = field(default_factory=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : bool = True def __call__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : str = Tracker(self.dest )(__UpperCAmelCase ).parametrized __UpperCAmelCase : int = Tracker(self.src )(__UpperCAmelCase ).parametrized __UpperCAmelCase : Optional[Any] = list(filter(lambda __UpperCAmelCase : type(__UpperCAmelCase ) not in self.src_skip , __UpperCAmelCase ) ) __UpperCAmelCase : Any = list(filter(lambda __UpperCAmelCase : type(__UpperCAmelCase ) not in self.dest_skip , __UpperCAmelCase ) ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(__UpperCAmelCase )} operations while' f' destination module has {len(__UpperCAmelCase )}.' ) for dest_m, src_m in zip(__UpperCAmelCase , __UpperCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class _A ( nn.Module ): def __init__( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' super().__init__() __UpperCAmelCase : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), f'Unexpected layer name {k}' __UpperCAmelCase : Any = len(__UpperCAmelCase ) + 1 feature_blocks.append((f'res{block_index}', v) ) __UpperCAmelCase : List[Any] = nn.ModuleDict(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' return get_trunk_forward_outputs( __UpperCAmelCase , out_feat_keys=__UpperCAmelCase , feature_blocks=self._feature_blocks , ) class _A ( __SCREAMING_SNAKE_CASE ): def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , __UpperCAmelCase ) -> Callable[[], Tuple[nn.Module, Dict]]: '''simple docstring''' # default to timm! if x not in self: __UpperCAmelCase : List[Any] = self.convert_name_to_timm(__UpperCAmelCase ) __UpperCAmelCase : Tuple = partial(lambda: (timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval(), None) ) else: __UpperCAmelCase : str = super().__getitem__(__UpperCAmelCase ) return val class _A ( __SCREAMING_SNAKE_CASE ): def __getitem__( self , __UpperCAmelCase ) -> Callable[[], nn.Module]: '''simple docstring''' if "seer" in x and "in1k" not in x: __UpperCAmelCase : Tuple = RegNetModel else: __UpperCAmelCase : int = RegNetForImageClassification return val def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Tuple[str, str]] ): """simple docstring""" for from_key, to_key in keys: __UpperCAmelCase : int = from_state_dict[from_key].clone() print(f'Copied key={from_key} to={to_key}' ) return to_state_dict def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Callable[[], nn.Module] , lowerCAmelCase__ : Callable[[], nn.Module] , lowerCAmelCase__ : RegNetConfig , lowerCAmelCase__ : Path , lowerCAmelCase__ : bool = True , ): """simple docstring""" print(f'Converting {name}...' ) with torch.no_grad(): __UpperCAmelCase , __UpperCAmelCase : Tuple = from_model_func() __UpperCAmelCase : Optional[int] = our_model_func(lowerCAmelCase__ ).eval() __UpperCAmelCase : Dict = ModuleTransfer(src=lowerCAmelCase__ , dest=lowerCAmelCase__ , raise_if_mismatch=lowerCAmelCase__ ) __UpperCAmelCase : Union[str, Any] = torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase__ ) if from_state_dict is not None: __UpperCAmelCase : List[str] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __UpperCAmelCase : Tuple = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] __UpperCAmelCase : Any = manually_copy_vissl_head(lowerCAmelCase__ , our_model.state_dict() , lowerCAmelCase__ ) our_model.load_state_dict(lowerCAmelCase__ ) __UpperCAmelCase : List[str] = our_model(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = ( our_outputs.logits if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else our_outputs.last_hidden_state ) __UpperCAmelCase : Tuple = from_model(lowerCAmelCase__ ) __UpperCAmelCase : List[Any] = from_output[-1] if type(lowerCAmelCase__ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __UpperCAmelCase : Union[str, Any] = our_outputs.hidden_states[-1] assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase__ , ) __UpperCAmelCase : Tuple = 224 if """seer""" not in name else 384 # we can use the convnext one __UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=lowerCAmelCase__ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase__ , ) print(f'Pushed {name}' ) def lowercase_ ( lowerCAmelCase__ : Path , lowerCAmelCase__ : str = None , lowerCAmelCase__ : bool = True ): """simple docstring""" __UpperCAmelCase : List[str] = """imagenet-1k-id2label.json""" __UpperCAmelCase : List[str] = 1000 __UpperCAmelCase : Optional[Any] = (1, num_labels) __UpperCAmelCase : Any = """huggingface/label-files""" __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[Any] = json.load(open(cached_download(hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) ) , """r""" ) ) __UpperCAmelCase : List[str] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = idalabel __UpperCAmelCase : int = {v: k for k, v in idalabel.items()} __UpperCAmelCase : Dict = partial(lowerCAmelCase__ , num_labels=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ ) __UpperCAmelCase : Tuple = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), } __UpperCAmelCase : int = NameToOurModelFuncMap() __UpperCAmelCase : str = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase__ : str , lowerCAmelCase__ : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: __UpperCAmelCase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , model_dir=str(lowerCAmelCase__ ) , map_location="""cpu""" ) __UpperCAmelCase : int = model_func() # check if we have a head, if yes add it __UpperCAmelCase : Optional[int] = files["""classy_state_dict"""]["""base_model"""]["""model"""] __UpperCAmelCase : List[str] = model_state_dict["""trunk"""] model.load_state_dict(lowerCAmelCase__ ) return model.eval(), model_state_dict["heads"] # pretrained __UpperCAmelCase : Any = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __UpperCAmelCase : Optional[Any] = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __UpperCAmelCase : Optional[int] = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __UpperCAmelCase : int = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __UpperCAmelCase : List[str] = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __UpperCAmelCase : Optional[int] = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __UpperCAmelCase : str = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __UpperCAmelCase : Any = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( lowerCAmelCase__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , lowerCAmelCase__ , lowerCAmelCase__ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCAmelCase__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) return config, expected_shape if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
16
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) __UpperCAmelCase : List[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) __UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) __UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' import torch __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = pipeline("""text-classification""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : int = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __UpperCAmelCase : Union[str, Any] = """HuggingFace is in""" __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""] __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase ) __UpperCAmelCase : Any = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , ) __UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(__UpperCAmelCase ): text_classifier(__UpperCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
16
1
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __magic_name__ = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __magic_name__ = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __magic_name__ = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } __magic_name__ = { "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } __magic_name__ = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } __magic_name__ = { "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def _lowerCAmelCase ( UpperCamelCase_ ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.in_layers.0.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.in_layers.0.bias"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.in_layers.2.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.in_layers.2.bias"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.emb_layers.1.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.emb_layers.1.bias"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.out_layers.0.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.out_layers.0.bias"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.out_layers.3.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.out_layers.3.bias"] if has_skip: __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.skip_connection.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.skip_connection.bias"] return new_checkpoint def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.qkv.weight"].chunk(3 , dim=0 ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.qkv.bias"].chunk(3 , dim=0 ) __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.norm.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.norm.bias"] __SCREAMING_SNAKE_CASE = weight_q.squeeze(-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = bias_q.squeeze(-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = weight_k.squeeze(-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = bias_k.squeeze(-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = weight_v.squeeze(-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = bias_v.squeeze(-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = ( checkpoint[f"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = torch.load(UpperCamelCase_ , map_location="""cpu""" ) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = checkpoint["""time_embed.0.weight"""] __SCREAMING_SNAKE_CASE = checkpoint["""time_embed.0.bias"""] __SCREAMING_SNAKE_CASE = checkpoint["""time_embed.2.weight"""] __SCREAMING_SNAKE_CASE = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: __SCREAMING_SNAKE_CASE = checkpoint["""label_emb.weight"""] __SCREAMING_SNAKE_CASE = checkpoint["""input_blocks.0.0.weight"""] __SCREAMING_SNAKE_CASE = checkpoint["""input_blocks.0.0.bias"""] __SCREAMING_SNAKE_CASE = unet_config["""down_block_types"""] __SCREAMING_SNAKE_CASE = unet_config["""layers_per_block"""] __SCREAMING_SNAKE_CASE = unet_config["""attention_head_dim"""] __SCREAMING_SNAKE_CASE = unet_config["""block_out_channels"""] __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = channels_list[0] for i, layer_type in enumerate(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = channels_list[i] __SCREAMING_SNAKE_CASE = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = f"down_blocks.{i}.resnets.{j}" __SCREAMING_SNAKE_CASE = f"input_blocks.{current_layer}.0" __SCREAMING_SNAKE_CASE = True if j == 0 and downsample_block_has_skip else False __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , has_skip=UpperCamelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = f"down_blocks.{i}.resnets.{j}" __SCREAMING_SNAKE_CASE = f"input_blocks.{current_layer}.0" __SCREAMING_SNAKE_CASE = True if j == 0 and downsample_block_has_skip else False __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , has_skip=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = f"down_blocks.{i}.attentions.{j}" __SCREAMING_SNAKE_CASE = f"input_blocks.{current_layer}.1" __SCREAMING_SNAKE_CASE = convert_attention( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) current_layer += 1 if i != len(UpperCamelCase_ ) - 1: __SCREAMING_SNAKE_CASE = f"down_blocks.{i}.downsamplers.0" __SCREAMING_SNAKE_CASE = f"input_blocks.{current_layer}.0" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) current_layer += 1 __SCREAMING_SNAKE_CASE = current_channels # hardcoded the mid-block for now __SCREAMING_SNAKE_CASE = """mid_block.resnets.0""" __SCREAMING_SNAKE_CASE = """middle_block.0""" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = """mid_block.attentions.0""" __SCREAMING_SNAKE_CASE = """middle_block.1""" __SCREAMING_SNAKE_CASE = convert_attention(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = """mid_block.resnets.1""" __SCREAMING_SNAKE_CASE = """middle_block.2""" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = unet_config["""up_block_types"""] for i, layer_type in enumerate(UpperCamelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): __SCREAMING_SNAKE_CASE = f"up_blocks.{i}.resnets.{j}" __SCREAMING_SNAKE_CASE = f"output_blocks.