code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : int ): if digit_amount > 0: return round(number - int(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) return number - int(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
62
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str = "" ): __UpperCamelCase =url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' __UpperCamelCase =BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE__ ).text , 'html.parser' ) __UpperCamelCase =soup.find_all('td' , attrs='titleColumn' ) __UpperCamelCase =soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) } def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str = "IMDb_Top_250_Movies.csv" ): __UpperCamelCase =get_imdb_top_aaa_movies() with open(SCREAMING_SNAKE_CASE__ , 'w' , newline='' ) as out_file: __UpperCamelCase =csv.writer(SCREAMING_SNAKE_CASE__ ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
62
1
import csv import tweepy # Twitter API credentials snake_case_ = '''''' snake_case_ = '''''' snake_case_ = '''''' snake_case_ = '''''' def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ : List[Any] = tweepy.OAuthHandler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) auth.set_access_token(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = tweepy.API(SCREAMING_SNAKE_CASE_ ) # initialize a list to hold all the tweepy Tweets lowercase__ : Union[str, Any] = [] # make initial request for most recent tweets (200 is the maximum allowed count) lowercase__ : Optional[Any] = api.user_timeline(screen_name=SCREAMING_SNAKE_CASE_ , count=200 ) # save most recent tweets alltweets.extend(SCREAMING_SNAKE_CASE_ ) # save the id of the oldest tweet less one lowercase__ : Optional[int] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(SCREAMING_SNAKE_CASE_ ) > 0: print(f"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates lowercase__ : int = api.user_timeline( screen_name=SCREAMING_SNAKE_CASE_ , count=200 , max_id=SCREAMING_SNAKE_CASE_ ) # save most recent tweets alltweets.extend(SCREAMING_SNAKE_CASE_ ) # update the id of the oldest tweet less one lowercase__ : List[str] = alltweets[-1].id - 1 print(f"""...{len(SCREAMING_SNAKE_CASE_ )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv lowercase__ : Union[str, Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f"""new_{screen_name}_tweets.csv""" , 'w' ) as f: lowercase__ : Optional[Any] = csv.writer(SCREAMING_SNAKE_CASE_ ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
371
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class SCREAMING_SNAKE_CASE__ (__snake_case ): def __init__( self , a , a = None , a = None , a = True , a = None , a = False , a = None , a = True , a = "arrow" , **a , ): super().__init__( split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , **a , ) lowercase__ : Optional[int] = load_from_cache_file lowercase__ : Optional[int] = file_format lowercase__ : int = Spark( df=a , features=a , cache_dir=a , working_dir=a , **a , ) def snake_case_ ( self): if self.streaming: return self.builder.as_streaming_dataset(split=self.split) lowercase__ : Dict = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split)
216
0
'''simple docstring''' from __future__ import annotations class a__ : def __init__( self : Tuple , a : str , a : str ): """simple docstring""" __lowerCamelCase , __lowerCamelCase = text, pattern __lowerCamelCase , __lowerCamelCase = len(a ), len(a ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : str ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def SCREAMING_SNAKE_CASE__ ( self : Dict , a : int ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = [] for i in range(self.textLen - self.patLen + 1 ): __lowerCamelCase = self.mismatch_in_text(a ) if mismatch_index == -1: positions.append(a ) else: __lowerCamelCase = self.match_in_pattern(self.text[mismatch_index] ) __lowerCamelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __UpperCAmelCase ="ABAABA" __UpperCAmelCase ="AB" __UpperCAmelCase =BoyerMooreSearch(text, pattern) __UpperCAmelCase =bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
67
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self : Optional[Any] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[int, float] = 1 / 2_5_5 , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : bool = True , **_lowerCAmelCase : int , ) -> None: """simple docstring""" super().__init__(**_lowerCAmelCase ) snake_case_ = size if size is not None else {"shortest_edge": 2_2_4} snake_case_ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) snake_case_ = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} snake_case_ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase , param_name="crop_size" ) snake_case_ = do_resize snake_case_ = size snake_case_ = resample snake_case_ = do_center_crop snake_case_ = crop_size snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_normalize snake_case_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN snake_case_ = image_std if image_std is not None else OPENAI_CLIP_STD snake_case_ = do_convert_rgb def lowerCAmelCase__ ( self : Dict , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : int , ) -> np.ndarray: """simple docstring""" snake_case_ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case_ = get_resize_output_image_size(_lowerCAmelCase , size=size["shortest_edge"] , default_to_square=_lowerCAmelCase ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Any , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : List[Any] , ) -> np.ndarray: """simple docstring""" snake_case_ = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[int] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[int, float] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : str , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Optional[int] , ) -> np.ndarray: """simple docstring""" return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[int] , _lowerCAmelCase : ImageInput , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : int = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : float = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowerCAmelCase : Optional[int] , ) -> PIL.Image.Image: """simple docstring""" snake_case_ = do_resize if do_resize is not None else self.do_resize snake_case_ = size if size is not None else self.size snake_case_ = get_size_dict(_lowerCAmelCase , param_name="size" , default_to_square=_lowerCAmelCase ) snake_case_ = resample if resample is not None else self.resample snake_case_ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ = crop_size if crop_size is not None else self.crop_size snake_case_ = get_size_dict(_lowerCAmelCase , param_name="crop_size" , default_to_square=_lowerCAmelCase ) snake_case_ = do_rescale if do_rescale is not None else self.do_rescale snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = image_mean if image_mean is not None else self.image_mean snake_case_ = image_std if image_std is not None else self.image_std snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(_lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: snake_case_ = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: snake_case_ = [self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: snake_case_ = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: snake_case_ = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] snake_case_ = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] snake_case_ = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
159
0
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version _SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) require_version("""pytorch_lightning>=1.0.4""") _SCREAMING_SNAKE_CASE : Tuple = { """base""": AutoModel, """sequence-classification""": AutoModelForSequenceClassification, """question-answering""": AutoModelForQuestionAnswering, """pretraining""": AutoModelForPreTraining, """token-classification""": AutoModelForTokenClassification, """language-modeling""": AutoModelWithLMHead, """summarization""": AutoModelForSeqaSeqLM, """translation""": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization _SCREAMING_SNAKE_CASE : Optional[Any] = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } _SCREAMING_SNAKE_CASE : int = sorted(arg_to_scheduler.keys()) _SCREAMING_SNAKE_CASE : Union[str, Any] = """{""" + """, """.join(arg_to_scheduler_choices) + """}""" class __a ( pl.LightningModule ): """simple docstring""" def __init__( self : Any , lowercase_ : argparse.Namespace , lowercase_ : str=None , lowercase_ : Optional[int]="base" , lowercase_ : Optional[int]=None , lowercase_ : List[str]=None , lowercase_ : Tuple=None , **lowercase_ : List[str] , ): super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase_ ) UpperCamelCase__ : Any =0 UpperCamelCase__ : List[Any] =Path(self.hparams.output_dir ) UpperCamelCase__ : int =self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCamelCase__ : Optional[int] =AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase_ , **lowercase_ , ) else: UpperCamelCase__ : PretrainedConfig =config UpperCamelCase__ : List[Any] =('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase_ , lowercase_ ): assert hasattr(self.config , lowercase_ ), f'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , lowercase_ , getattr(self.hparams , lowercase_ ) ) if tokenizer is None: UpperCamelCase__ : Dict =AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase_ , ) else: UpperCamelCase__ : PreTrainedTokenizer =tokenizer UpperCamelCase__ : List[str] =MODEL_MODES[mode] if model is None: UpperCamelCase__ : str =self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase_ , ) else: UpperCamelCase__ : List[str] =model def _lowerCAmelCase ( self : int , *lowercase_ : Optional[int] , **lowercase_ : int ): UpperCamelCase__ : Any =self.model_type.from_pretrained(*lowercase_ , **lowercase_ ) def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : int =arg_to_scheduler[self.hparams.lr_scheduler] UpperCamelCase__ : List[Any] =get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) UpperCamelCase__ : Optional[Any] ={'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def _lowerCAmelCase ( self : str ): UpperCamelCase__ : str =self.model UpperCamelCase__ : Optional[int] =['''bias''', '''LayerNorm.weight'''] UpperCamelCase__ : Optional[int] =[ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: UpperCamelCase__ : int =Adafactor( lowercase_ , lr=self.hparams.learning_rate , scale_parameter=lowercase_ , relative_step=lowercase_ ) else: UpperCamelCase__ : Union[str, Any] =AdamW( lowercase_ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) UpperCamelCase__ : Dict =optimizer UpperCamelCase__ : Dict =self.get_lr_scheduler() return [optimizer], [scheduler] def _lowerCAmelCase ( self : List[str] , lowercase_ : Any , lowercase_ : Dict ): return self.validation_step(lowercase_ , lowercase_ ) def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : Optional[Any] ): return self.validation_end(lowercase_ ) def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : int =max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCamelCase__ : List[Any] =self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def _lowerCAmelCase ( self : Dict , lowercase_ : str ): if stage == "test": UpperCamelCase__ : Optional[int] =len(self.test_dataloader().dataset ) else: UpperCamelCase__ : Dict =self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase_ ) UpperCamelCase__ : Optional[int] =len(self.train_dataloader().dataset ) def _lowerCAmelCase ( self : str , lowercase_ : str , lowercase_ : int , lowercase_ : bool = False ): raise NotImplementedError('''You must implement this for your task''' ) def _lowerCAmelCase ( self : Tuple ): return self.train_loader def _lowerCAmelCase ( self : str ): return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase_ ) def _lowerCAmelCase ( self : Optional[int] ): return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase_ ) def _lowerCAmelCase ( self : int , lowercase_ : Any ): return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase_ , list(filter(lowercase_ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def _lowerCAmelCase ( self : Optional[Any] , lowercase_ : Dict[str, Any] ): UpperCamelCase__ : Optional[int] =self.output_dir.joinpath('''best_tfmr''' ) UpperCamelCase__ : List[str] =self.step_count self.model.save_pretrained(lowercase_ ) self.tokenizer.save_pretrained(lowercase_ ) @staticmethod def _lowerCAmelCase ( lowercase_ : str , lowercase_ : List[Any] ): parser.add_argument( '''--model_name_or_path''' , default=lowercase_ , type=lowercase_ , required=lowercase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase_ , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase_ , type=lowercase_ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase_ ).parent / '''test_run''' / '''cache''' ) , type=lowercase_ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase_ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase_ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase_ , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase_ , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5e-5 , type=lowercase_ , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase_ , metavar=lowercase_ , type=lowercase_ , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase_ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=lowercase_ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase_ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase_ , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase_ ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase_ ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase_ ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class __a ( pl.Callback ): """simple docstring""" def _lowerCAmelCase ( self : str , lowercase_ : Optional[Any] , lowercase_ : Any ): if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __a ( pl.Callback ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : int ): # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase_ ) class __a ( pl.Callback ): """simple docstring""" def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Union[str, Any] ): UpperCamelCase__ : Union[str, Any] =trainer.lr_schedulers[0]['''scheduler'''] UpperCamelCase__ : Dict ={f'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase_ ) def _lowerCAmelCase ( self : Dict , lowercase_ : pl.Trainer , lowercase_ : pl.LightningModule ): rank_zero_info('''***** Validation results *****''' ) UpperCamelCase__ : Any =trainer.callback_metrics # Log results for key in sorted(lowercase_ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase_ , str(metrics[key] ) ) ) def _lowerCAmelCase ( self : List[str] , lowercase_ : pl.Trainer , lowercase_ : pl.LightningModule ): rank_zero_info('''***** Test results *****''' ) UpperCamelCase__ : Any =trainer.callback_metrics # Log and save results to file UpperCamelCase__ : int =os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase_ , '''w''' ) as writer: for key in sorted(lowercase_ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase_ , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase_ , str(metrics[key] ) ) ) def _lowerCAmelCase ( UpperCAmelCase : Dict , UpperCAmelCase : str ): '''simple docstring''' parser.add_argument( '''--output_dir''' , default=str(Path(UpperCAmelCase ).parent / '''test_run''' / '''model_checkpoints''' ) , type=UpperCAmelCase , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=UpperCAmelCase , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=UpperCAmelCase ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=UpperCAmelCase , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=UpperCAmelCase , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=UpperCAmelCase , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(UpperCAmelCase ).parent / '''test_run''' / '''dummy-train-data''' ) , type=UpperCAmelCase , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def _lowerCAmelCase ( UpperCAmelCase : BaseTransformer , UpperCAmelCase : argparse.Namespace , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[Any]=True , UpperCAmelCase : List[str]=[] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[Any]=None , **UpperCAmelCase : int , ): '''simple docstring''' pl.seed_everything(args.seed ) # init model UpperCamelCase__ : int =Path(model.hparams.output_dir ) odir.mkdir(exist_ok=UpperCAmelCase ) # add custom checkpoints if checkpoint_callback is None: UpperCamelCase__ : List[Any] =pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(UpperCAmelCase ) if logging_callback is None: UpperCamelCase__ : Optional[int] =LoggingCallback() UpperCamelCase__ : int ={} if args.fpaa: UpperCamelCase__ : List[Any] =16 if args.gpus > 1: UpperCamelCase__ : Dict ='''auto''' UpperCamelCase__ : Optional[Any] ='''ddp''' UpperCamelCase__ : List[Any] =args.accumulate_grad_batches UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : List[str] ='''auto''' UpperCamelCase__ : Tuple =pl.Trainer.from_argparse_args( UpperCAmelCase , weights_summary=UpperCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=UpperCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **UpperCAmelCase , ) if args.do_train: trainer.fit(UpperCAmelCase ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