{current_layer}.0" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , has_skip=UpperCamelCase_ ) current_layer += 1 if i != len(UpperCamelCase_ ) - 1: __SCREAMING_SNAKE_CASE = f"up_blocks.{i}.upsamplers.0" __SCREAMING_SNAKE_CASE = f"output_blocks.{current_layer-1}.1" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): __SCREAMING_SNAKE_CASE = f"up_blocks.{i}.resnets.{j}" __SCREAMING_SNAKE_CASE = f"output_blocks.{current_layer}.0" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , has_skip=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = f"up_blocks.{i}.attentions.{j}" __SCREAMING_SNAKE_CASE = f"output_blocks.{current_layer}.1" __SCREAMING_SNAKE_CASE = convert_attention( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) current_layer += 1 if i != len(UpperCamelCase_ ) - 1: __SCREAMING_SNAKE_CASE = f"up_blocks.{i}.upsamplers.0" __SCREAMING_SNAKE_CASE = f"output_blocks.{current_layer-1}.2" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = checkpoint["""out.0.weight"""] __SCREAMING_SNAKE_CASE = checkpoint["""out.0.bias"""] __SCREAMING_SNAKE_CASE = checkpoint["""out.2.weight"""] __SCREAMING_SNAKE_CASE = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") __magic_name__ = parser.parse_args() __magic_name__ = strabool(args.class_cond) __magic_name__ = os.path.basename(args.unet_path) print(F"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: __magic_name__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __magic_name__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __magic_name__ = TEST_UNET_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: __magic_name__ = None __magic_name__ = con_pt_to_diffuser(args.unet_path, unet_config) __magic_name__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __magic_name__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __magic_name__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __magic_name__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") __magic_name__ = CMStochasticIterativeScheduler(**scheduler_config) __magic_name__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
100
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _lowercase: Tuple = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def a( A : Optional[Any] ) -> str: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def a( A : Dict , A : List[Any] , A : str ) -> List[str]: """simple docstring""" return max(metric_fn(A , A ) for gt in ground_truths ) def a( A : str , A : Optional[Any] , A : Optional[Any] ) -> Optional[int]: """simple docstring""" a = [line.strip() for line in open(A , "r" ).readlines()] a = [] if args.gold_data_mode == "qa": a = pd.read_csv(A , sep="\t" , header=A ) for answer_list in data[1]: a = ast.literal_eval(A ) answers.append(A ) else: a = [line.strip() for line in open(A , "r" ).readlines()] a = [[reference] for reference in references] a = a = a = 0 for prediction, ground_truths in zip(A , A ): total += 1 em += metric_max_over_ground_truths(A , A , A ) fa += metric_max_over_ground_truths(A , A , A ) a = 100.0 * em / total a = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def a( A : Dict , A : str , A : List[str] ) -> List[Any]: """simple docstring""" a = args.k a = [line.strip() for line in open(A , "r" ).readlines()] a = [line.strip() for line in open(A , "r" ).readlines()] a = a = 0 for hypo, reference in zip(A , A ): a = set(hypo.split("\t" )[:k] ) a = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k a = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def a( A : Dict , A : Any , A : List[Any] ) -> Any: """simple docstring""" def strip_title(A : Any ): if title.startswith("\"" ): a = title[1:] if title.endswith("\"" ): a = title[:-1] return title a = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( A , return_tensors="pt" , padding=A , truncation=A , )["input_ids"].to(args.device ) a = rag_model.rag.question_encoder(A ) a = question_enc_outputs[0] a = rag_model.retriever( A , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) a = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) a = [] for docs in all_docs: a = [strip_title(A ) for title in docs["title"]] provenance_strings.append("\t".join(A ) ) return provenance_strings def a( A : Union[str, Any] , A : Optional[int] , A : Tuple ) -> Tuple: """simple docstring""" with torch.no_grad(): a = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( A , return_tensors="pt" , padding=A , truncation=A ) a = inputs_dict.input_ids.to(args.device ) a = inputs_dict.attention_mask.to(args.device ) a = rag_model.generate( # rag_model overwrites generate A , attention_mask=A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) a = rag_model.retriever.generator_tokenizer.batch_decode(A , skip_special_tokens=A ) if args.print_predictions: for q, a in zip(A , A ): logger.info("Q: {} - A: {}".format(A , A ) ) return answers def a( ) -> Any: """simple docstring""" a = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=A , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=A , choices=["exact", "compressed", "legacy"] , type=A , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=A , type=A , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=A , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=A , type=A , required=A , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=A , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=A , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=A , type=A , required=A , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=A , type=A , required=A , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=A , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=A , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=A , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=A , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=A , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=A , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) a = parser.parse_args() a = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def a( A : Any ) -> Optional[Any]: """simple docstring""" a = {} if args.model_type is None: a = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): a = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration a = args.n_docs if args.index_name is not None: a = args.index_name if args.index_path is not None: a = args.index_path else: a = BartForConditionalGeneration a = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , A ) a = get_scores if args.eval_mode == "e2e" else get_precision_at_k a = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(A , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(A ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): a = RagRetriever.from_pretrained(A , **A ) a = model_class.from_pretrained(A , retriever=A , **A ) model.retriever.init_retrieval() else: a = model_class.from_pretrained(A , **A ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: a = [] for line in tqdm(A ): questions.append(line.strip() ) if len(A ) == args.eval_batch_size: a = evaluate_batch_fn(A , A , A ) preds_file.write("\n".join(A ) + "\n" ) preds_file.flush() a = [] if len(A ) > 0: a = evaluate_batch_fn(A , A , A ) preds_file.write("\n".join(A ) ) preds_file.flush() score_fn(A , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _lowercase: Optional[int] = get_args() main(args)
227
0
"""simple docstring""" import requests SCREAMING_SNAKE_CASE : int = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def __UpperCAmelCase ( snake_case_ : str ) -> None: """simple docstring""" _lowerCAmelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] , 1 ): print(F"""{i}.) {article["title"]}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
370
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = DiTPipeline __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase = False def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCamelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def A__ (self , lowerCamelCase , lowerCamelCase=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(lowerCamelCase ) else: _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = pipe(**lowerCamelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1e-3 ) def A__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self ): '''simple docstring''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def A__ (self ): '''simple docstring''' _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
317
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __snake_case : Optional[int] = False class A__ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: str) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self: Dict) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[int] = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion") # remove text_unet pipe.remove_unused_weights() pipe.to(_lowerCamelCase) pipe.set_progress_bar_config(disable=_lowerCamelCase) __lowerCAmelCase : Union[str, Any] = '''A painting of a squirrel eating a burger ''' __lowerCAmelCase : str = torch.manual_seed(0) __lowerCAmelCase : int = pipe( prompt=_lowerCamelCase , generator=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy").images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCamelCase) __lowerCAmelCase : Any = VersatileDiffusionTextToImagePipeline.from_pretrained(_lowerCamelCase) pipe.to(_lowerCamelCase) pipe.set_progress_bar_config(disable=_lowerCamelCase) __lowerCAmelCase : int = generator.manual_seed(0) __lowerCAmelCase : Union[str, Any] = pipe( prompt=_lowerCamelCase , generator=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy").images assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass" def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Any: """simple docstring""" __lowerCAmelCase : List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa) pipe.to(_lowerCamelCase) pipe.set_progress_bar_config(disable=_lowerCamelCase) __lowerCAmelCase : Optional[Any] = '''A painting of a squirrel eating a burger ''' __lowerCAmelCase : List[Any] = torch.manual_seed(0) __lowerCAmelCase : Any = pipe( prompt=_lowerCamelCase , generator=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy").images __lowerCAmelCase : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowerCAmelCase : Any = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
269
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowercase_ ( _UpperCAmelCase = "" ): """simple docstring""" A_ : Optional[int] = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' A_ : str = BeautifulSoup(requests.get(_UpperCAmelCase ).text , '''html.parser''' ) A_ : List[Any] = soup.find_all('''td''' , attrs='''titleColumn''' ) A_ : List[str] = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_UpperCAmelCase , _UpperCAmelCase ) } def lowercase_ ( _UpperCAmelCase = "IMDb_Top_250_Movies.csv" ): """simple docstring""" A_ : Any = get_imdb_top_aaa_movies() with open(_UpperCAmelCase , '''w''' , newline='''''' ) as out_file: A_ : List[Any] = csv.writer(_UpperCAmelCase ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
167
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[Any] = "luke" def __init__( self , A_=5_0267 , A_=50_0000 , A_=768 , A_=256 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.0_2 , A_=1e-12 , A_=True , A_=None , A_=1 , A_=0 , A_=2 , **A_ , ) -> Optional[Any]: super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCAmelCase = vocab_size lowerCAmelCase = entity_vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = entity_emb_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = use_entity_aware_attention lowerCAmelCase = classifier_dropout
357
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = ["image_processor", "tokenizer"] UpperCAmelCase : Tuple = "BlipImageProcessor" UpperCAmelCase : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , A_ , A_ ) -> Dict: lowerCAmelCase = False super().__init__(A_ , A_ ) lowerCAmelCase = self.image_processor def __call__( self , A_ = None , A_ = None , A_ = True , A_ = False , A_ = None , A_ = None , A_ = 0 , A_ = None , A_ = None , A_ = False , A_ = False , A_ = False , A_ = False , A_ = False , A_ = True , A_ = None , **A_ , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase = self.tokenizer lowerCAmelCase = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) return text_encoding # add pixel_values lowerCAmelCase = self.image_processor(A_ , return_tensors=A_ ) if text is not None: lowerCAmelCase = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) else: lowerCAmelCase = None if text_encoding is not None: encoding_image_processor.update(A_ ) return encoding_image_processor def __snake_case ( self , *A_ , **A_ ) -> Union[str, Any]: return self.tokenizer.batch_decode(*A_ , **A_ ) def __snake_case ( self , *A_ , **A_ ) -> Tuple: return self.tokenizer.decode(*A_ , **A_ ) @property def __snake_case ( self ) -> str: lowerCAmelCase = self.tokenizer.model_input_names lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
187
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=False ) -> List[str]: snake_case : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""module.blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""module.blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""module.blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""module.blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""module.blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""module.blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case : Any = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: snake_case : int = """""" else: snake_case : Dict = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case : List[str] = state_dict.pop(f"""module.blocks.{i}.attn.qkv.weight""" ) snake_case : Optional[Any] = state_dict.pop(f"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case : Optional[int] = in_proj_weight[ : config.hidden_size, : ] snake_case : Tuple = in_proj_bias[: config.hidden_size] snake_case : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case : List[Any] = in_proj_weight[ -config.hidden_size :, : ] snake_case : Union[str, Any] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : List[Any] = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase ,lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. snake_case : int = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(lowercase ,lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[str]: snake_case : Optional[Any] = dct.pop(lowercase ) snake_case : List[Any] = val def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[Any]: snake_case : List[Any] = ViTMSNConfig() snake_case : Union[str, Any] = 1000 snake_case : List[Any] = """datasets/huggingface/label-files""" snake_case : Optional[int] = """imagenet-1k-id2label.json""" snake_case : Optional[int] = json.load(open(hf_hub_download(lowercase ,lowercase ) ,"""r""" ) ) snake_case : Any = {int(lowercase ): v for k, v in idalabel.items()} snake_case : List[str] = idalabel snake_case : Optional[int] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: snake_case : Tuple = 384 snake_case : Optional[int] = 1536 snake_case : Optional[Any] = 6 elif "l16" in checkpoint_url: snake_case : Dict = 1024 snake_case : Optional[Any] = 4096 snake_case : int = 24 snake_case : Union[str, Any] = 16 snake_case : Tuple = 0.1 elif "b4" in checkpoint_url: snake_case : str = 4 elif "l7" in checkpoint_url: snake_case : Optional[Any] = 7 snake_case : Tuple = 1024 snake_case : Optional[Any] = 4096 snake_case : List[Any] = 24 snake_case : int = 16 snake_case : Tuple = 0.1 snake_case : List[Any] = ViTMSNModel(lowercase ) snake_case : Union[str, Any] = torch.hub.load_state_dict_from_url(lowercase ,map_location="""cpu""" )["""target_encoder"""] snake_case : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(lowercase ) snake_case : Union[str, Any] = create_rename_keys(lowercase ,base_model=lowercase ) for src, dest in rename_keys: rename_key(lowercase ,lowercase ,lowercase ) read_in_q_k_v(lowercase ,lowercase ,base_model=lowercase ) model.load_state_dict(lowercase ) model.eval() snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case : Optional[int] = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) snake_case : Any = ViTImageProcessor( size=config.image_size ,image_mean=lowercase ,image_std=lowercase ) snake_case : Union[str, Any] = image_processor(images=lowercase ,return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) snake_case : Dict = model(**lowercase ) snake_case : Dict = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: snake_case : str = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: snake_case : List[Any] = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: snake_case : Any = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: snake_case : Tuple = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: snake_case : List[str] = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] ,lowercase ,atol=1E-4 ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCamelCase : Optional[Any] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
124
import re def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: if len(re.findall("""[ATCG]""" ,lowercase ) ) != len(lowercase ): raise ValueError("""Invalid Strand""" ) return dna.translate(dna.maketrans("""ATCG""" ,"""TAGC""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
124
1
import math def lowerCamelCase__ (__lowerCamelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(__lowerCamelCase ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase__ (__lowerCamelCase = 10001 ): try: _SCREAMING_SNAKE_CASE : Optional[int] = int(__lowerCamelCase ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) _SCREAMING_SNAKE_CASE : list[int] = [] _SCREAMING_SNAKE_CASE : str = 2 while len(__lowerCamelCase ) < nth: if is_prime(__lowerCamelCase ): primes.append(__lowerCamelCase ) num += 1 else: num += 1 return primes[len(__lowerCamelCase ) - 1] if __name__ == "__main__": print(f"{solution() = }")
325
from math import isqrt, loga def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = [True] * max_number for i in range(2, isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = False return [i for i in range(2, __lowerCamelCase ) if is_prime[i]] def lowerCamelCase__ (__lowerCamelCase = 800800, __lowerCamelCase = 800800 ): _SCREAMING_SNAKE_CASE : Optional[int] = degree * loga(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = int(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = calculate_prime_numbers(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = 0 _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : Dict = len(__lowerCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"{solution() = }")
325
1
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger() @dataclass class __A : '''simple docstring''' lowerCAmelCase : nn.Module lowerCAmelCase : List[nn.Module] = field(default_factory=A_ ) lowerCAmelCase : list = field(default_factory=A_ ) def UpperCAmelCase ( self : int ,_snake_case : Dict ,_snake_case : Tensor ,_snake_case : Tensor ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = len(list(m.modules() ) ) == 1 or isinstance(_snake_case ,nn.Convad ) or isinstance(_snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(_snake_case ) def __call__( self : List[Any] ,_snake_case : Tensor ) -> Dict: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_snake_case ) [x.remove() for x in self.handles] return self @property def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return list(filter(lambda _snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class __A : '''simple docstring''' lowerCAmelCase : nn.Module lowerCAmelCase : nn.Module lowerCAmelCase : int = 1 lowerCAmelCase : List = field(default_factory=A_ ) lowerCAmelCase : List = field(default_factory=A_ ) lowerCAmelCase : bool = True def __call__( self : Dict ,_snake_case : Tensor ) -> Tuple: """simple docstring""" lowercase__ : Tuple = Tracker(self.dest )(_snake_case ).parametrized lowercase__ : Optional[int] = Tracker(self.src )(_snake_case ).parametrized lowercase__ : Any = list(filter(lambda _snake_case : type(_snake_case ) not in self.src_skip ,_snake_case ) ) lowercase__ : Any = list(filter(lambda _snake_case : type(_snake_case ) not in self.dest_skip ,_snake_case ) ) if len(_snake_case ) != len(_snake_case ) and self.raise_if_mismatch: raise Exception( f"""Numbers of operations are different. Source module has {len(_snake_case )} operations while""" f""" destination module has {len(_snake_case )}.""" ) for dest_m, src_m in zip(_snake_case ,_snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) class __A ( nn.Module ): '''simple docstring''' def __init__( self : Any ,_snake_case : nn.Module ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), f"""Unexpected layer name {k}""" lowercase__ : List[str] = len(_snake_case ) + 1 feature_blocks.append((f"""res{block_index}""", v) ) lowercase__ : List[Any] = nn.ModuleDict(_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Tensor ) -> Tuple: """simple docstring""" return get_trunk_forward_outputs( _snake_case ,out_feat_keys=_snake_case ,feature_blocks=self._feature_blocks ,) class __A ( A_ ): '''simple docstring''' def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : str ) -> str: """simple docstring""" lowercase__ : int = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Any ,_snake_case : str ) -> Callable[[], Tuple[nn.Module, Dict]]: """simple docstring""" if x not in self: lowercase__ : Optional[Any] = self.convert_name_to_timm(_snake_case ) lowercase__ : List[str] = partial(lambda: (timm.create_model(_snake_case ,pretrained=_snake_case ).eval(), None) ) else: lowercase__ : Dict = super().__getitem__(_snake_case ) return val class __A ( A_ ): '''simple docstring''' def __getitem__( self : Tuple ,_snake_case : str ) -> Callable[[], nn.Module]: """simple docstring""" if "seer" in x and "in1k" not in x: lowercase__ : Any = RegNetModel else: lowercase__ : Any = RegNetForImageClassification return val def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: for from_key, to_key in keys: lowercase__ : Union[str, Any] = from_state_dict[from_key].clone() print(f"""Copied key={from_key} to={to_key}""" ) return to_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True , ) -> List[Any]: print(f"""Converting {name}...""" ) with torch.no_grad(): lowercase__ , lowercase__ : Tuple = from_model_func() lowercase__ : Dict = our_model_func(__lowerCamelCase ).eval() lowercase__ : str = ModuleTransfer(src=__lowerCamelCase , dest=__lowerCamelCase , raise_if_mismatch=__lowerCamelCase ) lowercase__ : List[str] = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(__lowerCamelCase ) if from_state_dict is not None: lowercase__ : List[Any] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: lowercase__ : Tuple = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] lowercase__ : Optional[Any] = manually_copy_vissl_head(__lowerCamelCase , our_model.state_dict() , __lowerCamelCase ) our_model.load_state_dict(__lowerCamelCase ) lowercase__ : int = our_model(__lowerCamelCase , output_hidden_states=__lowerCamelCase ) lowercase__ : Tuple = ( our_outputs.logits if isinstance(__lowerCamelCase , __lowerCamelCase ) else our_outputs.last_hidden_state ) lowercase__ : Union[str, Any] = from_model(__lowerCamelCase ) lowercase__ : Union[str, Any] = from_output[-1] if type(__lowerCamelCase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: lowercase__ : List[str] = our_outputs.hidden_states[-1] assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=__lowerCamelCase , ) lowercase__ : Any = 2_24 if '''seer''' not in name else 3_84 # we can use the convnext one lowercase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=__lowerCamelCase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=__lowerCamelCase , ) print(f"""Pushed {name}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True ) -> Optional[int]: lowercase__ : List[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Union[str, Any] = 10_00 lowercase__ : Dict = (1, num_labels) lowercase__ : Optional[int] = '''huggingface/label-files''' lowercase__ : List[str] = num_labels lowercase__ : List[str] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Dict = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Dict = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) lowercase__ : Optional[Any] = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 1_60, 3_84] , groups_width=16 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 2_40, 5_28] , groups_width=24 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 1_28, 2_88, 6_72] , groups_width=16 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 1_68, 4_08, 9_12] , groups_width=24 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 1_92, 4_32, 10_08] , groups_width=48 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 2_40, 5_60, 13_60] , groups_width=40 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 3_92, 7_84, 16_24] , groups_width=56 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 2_40, 7_20, 19_20] , groups_width=1_20 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[2_56, 5_12, 8_96, 20_48] , groups_width=1_28 