157
"""simple docstring""" from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
157
1
def lowercase_ ( _A : list ): """simple docstring""" if len(_A ) < 2: return collection def circle_sort_util(_A : list , _A : int , _A : int ) -> bool: lowerCamelCase__ : Union[str, Any] = False if low == high: return swapped lowerCamelCase__ : Dict = low lowerCamelCase__ : Union[str, Any] = high while left < right: if collection[left] > collection[right]: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = ( collection[right], collection[left], ) lowerCamelCase__ : Optional[int] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = ( collection[right + 1], collection[left], ) lowerCamelCase__ : int = True lowerCamelCase__ : List[str] = low + int((high - low) / 2 ) lowerCamelCase__ : int = circle_sort_util(_A , _A , _A ) lowerCamelCase__ : str = circle_sort_util(_A , mid + 1 , _A ) return swapped or left_swap or right_swap lowerCamelCase__ : Union[str, Any] = True while is_not_sorted is True: lowerCamelCase__ : Dict = circle_sort_util(_A , 0 , len(_A ) - 1 ) return collection if __name__ == "__main__": A : Optional[Any] = input("Enter numbers separated by a comma:\n").strip() A : int = [int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
184
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge A : Optional[int] = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] A : List[Any] = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Dict = calculate_rouge(_A , _A , bootstrap_aggregation=_A , rouge_keys=["rouge2", "rougeL"] ) assert isinstance(_A , _A ) lowerCamelCase__ : List[Any] = calculate_rouge(_A , _A , bootstrap_aggregation=_A , rouge_keys=["rouge2"] ) assert ( pd.DataFrame(no_aggregation["rouge2"] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["rouge2"] ).fmeasure.mean() ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Any = "rougeLsum" lowerCamelCase__ : List[str] = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=[k] )[k] lowerCamelCase__ : str = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=[k] )[k] assert score > score_no_sep def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : int = ["rouge1", "rouge2", "rougeL"] lowerCamelCase__ : Union[str, Any] = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=_A ) lowerCamelCase__ : Any = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=_A ) assert score_sep == score_no_sep def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[Any] = [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .", ] lowerCamelCase__ : Tuple = [ "Margot Frank, died in 1945, a month earlier than previously thought.", "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of" " the final seconds on board Flight 9525.", ] assert calculate_rouge(_A , _A , newline_sep=_A ) == calculate_rouge(_A , _A , newline_sep=_A ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : List[str] = [ "\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" " ] lowerCamelCase__ : str = [ " Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ." ] lowerCamelCase__ : Union[str, Any] = calculate_rouge(_A , _A , rouge_keys=["rougeLsum"] , newline_sep=_A )["rougeLsum"] lowerCamelCase__ : List[str] = calculate_rouge(_A , _A , rouge_keys=["rougeLsum"] )["rougeLsum"] assert new_score > prev_score def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Tuple = Path("examples/seq2seq/test_data/wmt_en_ro" ) lowerCamelCase__ : Any = calculate_rouge_path(data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) ) assert isinstance(_A , _A ) lowerCamelCase__ : str = calculate_rouge_path( data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) , bootstrap_aggregation=_A ) assert isinstance(_A , _A )
184
1
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : str = logging.get_logger(__name__) lowercase : str = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class __snake_case ( lowerCAmelCase ): _a : Tuple= "owlvit_text_model" def __init__( self ,snake_case=49408 ,snake_case=512 ,snake_case=2048 ,snake_case=12 ,snake_case=8 ,snake_case=16 ,snake_case="quick_gelu" ,snake_case=1e-5 ,snake_case=0.0 ,snake_case=0.02 ,snake_case=1.0 ,snake_case=0 ,snake_case=49406 ,snake_case=49407 ,**snake_case ,): '''simple docstring''' super().__init__(pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case ) lowercase : List[str] = vocab_size lowercase : Any = hidden_size lowercase : int = intermediate_size lowercase : Optional[int] = num_hidden_layers lowercase : Union[str, Any] = num_attention_heads lowercase : Optional[int] = max_position_embeddings lowercase : Optional[int] = hidden_act lowercase : Optional[int] = layer_norm_eps lowercase : int = attention_dropout lowercase : int = initializer_range lowercase : int = initializer_factor @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,**snake_case ): '''simple docstring''' cls._set_token_in_kwargs(snake_case ) lowercase , lowercase : List[str] = cls.get_config_dict(snake_case ,**snake_case ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": lowercase : Any = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(snake_case ,**snake_case ) class __snake_case ( lowerCAmelCase ): _a : List[Any]= "owlvit_vision_model" def __init__( self ,snake_case=768 ,snake_case=3072 ,snake_case=12 ,snake_case=12 ,snake_case=3 ,snake_case=768 ,snake_case=32 ,snake_case="quick_gelu" ,snake_case=1e-5 ,snake_case=0.0 ,snake_case=0.02 ,snake_case=1.0 ,**snake_case ,): '''simple docstring''' super().__init__(**snake_case ) lowercase : str = hidden_size lowercase : List[Any] = intermediate_size lowercase : List[Any] = num_hidden_layers lowercase : Optional[int] = num_attention_heads lowercase : List[Any] = num_channels lowercase : Optional[int] = image_size lowercase : Any = patch_size lowercase : Union[str, Any] = hidden_act lowercase : str = layer_norm_eps lowercase : Any = attention_dropout lowercase : Optional[int] = initializer_range lowercase : Any = initializer_factor @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,**snake_case ): '''simple docstring''' cls._set_token_in_kwargs(snake_case ) lowercase , lowercase : List[str] = cls.get_config_dict(snake_case ,**snake_case ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": lowercase : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(snake_case ,**snake_case ) class __snake_case ( lowerCAmelCase ): _a : Any= "owlvit" _a : Tuple= True def __init__( self ,snake_case=None ,snake_case=None ,snake_case=512 ,snake_case=2.6_592 ,snake_case=True ,**snake_case ,): '''simple docstring''' super().__init__(**snake_case ) if text_config is None: lowercase : int = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: lowercase : List[str] = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) lowercase : List[str] = OwlViTTextConfig(**snake_case ) lowercase : Optional[int] = OwlViTVisionConfig(**snake_case ) lowercase : List[Any] = projection_dim lowercase : Dict = logit_scale_init_value lowercase : Optional[Any] = return_dict lowercase : str = 1.0 @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,**snake_case ): '''simple docstring''' cls._set_token_in_kwargs(snake_case ) lowercase , lowercase : Any = cls.get_config_dict(snake_case ,**snake_case ) if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(snake_case ,**snake_case ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,snake_case ,**snake_case ): '''simple docstring''' lowercase : Optional[int] = {} lowercase : Dict = text_config lowercase : str = vision_config return cls.from_dict(snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = copy.deepcopy(self.__dict__ ) lowercase : Any = self.text_config.to_dict() lowercase : List[str] = self.vision_config.to_dict() lowercase : int = self.__class__.model_type return output class __snake_case ( lowerCAmelCase ): @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 1e-4 def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = -1 ,snake_case = -1 ,snake_case = None ,): '''simple docstring''' lowercase : List[Any] = super().generate_dummy_inputs( processor.tokenizer ,batch_size=snake_case ,seq_length=snake_case ,framework=snake_case ) lowercase : str = super().generate_dummy_inputs( processor.image_processor ,batch_size=snake_case ,framework=snake_case ) return {**text_input_dict, **image_input_dict} @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 14
285
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase : str = mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: lowercase : Optional[int] = max( mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - wt[i - 1] ) + val[i - 1] , ) lowercase : List[Any] = val return f[i][j] def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: lowercase : Optional[int] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase : Union[str, Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase : Any = dp[i - 1][w_] return dp[n][w_], dp def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if not (isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) if num_items != len(SCREAMING_SNAKE_CASE__ ): lowercase : Optional[Any] = ( """The number of weights must be the same as the number of values.\n""" f"But got {num_items} weights and {len(SCREAMING_SNAKE_CASE__ )} values" ) raise ValueError(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ): if not isinstance(wt[i] , SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = ( """All weights must be integers but got weight of """ f"type {type(wt[i] )} at index {i}" ) raise TypeError(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Any = knapsack(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : set = set() _construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return optimal_val, example_optional_set def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: optimal_set.add(SCREAMING_SNAKE_CASE__ ) _construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , j - wt[i - 1] , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Dict = [3, 2, 4, 4] lowercase : List[Any] = [4, 3, 2, 3] lowercase : Tuple = 4 lowercase : Tuple = 6 lowercase : Tuple = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowercase , lowercase : List[str] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowercase , lowercase : Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
285
1
def __lowercase ( lowerCamelCase : float ): if edge <= 0 or not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError('Length must be a positive.' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __lowercase ( lowerCamelCase : float ): if edge <= 0 or not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError('Length must be a positive.' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
175
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __lowercase ( lowerCamelCase : str , lowerCamelCase : str , **lowerCamelCase : List[Any] ): UpperCamelCase_ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase , **lowerCamelCase ) UpperCamelCase_ : str = AutoModelForSeqaSeqLM.from_config(lowerCamelCase ) model.save_pretrained(lowerCamelCase ) AutoTokenizer.from_pretrained(lowerCamelCase ).save_pretrained(lowerCamelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
175
1
import os import re import shutil import sys import tempfile import unittest import black snake_case : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. snake_case : Optional[int] = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :List[Any] ) -> List[Any]: a__ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir ,'models/bert/' ) ) a__ = self.transformer_dir shutil.copy( os.path.join(__snake_case ,'src/transformers/models/bert/modeling_bert.py' ) ,os.path.join(self.transformer_dir ,'models/bert/modeling_bert.py' ) ,) def lowerCamelCase__( self :int ) -> Optional[int]: a__ = 'src/transformers' shutil.rmtree(self.transformer_dir ) def lowerCamelCase__( self :Dict ,__snake_case :Optional[Any] ,__snake_case :Dict ,__snake_case :Union[str, Any] ,__snake_case :Union[str, Any]=None ) -> Any: a__ = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: a__ = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result a__ = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=1_19 ) a__ = black.format_str(__snake_case ,mode=__snake_case ) a__ = os.path.join(self.transformer_dir ,'new_code.py' ) with open(__snake_case ,'w' ,newline='\n' ) as f: f.write(__snake_case ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__snake_case ) ) == 0 ) else: check_copies.is_copy_consistent(f.name ,overwrite=__snake_case ) with open(__snake_case ,'r' ) as f: self.assertTrue(f.read() ,__snake_case ) def lowerCamelCase__( self :Optional[int] ) -> Optional[int]: a__ = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(__snake_case ,__snake_case ) def lowerCamelCase__( self :Tuple ) -> Optional[Any]: # Base copy consistency self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' ,'BertLMPredictionHead' ,REFERENCE_CODE + '\n' ,) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' ,'BertLMPredictionHead' ,__snake_case ,) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' ,'TestModelLMPredictionHead' ,re.sub('Bert' ,'TestModel' ,__snake_case ) ,) # Copy consistency with a really long name a__ = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' ,F'{long_class_name}LMPredictionHead' ,re.sub('Bert' ,__snake_case ,__snake_case ) ,) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' ,'TestModelLMPredictionHead' ,__snake_case ,overwrite_result=re.sub('Bert' ,'TestModel' ,__snake_case ) ,) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = check_copies.LOCALIZED_READMES['README_zh-hans.md'] a__ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) a__ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) a__ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) a__ , a__ = check_copies.convert_to_localized_md( __snake_case ,__snake_case ,localized_readme['format_model_list'] ) self.assertFalse(__snake_case ) self.assertEqual(__snake_case ,__snake_case ) a__ , a__ = check_copies.convert_to_localized_md( __snake_case ,__snake_case ,localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__snake_case ) a__ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) a__ = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) a__ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) a__ , a__ = check_copies.convert_to_localized_md( __snake_case ,__snake_case ,localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(__snake_case ,__snake_case )
355
from collections import defaultdict from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 , __lowerCAmelCase : int = 1_0 ): a__ = defaultdict(__lowerCAmelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: a__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: a__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__lowerCAmelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(f"""{solution() = }""")
109
0
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __A = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") __A = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() __A = "|".join(sys.argv[1:]) __A = re.compile(Rf'''^({joined_dirs}).*?\.py$''') __A = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
177