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[3_36, 6_72, 13_44, 25_20] , groups_width=1_68 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 1_04, 2_08, 4_40] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 1_12, 2_56, 6_08] , groups_width=16 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 1_28, 3_20, 7_68] , groups_width=16 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 1_20, 3_36, 8_88] , groups_width=24 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 2_16, 5_76, 15_12] , groups_width=24 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[1_28, 1_92, 5_12, 10_88] , groups_width=64 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[1_44, 2_88, 5_76, 12_96] , groups_width=72 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 4_48, 8_96, 20_16] , groups_width=56 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[2_24, 4_48, 12_32, 30_24] , groups_width=1_12 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), } lowercase__ : str = NameToOurModelFuncMap() lowercase__ : Union[str, Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__lowerCamelCase , __lowerCamelCase ) -> Tuple[nn.Module, Dict]: lowercase__ : List[Any] = torch.hub.load_state_dict_from_url(__lowerCamelCase , model_dir=str(__lowerCamelCase ) , map_location='''cpu''' ) lowercase__ : Dict = model_func() # check if we have a head, if yes add it lowercase__ : Union[str, Any] = files['''classy_state_dict''']['''base_model''']['''model'''] lowercase__ : str = model_state_dict['''trunk'''] model.load_state_dict(__lowerCamelCase ) return model.eval(), model_state_dict["heads"] # pretrained lowercase__ : Dict = partial( __lowerCamelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase__ : int = partial( __lowerCamelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase__ : str = partial( __lowerCamelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) lowercase__ : Any = partial( __lowerCamelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned lowercase__ : Union[str, Any] = partial( __lowerCamelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase__ : Optional[Any] = partial( __lowerCamelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase__ : int = partial( __lowerCamelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) lowercase__ : Dict = partial( __lowerCamelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( __lowerCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __lowerCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 50 ) -> int: lowercase__ : int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
16
1
class __SCREAMING_SNAKE_CASE : def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = name lowerCAmelCase__ = value lowerCAmelCase__ = weight def __repr__( self ): """simple docstring""" return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def UpperCamelCase__ ( self ): """simple docstring""" return self.value def UpperCamelCase__ ( self ): """simple docstring""" return self.name def UpperCamelCase__ ( self ): """simple docstring""" return self.weight def UpperCamelCase__ ( self ): """simple docstring""" return self.value / self.weight def _UpperCamelCase ( UpperCamelCase_ : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] ) -> Any: """simple docstring""" lowerCAmelCase__ = [] for i in range(len(UpperCamelCase_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _UpperCamelCase ( UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = sorted(UpperCamelCase_ , key=UpperCamelCase_ , reverse=UpperCamelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ , lowerCAmelCase__ = 0.0, 0.0 for i in range(len(UpperCamelCase_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _UpperCamelCase ( ) -> Optional[int]: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
122
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __snake_case : Any = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __snake_case : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __snake_case : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase__ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCAmelCase__ = bs[:] lowerCAmelCase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 lowerCAmelCase__ = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ = set() lowerCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ = char return pairs class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask'''] def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="replace" , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase=False , **_UpperCamelCase , ): """simple docstring""" lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token super().__init__( errors=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding='utf-8' ) as vocab_handle: lowerCAmelCase__ = json.load(_UpperCamelCase ) lowerCAmelCase__ = {v: k for k, v in self.encoder.items()} lowerCAmelCase__ = errors # how to handle errors in decoding lowerCAmelCase__ = bytes_to_unicode() lowerCAmelCase__ = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCamelCase , encoding='utf-8' ) as merges_handle: lowerCAmelCase__ = merges_handle.read().split('\n' )[1:-1] lowerCAmelCase__ = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase__ = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) lowerCAmelCase__ = {} lowerCAmelCase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase__ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def UpperCamelCase__ ( self ): """simple docstring""" return len(self.encoder ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" if token in self.cache: return self.cache[token] lowerCAmelCase__ = tuple(_UpperCamelCase ) lowerCAmelCase__ = get_pairs(_UpperCamelCase ) if not pairs: return token while True: lowerCAmelCase__ = min(_UpperCamelCase , key=lambda _UpperCamelCase : self.bpe_ranks.get(_UpperCamelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ = bigram lowerCAmelCase__ = [] lowerCAmelCase__ = 0 while i < len(_UpperCamelCase ): try: lowerCAmelCase__ = word.index(_UpperCamelCase , _UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase__ = j if word[i] == first and i < len(_UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ = tuple(_UpperCamelCase ) lowerCAmelCase__ = new_word if len(_UpperCamelCase ) == 1: break else: lowerCAmelCase__ = get_pairs(_UpperCamelCase ) lowerCAmelCase__ = ' '.join(_UpperCamelCase ) lowerCAmelCase__ = word return word def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = [] for token in re.findall(self.pat , _UpperCamelCase ): lowerCAmelCase__ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCamelCase ).split(' ' ) ) return bpe_tokens def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return self.encoder.get(_UpperCamelCase , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return self.decoder.get(_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = ''.join(_UpperCamelCase ) lowerCAmelCase__ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(_UpperCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase__ = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase ) + '\n' ) lowerCAmelCase__ = 0 with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) lowerCAmelCase__ = token_index writer.write(' '.join(_UpperCamelCase ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] lowerCAmelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=False , **_UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCamelCase ) > 0 and not text[0].isspace()): lowerCAmelCase__ = ' ' + text return (text, kwargs) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = PaddingStrategy.DO_NOT_PAD , _UpperCamelCase = None , _UpperCamelCase = None , ): """simple docstring""" lowerCAmelCase__ = super()._pad( encoded_inputs=_UpperCamelCase , max_length=_UpperCamelCase , padding_strategy=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) # Load from model defaults if return_attention_mask is None: lowerCAmelCase__ = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCAmelCase__ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCAmelCase__ = len(encoded_inputs['global_attention_mask'] ) != len(_UpperCamelCase ) if needs_to_be_padded: lowerCAmelCase__ = len(_UpperCamelCase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCAmelCase__ = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": lowerCAmelCase__ = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
122
1
"""simple docstring""" from ...processing_utils import ProcessorMixin class _A ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" UpperCAmelCase : int = ["""image_processor""", """feature_extractor"""] UpperCAmelCase : List[Any] = """TvltImageProcessor""" UpperCAmelCase : Dict = """TvltFeatureExtractor""" def __init__( self : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str): super().__init__(image_processor=__UpperCAmelCase , feature_extractor=__UpperCAmelCase) a : List[Any] = image_processor a : List[Any] = feature_extractor def __call__( self : Union[str, Any] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Dict=False , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Any , ): if images is None and audio is None: raise ValueError("You need to specify either an `images` or `audio` input to process.") a : Union[str, Any] = None if images is not None: a : Any = self.image_processor(__UpperCAmelCase , mask_pixel=__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase) if images_mixed is not None: a : Union[str, Any] = self.image_processor(__UpperCAmelCase , is_mixed=__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase) if audio is not None: a : int = self.feature_extractor( __UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , mask_audio=__UpperCAmelCase , **__UpperCAmelCase) a : Any = {} if audio is not None: output_dict.update(__UpperCAmelCase) if images is not None: output_dict.update(__UpperCAmelCase) if images_mixed_dict is not None: output_dict.update(__UpperCAmelCase) return output_dict @property def __snake_case ( self : Union[str, Any]): a : Optional[Any] = self.image_processor.model_input_names a : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
40
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
0
"""simple docstring""" def lowerCamelCase (a_ :list[int] , a_ :list[int] , a_ :int) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(a_)) def lowerCamelCase (a_ :list[list[int]] , a_ :int , a_ :list[int] , a_ :int) -> bool: # Base Case if index == len(a_): return True # Recursive Step for i in range(a_): if valid_coloring(graph[index] , a_ , a_): # Color current vertex lowercase :List[Any] = i # Validate coloring if util_color(a_ , a_ , a_ , index + 1): return True # Backtrack lowercase :Tuple = -1 return False def lowerCamelCase (a_ :list[list[int]] , a_ :int) -> list[int]: lowercase :Tuple = [-1] * len(a_) if util_color(a_ , a_ , a_ , 0): return colored_vertices return []
172
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase = logging.get_logger(__name__) class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ): __A : Dict = "maskformer-swin" __A : Union[str, Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , snake_case__ : Dict=2_2_4 , snake_case__ : Any=4 , snake_case__ : Dict=3 , snake_case__ : str=9_6 , snake_case__ : List[str]=[2, 2, 6, 2] , snake_case__ : Optional[int]=[3, 6, 1_2, 2_4] , snake_case__ : Optional[Any]=7 , snake_case__ : int=4.0 , snake_case__ : str=True , snake_case__ : Dict=0.0 , snake_case__ : List[Any]=0.0 , snake_case__ : Tuple=0.1 , snake_case__ : List[str]="gelu" , snake_case__ : Tuple=False , snake_case__ : int=0.02 , snake_case__ : Tuple=1e-5 , snake_case__ : Optional[int]=None , snake_case__ : Tuple=None , **snake_case__ : List[Any] , ): '''simple docstring''' super().__init__(**snake_case__ ) lowercase :Optional[int] = image_size lowercase :List[Any] = patch_size lowercase :Optional[Any] = num_channels lowercase :Union[str, Any] = embed_dim lowercase :Union[str, Any] = depths lowercase :List[Any] = len(snake_case__ ) lowercase :Optional[Any] = num_heads lowercase :Optional[Any] = window_size lowercase :Optional[int] = mlp_ratio lowercase :str = qkv_bias lowercase :int = hidden_dropout_prob lowercase :List[str] = attention_probs_dropout_prob lowercase :str = drop_path_rate lowercase :Optional[Any] = hidden_act lowercase :Tuple = use_absolute_embeddings lowercase :Union[str, Any] = layer_norm_eps lowercase :Any = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase :Optional[int] = int(embed_dim * 2 ** (len(snake_case__ ) - 1) ) lowercase :Optional[int] = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(snake_case__ ) + 1 )] lowercase , lowercase :List[str] = get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