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Union[str, Any] = LEDConfig _SCREAMING_SNAKE_CASE : Optional[int] = {} _SCREAMING_SNAKE_CASE : int = "gelu" def __init__(self : List[str] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any]=1_3 , snake_case_ : Optional[Any]=7 , snake_case_ : Any=True , snake_case_ : List[Any]=False , snake_case_ : str=9_9 , snake_case_ : Any=3_2 , snake_case_ : Dict=2 , snake_case_ : List[Any]=4 , snake_case_ : Optional[int]=3_7 , snake_case_ : Dict=0.1 , snake_case_ : int=0.1 , snake_case_ : Optional[Any]=2_0 , snake_case_ : Optional[Any]=2 , snake_case_ : Optional[int]=1 , snake_case_ : Optional[int]=0 , snake_case_ : str=4 , ): __a : List[Any] = parent __a : Union[str, Any] = batch_size __a : List[str] = seq_length __a : Any = is_training __a : Tuple = use_labels __a : List[Any] = vocab_size __a : Optional[Any] = hidden_size __a : int = num_hidden_layers __a : Optional[int] = num_attention_heads __a : int = intermediate_size __a : Union[str, Any] = hidden_dropout_prob __a : Dict = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Tuple = eos_token_id __a : Optional[Any] = pad_token_id __a : List[str] = bos_token_id __a : List[str] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __a : Union[str, Any] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __a : List[str] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def lowerCAmelCase (self : Optional[int] ): __a : Dict = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __a : Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __a : int = tf.concat([input_ids, eos_tensor] , axis=1 ) __a : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __a : Optional[int] = prepare_led_inputs_dict(snake_case_ , snake_case_ , snake_case_ ) __a : Dict = tf.concat( [tf.zeros_like(snake_case_ )[:, :-1], tf.ones_like(snake_case_ )[:, -1:]] , axis=-1 , ) __a : Tuple = global_attention_mask return config, inputs_dict def lowerCAmelCase (self : List[Any] , snake_case_ : Dict , snake_case_ : int ): __a : List[str] = TFLEDModel(config=snake_case_ ).get_decoder() __a : Dict = inputs_dict['''input_ids'''] __a : Dict = input_ids[:1, :] __a : Any = inputs_dict['''attention_mask'''][:1, :] __a : List[str] = 1 # first forward pass __a : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ ) __a , __a : Tuple = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __a : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __a : str = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __a : Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) __a : Optional[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __a : Optional[int] = model(snake_case_ , attention_mask=snake_case_ )[0] __a : int = model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __a : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __a : List[Any] = output_from_no_past[:, -3:, random_slice_idx] __a : Dict = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case_ , snake_case_ , rtol=1E-3 ) def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : List[str]=None , ): if attention_mask is None: __a : Any = tf.cast(tf.math.not_equal(lowerCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __a : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __a : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __a : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class UpperCamelCase__ ( __lowercase ,__lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _SCREAMING_SNAKE_CASE : Tuple = (TFLEDForConditionalGeneration,) if is_tf_available() else () _SCREAMING_SNAKE_CASE : Optional[Any] = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def lowerCAmelCase (self : Optional[int] ): __a : List[str] = TFLEDModelTester(self ) __a : Optional[int] = ConfigTester(self , config_class=snake_case_ ) def lowerCAmelCase (self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase (self : Optional[Any] ): __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) def lowerCAmelCase (self : Any ): __a , __a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = tf.zeros_like(inputs_dict['''attention_mask'''] ) __a : Tuple = 2 __a : Dict = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) __a : List[str] = True __a : Tuple = self.model_tester.seq_length __a : Any = self.model_tester.encoder_seq_length def check_decoder_attentions_output(snake_case_ : Any ): __a : str = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(snake_case_ : Optional[int] ): __a : int = [t.numpy() for t in outputs.encoder_attentions] __a : int = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __a : Dict = True __a : Optional[Any] = False __a : List[str] = False __a : List[Any] = model_class(snake_case_ ) __a : List[str] = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) __a : List[str] = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: __a : List[str] = model_class(snake_case_ ) __a : int = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __a : List[Any] = True __a : Dict = model_class(snake_case_ ) __a : Tuple = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine __a : List[str] = True __a : Any = True __a : Tuple = model_class(snake_case_ ) __a : int = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def lowerCAmelCase (self : List[str] ): pass def lowerCAmelCase (self : List[Any] ): # TODO: Head-masking not yet implement pass def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] ): return tf.constant(lowerCAmelCase__ , dtype=tf.intaa ) lowercase__ =1e-4 @slow @require_tf class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : Any ): __a : Dict = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here __a : Union[str, Any] = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __a : Dict = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __a : List[str] = prepare_led_inputs_dict(model.config , snake_case_ , snake_case_ ) __a : List[str] = model(**snake_case_ )[0] __a : Any = (1, 1_0_2_4, 7_6_8) self.assertEqual(output.shape , snake_case_ ) # change to expected output here __a : Dict = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-3 ) def lowerCAmelCase (self : int ): __a : Optional[Any] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here __a : int = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __a : Tuple = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __a : Dict = prepare_led_inputs_dict(model.config , snake_case_ , snake_case_ ) __a : List[str] = model(**snake_case_ )[0] __a : List[Any] = (1, 1_0_2_4, model.config.vocab_size) self.assertEqual(output.shape , snake_case_ ) # change to expected output here __a : str = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-3 , rtol=1E-3 )
216
0
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowerCamelCase = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = field(default=A , metadata={"""help""": """Whether to use SortishSampler or not."""} ) lowerCAmelCase__ = field( default=A , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) lowerCAmelCase__ = field( default=A , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) lowerCAmelCase__ = field( default=A , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) lowerCAmelCase__ = field( default=A , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =super().to_dict() for k, v in d.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase): __lowercase =v.to_dict() return d
48
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" for attribute in key.split('.' ): __lowercase =getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: __lowercase =getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: __lowercase =hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowercase =value elif weight_type == "weight_g": __lowercase =value elif weight_type == "weight_v": __lowercase =value elif weight_type == "bias": __lowercase =value else: __lowercase =value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =[] __lowercase =fairseq_model.state_dict() __lowercase =hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __lowercase =None for name, value in fairseq_dict.items(): __lowercase =False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) __lowercase =True elif name.split('.' )[0] == "proj": __lowercase =fairseq_model.proj __lowercase =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowercase =True if "*" in mapped_key: __lowercase =name.split(_lowerCAmelCase )[0].split('.' )[-2] __lowercase =mapped_key.replace('*' , _lowerCAmelCase ) if "weight_g" in name: __lowercase ='weight_g' elif "weight_v" in name: __lowercase ='weight_v' elif "bias" in name: __lowercase ='bias' elif "weight" in name: __lowercase ='weight' else: __lowercase =None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =full_name.split('conv_layers.' )[-1] __lowercase =name.split('.' ) __lowercase =int(items[0] ) __lowercase =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowercase =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowercase =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowercase =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowercase =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase , __lowercase =emb.weight.shape __lowercase =nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) __lowercase =emb.weight.data return lin_layer def _A ( _lowerCAmelCase ): """simple docstring""" with open(_lowerCAmelCase , 'r' , encoding='utf-8' ) as f: __lowercase =f.readlines() __lowercase =[line.split(' ' )[0] for line in lines] __lowercase =len(_lowerCAmelCase ) __lowercase ={ '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(_lowerCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): """simple docstring""" __lowercase =WavaVecaConfig.from_pretrained(_lowerCAmelCase ) __lowercase =SpeechaTextaConfig.from_pretrained( _lowerCAmelCase , vocab_size=_lowerCAmelCase , decoder_layers=_lowerCAmelCase , do_stable_layer_norm=_lowerCAmelCase ) __lowercase =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) __lowercase , __lowercase , __lowercase =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) __lowercase =model[0].eval() # set weights for wav2vec2 encoder __lowercase =WavaVecaModel(_lowerCAmelCase ) __lowercase =recursively_load_weights_wavaveca(model.encoder , _lowerCAmelCase ) __lowercase =SpeechaTextaForCausalLM(_lowerCAmelCase ) __lowercase , __lowercase =hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCAmelCase ) # set output linear layer unexpected_keys.remove('embed_out' ) __lowercase =nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __lowercase =SpeechEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) __lowercase =False # add projection layer __lowercase =nn.Parameter(projection_layer.weight ) __lowercase =nn.Parameter(projection_layer.bias ) __lowercase =create_vocab_dict(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'vocab.json' ) , 'w' ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) __lowercase =SpeechaTextaTokenizer(os.path.join(_lowerCAmelCase , 'vocab.json' ) ) tokenizer.save_pretrained(_lowerCAmelCase ) __lowercase =hf_wavavec.config.to_dict() __lowercase =tokenizer.pad_token_id __lowercase =tokenizer.bos_token_id __lowercase =tokenizer.eos_token_id __lowercase ='speech_to_text_2' __lowercase ='wav2vec2' __lowercase =SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) feature_extractor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") lowerCamelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
48
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> Optional[Any]: __UpperCAmelCase : Optional[Any] = XCLIPTextConfig() # derive patch size from model name __UpperCAmelCase : Union[str, Any] = model_name.find("patch" ) __UpperCAmelCase : Union[str, Any] = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] ) __UpperCAmelCase : Dict = XCLIPVisionConfig(patch_size=snake_case__, num_frames=snake_case__ ) if "large" in model_name: __UpperCAmelCase : int = 768 __UpperCAmelCase : List[Any] = 3072 __UpperCAmelCase : List[Any] = 12 __UpperCAmelCase : Optional[Any] = 1024 __UpperCAmelCase : Optional[int] = 4096 __UpperCAmelCase : Optional[int] = 16 __UpperCAmelCase : List[str] = 24 __UpperCAmelCase : int = 768 __UpperCAmelCase : int = 3072 if model_name == "xclip-large-patch14-16-frames": __UpperCAmelCase : Optional[int] = 336 __UpperCAmelCase : Dict = XCLIPConfig.from_text_vision_configs(snake_case__, snake_case__ ) if "large" in model_name: __UpperCAmelCase : List[Any] = 768 return config def _UpperCamelCase ( snake_case__ ) -> Optional[int]: # text encoder if name == "token_embedding.weight": __UpperCAmelCase : Dict = name.replace("token_embedding.weight", "text_model.embeddings.token_embedding.weight" ) if name == "positional_embedding": __UpperCAmelCase : Any = name.replace("positional_embedding", "text_model.embeddings.position_embedding.weight" ) if "ln_1" in name: __UpperCAmelCase : Dict = name.replace("ln_1", "layer_norm1" ) if "ln_2" in name: __UpperCAmelCase : Optional[int] = name.replace("ln_2", "layer_norm2" ) if "c_fc" in name: __UpperCAmelCase : Optional[int] = name.replace("c_fc", "fc1" ) if "c_proj" in name: __UpperCAmelCase : List[Any] = name.replace("c_proj", "fc2" ) if name.startswith("transformer.resblocks" ): __UpperCAmelCase : Optional[int] = name.replace("transformer.resblocks", "text_model.encoder.layers" ) if "attn.out_proj" in name and "message" not in name: __UpperCAmelCase : Any = name.replace("attn.out_proj", "self_attn.out_proj" ) if "ln_final" in name: __UpperCAmelCase : Optional[Any] = name.replace("ln_final", "text_model.final_layer_norm" ) # visual encoder if name == "visual.class_embedding": __UpperCAmelCase : List[str] = name.replace("visual.class_embedding", "vision_model.embeddings.class_embedding" ) if name == "visual.positional_embedding": __UpperCAmelCase : List[str] = name.replace("visual.positional_embedding", "vision_model.embeddings.position_embedding.weight" ) if name.startswith("visual.transformer.resblocks" ): __UpperCAmelCase : List[Any] = name.replace("visual.transformer.resblocks", "vision_model.encoder.layers" ) if "visual.conv1" in name: __UpperCAmelCase : List[Any] = name.replace("visual.conv1", "vision_model.embeddings.patch_embedding" ) if "visual.ln_pre" in name: __UpperCAmelCase : Dict = name.replace("visual.ln_pre", "vision_model.pre_layernorm" ) if "visual.ln_post" in name: __UpperCAmelCase : str = name.replace("visual.ln_post", "vision_model.post_layernorm" ) if "visual.proj" in name: __UpperCAmelCase : Dict = name.replace("visual.proj", "visual_projection.weight" ) if "text_projection" in name: __UpperCAmelCase : Optional[int] = name.replace("text_projection", "text_projection.weight" ) # things on top if "prompts_visual_proj" in name: __UpperCAmelCase : List[str] = name.replace("prompts_visual_proj", "prompts_visual_projection" ) if "prompts_visual_ln" in name: __UpperCAmelCase : Optional[int] = name.replace("prompts_visual_ln", "prompts_visual_layernorm" ) # mit if name == "mit.positional_embedding": __UpperCAmelCase : List[str] = name.replace("positional", "position" ) if name.startswith("mit.resblocks" ): __UpperCAmelCase : Any = name.replace("mit.resblocks", "mit.encoder.layers" ) # prompts generator if name.startswith("prompts_generator.norm" ): __UpperCAmelCase : Tuple = name.replace("prompts_generator.norm", "prompts_generator.layernorm" ) return name def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[str]: for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Union[str, Any] = orig_state_dict.pop(snake_case__ ) if "attn.in_proj" in key: __UpperCAmelCase : List[Any] = key.split("." ) if key.startswith("visual" ): __UpperCAmelCase : Any = key_split[3] __UpperCAmelCase : Any = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __UpperCAmelCase : Optional[int] = val[ :dim, : ] __UpperCAmelCase : Optional[int] = val[ dim : dim * 2, : ] __UpperCAmelCase : Optional[int] = val[ -dim:, : ] else: __UpperCAmelCase : int = val[ :dim ] __UpperCAmelCase : Optional[Any] = val[ dim : dim * 2 ] __UpperCAmelCase : Dict = val[ -dim: ] else: if "weight" in key: __UpperCAmelCase : Tuple = val[ :dim, : ] __UpperCAmelCase : Any = val[ dim : dim * 2, : ] __UpperCAmelCase : str = val[ -dim:, : ] else: __UpperCAmelCase : Union[str, Any] = val[:dim] __UpperCAmelCase : Tuple = val[ dim : dim * 2 ] __UpperCAmelCase : Union[str, Any] = val[-dim:] elif key.startswith("mit" ): __UpperCAmelCase : List[str] = key_split[2] __UpperCAmelCase : Optional[int] = config.vision_config.mit_hidden_size if "weight" in key: __UpperCAmelCase : List[Any] = val[:dim, :] __UpperCAmelCase : Optional[int] = val[dim : dim * 2, :] __UpperCAmelCase : int = val[-dim:, :] else: __UpperCAmelCase : Tuple = val[:dim] __UpperCAmelCase : Any = val[dim : dim * 2] __UpperCAmelCase : str = val[-dim:] else: __UpperCAmelCase : Dict = key_split[2] __UpperCAmelCase : List[Any] = config.text_config.hidden_size if "weight" in key: __UpperCAmelCase : int = val[:dim, :] __UpperCAmelCase : Union[str, Any] = val[ dim : dim * 2, : ] __UpperCAmelCase : List[Any] = val[-dim:, :] else: __UpperCAmelCase : Optional[int] = val[:dim] __UpperCAmelCase : List[Any] = val[ dim : dim * 2 ] __UpperCAmelCase : List[str] = val[-dim:] else: __UpperCAmelCase : Union[str, Any] = rename_key(snake_case__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __UpperCAmelCase : Dict = val.T __UpperCAmelCase : List[str] = val return orig_state_dict def _UpperCamelCase ( snake_case__ ) -> str: if num_frames == 8: __UpperCAmelCase : List[Any] = "eating_spaghetti_8_frames.npy" elif num_frames == 16: __UpperCAmelCase : Tuple = "eating_spaghetti.npy" elif num_frames == 32: __UpperCAmelCase : Any = "eating_spaghetti_32_frames.npy" __UpperCAmelCase : List[str] = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename=snake_case__, repo_type="dataset", ) __UpperCAmelCase : List[str] = np.load(snake_case__ ) return list(snake_case__ ) def _UpperCamelCase ( snake_case__, snake_case__=None, snake_case__=False ) -> List[str]: __UpperCAmelCase : List[Any] = { # fully supervised kinetics-400 checkpoints "xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth", "xclip-base-patch32-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth" ), "xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth", "xclip-base-patch16-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth" ), "xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb", "xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f", # fully supervised kinetics-600 checkpoints "xclip-base-patch16-kinetics-600": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth" ), "xclip-base-patch16-kinetics-600-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth" ), "xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be", # few shot "xclip-base-patch16-hmdb-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth" ), "xclip-base-patch16-hmdb-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth" ), "xclip-base-patch16-hmdb-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth" ), "xclip-base-patch16-hmdb-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth" ), "xclip-base-patch16-ucf-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth" ), "xclip-base-patch16-ucf-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth" ), "xclip-base-patch16-ucf-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth" ), "xclip-base-patch16-ucf-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth" ), # zero shot "xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth", } __UpperCAmelCase : Dict = model_to_url[model_name] __UpperCAmelCase : Optional[int] = 8 if "16-frames" in model_name: __UpperCAmelCase : Dict = 16 elif "shot" in model_name: __UpperCAmelCase : str = 32 __UpperCAmelCase : Dict = get_xclip_config(snake_case__, snake_case__ ) __UpperCAmelCase : Optional[Any] = XCLIPModel(snake_case__ ) model.eval() if "drive" in checkpoint_url: __UpperCAmelCase : Dict = "pytorch_model.bin" gdown.cached_download(snake_case__, snake_case__, quiet=snake_case__ ) __UpperCAmelCase : List[str] = torch.load(snake_case__, map_location="cpu" )["model"] else: __UpperCAmelCase : Dict = torch.hub.load_state_dict_from_url(snake_case__ )["model"] __UpperCAmelCase : Any = convert_state_dict(snake_case__, snake_case__ ) __UpperCAmelCase : Union[str, Any] = XCLIPModel(snake_case__ ) __UpperCAmelCase , __UpperCAmelCase : Dict = model.load_state_dict(snake_case__, strict=snake_case__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __UpperCAmelCase : List[str] = 336 if model_name == "xclip-large-patch14-16-frames" else 224 __UpperCAmelCase : Optional[Any] = VideoMAEImageProcessor(size=snake_case__ ) __UpperCAmelCase : str = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" ) __UpperCAmelCase : Tuple = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" ) __UpperCAmelCase : List[Any] = XCLIPProcessor(image_processor=snake_case__, tokenizer=snake_case__ ) __UpperCAmelCase : List[str] = prepare_video(snake_case__ ) __UpperCAmelCase : List[str] = processor( text=["playing sports", "eating spaghetti", "go shopping"], videos=snake_case__, return_tensors="pt", padding=snake_case__ ) print("Shape of pixel values:", inputs.pixel_values.shape ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**snake_case__ ) # Verify outputs __UpperCAmelCase : Dict = outputs.logits_per_video __UpperCAmelCase : List[str] = logits_per_video.softmax(dim=1 ) print("Probs:", snake_case__ ) # kinetics-400 if model_name == "xclip-base-patch32": __UpperCAmelCase : Optional[Any] = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": __UpperCAmelCase : Optional[Any] = torch.tensor([[7.0_9_9_9e-0_4, 9.9_8_8_3e-0_1, 4.5_5_8_0e-0_4]] ) elif model_name == "xclip-base-patch16": __UpperCAmelCase : Optional[Any] = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": __UpperCAmelCase : int = torch.tensor([[7.6_9_3_7e-0_4, 9.9_7_2_8e-0_1, 1.9_4_7_3e-0_3]] ) elif model_name == "xclip-large-patch14": __UpperCAmelCase : Tuple = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": __UpperCAmelCase : Optional[Any] = torch.tensor([[3.3_8_7_7e-0_4, 9.9_9_3_7e-0_1, 2.8_8_8_8e-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __UpperCAmelCase : int = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __UpperCAmelCase : List[Any] = torch.tensor([[3.8_5_5_4e-0_4, 9.9_9_2_9e-0_1, 3.2_7_5_4e-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": __UpperCAmelCase : Optional[int] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __UpperCAmelCase : Optional[int] = torch.tensor([[7.1_8_9_0e-0_6, 9.9_9_9_4e-0_1, 5.6_5_5_9e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __UpperCAmelCase : int = torch.tensor([[1.0_3_2_0e-0_5, 9.9_9_9_3e-0_1, 6.2_4_3_5e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __UpperCAmelCase : List[Any] = torch.tensor([[4.1_3_7_7e-0_6, 9.9_9_9_0e-0_1, 9.8_3_8_6e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __UpperCAmelCase : List[Any] = torch.tensor([[4.1_3_4_7e-0_5, 9.9_9_6_2e-0_1, 3.3_4_1_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __UpperCAmelCase : Optional[Any] = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __UpperCAmelCase : Tuple = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __UpperCAmelCase : Tuple = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __UpperCAmelCase : Tuple = torch.tensor([[9.8_2_1_9e-0_4, 9.9_5_9_3e-0_1, 3.0_8_6_3e-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __UpperCAmelCase : Dict = torch.tensor([[3.5_0_8_2e-0_4, 9.9_7_8_5e-0_1, 1.7_9_6_6e-0_3]] ) else: raise ValueError(f'''Model name {model_name} not supported''' ) assert torch.allclose(snake_case__, snake_case__, atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub..." ) model.push_to_hub(snake_case__, organization="nielsr" ) processor.push_to_hub(snake_case__, organization="nielsr" ) slow_tokenizer.push_to_hub(snake_case__, organization="nielsr" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
157
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class _snake_case ( _lowercase ): lowerCamelCase__: Tuple = ["input_features"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any]=80 , __lowerCamelCase: Optional[Any]=1_60_00 , __lowerCamelCase: Any=1_60 , __lowerCamelCase: Optional[int]=30 , __lowerCamelCase: List[str]=4_00 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Union[str, Any]=False , **__lowerCamelCase: Dict , ) -> Any: super().__init__( feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = n_fft __UpperCAmelCase : List[str] = hop_length __UpperCAmelCase : Optional[Any] = chunk_length __UpperCAmelCase : Union[str, Any] = chunk_length * sampling_rate __UpperCAmelCase : Any = self.n_samples // hop_length __UpperCAmelCase : Tuple = sampling_rate __UpperCAmelCase : List[Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowerCamelCase , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=__lowerCamelCase , norm="slaney" , mel_scale="slaney" , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: np.array ) -> np.ndarray: __UpperCAmelCase : List[Any] = spectrogram( __lowerCamelCase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) __UpperCAmelCase : Union[str, Any] = log_spec[:, :-1] __UpperCAmelCase : List[Any] = np.maximum(__lowerCamelCase , log_spec.max() - 8.0 ) __UpperCAmelCase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowerCamelCase ( __lowerCamelCase: List[np.ndarray] , __lowerCamelCase: List[np.ndarray] , __lowerCamelCase: float = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: __UpperCAmelCase : Tuple = np.array(__lowerCamelCase , np.intaa ) __UpperCAmelCase : Dict = [] for vector, length in zip(__lowerCamelCase , attention_mask.sum(-1 ) ): __UpperCAmelCase : Union[str, Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: __UpperCAmelCase : Dict = padding_value normed_input_values.append(__lowerCamelCase ) else: __UpperCAmelCase : Optional[int] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self: Dict , __lowerCamelCase: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[Union[str, TensorType]] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Optional[str] = "max_length" , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) __UpperCAmelCase : List[Any] = isinstance(__lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __UpperCAmelCase : Optional[int] = is_batched_numpy or ( isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCAmelCase : Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ): __UpperCAmelCase : str = np.asarray(__lowerCamelCase , dtype=np.floataa ) elif isinstance(__lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCAmelCase : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCAmelCase : Optional[Any] = [np.asarray([raw_speech] ).T] __UpperCAmelCase : List[Any] = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding __UpperCAmelCase : List[str] = self.pad( __lowerCamelCase , padding=__lowerCamelCase , max_length=max_length if max_length else self.n_samples , truncation=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __UpperCAmelCase : List[Any] = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) __UpperCAmelCase : str = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format __UpperCAmelCase : Any = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) __UpperCAmelCase : Dict = [self._np_extract_fbank_features(__lowerCamelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , __lowerCamelCase ): __UpperCAmelCase : str = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for feature in input_features] else: __UpperCAmelCase : List[str] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __UpperCAmelCase : int = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: __UpperCAmelCase : List[str] = padded_inputs.convert_to_tensors(__lowerCamelCase ) return padded_inputs def _lowerCamelCase ( self: str ) -> Dict[str, Any]: __UpperCAmelCase : Tuple = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Optional[Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
157
1
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any]=1_3 , UpperCAmelCase__ : str=7 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Dict=9_9 , UpperCAmelCase__ : Dict=3_2 , UpperCAmelCase__ : Union[str, Any]=5 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : str=3_7 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : Any=5_1_2 , UpperCAmelCase__ : Any=1_6 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : str=None , ) -> str: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str ) -> Optional[int]: __SCREAMING_SNAKE_CASE = BioGptModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple , ) -> str: __SCREAMING_SNAKE_CASE = BioGptForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , *UpperCAmelCase__ : Dict ) -> Any: __SCREAMING_SNAKE_CASE = BioGptModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # create attention mask __SCREAMING_SNAKE_CASE = torch.ones(input_ids.shape , dtype=torch.long , device=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.seq_length // 2 __SCREAMING_SNAKE_CASE = 0 # first forward pass __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ).to_tuple() # create hypothetical next token and extent to next_input_ids __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids __SCREAMING_SNAKE_CASE = ids_tensor((1,) , UpperCAmelCase__ ).item() + 1 __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = random_other_next_tokens # append to next input_ids and attn_mask __SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=UpperCAmelCase__ )] , dim=1 , ) # get two different outputs __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )["last_hidden_state"] __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )["last_hidden_state"] # select random slice __SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE = output_from_no_past[:, -1, random_slice_idx].detach() __SCREAMING_SNAKE_CASE = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , *UpperCAmelCase__ : int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = BioGptModel(config=UpperCAmelCase__ ).to(UpperCAmelCase__ ).eval() __SCREAMING_SNAKE_CASE = torch.ones(input_ids.shape , dtype=torch.long , device=UpperCAmelCase__ ) # first forward pass __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )["last_hidden_state"] __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ )[ "last_hidden_state" ] # select random slice __SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() __SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , *UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any=False ) -> str: __SCREAMING_SNAKE_CASE = BioGptForCausalLM(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) if gradient_checkpointing: model.gradient_checkpointing_enable() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : Tuple , *UpperCAmelCase__ : Tuple ) -> List[str]: __SCREAMING_SNAKE_CASE = BioGptModel(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def UpperCAmelCase_ ( self : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , *UpperCAmelCase__ : Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = BioGptForTokenClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Tuple = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) snake_case__ : List[str] = (BioGptForCausalLM,) if is_torch_available() else () snake_case__ : int = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : Union[str, Any] = False def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE = BioGptModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def UpperCAmelCase_ ( self : int ) -> Any: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Any ) -> List[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Any: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Any ) -> List[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Any: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*UpperCAmelCase__ , gradient_checkpointing=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : Dict ) -> Tuple: __SCREAMING_SNAKE_CASE = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) __SCREAMING_SNAKE_CASE = "left" # Define PAD Token = EOS Token = 50256 __SCREAMING_SNAKE_CASE = tokenizer.eos_token __SCREAMING_SNAKE_CASE = model.config.eos_token_id # use different length sentences to test batching __SCREAMING_SNAKE_CASE = [ "Hello, my dog is a little", "Today, I", ] __SCREAMING_SNAKE_CASE = tokenizer(UpperCAmelCase__ , return_tensors="pt" , padding=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = inputs["input_ids"].to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.generate( input_ids=UpperCAmelCase__ , attention_mask=inputs["attention_mask"].to(UpperCAmelCase__ ) , ) __SCREAMING_SNAKE_CASE = tokenizer(sentences[0] , return_tensors="pt" ).input_ids.to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.generate(input_ids=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() __SCREAMING_SNAKE_CASE = tokenizer(sentences[1] , return_tensors="pt" ).input_ids.to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.generate(input_ids=UpperCAmelCase__ , max_length=model.config.max_length - num_paddings ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [ "Hello, my dog is a little bit bigger than a little bit.", "Today, I have a good idea of how to use the information", ] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , [non_padded_sentence, padded_sentence] ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> str: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = BioGptModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = input_dict["input_ids"] __SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = BioGptForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = "multi_label_classification" __SCREAMING_SNAKE_CASE = input_dict["input_ids"] __SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __SCREAMING_SNAKE_CASE = BioGptForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: __SCREAMING_SNAKE_CASE = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) __SCREAMING_SNAKE_CASE = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = 4_2_3_8_4 __SCREAMING_SNAKE_CASE = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[-9.5_236, -9.8_918, 10.4_557], [-11.0_469, -9.6_423, 8.1_022], [-8.8_664, -7.8_826, 5.5_325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self : str ) -> str: __SCREAMING_SNAKE_CASE = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) __SCREAMING_SNAKE_CASE = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(UpperCAmelCase__ ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = tokenizer("COVID-19 is" , return_tensors="pt" ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.generate( **UpperCAmelCase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = ( "COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" " causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" " territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," " and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" " more than 800,000 deaths." ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