172
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: UpperCAmelCase = None UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } UpperCAmelCase = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off UpperCAmelCase = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class A_ ( UpperCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] _UpperCamelCase : Optional[Any] = MBartTokenizer _UpperCamelCase : List[Any] = [] _UpperCamelCase : int = [] def __init__( self , snake_case=None , snake_case=None , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=None , snake_case=None , snake_case=None , **snake_case , ): lowercase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( vocab_file=__lowercase , tokenizer_file=__lowercase , bos_token=__lowercase , eos_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , src_lang=__lowercase , tgt_lang=__lowercase , additional_special_tokens=__lowercase , **__lowercase , ) lowercase = vocab_file lowercase = False if not self.vocab_file else True lowercase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowercase = { lang_code: self.convert_tokens_to_ids(__lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowercase = src_lang if src_lang is not None else 'en_XX' lowercase = self.convert_tokens_to_ids(self._src_lang ) lowercase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE__ ( self ): return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , **snake_case ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowercase = src_lang lowercase = self(__lowercase , add_special_tokens=__lowercase , return_tensors=__lowercase , **__lowercase ) lowercase = self.convert_tokens_to_ids(__lowercase ) lowercase = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = "en_XX" , snake_case = None , snake_case = "ro_RO" , **snake_case , ): lowercase = src_lang lowercase = tgt_lang return super().prepare_seqaseq_batch(__lowercase , __lowercase , **__lowercase ) def SCREAMING_SNAKE_CASE__ ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE__ ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = self.convert_tokens_to_ids(__lowercase ) lowercase = [] lowercase = [self.eos_token_id, self.cur_lang_code] lowercase = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = self.convert_tokens_to_ids(__lowercase ) lowercase = [] lowercase = [self.eos_token_id, self.cur_lang_code] lowercase = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return lowercase = os.path.join( __lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
195
def lowerCamelCase__ ( _A , _A ): '''simple docstring''' _enforce_args(_A , _A ) if n == 0: return 0 snake_case_ = float("-inf" ) for i in range(1 , n + 1 ): snake_case_ = max( _A , prices[i - 1] + naive_cut_rod_recursive(n - i , _A ) ) return max_revue def lowerCamelCase__ ( _A , _A ): '''simple docstring''' _enforce_args(_A , _A ) snake_case_ = [float("-inf" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_A , _A , _A ) def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: snake_case_ = float("-inf" ) for i in range(1 , n + 1 ): snake_case_ = max( _A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _A , _A ) , ) snake_case_ = max_revenue return max_rev[n] def lowerCamelCase__ ( _A , _A ): '''simple docstring''' _enforce_args(_A , _A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. snake_case_ = [float("-inf" ) for _ in range(n + 1 )] snake_case_ = 0 for i in range(1 , n + 1 ): snake_case_ = max_rev[i] for j in range(1 , i + 1 ): snake_case_ = max(_A , prices[j - 1] + max_rev[i - j] ) snake_case_ = max_revenue_i return max_rev[n] def lowerCamelCase__ ( _A , _A ): '''simple docstring''' if n < 0: snake_case_ = f"n must be greater than or equal to 0. Got n = {n}" raise ValueError(_A ) if n > len(_A ): snake_case_ = ( "Each integral piece of rod must have a corresponding price. " f"Got n = {n} but length of prices = {len(_A )}" ) raise ValueError(_A ) def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = [6, 10, 12, 15, 20, 23] snake_case_ = len(_A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. snake_case_ = 36 snake_case_ = top_down_cut_rod(_A , _A ) snake_case_ = bottom_up_cut_rod(_A , _A ) snake_case_ = naive_cut_rod_recursive(_A , _A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
187
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = "detr" snake_case__ = ["past_key_values"] snake_case__ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : str , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : List[Any]=100 , SCREAMING_SNAKE_CASE__ : Dict=6 , SCREAMING_SNAKE_CASE__ : Dict=2_048 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_048 , SCREAMING_SNAKE_CASE__ : Tuple=8 , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str="relu" , SCREAMING_SNAKE_CASE__ : int=256 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Dict=0.0 , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1.0 , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : List[str]="sine" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="resnet50" , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : int=1 , SCREAMING_SNAKE_CASE__ : Optional[int]=5 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : List[Any]=5 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> str: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowerCAmelCase__ = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = backbone_config.get("model_type" ) lowerCAmelCase__ = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase__ = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) # set timm attributes to None lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None, None, None lowerCAmelCase__ = use_timm_backbone lowerCAmelCase__ = backbone_config lowerCAmelCase__ = num_channels lowerCAmelCase__ = num_queries lowerCAmelCase__ = d_model lowerCAmelCase__ = encoder_ffn_dim lowerCAmelCase__ = encoder_layers lowerCAmelCase__ = encoder_attention_heads lowerCAmelCase__ = decoder_ffn_dim lowerCAmelCase__ = decoder_layers lowerCAmelCase__ = decoder_attention_heads lowerCAmelCase__ = dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = activation_function lowerCAmelCase__ = init_std lowerCAmelCase__ = init_xavier_std lowerCAmelCase__ = encoder_layerdrop lowerCAmelCase__ = decoder_layerdrop lowerCAmelCase__ = encoder_layers lowerCAmelCase__ = auxiliary_loss lowerCAmelCase__ = position_embedding_type lowerCAmelCase__ = backbone lowerCAmelCase__ = use_pretrained_backbone lowerCAmelCase__ = dilation # Hungarian matcher lowerCAmelCase__ = class_cost lowerCAmelCase__ = bbox_cost lowerCAmelCase__ = giou_cost # Loss coefficients lowerCAmelCase__ = mask_loss_coefficient lowerCAmelCase__ = dice_loss_coefficient lowerCAmelCase__ = bbox_loss_coefficient lowerCAmelCase__ = giou_loss_coefficient lowerCAmelCase__ = eos_coefficient super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def a ( self : Optional[int] ) -> int: return self.encoder_attention_heads @property def a ( self : Tuple ) -> int: return self.d_model @classmethod def a ( cls : str , SCREAMING_SNAKE_CASE__ : PretrainedConfig , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: return cls(backbone_config=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def a ( self : Dict ) -> Dict[str, any]: lowerCAmelCase__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase__ = self.backbone_config.to_dict() lowerCAmelCase__ = self.__class__.model_type return output class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = version.parse("1.11" ) @property def a ( self : Dict ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def a ( self : str ) -> float: return 1e-5 @property def a ( self : str ) -> int: return 12
352
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : Dict ) -> Optional[int]: lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = BlipImageProcessor() lowerCAmelCase__ = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) lowerCAmelCase__ = BlipaProcessor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def a ( self : int , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).tokenizer def a ( self : Tuple , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def a ( self : str ) -> int: shutil.rmtree(self.tmpdirname ) def a ( self : List[Any] ) -> Any: lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def a ( self : str ) -> Dict: lowerCAmelCase__ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase__ = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) lowerCAmelCase__ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def a ( self : int ) -> str: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors="np" ) lowerCAmelCase__ = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Tuple ) -> int: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = processor(text=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer(SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Dict ) -> str: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def a ( self : str ) -> List[str]: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> Any: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
221
0
import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 10001 ) -> int: try: __lowercase = int(SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) __lowercase = [] __lowercase = 2 while len(SCREAMING_SNAKE_CASE ) < nth: if is_prime(SCREAMING_SNAKE_CASE ): primes.append(SCREAMING_SNAKE_CASE ) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
325
import logging import os from .state import PartialState class A__ ( logging.LoggerAdapter ): @staticmethod def a__ ( _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" __lowercase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) __lowercase = kwargs.pop('main_process_only' , _UpperCAmelCase ) __lowercase = kwargs.pop('in_order' , _UpperCAmelCase ) if self.isEnabledFor(_UpperCAmelCase ): if self._should_log(_UpperCAmelCase ): __lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase ) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) elif in_order: __lowercase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase ) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) state.wait_for_everyone() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ) -> Optional[Any]: if log_level is None: __lowercase = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE ) __lowercase = logging.getLogger(SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
325
1
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase_ = '''\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n''' lowerCAmelCase_ = '''\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n''' lowerCAmelCase_ = '''\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}''' def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False , ) -> Union[str, Any]: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): snake_case_ : Optional[int] = new_id # turn into Numpy arrays snake_case_ : str = np.array(lowerCAmelCase__ ) snake_case_ : Dict = np.array(lowerCAmelCase__ ) if reduce_labels: snake_case_ : Optional[Any] = 255 snake_case_ : str = label - 1 snake_case_ : Optional[int] = 255 snake_case_ : Dict = label != ignore_index snake_case_ : Any = np.not_equal(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Optional[Any] = pred_label[mask] snake_case_ : List[str] = np.array(lowerCAmelCase__ )[mask] snake_case_ : Optional[int] = pred_label[pred_label == label] snake_case_ : Optional[Any] = np.histogram(lowerCAmelCase__ , bins=lowerCAmelCase__ , range=(0, num_labels - 1) )[0] snake_case_ : List[str] = np.histogram(lowerCAmelCase__ , bins=lowerCAmelCase__ , range=(0, num_labels - 1) )[0] snake_case_ : List[Any] = np.histogram(lowerCAmelCase__ , bins=lowerCAmelCase__ , range=(0, num_labels - 1) )[0] snake_case_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False , ) -> Dict: """simple docstring""" snake_case_ : Tuple = np.zeros((num_labels,) , dtype=np.floataa ) snake_case_ : int = np.zeros((num_labels,) , dtype=np.floataa ) snake_case_ : int = np.zeros((num_labels,) , dtype=np.floataa ) snake_case_ : Optional[int] = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ , snake_case_ , snake_case_ , snake_case_ : int = intersect_and_union( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , ) -> List[str]: """simple docstring""" snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[int] = total_intersect_and_union( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # compute metrics snake_case_ : List[str] = {} snake_case_ : List[str] = total_area_intersect.sum() / total_area_label.sum() snake_case_ : Optional[int] = total_area_intersect / total_area_union snake_case_ : int = total_area_intersect / total_area_label snake_case_ : Any = np.nanmean(lowerCAmelCase__ ) snake_case_ : List[str] = np.nanmean(lowerCAmelCase__ ) snake_case_ : List[Any] = all_acc snake_case_ : int = iou snake_case_ : Dict = acc if nan_to_num is not None: snake_case_ : Dict = {metric: np.nan_to_num(lowerCAmelCase__ , nan=lowerCAmelCase__ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = False , ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = mean_iou( results=_a , gt_seg_maps=_a , num_labels=_a , ignore_index=_a , nan_to_num=_a , label_map=_a , reduce_labels=_a , ) return iou_result