362
"""simple docstring""" a__ : Optional[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = input("Enter message: " ) __SCREAMING_SNAKE_CASE = input("Enter key [alphanumeric]: " ) __SCREAMING_SNAKE_CASE = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): __SCREAMING_SNAKE_CASE = "encrypt" __SCREAMING_SNAKE_CASE = encrypt_message(lowerCAmelCase_ , lowerCAmelCase_ ) elif mode.lower().startswith("d" ): __SCREAMING_SNAKE_CASE = "decrypt" __SCREAMING_SNAKE_CASE = decrypt_message(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""\n{mode.title()}ed message:""" ) print(lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return translate_message(lowerCAmelCase_ , lowerCAmelCase_ , "encrypt" ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return translate_message(lowerCAmelCase_ , lowerCAmelCase_ , "decrypt" ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = key.upper() for symbol in message: __SCREAMING_SNAKE_CASE = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(lowerCAmelCase_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = 0 else: translated.append(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) if __name__ == "__main__": main()
195
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) _UpperCAmelCase : str = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''unispeech''' def __init__( self , snake_case=32 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=0.1 , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case=0.1 , snake_case=0.02 , snake_case=1e-5 , snake_case="group" , snake_case="gelu" , snake_case=(512, 512, 512, 512, 512, 512, 512) , snake_case=(5, 2, 2, 2, 2, 2, 2) , snake_case=(10, 3, 3, 3, 3, 2, 2) , snake_case=False , snake_case=128 , snake_case=16 , snake_case=False , snake_case=True , snake_case=0.05 , snake_case=10 , snake_case=2 , snake_case=0.0 , snake_case=10 , snake_case=0 , snake_case=320 , snake_case=2 , snake_case=0.1 , snake_case=100 , snake_case=256 , snake_case=256 , snake_case=0.1 , snake_case="mean" , snake_case=False , snake_case=False , snake_case=256 , snake_case=80 , snake_case=0 , snake_case=1 , snake_case=2 , snake_case=0.5 , **snake_case , ): super().__init__(**snake_case , pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case ) snake_case_ = hidden_size snake_case_ = feat_extract_norm snake_case_ = feat_extract_activation snake_case_ = list(snake_case ) snake_case_ = list(snake_case ) snake_case_ = list(snake_case ) snake_case_ = conv_bias snake_case_ = num_conv_pos_embeddings snake_case_ = num_conv_pos_embedding_groups snake_case_ = len(self.conv_dim ) snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_attention_heads snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = feat_proj_dropout snake_case_ = final_dropout snake_case_ = layerdrop snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = num_ctc_classes snake_case_ = vocab_size snake_case_ = do_stable_layer_norm snake_case_ = use_weighted_layer_sum snake_case_ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = apply_spec_augment snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length snake_case_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case_ = num_codevectors_per_group snake_case_ = num_codevector_groups snake_case_ = contrastive_logits_temperature snake_case_ = feat_quantizer_dropout snake_case_ = num_negatives snake_case_ = codevector_dim snake_case_ = proj_codevector_dim snake_case_ = diversity_loss_weight # ctc loss snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # pretraining loss snake_case_ = replace_prob @property def a ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
285
import os import numpy import onnx def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = a.name snake_case_ = b.name snake_case_ = '' snake_case_ = '' snake_case_ = a == b snake_case_ = name_a snake_case_ = name_b return res def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCamelCase__ , UpperCamelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCamelCase__ , UpperCamelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCamelCase__ , UpperCamelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCamelCase__ , UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = list(model.graph.initializer ) snake_case_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case_ = inits[i].name snake_case_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCamelCase__ , UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = os.path.dirname(UpperCamelCase__ ) snake_case_ = os.path.basename(UpperCamelCase__ ) snake_case_ = onnx.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case_ = list(model.graph.initializer ) snake_case_ = set() snake_case_ = {} snake_case_ = [] snake_case_ = 0 for i in range(len(UpperCamelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCamelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCamelCase__ ) dup_set.add(UpperCamelCase__ ) snake_case_ = inits[j].data_type snake_case_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , UpperCamelCase__ ) total_reduced_size += mem_size snake_case_ = inits[i].name snake_case_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCamelCase__ ) else: snake_case_ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) snake_case_ = sorted(UpperCamelCase__ ) _remove_dup_initializers_from_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case_ = 'optimized_' + model_file_name snake_case_ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) onnx.save(UpperCamelCase__ , UpperCamelCase__ ) return new_model
285
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowercase_ ( unittest.TestCase , lowercase ): '''simple docstring''' def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" a = load_tool('''text-classification''' ) self.tool.setup() a = load_tool('''text-classification''' , remote=__UpperCAmelCase ) def __lowerCAmelCase ( self : int ) ->str: """simple docstring""" a = self.tool('''That\'s quite cool''' , ['''positive''', '''negative'''] ) self.assertEqual(__UpperCAmelCase , '''positive''' ) def __lowerCAmelCase ( self : str ) ->Optional[int]: """simple docstring""" a = self.remote_tool('''That\'s quite cool''' , ['''positive''', '''negative'''] ) self.assertEqual(__UpperCAmelCase , '''positive''' ) def __lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" a = self.tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative'''] ) self.assertEqual(__UpperCAmelCase , '''positive''' ) def __lowerCAmelCase ( self : str ) ->List[str]: """simple docstring""" a = self.remote_tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative'''] ) self.assertEqual(__UpperCAmelCase , '''positive''' )
26
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase__ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase__ = 10 UpperCAmelCase__ = 256 def _a ( a :List[str] ) -> Optional[MinHash]: if len(a ) < MIN_NUM_TOKENS: return None a = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def _a ( a :str ) -> Set[str]: return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class lowercase_ : '''simple docstring''' def __init__( self : Any , *, __UpperCAmelCase : float = 0.85 , ) ->Dict: """simple docstring""" a = duplication_jaccard_threshold a = NUM_PERM a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a = defaultdict(__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : MinHash ) ->None: """simple docstring""" a = self._index.query(__UpperCAmelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->List[List[Dict]]: """simple docstring""" a = [] for base, duplicates in self._duplicate_clusters.items(): a = [base] + list(__UpperCAmelCase ) # reformat the cluster to be a list of dict a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__UpperCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->None: """simple docstring""" a = self.get_duplicate_clusters() with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def _a ( a :List[Any] ) -> List[Any]: a , a = element a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _a ( a :Type[Dataset] ) -> List[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def _a ( a :Type[Dataset] , a :float ) -> str: a = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _a ( a :str , a :str ) -> float: a = get_tokens(a ) a = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase__ = None def _a ( a :Tuple , a :Tuple ) -> Any: a = [] for elementa in cluster: a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: a = 1 extremes.append(a ) return extremes def _a ( a :List[Any] , a :Optional[Any] , a :Union[str, Any] ) -> Optional[int]: global _shared_dataset a = dataset a = [] a = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def _a ( a :Type[Dataset] , a :float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: a = make_duplicate_clusters(a , a ) a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} a = {} a = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: a = element a = duplicate_indices - set(extreme_dict.keys() ) a = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a = element['''base_index'''] in extreme_dict if element["is_extreme"]: a = extreme_dict[element['''base_index''']]['''copies'''] print(F"""Original dataset size: {len(a )}""" ) print(F"""Number of duplicate clusters: {len(a )}""" ) print(F"""Files in duplicate cluster: {len(a )}""" ) print(F"""Unique files in duplicate cluster: {len(a )}""" ) print(F"""Filtered dataset size: {len(a )}""" ) return ds_filter, duplicate_clusters
26
1
from collections.abc import Sequence def lowerCAmelCase ( _lowerCAmelCase : Sequence[int] | None = None ): """simple docstring""" if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) UpperCAmelCase__ = nums[0] for i in range(1 , len(_lowerCAmelCase ) ): UpperCAmelCase__ = nums[i] UpperCAmelCase__ = max(_lowerCAmelCase , ans + num , _lowerCAmelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _lowerCAmelCase : int = int(input("Enter number of elements : ").strip()) _lowerCAmelCase : int = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
169
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def _snake_case ( UpperCamelCase : Dataset , UpperCamelCase : Dict[str, str] ): UpperCAmelCase : Any = args.log_outputs UpperCAmelCase : Any = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric UpperCAmelCase : List[Any] = load_metric("""wer""" ) UpperCAmelCase : Any = load_metric("""cer""" ) # compute metrics UpperCAmelCase : int = wer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) UpperCAmelCase : str = cer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) # print & log results UpperCAmelCase : Tuple = F"WER: {wer_result}\nCER: {cer_result}" print(UpperCamelCase ) with open(F"{dataset_id}_eval_results.txt" , """w""" ) as f: f.write(UpperCamelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCAmelCase : str = F"log_{dataset_id}_predictions.txt" UpperCAmelCase : Tuple = F"log_{dataset_id}_targets.txt" with open(UpperCamelCase , """w""" ) as p, open(UpperCamelCase , """w""" ) as t: # mapping function to write output def write_to_file(UpperCamelCase : List[Any] , UpperCamelCase : List[Any] ): p.write(F"{i}" + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(F"{i}" + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(UpperCamelCase , with_indices=UpperCamelCase ) def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : List[str] = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCAmelCase : Dict = re.sub(UpperCamelCase , """""" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCAmelCase : List[str] = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: UpperCAmelCase : Optional[Any] = """ """.join(text.split(UpperCamelCase ) ) return text def _snake_case ( UpperCamelCase : Tuple ): # load dataset UpperCAmelCase : Union[str, Any] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=UpperCamelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCAmelCase : Any = feature_extractor.sampling_rate # resample audio UpperCAmelCase : List[str] = dataset.cast_column("""audio""" , Audio(sampling_rate=UpperCamelCase ) ) # load eval pipeline if args.device is None: UpperCAmelCase : Optional[int] = 0 if torch.cuda.is_available() else -1 UpperCAmelCase : Tuple = pipeline("""automatic-speech-recognition""" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(UpperCamelCase : Any ): UpperCAmelCase : Any = asr( batch["""audio"""]["""array"""] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCAmelCase : Tuple = prediction["""text"""] UpperCAmelCase : List[str] = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples UpperCAmelCase : int = dataset.map(UpperCamelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": A: List[Any] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) A: Union[str, Any] = parser.parse_args() main(args)
109
0
from __future__ import annotations import typing from collections import Counter def __lowerCAmelCase ( a__ ): __a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(__lowerCamelCase , max_perimeter + 1 ): __a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__lowerCamelCase ): __a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __lowerCAmelCase ( a__ = 1000 ): __a = pythagorean_triple(__lowerCamelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
351
A : Optional[Any] = tuple[float, float, float] A : Union[str, Any] = tuple[float, float, float] def __lowerCAmelCase ( a__ , a__ ) -> Vectorad: __a = end_pointa[0] - end_pointa[0] __a = end_pointa[1] - end_pointa[1] __a = end_pointa[2] - end_pointa[2] return (x, y, z) def __lowerCAmelCase ( a__ , a__ ) -> Vectorad: __a = ab[1] * ac[2] - ab[2] * ac[1] # *i __a = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __a = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __lowerCAmelCase ( a__ , a__ ) -> bool: return tuple(round(a__ , a__ ) for x in vector ) == (0, 0, 0) def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 10 ) -> bool: __a = create_vector(a__ , a__ ) __a = create_vector(a__ , a__ ) return is_zero_vector(get_ad_vectors_cross(a__ , a__ ) , a__ )
33
0
def A ( _SCREAMING_SNAKE_CASE ) -> int: if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): raise TypeError("Input value must be a 'int' type" ) return bin(_SCREAMING_SNAKE_CASE ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
48
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,) -> List[str]: if config_name_or_path is None: lowerCamelCase : Any = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: lowerCamelCase : Dict = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowerCamelCase : Any = question_encoder_name_or_path lowerCamelCase : str = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. lowerCamelCase : List[Any] = RagConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[Any] = gen_config lowerCamelCase : Optional[Any] = question_encoder_config lowerCamelCase : List[Any] = model_class.from_pretrained_question_encoder_generator( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,config=_SCREAMING_SNAKE_CASE ) rag_model.save_pretrained(_SCREAMING_SNAKE_CASE ) # Sanity check. model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) # Save tokenizers. lowerCamelCase : List[str] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) lowerCamelCase : int = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Any = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE__ : Optional[Any] = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
48
1
from __future__ import annotations from PIL import Image # Define glider example lowercase : Union[str, Any] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowercase : Dict = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def UpperCAmelCase_ (_lowerCAmelCase : list[list[int]] ): __UpperCamelCase : Tuple = [] for i in range(len(_lowerCAmelCase ) ): __UpperCamelCase : Any = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __UpperCamelCase : Tuple = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(_lowerCAmelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(_lowerCAmelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(_lowerCAmelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __UpperCamelCase : Optional[Any] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(_lowerCAmelCase ) return next_generation def UpperCAmelCase_ (_lowerCAmelCase : list[list[int]] , _lowerCAmelCase : int ): __UpperCamelCase : str = [] for _ in range(_lowerCAmelCase ): # Create output image __UpperCamelCase : List[str] = Image.new("RGB" , (len(cells[0] ), len(_lowerCAmelCase )) ) __UpperCamelCase : Optional[Any] = img.load() # Save cells to image for x in range(len(_lowerCAmelCase ) ): for y in range(len(cells[0] ) ): __UpperCamelCase : List[str] = 2_55 - cells[y][x] * 2_55 __UpperCamelCase : List[str] = (colour, colour, colour) # Save image images.append(_lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = new_generation(_lowerCAmelCase ) return images if __name__ == "__main__": lowercase : Any = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
171
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowercase : Optional[int] = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def UpperCAmelCase_ (_lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int=None ): # Initialise PyTorch model __UpperCamelCase : str = XLNetConfig.from_json_file(_lowerCAmelCase ) __UpperCamelCase : int = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) __UpperCamelCase : List[str] = finetuning_task __UpperCamelCase : List[str] = GLUE_TASKS_NUM_LABELS[finetuning_task] __UpperCamelCase : Dict = XLNetForSequenceClassification(_lowerCAmelCase ) elif "squad" in finetuning_task: __UpperCamelCase : List[str] = finetuning_task __UpperCamelCase : Optional[int] = XLNetForQuestionAnswering(_lowerCAmelCase ) else: __UpperCamelCase : Optional[int] = XLNetLMHeadModel(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model __UpperCamelCase : Optional[Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) print(F'''Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}''' ) torch.save(model.state_dict() , _lowerCAmelCase ) print(F'''Save configuration file to {os.path.abspath(_lowerCAmelCase )}''' ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) lowercase : Dict = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
171
1
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCAmelCase_ ( __lowerCamelCase): def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(a , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(a , 'num_attention_heads' ) ) class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=6_4 , a=3 , a=3 , a=2 , a=1 , a=1_6 , a=[1_2_8, 2_5_6, 3_8_4] , a=[4, 6, 8] , a=[2, 3, 4] , a=[1_6, 1_6, 1_6] , a=0 , a=[2, 2, 2] , a=[2, 2, 2] , a=0.02 , a=True , a=True , a=2 , ) -> Tuple: lowercase__ : Optional[int] = parent lowercase__ : Any = batch_size lowercase__ : Tuple = image_size lowercase__ : List[str] = num_channels lowercase__ : str = kernel_size lowercase__ : Dict = stride lowercase__ : Tuple = padding lowercase__ : Dict = hidden_sizes lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : int = depths lowercase__ : List[Any] = key_dim lowercase__ : List[Any] = drop_path_rate lowercase__ : Tuple = patch_size lowercase__ : Union[str, Any] = attention_ratio lowercase__ : str = mlp_ratio lowercase__ : int = initializer_range lowercase__ : str = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowercase__ : Union[str, Any] = is_training lowercase__ : int = use_labels lowercase__ : str = num_labels lowercase__ : Optional[Any] = initializer_range def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[int] = None if self.use_labels: lowercase__ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ : Optional[Any] = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> List[str]: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _UpperCAmelCase ( self , a , a , a ) -> str: lowercase__ : Union[str, Any] = LevitModel(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a ) lowercase__ : Optional[int] = (self.image_size, self.image_size) lowercase__ , lowercase__ : Dict = image_size[0], image_size[1] for _ in range(4 ): lowercase__ : Optional[Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowercase__ : Union[str, Any] = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _UpperCAmelCase ( self , a , a , a ) -> List[str]: lowercase__ : Optional[int] = self.num_labels lowercase__ : List[Any] = LevitForImageClassification(a ) model.to(a ) model.eval() lowercase__ : List[Any] = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Any = config_and_inputs lowercase__ : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): lowerCamelCase__ : Tuple = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCamelCase__ : Dict = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : List[str] = False lowerCamelCase__ : List[str] = False lowerCamelCase__ : str = False lowerCamelCase__ : List[str] = False def _UpperCAmelCase ( self ) -> Any: lowercase__ : Any = LevitModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> List[Any]: return @unittest.skip(reason='Levit does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @unittest.skip(reason='Levit does not output attentions' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def _UpperCAmelCase ( self ) -> List[str]: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) lowercase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : int = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Optional[int]: def check_hidden_states_output(a , a , a ): lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(a , a ) ) lowercase__ : int = outputs.hidden_states lowercase__ : Union[str, Any] = len(self.model_tester.depths ) + 1 self.assertEqual(len(a ) , a ) lowercase__ : Any = (self.model_tester.image_size, self.model_tester.image_size) lowercase__ , lowercase__ : List[Any] = image_size[0], image_size[1] for _ in range(4 ): lowercase__ : List[Any] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowercase__ : List[Any] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Optional[int] = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Any = True check_hidden_states_output(a , a , a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def _UpperCAmelCase ( self , a , a , a=False ) -> Union[str, Any]: lowercase__ : Tuple = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) def _UpperCAmelCase ( self ) -> int: if not self.model_tester.is_training: return lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[Any] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(a ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowercase__ : Union[str, Any] = model_class(a ) model.to(a ) model.train() lowercase__ : Union[str, Any] = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : Optional[Any] = model(**a ).loss loss.backward() def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase__ : Optional[int] = False lowercase__ : Dict = True for model_class in self.all_model_classes: if model_class in get_values(a ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowercase__ : Optional[Any] = model_class(a ) model.gradient_checkpointing_enable() model.to(a ) model.train() lowercase__ : List[Any] = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : Any = model(**a ).loss loss.backward() def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(a ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): lowercase__ : str = problem_type['title'] lowercase__ : List[str] = problem_type['num_labels'] lowercase__ : int = model_class(a ) model.to(a ) model.train() lowercase__ : List[Any] = self._prepare_for_class(a , a , return_labels=a ) if problem_type["num_labels"] > 1: lowercase__ : List[Any] = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) lowercase__ : Tuple = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=a ) as warning_list: lowercase__ : Dict = model(**a ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def _UpperCAmelCase ( self ) -> Dict: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Dict = LevitModel.from_pretrained(a ) self.assertIsNotNone(a ) def a_ ( ): '''simple docstring''' lowercase__ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Union[str, Any]: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Tuple = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( a ) lowercase__ : str = self.default_image_processor lowercase__ : str = prepare_img() lowercase__ : int = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : Optional[int] = model(**a ) # verify the logits lowercase__ : Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : Union[str, Any] = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) )
77
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class A_ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): return None class A_ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case ): return None class A_ ( unittest.TestCase ): '''simple docstring''' _UpperCamelCase : Tuple = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def SCREAMING_SNAKE_CASE__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(snake_case , 'tf' , 12 , **snake_case ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(snake_case , 'pt' , 12 , **snake_case ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self ): from transformers import BertModel lowercase = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(snake_case ) ) vocab_file.flush() lowercase = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase = BertModel(BertConfig(vocab_size=len(snake_case ) ) ) model.save_pretrained(snake_case ) self._test_export(snake_case , 'pt' , 12 , snake_case ) @require_tf @slow def SCREAMING_SNAKE_CASE__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase = self._test_export(snake_case , 'tf' , 12 , **snake_case ) lowercase = quantize(Path(snake_case ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(snake_case ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase = self._test_export(snake_case , 'pt' , 12 , **snake_case ) lowercase = quantize(snake_case ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(snake_case ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case=None , **snake_case ): try: # Compute path with TemporaryDirectory() as tempdir: lowercase = Path(snake_case ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(snake_case , snake_case , snake_case , snake_case , snake_case , **snake_case ) return path except Exception as e: self.fail(snake_case ) @require_torch @require_tokenizers @slow def SCREAMING_SNAKE_CASE__ ( self ): from transformers import BertModel lowercase = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(snake_case , snake_case , 'pt' ) @require_tf @require_tokenizers @slow def SCREAMING_SNAKE_CASE__ ( self ): from transformers import TFBertModel lowercase = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(snake_case , snake_case , 'tf' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): lowercase = FeatureExtractionPipeline(snake_case , snake_case ) lowercase = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowercase , lowercase , lowercase , lowercase = infer_shapes(snake_case , snake_case ) # Assert all variables are present self.assertEqual(len(snake_case ) , len(snake_case ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , snake_case ) self.assertSequenceEqual(variable_names[3:] , snake_case ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ['input_ids', 'attention_mask', 'token_type_ids'] lowercase = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowercase , lowercase = ensure_valid_input(FuncContiguousArgs() , snake_case , snake_case ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(snake_case ) , 3 ) # Should have exactly the same input names self.assertEqual(set(snake_case ) , set(snake_case ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(snake_case , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase , lowercase = ensure_valid_input(FuncNonContiguousArgs() , snake_case , snake_case ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(snake_case ) , 1 ) self.assertEqual(len(snake_case ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
195
0
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" a = CTRLTokenizer a = False a = False def A ( self : int): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _A : Any = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] _A : List[str] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE)))) _A : List[Any] = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] _A : List[str] = {'unk_token': '<unk>'} _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) _A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE)) def A ( self : int , **SCREAMING_SNAKE_CASE : int): kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE) def A ( self : Dict , SCREAMING_SNAKE_CASE : Tuple): _A : Dict = 'adapt react readapt apt' _A : int = 'adapt react readapt apt' return input_text, output_text def A ( self : Optional[Any]): _A : Optional[int] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) _A : Dict = 'adapt react readapt apt' _A : Optional[Any] = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() _A : Any = tokenizer.tokenize(SCREAMING_SNAKE_CASE) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _A : List[Any] = tokens + [tokenizer.unk_token] _A : int = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE) , SCREAMING_SNAKE_CASE)
356
'''simple docstring''' def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : list[int] ,lowerCamelCase : int ): def count_of_possible_combinations(lowerCamelCase : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : list[int] ,lowerCamelCase : int ): def count_of_possible_combinations_with_dp_array( lowerCamelCase : int ,lowerCamelCase : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _A : Optional[Any] = sum( count_of_possible_combinations_with_dp_array(target - item ,lowerCamelCase ) for item in array ) _A : List[str] = answer return answer _A : Optional[int] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(lowerCamelCase ,lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : list[int] ,lowerCamelCase : int ): _A : Dict = [0] * (target + 1) _A : List[str] = 1 for i in range(1 ,target + 1 ): for j in range(lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() A : Dict = 3 A : Union[str, Any] = 5 A : Union[str, Any] = [1, 2, 5] print(combination_sum_iv(n, array, target))
227
0
from math import pi, sqrt def lowerCAmelCase_ ( snake_case_ ): if num <= 0: raise ValueError("""math domain error""" ) if num > 1_71.5: raise OverflowError("""math range error""" ) elif num - int(snake_case_ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(snake_case_ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowerCAmelCase_ ( ): assert gamma(0.5 ) == sqrt(snake_case_ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _snake_case = 1.0 while num: _snake_case = float(input("Gamma of: ")) print(f"""gamma({num}) = {gamma(num)}""") print("\nEnter 0 to exit...")