361
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __lowerCAmelCase ( unittest.TestCase, _a ): def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Dict = load_tool('''text-to-speech''' ) self.tool.setup() def lowerCamelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[int] = self.tool('''hey''' ) snake_case_ : Union[str, Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Any = self.tool('''hey''' ) snake_case_ : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
279
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class lowercase_ ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" super().__init__(*__UpperCamelCase , **__UpperCamelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowerCamelCase_ ( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None ): """simple docstring""" UpperCamelCase_ = {} UpperCamelCase_ = {} if prompt is not None: UpperCamelCase_ = prompt if generate_kwargs is not None: UpperCamelCase_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCamelCase_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) UpperCamelCase_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return super().__call__(__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=None ): """simple docstring""" UpperCamelCase_ = load_image(__UpperCamelCase ) if prompt is not None: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError( f'''Received an invalid text input, got - {type(__UpperCamelCase )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) UpperCamelCase_ = self.model.config.model_type if model_type == "git": UpperCamelCase_ = self.image_processor(images=__UpperCamelCase , return_tensors=self.framework ) UpperCamelCase_ = self.tokenizer(text=__UpperCamelCase , add_special_tokens=__UpperCamelCase ).input_ids UpperCamelCase_ = [self.tokenizer.cls_token_id] + input_ids UpperCamelCase_ = torch.tensor(__UpperCamelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": UpperCamelCase_ = self.image_processor(images=__UpperCamelCase , header_text=__UpperCamelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCamelCase_ = self.image_processor(images=__UpperCamelCase , return_tensors=self.framework ) UpperCamelCase_ = self.tokenizer(__UpperCamelCase , return_tensors=self.framework ) model_inputs.update(__UpperCamelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: UpperCamelCase_ = self.image_processor(images=__UpperCamelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCamelCase_ = None return model_inputs def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=None ): """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , __UpperCamelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): UpperCamelCase_ = None if generate_kwargs is None: UpperCamelCase_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCamelCase_ = model_inputs.pop(self.model.main_input_name ) UpperCamelCase_ = self.model.generate(__UpperCamelCase , **__UpperCamelCase , **__UpperCamelCase ) return model_outputs def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = [] for output_ids in model_outputs: UpperCamelCase_ = { """generated_text""": self.tokenizer.decode( __UpperCamelCase , skip_special_tokens=__UpperCamelCase , ) } records.append(__UpperCamelCase ) return records
122
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowercase_ : def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" return None class lowercase_ : def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" return None class lowercase_ ( unittest.TestCase ): A__ : Union[str, Any] = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def lowerCamelCase_ ( self ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase , """tf""" , 1_2 , **__UpperCamelCase ) @require_torch @slow def lowerCamelCase_ ( self ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase , """pt""" , 1_2 , **__UpperCamelCase ) @require_torch @slow def lowerCamelCase_ ( self ): """simple docstring""" from transformers import BertModel UpperCamelCase_ = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(__UpperCamelCase ) ) vocab_file.flush() UpperCamelCase_ = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: UpperCamelCase_ = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) ) model.save_pretrained(__UpperCamelCase ) self._test_export(__UpperCamelCase , """pt""" , 1_2 , __UpperCamelCase ) @require_tf @slow def lowerCamelCase_ ( self ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCamelCase_ = self._test_export(__UpperCamelCase , """tf""" , 1_2 , **__UpperCamelCase ) UpperCamelCase_ = quantize(Path(__UpperCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def lowerCamelCase_ ( self ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCamelCase_ = self._test_export(__UpperCamelCase , """pt""" , 1_2 , **__UpperCamelCase ) UpperCamelCase_ = quantize(__UpperCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , **__UpperCamelCase ): """simple docstring""" try: # Compute path with TemporaryDirectory() as tempdir: UpperCamelCase_ = Path(__UpperCamelCase ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) return path except Exception as e: self.fail(__UpperCamelCase ) @require_torch @require_tokenizers @slow def lowerCamelCase_ ( self ): """simple docstring""" from transformers import BertModel UpperCamelCase_ = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) UpperCamelCase_ = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__UpperCamelCase , __UpperCamelCase , """pt""" ) @require_tf @require_tokenizers @slow def lowerCamelCase_ ( self ): """simple docstring""" from transformers import TFBertModel UpperCamelCase_ = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) UpperCamelCase_ = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__UpperCamelCase , __UpperCamelCase , """tf""" ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = FeatureExtractionPipeline(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = infer_shapes(__UpperCamelCase , __UpperCamelCase ) # Assert all variables are present self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __UpperCamelCase ) self.assertSequenceEqual(variable_names[3:] , __UpperCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = ["""input_ids""", """attention_mask""", """token_type_ids"""] UpperCamelCase_ = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} UpperCamelCase_ , UpperCamelCase_ = ensure_valid_input(FuncContiguousArgs() , __UpperCamelCase , __UpperCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCamelCase ) , set(__UpperCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCamelCase , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) UpperCamelCase_ , UpperCamelCase_ = ensure_valid_input(FuncNonContiguousArgs() , __UpperCamelCase , __UpperCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCamelCase ) , 1 ) self.assertEqual(len(__UpperCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] , """input_ids""" ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
122
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : Optional[int] = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['''OwlViTFeatureExtractor'''] UpperCAmelCase_ : Optional[int] = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
62
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model'''} UpperCAmelCase_ : str = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } UpperCAmelCase_ : List[Any] = { '''moussaKam/mbarthez''': 10_24, '''moussaKam/barthez''': 10_24, '''moussaKam/barthez-orangesum-title''': 10_24, } UpperCAmelCase_ : List[str] = '''▁''' class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[int] = VOCAB_FILES_NAMES snake_case__ : int = PRETRAINED_VOCAB_FILES_MAP snake_case__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : Optional[int]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : str="<mask>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase :int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token UpperCamelCase :int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) UpperCamelCase :Union[str, Any] = vocab_file UpperCamelCase :List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) UpperCamelCase :Optional[int] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} UpperCamelCase :Tuple = len(self.sp_model ) - 1 UpperCamelCase :List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _A ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase :Any = [self.cls_token_id] UpperCamelCase :Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _A ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _A ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): UpperCamelCase :Any = [self.sep_token_id] UpperCamelCase :int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _A ( self : List[Any] ): return len(self.sp_model ) def _A ( self : Any ): UpperCamelCase :Optional[int] = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _A ( self : int , __lowerCamelCase : str ): return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def _A ( self : Dict , __lowerCamelCase : Optional[int] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase :List[Any] = self.sp_model.PieceToId(__lowerCamelCase ) return spm_id if spm_id else self.unk_token_id def _A ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__lowerCamelCase ) def _A ( self : Optional[int] , __lowerCamelCase : Union[str, Any] ): UpperCamelCase :List[Any] = [] UpperCamelCase :str = """""" UpperCamelCase :Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token UpperCamelCase :List[str] = True UpperCamelCase :Dict = [] else: current_sub_tokens.append(__lowerCamelCase ) UpperCamelCase :Optional[Any] = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def __getstate__( self : str ): UpperCamelCase :Tuple = self.__dict__.copy() UpperCamelCase :str = None return state def __setstate__( self : Tuple , __lowerCamelCase : Optional[int] ): UpperCamelCase :Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase :Any = {} UpperCamelCase :str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _A ( self : str , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase :Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , """wb""" ) as fi: UpperCamelCase :List[str] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
62
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Union[str, Any]= logging.get_logger(__name__) _a : str= { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class UpperCamelCase ( lowercase ): UpperCAmelCase : List[str] = """mgp-str""" def __init__(self : List[Any] , _A : Dict=[32, 1_28] , _A : Any=4 , _A : int=3 , _A : Any=27 , _A : List[str]=38 , _A : str=5_02_57 , _A : Optional[int]=3_05_22 , _A : Union[str, Any]=7_68 , _A : Tuple=12 , _A : List[str]=12 , _A : List[str]=4.0 , _A : Optional[int]=True , _A : Optional[Any]=False , _A : Dict=1E-5 , _A : Optional[int]=0.0 , _A : str=0.0 , _A : int=0.0 , _A : str=False , _A : List[Any]=0.02 , **_A : Union[str, Any] , ) -> Tuple: super().__init__(**_A) __snake_case : Union[str, Any] = image_size __snake_case : Optional[int] = patch_size __snake_case : int = num_channels __snake_case : int = max_token_length __snake_case : List[Any] = num_character_labels __snake_case : Optional[int] = num_bpe_labels __snake_case : Optional[Any] = num_wordpiece_labels __snake_case : int = hidden_size __snake_case : List[Any] = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : Any = mlp_ratio __snake_case : List[str] = distilled __snake_case : List[Any] = layer_norm_eps __snake_case : List[Any] = drop_rate __snake_case : Optional[int] = qkv_bias __snake_case : Optional[int] = attn_drop_rate __snake_case : int = drop_path_rate __snake_case : List[str] = output_aa_attentions __snake_case : Optional[Any] = initializer_range
172