26
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _snake_case = logging.get_logger(__name__) _snake_case = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowerCAmelCase_ ( snake_case_ ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _A : List[str] = model_type_to_module_name(snake_case_ ) _A : List[Any] = importlib.import_module(f'''.{module_name}''',"""transformers.models""" ) try: return getattr(snake_case_,snake_case_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(snake_case_,"""__name__""",snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _A : List[Any] = importlib.import_module("""transformers""" ) if hasattr(snake_case_,snake_case_ ): return getattr(snake_case_,snake_case_ ) return None def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = False,snake_case_ = False,snake_case_ = None,snake_case_ = None,snake_case_ = None,snake_case_ = False,**snake_case_,): _A : Optional[int] = get_file_from_repo( snake_case_,snake_case_,cache_dir=snake_case_,force_download=snake_case_,resume_download=snake_case_,proxies=snake_case_,use_auth_token=snake_case_,revision=snake_case_,local_files_only=snake_case_,) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(snake_case_,encoding="""utf-8""" ) as reader: return json.load(snake_case_ ) class lowercase : def __init__( self ) -> List[Any]: raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(_a ) def a__ ( cls , _a , **_a ) -> Any: _A : Tuple = kwargs.pop("""config""" , _a ) _A : Tuple = kwargs.pop("""trust_remote_code""" , _a ) _A : List[Any] = True _A , _A : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a ) _A : Tuple = config_dict.get("""feature_extractor_type""" , _a ) _A : int = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): _A : Optional[int] = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_a , _a ): _A : int = AutoConfig.from_pretrained(_a , **_a ) # It could be in `config.feature_extractor_type`` _A : Optional[int] = getattr(_a , """feature_extractor_type""" , _a ) if hasattr(_a , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: _A : Tuple = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: _A : Optional[Any] = feature_extractor_class_from_name(_a ) _A : List[Any] = feature_extractor_auto_map is not None _A : Union[str, Any] = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING _A : Optional[int] = resolve_trust_remote_code( _a , _a , _a , _a ) if has_remote_code and trust_remote_code: _A : Dict = get_class_from_dynamic_module( _a , _a , **_a ) _A : str = kwargs.pop("""code_revision""" , _a ) if os.path.isdir(_a ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_a , **_a ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_a , **_a ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_a ) in FEATURE_EXTRACTOR_MAPPING: _A : Dict = FEATURE_EXTRACTOR_MAPPING[type(_a )] return feature_extractor_class.from_dict(_a , **_a ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def a__ ( _a , _a ) -> Optional[int]: FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
26
1
"""simple docstring""" import argparse _lowerCAmelCase : Tuple = '''docs/source/_static/js/custom.js''' def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' with open(_lowerCamelCase , encoding="utf-8" , newline="\n" ) as f: _lowerCamelCase : Optional[int] = f.readlines() _lowerCamelCase : Optional[Any] = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 _lowerCamelCase : Optional[int] = F"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += F""" \"v{version}\": \"v{version}\",\n""" with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') _lowerCAmelCase : Dict = parser.parse_args() update_custom_js(args.version)
362
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[Any] = np.inf def set_batch_size(_lowerCamelCase ) -> None: nonlocal batch_size if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary": _lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowerCamelCase , _lowerCamelCase ) return None if batch_size is np.inf else batch_size class A_ ( _a ): def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__( __lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths} _lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1] _lowerCamelCase : int = Parquet( cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,) def _lowercase ( self: Optional[int] ): '''simple docstring''' if self.streaming: _lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCamelCase : Tuple = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : List[str] = None _lowerCamelCase : str = None self.builder.download_and_prepare( download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,) _lowerCamelCase : Any = self.builder.as_dataset( split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory ) return dataset class A_ : def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' _lowerCamelCase : Any = dataset _lowerCamelCase : Any = path_or_buf _lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features ) _lowerCamelCase : List[str] = parquet_writer_kwargs def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ): with open(self.path_or_buf ,"wb+" ) as buffer: _lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) else: _lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) return written def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase ) _lowerCamelCase : List[str] = self.dataset.features.arrow_schema _lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase ) for offset in logging.tqdm( range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,): _lowerCamelCase : List[str] = query_table( table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,) writer.write_table(__lowerCAmelCase ) written += batch.nbytes writer.close() return written
340
0
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> list: '''simple docstring''' _UpperCAmelCase = len(__lowercase ) _UpperCAmelCase = [] for i in range(len(__lowercase ) - pat_len + 1 ): _UpperCAmelCase = True for j in range(__lowercase ): if s[i + j] != pattern[j]: _UpperCAmelCase = False break if match_found: position.append(__lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
22
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __A : Dict = ''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class _UpperCAmelCase ( unittest.TestCase , _A ): def A ( self : List[Any] ) -> Dict: lowercase_ : Optional[int] = load_tool('''text-question-answering''' ) self.tool.setup() lowercase_ : Union[str, Any] = load_tool('''text-question-answering''' , remote=A ) def A ( self : Any ) -> List[str]: lowercase_ : Union[str, Any] = self.tool(A , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(A , '''launched the BigScience Research Workshop''' ) def A ( self : str ) -> List[str]: lowercase_ : int = self.remote_tool(A , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(A , '''launched the BigScience Research Workshop''' ) def A ( self : List[Any] ) -> int: lowercase_ : Optional[Any] = self.tool(text=A , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(A , '''launched the BigScience Research Workshop''' ) def A ( self : List[str] ) -> Optional[int]: lowercase_ : int = self.remote_tool(text=A , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(A , '''launched the BigScience Research Workshop''' )
33
0
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self , UpperCAmelCase ) -> float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: np.ndarray , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase_ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.abs(np.fft.fft(__lowerCamelCase ) ) lowercase_ = 20 * np.logaa(__lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds lowercase_ = get_bounds(__lowerCamelCase , __lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__lowerCamelCase ) plt.show() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.angle(np.fft.fft(__lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__lowerCamelCase , -2 * pi ) ) plt.show()
366
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(UpperCAmelCase ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(UpperCAmelCase ): self.assertDictEqual(UpperCAmelCase , example_records[i] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) lowercase_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def A__ ( self ) -> Any: # checks what happens with missing columns '''simple docstring''' lowercase_ = [{"col_1": 1}, {"col_2": "x"}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def A__ ( self ) -> List[Any]: # checks if the type can be inferred from the second record '''simple docstring''' lowercase_ = [{"col_1": []}, {"col_1": [1, 2]}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = Dataset.from_list([] ) self.assertEqual(len(UpperCAmelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
297
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = XLNetTokenizer SCREAMING_SNAKE_CASE = XLNetTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def _a (self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : List[str] = XLNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = """<s>""" UpperCAmelCase__ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<eod>""" ) self.assertEqual(len(_lowerCamelCase ) , 1006 ) def _a (self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = XLNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [285, 46, 10, 170, 382] ) UpperCAmelCase__ : Tuple = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase__ : List[Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) UpperCAmelCase__ : int = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = XLNetTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase ) UpperCAmelCase__ : str = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""▁he""", """ll""", """o"""] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = XLNetTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase ) UpperCAmelCase__ : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) UpperCAmelCase__ : int = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCamelCase ) UpperCAmelCase__ : int = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCamelCase ) UpperCAmelCase__ : str = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = {"""input_ids""": [[17, 21442, 270, 17, 10, 14645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 22018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 14431, 13, 5500, 11, 1176, 580, 13, 16819, 4797, 23, 17, 10, 17135, 658, 19, 457, 7932, 13, 184, 19, 3154, 17135, 6468, 19, 1404, 12269, 19, 4229, 5356, 16264, 46, 19, 17, 20545, 10395, 9, 9, 9, 11, 28, 6421, 9531, 20729, 17, 10, 353, 17022, 11, 21, 6421, 9531, 16949, 17, 10, 11509, 753, 11, 33, 95, 2421, 7385, 956, 14431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 24738, 19, 13203, 658, 218, 787, 21, 430, 18482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22178, 27, 1064, 22, 956, 13, 11101, 1429, 5854, 24313, 18953, 40, 422, 24366, 68, 1758, 37, 10483, 14257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 13894, 3380, 23, 95, 18, 17634, 2288, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
171
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : int = np.array([[1, item, train_mtch[i]] for i, item in enumerate(lowerCAmelCase )] ) UpperCAmelCase__ : Any = np.array(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , lowerCAmelCase ) ) , x.transpose() ) , lowerCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : Union[str, Any] = (1, 2, 1) UpperCAmelCase__ : Tuple = (1, 1, 0, 7) UpperCAmelCase__ : int = SARIMAX( lowerCAmelCase , exog=lowerCAmelCase , order=lowerCAmelCase , seasonal_order=lowerCAmelCase ) UpperCAmelCase__ : Any = model.fit(disp=lowerCAmelCase , maxiter=6_00 , method="""nm""" ) UpperCAmelCase__ : Optional[Any] = model_fit.predict(1 , len(lowerCAmelCase ) , exog=[test_match] ) return result[0] def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : Union[str, Any] = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : int = regressor.predict(lowerCAmelCase ) return y_pred[0] def a__ ( lowerCAmelCase ) -> float: train_user.sort() UpperCAmelCase__ : Optional[Any] = np.percentile(lowerCAmelCase , 25 ) UpperCAmelCase__ : str = np.percentile(lowerCAmelCase , 75 ) UpperCAmelCase__ : int = qa - qa UpperCAmelCase__ : Union[str, Any] = qa - (iqr * 0.1) return low_lim def a__ ( lowerCAmelCase , lowerCAmelCase ) -> bool: UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : str = 0 for i in list_vote: if i > actual_result: UpperCAmelCase__ : Tuple = not_safe + 1 else: if abs(abs(lowerCAmelCase ) - abs(lowerCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) _A = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] _A = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) _A = Normalizer().fit_transform(data_input_df.values) # split data _A = normalize_df[:, 2].tolist() _A = normalize_df[:, 0].tolist() _A = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) _A = normalize_df[:, [1, 2]].tolist() _A = x[: len(x) - 1] _A = x[len(x) - 1 :] # for linear regression & sarimax _A = total_date[: len(total_date) - 1] _A = total_user[: len(total_user) - 1] _A = total_match[: len(total_match) - 1] _A = total_date[len(total_date) - 1 :] _A = total_user[len(total_user) - 1 :] _A = total_match[len(total_match) - 1 :] # voting system with forecasting _A = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data _A = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
171
1
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : List[Any] = [] for rt in rc.restypes: SCREAMING_SNAKE_CASE : Optional[int] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) SCREAMING_SNAKE_CASE : Any = {name: i for i, name in enumerate(a__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( a__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( a__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) SCREAMING_SNAKE_CASE : Dict = torch.tensor( a__ , dtype=torch.floataa , device=protein['''aatype'''].device , ) SCREAMING_SNAKE_CASE : Optional[Any] = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein SCREAMING_SNAKE_CASE : Optional[Any] = restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE : Dict = restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE : List[Any] = residx_atomaa_mask SCREAMING_SNAKE_CASE : Dict = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back SCREAMING_SNAKE_CASE : Dict = restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE : str = residx_atomaa_to_atomaa.long() # create the corresponding mask SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): SCREAMING_SNAKE_CASE : Tuple = rc.restype_atoa[restype_letter] SCREAMING_SNAKE_CASE : Union[str, Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: SCREAMING_SNAKE_CASE : Tuple = rc.atom_order[atom_name] SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : Tuple = restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE : Dict = residx_atomaa_mask return protein def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = tree_map(lambda a__ : torch.tensor(a__ , device=batch['''aatype'''].device ) , a__ , np.ndarray ) SCREAMING_SNAKE_CASE : int = tensor_tree_map(lambda a__ : np.array(a__ ) , make_atomaa_masks(a__ ) ) return out
19
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a__ : List[str] = None a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Dict = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a__ : str = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : int = { lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self ) ->str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : List[str] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) ->List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
19