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _a : str= logging.get_logger(__name__) _a : str= {"vocab_file": "spiece.model"} _a : Tuple= { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } _a : int= { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) _a : Optional[int]= 0 _a : str= 1 _a : Tuple= 2 _a : str= 3 _a : Optional[Any]= 4 class UpperCamelCase ( lowercase ): UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : str = """left""" def __init__(self : List[Any] , _A : List[str] , _A : int=False , _A : Tuple=True , _A : Optional[Any]=False , _A : List[Any]="<s>" , _A : Dict="</s>" , _A : str="<unk>" , _A : Optional[Any]="<sep>" , _A : Optional[Any]="<pad>" , _A : Optional[Any]="<cls>" , _A : Dict="<mask>" , _A : List[Any]=["<eop>", "<eod>"] , _A : Optional[Dict[str, Any]] = None , **_A : List[str] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __snake_case : str = AddedToken(_A , lstrip=_A , rstrip=_A) if isinstance(_A , _A) else mask_token __snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __snake_case : Tuple = 3 __snake_case : Optional[int] = do_lower_case __snake_case : Union[str, Any] = remove_space __snake_case : Dict = keep_accents __snake_case : str = vocab_file __snake_case : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_A) @property def _lowercase (self : Dict) -> List[str]: return len(self.sp_model) def _lowercase (self : Dict) -> Union[str, Any]: __snake_case : str = {self.convert_ids_to_tokens(_A): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self : Union[str, Any]) -> List[str]: __snake_case : Optional[Any] = self.__dict__.copy() __snake_case : Union[str, Any] = None return state def __setstate__(self : Union[str, Any] , _A : Optional[Any]) -> str: __snake_case : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __snake_case : List[Any] = {} __snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowercase (self : Any , _A : Tuple) -> List[str]: if self.remove_space: __snake_case : List[Any] = ' '.join(inputs.strip().split()) else: __snake_case : Tuple = inputs __snake_case : int = outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: __snake_case : str = unicodedata.normalize('NFKD' , _A) __snake_case : Tuple = ''.join([c for c in outputs if not unicodedata.combining(_A)]) if self.do_lower_case: __snake_case : Union[str, Any] = outputs.lower() return outputs def _lowercase (self : List[Any] , _A : str) -> List[str]: __snake_case : int = self.preprocess_text(_A) __snake_case : Dict = self.sp_model.encode(_A , out_type=_A) __snake_case : Union[str, Any] = [] for piece in pieces: if len(_A) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): __snake_case : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __snake_case : List[str] = cur_pieces[1:] else: __snake_case : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_A) else: new_pieces.append(_A) return new_pieces def _lowercase (self : Union[str, Any] , _A : Union[str, Any]) -> Any: return self.sp_model.PieceToId(_A) def _lowercase (self : Tuple , _A : str) -> Optional[int]: return self.sp_model.IdToPiece(_A) def _lowercase (self : List[str] , _A : Dict) -> List[Any]: __snake_case : str = ''.join(_A).replace(_A , ' ').strip() return out_string def _lowercase (self : Dict , _A : List[int] , _A : bool = False , _A : bool = None , _A : bool = True , **_A : str , ) -> str: __snake_case : Tuple = kwargs.pop('use_source_tokenizer' , _A) __snake_case : Tuple = self.convert_ids_to_tokens(_A , skip_special_tokens=_A) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __snake_case : List[str] = [] __snake_case : str = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A)) __snake_case : List[Any] = [] sub_texts.append(_A) else: current_sub_text.append(_A) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __snake_case : Optional[int] = ''.join(_A) __snake_case : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __snake_case : str = self.clean_up_tokenization(_A) return clean_text else: return text def _lowercase (self : Dict , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : int = [self.sep_token_id] __snake_case : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase (self : List[str] , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A) if token_ids_a is not None: return ([0] * len(_A)) + [1] + ([0] * len(_A)) + [1, 1] return ([0] * len(_A)) + [1, 1] def _lowercase (self : Dict , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[int] = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowercase (self : Tuple , _A : str , _A : Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_A): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return __snake_case : str = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_A) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _A) elif not os.path.isfile(self.vocab_file): with open(_A , 'wb') as fi: __snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(_A) return (out_vocab_file,)
172
1
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __snake_case (unittest.TestCase ): def __init__( self : str , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=99 , _UpperCAmelCase : Union[str, Any]=32 , _UpperCAmelCase : List[Any]=5 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : int=2 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Tuple=4 , ) -> int: '''simple docstring''' _lowerCAmelCase : Dict = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : Tuple = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : Optional[int] = use_attention_mask _lowerCAmelCase : Any = use_token_type_ids _lowerCAmelCase : str = use_labels _lowerCAmelCase : str = vocab_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : Any = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : str = attention_probs_dropout_prob _lowerCAmelCase : Tuple = max_position_embeddings _lowerCAmelCase : str = type_vocab_size _lowerCAmelCase : List[str] = type_sequence_label_size _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Optional[Any] = num_choices def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : str = None if self.use_attention_mask: _lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : int = None if self.use_token_type_ids: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : Dict = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: '''simple docstring''' _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() _lowerCAmelCase : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class __snake_case (lowerCamelCase__ , unittest.TestCase ): lowerCAmelCase__ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = FlaxAlbertModelTester(self ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _lowerCAmelCase : int = model_class_name.from_pretrained("""albert-base-v2""" ) _lowerCAmelCase : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class __snake_case (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Dict = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) _lowerCAmelCase : List[str] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowerCAmelCase : List[str] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCAmelCase : List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] _lowerCAmelCase : Optional[int] = (1, 11, 768) self.assertEqual(output.shape , _UpperCAmelCase ) _lowerCAmelCase : int = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) )
354
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _lowerCamelCase : str = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __snake_case (unittest.TestCase , _a ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: '''simple docstring''' _lowerCAmelCase : List[Any] = load_tool("""text-question-answering""" ) self.tool.setup() _lowerCAmelCase : Optional[Any] = load_tool("""text-question-answering""" , remote=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tool(_UpperCAmelCase , """What did Hugging Face do in April 2021?""" ) self.assertEqual(_UpperCAmelCase , """launched the BigScience Research Workshop""" ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: '''simple docstring''' _lowerCAmelCase : List[Any] = self.remote_tool(_UpperCAmelCase , """What did Hugging Face do in April 2021?""" ) self.assertEqual(_UpperCAmelCase , """launched the BigScience Research Workshop""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: '''simple docstring''' _lowerCAmelCase : List[Any] = self.tool(text=_UpperCAmelCase , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(_UpperCAmelCase , """launched the BigScience Research Workshop""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : List[Any] = self.remote_tool(text=_UpperCAmelCase , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(_UpperCAmelCase , """launched the BigScience Research Workshop""" )
159
0
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = iter(UpperCamelCase__ ) while True: __SCREAMING_SNAKE_CASE = tuple(itertools.islice(UpperCamelCase__ , UpperCamelCase__ ) ) if not chunk: return yield chunk def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = """""".join([c.upper() for c in dirty if c in string.ascii_letters] ) __SCREAMING_SNAKE_CASE = """""" if len(UpperCamelCase__ ) < 2: return dirty for i in range(len(UpperCamelCase__ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(UpperCamelCase__ ) & 1: clean += "X" return clean def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __SCREAMING_SNAKE_CASE = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(UpperCamelCase__ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(UpperCamelCase__ ) return table def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = generate_table(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = prepare_input(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCamelCase__ , 2 ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = divmod(table.index(UpperCamelCase__ ) , 5 ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = divmod(table.index(UpperCamelCase__ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = generate_table(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCamelCase__ , 2 ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = divmod(table.index(UpperCamelCase__ ) , 5 ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = divmod(table.index(UpperCamelCase__ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
100
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class UpperCamelCase__( __A ): lowerCAmelCase__ : Union[str, Any] = 'transfo-xl' lowerCAmelCase__ : Any = ['mems'] lowerCAmelCase__ : Tuple = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,__UpperCAmelCase=26_77_35 ,__UpperCAmelCase=[2_00_00, 4_00_00, 20_00_00] ,__UpperCAmelCase=10_24 ,__UpperCAmelCase=10_24 ,__UpperCAmelCase=16 ,__UpperCAmelCase=64 ,__UpperCAmelCase=40_96 ,__UpperCAmelCase=4 ,__UpperCAmelCase=False ,__UpperCAmelCase=18 ,__UpperCAmelCase=16_00 ,__UpperCAmelCase=10_00 ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=0 ,__UpperCAmelCase=-1 ,__UpperCAmelCase=True ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=True ,__UpperCAmelCase="normal" ,__UpperCAmelCase=0.0_1 ,__UpperCAmelCase=0.0_1 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1e-5 ,__UpperCAmelCase=0 ,**__UpperCAmelCase ,) -> Tuple: A__ = vocab_size A__ = [] self.cutoffs.extend(__UpperCAmelCase ) if proj_share_all_but_first: A__ = [False] + [True] * len(self.cutoffs ) else: A__ = [False] + [False] * len(self.cutoffs ) A__ = d_model A__ = d_embed A__ = d_head A__ = d_inner A__ = div_val A__ = pre_lnorm A__ = n_layer A__ = n_head A__ = mem_len A__ = same_length A__ = attn_type A__ = clamp_len A__ = sample_softmax A__ = adaptive A__ = dropout A__ = dropatt A__ = untie_r A__ = init A__ = init_range A__ = proj_init_std A__ = init_std A__ = layer_norm_epsilon super().__init__(eos_token_id=__UpperCAmelCase ,**__UpperCAmelCase ) @property def snake_case__ ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case__ ( self ,__UpperCAmelCase ) -> int: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
221
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=7 ,__UpperCAmelCase=3 ,__UpperCAmelCase=10 ,__UpperCAmelCase=18 ,__UpperCAmelCase=30 ,__UpperCAmelCase=400 ,__UpperCAmelCase=True ,__UpperCAmelCase=None ,__UpperCAmelCase=True ,__UpperCAmelCase=[0.5, 0.5, 0.5] ,__UpperCAmelCase=[0.5, 0.5, 0.5] ,__UpperCAmelCase=None ,) -> Tuple: lowerCAmelCase__ : List[Any] = size if size is not None else {"""shortest_edge""": 18} lowerCAmelCase__ : str = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : List[str] = batch_size lowerCAmelCase__ : int = num_channels lowerCAmelCase__ : str = num_frames lowerCAmelCase__ : Any = image_size lowerCAmelCase__ : Optional[Any] = min_resolution lowerCAmelCase__ : List[Any] = max_resolution lowerCAmelCase__ : Union[str, Any] = do_resize lowerCAmelCase__ : str = size lowerCAmelCase__ : int = do_normalize lowerCAmelCase__ : Dict = image_mean lowerCAmelCase__ : int = image_std lowerCAmelCase__ : Optional[Any] = crop_size def UpperCAmelCase_ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Dict = VivitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Optional[Any] = VivitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""image_std""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""size""" ) ) def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) lowerCAmelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCAmelCase_ ( self ) -> int: # Initialize image_processing lowerCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos lowerCAmelCase__ : int = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__UpperCAmelCase ) for video in video_inputs: self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) self.assertIsInstance(video[0] ,Image.Image ) # Test not batched input lowerCAmelCase__ : Dict = image_processing(video_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCAmelCase__ : str = image_processing(__UpperCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase_ ( self ) -> str: # Initialize image_processing lowerCAmelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : List[Any] = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__UpperCAmelCase ,numpify=__UpperCAmelCase ) for video in video_inputs: self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) self.assertIsInstance(video[0] ,np.ndarray ) # Test not batched input lowerCAmelCase__ : str = image_processing(video_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCAmelCase__ : Optional[int] = image_processing(__UpperCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image_processing lowerCAmelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : Tuple = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__UpperCAmelCase ,torchify=__UpperCAmelCase ) for video in video_inputs: self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) self.assertIsInstance(video[0] ,torch.Tensor ) # Test not batched input lowerCAmelCase__ : List[str] = image_processing(video_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCAmelCase__ : Dict = image_processing(__UpperCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
184
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCAmelCase_: '''simple docstring''' __lowercase : Optional[Union[str, Path]] = None __lowercase : bool = False __lowercase : bool = False __lowercase : bool = False __lowercase : Optional[Dict] = None __lowercase : Optional[str] = None __lowercase : bool = False __lowercase : bool = False __lowercase : bool = False __lowercase : bool = True __lowercase : Optional[int] = None __lowercase : int = 1 __lowercase : Optional[Union[str, bool]] = None __lowercase : bool = False __lowercase : Optional[Dict] = None __lowercase : Optional[str] = None def UpperCAmelCase_ ( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
184
1
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any]=1_3 , UpperCAmelCase__ : Tuple=7 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : int=9_9 , UpperCAmelCase__ : List[str]=3_2 , UpperCAmelCase__ : Tuple=5 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : Tuple=3_7 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : int=5_1_2 , UpperCAmelCase__ : int=1_6 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : Any=4 , ) -> int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_attention_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_choices def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_attention_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : Any ) -> str: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Optional[Any] = True lowerCamelCase : Tuple = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self : str ) -> str: lowerCAmelCase = FlaxRoFormerModelTester(self ) @slow def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: for model_class_name in self.all_model_classes: lowerCAmelCase = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=UpperCAmelCase__ ) lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase__ ) @require_flax class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : Optional[Any] ) -> str: lowerCAmelCase = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(UpperCAmelCase__ )[0] lowerCAmelCase = 5_0_0_0_0 lowerCAmelCase = (1, 6, vocab_size) self.assertEqual(output.shape , UpperCAmelCase__ ) lowerCAmelCase = jnp.array( [[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) )
4
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
279
0
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __snake_case ( _lowercase): def __init__( self : Any , __lowerCAmelCase : Distribution , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Dict=0 ): """simple docstring""" _lowerCamelCase : List[Any] = 1.0 if scale is None else scale _lowerCamelCase : Union[str, Any] = 0.0 if loc is None else loc super().__init__(__lowerCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowerCAmelCase )] ) @property def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return self.base_dist.variance * self.scale**2 @property def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self.variance.sqrt() class __snake_case ( nn.Module): def __init__( self : Any , __lowerCAmelCase : int , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : Callable[..., Tuple[torch.Tensor]] , **__lowerCAmelCase : Any ): """simple docstring""" super().__init__(**__lowerCAmelCase ) _lowerCamelCase : str = args_dim _lowerCamelCase : Dict = nn.ModuleList([nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) for dim in args_dim.values()] ) _lowerCamelCase : List[Any] = domain_map def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : torch.Tensor ): """simple docstring""" _lowerCamelCase : Optional[Any] = [proj(__lowerCAmelCase ) for proj in self.proj] return self.domain_map(*__lowerCAmelCase ) class __snake_case ( nn.Module): def __init__( self : List[Any] , __lowerCAmelCase : str ): """simple docstring""" super().__init__() _lowerCamelCase : str = function def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , *__lowerCAmelCase : int ): """simple docstring""" return self.function(__lowerCAmelCase , *__lowerCAmelCase ) class __snake_case : snake_case__ : type snake_case__ : int snake_case__ : Dict[str, int] def __init__( self : int , __lowerCAmelCase : int = 1 ): """simple docstring""" _lowerCamelCase : str = dim _lowerCamelCase : Optional[int] = {k: dim * self.args_dim[k] for k in self.args_dim} def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Any ): """simple docstring""" if self.dim == 1: return self.distribution_class(*__lowerCAmelCase ) else: return Independent(self.distribution_class(*__lowerCAmelCase ) , 1 ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[torch.Tensor] = None , ): """simple docstring""" _lowerCamelCase : int = self._base_distribution(__lowerCAmelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowerCAmelCase , loc=__lowerCAmelCase , scale=__lowerCAmelCase , event_dim=self.event_dim ) @property def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return len(self.event_shape ) @property def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return 0.0 def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : int ): """simple docstring""" return ParameterProjection( in_features=__lowerCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def SCREAMING_SNAKE_CASE ( self : str , *__lowerCAmelCase : torch.Tensor ): """simple docstring""" raise NotImplementedError() @staticmethod def SCREAMING_SNAKE_CASE ( __lowerCAmelCase : torch.Tensor ): """simple docstring""" return (x + torch.sqrt(torch.square(__lowerCAmelCase ) + 4.0 )) / 2.0 class __snake_case ( _lowercase): snake_case__ : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} snake_case__ : type = StudentT @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[int] , __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : torch.Tensor ): """simple docstring""" _lowerCamelCase : List[str] = cls.squareplus(__lowerCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) _lowerCamelCase : Dict = 2.0 + cls.squareplus(__lowerCAmelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __snake_case ( _lowercase): snake_case__ : Dict[str, int] = {"loc": 1, "scale": 1} snake_case__ : type = Normal @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[int] , __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : torch.Tensor ): """simple docstring""" _lowerCamelCase : Union[str, Any] = cls.squareplus(__lowerCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __snake_case ( _lowercase): snake_case__ : Dict[str, int] = {"total_count": 1, "logits": 1} snake_case__ : type = NegativeBinomial @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[int] , __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : torch.Tensor ): """simple docstring""" _lowerCamelCase : Optional[int] = cls.squareplus(__lowerCAmelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Union[str, Any] = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowerCAmelCase , logits=__lowerCAmelCase ) else: return Independent(self.distribution_class(total_count=__lowerCAmelCase , logits=__lowerCAmelCase ) , 1 ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[torch.Tensor] = None ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Any = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
175
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(_lowercase) class __snake_case ( _lowercase): def __init__( self : Any , **__lowerCAmelCase : Union[str, Any] ): """simple docstring""" super().__init__(**__lowerCAmelCase ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , '''vision''' ) self.check_model_type(__lowerCAmelCase ) def __call__( self : Dict , __lowerCAmelCase : Union[str, "Image.Image", List[Dict[str, Any]]] , __lowerCAmelCase : Union[str, List[str]] = None , **__lowerCAmelCase : int , ): """simple docstring""" if "text_queries" in kwargs: _lowerCamelCase : List[Any] = kwargs.pop('''text_queries''' ) if isinstance(__lowerCAmelCase , (str, Image.Image) ): _lowerCamelCase : Optional[int] = {'''image''': image, '''candidate_labels''': candidate_labels} else: _lowerCamelCase : List[Any] = image _lowerCamelCase : List[str] = super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) return results def SCREAMING_SNAKE_CASE ( self : List[Any] , **__lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = {} if "threshold" in kwargs: _lowerCamelCase : Optional[Any] = kwargs['''threshold'''] if "top_k" in kwargs: _lowerCamelCase : int = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : int = load_image(inputs['''image'''] ) _lowerCamelCase : Optional[Any] = inputs['''candidate_labels'''] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : int = candidate_labels.split(''',''' ) _lowerCamelCase : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(__lowerCAmelCase ): _lowerCamelCase : Any = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework ) _lowerCamelCase : Optional[Any] = self.image_processor(__lowerCAmelCase , return_tensors=self.framework ) yield { "is_last": i == len(__lowerCAmelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = model_inputs.pop('''target_size''' ) _lowerCamelCase : List[Any] = model_inputs.pop('''candidate_label''' ) _lowerCamelCase : Dict = model_inputs.pop('''is_last''' ) _lowerCamelCase : str = self.model(**__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Optional[Any]=None ): """simple docstring""" _lowerCamelCase : str = [] for model_output in model_outputs: _lowerCamelCase : Any = model_output['''candidate_label'''] _lowerCamelCase : Union[str, Any] = BaseModelOutput(__lowerCAmelCase ) _lowerCamelCase : Tuple = self.image_processor.post_process_object_detection( outputs=__lowerCAmelCase , threshold=__lowerCAmelCase , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): _lowerCamelCase : Tuple = outputs['''scores'''][index].item() _lowerCamelCase : Optional[Any] = self._get_bounding_box(outputs['''boxes'''][index][0] ) _lowerCamelCase : Optional[Any] = {'''score''': score, '''label''': label, '''box''': box} results.append(__lowerCAmelCase ) _lowerCamelCase : int = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : x["score"] , reverse=__lowerCAmelCase ) if top_k: _lowerCamelCase : Dict = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : "torch.Tensor" ): """simple docstring""" if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = box.int().tolist() _lowerCamelCase : Union[str, Any] = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
175
1