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[str] ={ 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class __A ( UpperCamelCase__ , UpperCamelCase__ ): a__ : int = """focalnet""" def __init__(self : Optional[int] , __a : int=224 , __a : List[str]=4 , __a : int=3 , __a : List[Any]=96 , __a : str=False , __a : List[Any]=[192, 384, 768, 768] , __a : Any=[2, 2, 6, 2] , __a : int=[2, 2, 2, 2] , __a : List[str]=[3, 3, 3, 3] , __a : Dict="gelu" , __a : Tuple=4.0 , __a : Dict=0.0 , __a : List[str]=0.1 , __a : str=False , __a : Any=1E-4 , __a : Tuple=False , __a : Any=False , __a : Optional[int]=False , __a : Any=0.02 , __a : Dict=1E-5 , __a : str=32 , __a : Dict=None , __a : str=None , **__a : str , ): super().__init__(**__a ) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = use_conv_embed UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = focal_levels UpperCAmelCase_ = focal_windows UpperCAmelCase_ = hidden_act UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = use_layerscale UpperCAmelCase_ = layerscale_value UpperCAmelCase_ = use_post_layernorm UpperCAmelCase_ = use_post_layernorm_in_modulation UpperCAmelCase_ = normalize_modulator UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = encoder_stride UpperCAmelCase_ = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names )
1
import random def a( A : Optional[Any] , A : Optional[Any] , A : str ) -> List[Any]: """simple docstring""" a = a[left_index] a = left_index + 1 for j in range(left_index + 1 , A ): if a[j] < pivot: a , a = a[i], a[j] i += 1 a , a = a[i - 1], a[left_index] return i - 1 def a( A : List[Any] , A : List[Any] , A : Union[str, Any] ) -> List[Any]: """simple docstring""" if left < right: a = random.randint(A , right - 1 ) a , a = ( a[left], a[pivot], ) # switches the pivot with the left most bound a = partition(A , A , A ) quick_sort_random( A , A , A ) # recursive quicksort to the left of the pivot point quick_sort_random( A , pivot_index + 1 , A ) # recursive quicksort to the right of the pivot point def a( ) -> Any: """simple docstring""" a = input("Enter numbers separated by a comma:\n" ).strip() a = [int(A ) for item in user_input.split("," )] quick_sort_random(A , 0 , len(A ) ) print(A ) if __name__ == "__main__": main()
227
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : List[str] = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Tuple = RobertaTokenizer _UpperCAmelCase : Dict = RobertaTokenizerFast _UpperCAmelCase : List[Any] = True _UpperCAmelCase : Any = {"cls_token": "<s>"} def A ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowercase , range(len(lowercase ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase ) ) def A ( self : List[str] , **lowercase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : List[str] , **lowercase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[Any] , lowercase : List[str] ): '''simple docstring''' _snake_case = 'lower newer' _snake_case = 'lower newer' return input_text, output_text def A ( self : str ): '''simple docstring''' _snake_case = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case = 'lower newer' _snake_case = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _snake_case = tokenizer.tokenize(lowercase ) # , add_prefix_space=True) self.assertListEqual(lowercase , lowercase ) _snake_case = tokens + [tokenizer.unk_token] _snake_case = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowercase ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowercase ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.tokenizer_class.from_pretrained('roberta-base' ) _snake_case = tokenizer.encode('sequence builders' , add_special_tokens=lowercase ) _snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase ) _snake_case = tokenizer.encode( 'sequence builders' , add_special_tokens=lowercase , add_prefix_space=lowercase ) _snake_case = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowercase , add_prefix_space=lowercase ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowercase ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizer() _snake_case = 'Encode this sequence.' _snake_case = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase , lowercase ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase , lowercase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase , lowercase ) # Testing spaces after special tokens _snake_case = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase )} ) # mask token has a left space _snake_case = tokenizer.convert_tokens_to_ids(lowercase ) _snake_case = 'Encode <mask> sequence' _snake_case = 'Encode <mask>sequence' _snake_case = tokenizer.encode(lowercase ) _snake_case = encoded.index(lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase , lowercase ) _snake_case = tokenizer.encode(lowercase ) _snake_case = encoded.index(lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase , lowercase ) def A ( self : List[str] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) _snake_case = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) _snake_case = 'A, <mask> AllenNLP sentence.' _snake_case = tokenizer_r.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) _snake_case = tokenizer_p.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def A ( self : str ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _snake_case = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _snake_case = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowercase ) self.assertEqual(post_processor_state['add_prefix_space'] , lowercase ) self.assertEqual(post_processor_state['trim_offsets'] , lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _snake_case = f'''{text_of_1_token} {text_of_1_token}''' _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ) + 1, 1 + len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , )
130
0
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
319
'''simple docstring''' import fire from utils import calculate_rouge, save_json def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> Any: A: Any = [x.strip() for x in open(__lowercase ).readlines()] A: Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] A: Union[str, Any] = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
319
1
'''simple docstring''' import math def a ( __a ) -> list[int]: '''simple docstring''' UpperCamelCase__ :Dict = [] UpperCamelCase__ :Union[str, Any] = 2 UpperCamelCase__ :int = int(math.sqrt(__a ) ) # Size of every segment UpperCamelCase__ :List[str] = [True] * (end + 1) UpperCamelCase__ :List[str] = [] while start <= end: if temp[start] is True: in_prime.append(__a ) for i in range(start * start , end + 1 , __a ): UpperCamelCase__ :Any = False start += 1 prime += in_prime UpperCamelCase__ :Tuple = end + 1 UpperCamelCase__ :Optional[int] = min(2 * end , __a ) while low <= n: UpperCamelCase__ :List[Any] = [True] * (high - low + 1) for each in in_prime: UpperCamelCase__ :int = math.floor(low / each ) * each if t < low: t += each for j in range(__a , high + 1 , __a ): UpperCamelCase__ :List[Any] = False for j in range(len(__a ) ): if temp[j] is True: prime.append(j + low ) UpperCamelCase__ :Dict = high + 1 UpperCamelCase__ :Union[str, Any] = min(high + end , __a ) return prime print(sieve(10**6))
367
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __snake_case = get_logger() __snake_case = None class lowercase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): """simple docstring""" def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ ): '''simple docstring''' super().__init__(features=UpperCamelCase_ ) import jax from jaxlib.xla_client import Device if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( F'''Expected {device} to be a `str` not {type(UpperCamelCase_ )}, as `jaxlib.xla_extension.Device` ''' '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) UpperCamelCase__ :Tuple = device if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase__ :Optional[Any] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' F'''device: {str(jax.devices()[0] )}.''' ) UpperCamelCase__ :Optional[int] = str(jax.devices()[0] ) UpperCamelCase__ :Tuple = jnp_array_kwargs @staticmethod def lowerCAmelCase__ ( ): '''simple docstring''' import jax return {str(UpperCamelCase_ ): device for device in jax.devices()} def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(UpperCamelCase_ , axis=0 ) return column def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCamelCase__ :Optional[int] = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCamelCase__ :List[str] = {'''dtype''': jnp.intaa} else: UpperCamelCase__ :Union[str, Any] = {'''dtype''': jnp.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCamelCase__ :Optional[Any] = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): UpperCamelCase__ :str = np.asarray(UpperCamelCase_ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase__ :Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCamelCase_ , **{**default_dtype, **self.jnp_array_kwargs} ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCamelCase_ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(UpperCamelCase_ , '''__array__''' ) and not isinstance(UpperCamelCase_ , jax.Array ): UpperCamelCase__ :int = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) UpperCamelCase__ :List[Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) UpperCamelCase__ :Tuple = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) UpperCamelCase__ :Dict = self.recursive_tensorize(UpperCamelCase_ ) UpperCamelCase__ :str = self._consolidate(UpperCamelCase_ ) return column def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = self.python_features_decoder.decode_batch(UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: UpperCamelCase__ :Optional[int] = self._consolidate(batch[column_name] ) return batch
219
0
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = f'{sampling_rate}' lowercase = '1' lowercase = 'f32le' lowercase = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(_A , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowercase = ffmpeg_process.communicate(_A ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error lowercase = output_stream[0] lowercase = np.frombuffer(_A , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = "f32le" , ): '''simple docstring''' lowercase = f'{sampling_rate}' lowercase = '1' if format_for_conversion == "s16le": lowercase = 2 elif format_for_conversion == "f32le": lowercase = 4 else: raise ValueError(f'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) lowercase = platform.system() if system == "Linux": lowercase = 'alsa' lowercase = 'default' elif system == "Darwin": lowercase = 'avfoundation' lowercase = ':0' elif system == "Windows": lowercase = 'dshow' lowercase = 'default' lowercase = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] lowercase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowercase = _ffmpeg_stream(_A , _A ) for item in iterator: yield item def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "f32le" , ): '''simple docstring''' if stream_chunk_s is not None: lowercase = stream_chunk_s else: lowercase = chunk_length_s lowercase = ffmpeg_microphone(_A , _A , format_for_conversion=_A ) if format_for_conversion == "s16le": lowercase = np.intaa lowercase = 2 elif format_for_conversion == "f32le": lowercase = np.floataa lowercase = 4 else: raise ValueError(f'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) if stride_length_s is None: lowercase = chunk_length_s / 6 lowercase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(_A , (int, float) ): lowercase = [stride_length_s, stride_length_s] lowercase = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowercase = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowercase = datetime.datetime.now() lowercase = datetime.timedelta(seconds=_A ) for item in chunk_bytes_iter(_A , _A , stride=(stride_left, stride_right) , stream=_A ): # Put everything back in numpy scale lowercase = np.frombuffer(item['''raw'''] , dtype=_A ) lowercase = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) lowercase = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): '''simple docstring''' lowercase = B'' lowercase = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}' ) lowercase = 0 for raw in iterator: acc += raw if stream and len(_A ) < chunk_len: lowercase = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(_A ) >= chunk_len: # We are flushing the accumulator lowercase = (_stride_left, stride_right) lowercase = {'raw': acc[:chunk_len], 'stride': stride} if stream: lowercase = False yield item lowercase = stride_left lowercase = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(_A ) > stride_left: lowercase = {'raw': acc, 'stride': (_stride_left, 0)} if stream: lowercase = False yield item def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = 2**24 # 16Mo try: with subprocess.Popen(_A , stdout=subprocess.PIPE , bufsize=_A ) as ffmpeg_process: while True: lowercase = ffmpeg_process.stdout.read(_A ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
101
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class a__( unittest.TestCase ): @slow def lowercase_ ( self : List[Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: a : Optional[int] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : Dict = TFAutoModel.from_pretrained(__snake_case , from_pt=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : Tuple = AutoModel.from_pretrained(__snake_case , from_tf=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowercase_ ( self : str ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: a : List[str] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : Union[str, Any] = TFAutoModelForPreTraining.from_pretrained(__snake_case , from_pt=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : List[Any] = AutoModelForPreTraining.from_pretrained(__snake_case , from_tf=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowercase_ ( self : int ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Union[str, Any] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : List[Any] = TFAutoModelForCausalLM.from_pretrained(__snake_case , from_pt=__snake_case ) a , a : Any = TFAutoModelForCausalLM.from_pretrained( __snake_case , output_loading_info=__snake_case , from_pt=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : Dict = AutoModelForCausalLM.from_pretrained(__snake_case , from_tf=__snake_case ) a , a : Tuple = AutoModelForCausalLM.from_pretrained( __snake_case , output_loading_info=__snake_case , from_tf=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowercase_ ( self : Any ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Tuple = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : List[str] = TFAutoModelWithLMHead.from_pretrained(__snake_case , from_pt=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : Dict = AutoModelWithLMHead.from_pretrained(__snake_case , from_tf=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowercase_ ( self : Optional[int] ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : List[str] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : Optional[Any] = TFAutoModelForMaskedLM.from_pretrained(__snake_case , from_pt=__snake_case ) a , a : Optional[int] = TFAutoModelForMaskedLM.from_pretrained( __snake_case , output_loading_info=__snake_case , from_pt=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : str = AutoModelForMaskedLM.from_pretrained(__snake_case , from_tf=__snake_case ) a , a : Tuple = AutoModelForMaskedLM.from_pretrained( __snake_case , output_loading_info=__snake_case , from_tf=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowercase_ ( self : int ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Optional[Any] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : str = TFAutoModelForSeqaSeqLM.from_pretrained(__snake_case , from_pt=__snake_case ) a , a : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained( __snake_case , output_loading_info=__snake_case , from_pt=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : Dict = AutoModelForSeqaSeqLM.from_pretrained(__snake_case , from_tf=__snake_case ) a , a : str = AutoModelForSeqaSeqLM.from_pretrained( __snake_case , output_loading_info=__snake_case , from_tf=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowercase_ ( self : Optional[Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: a : Tuple = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : List[Any] = TFAutoModelForSequenceClassification.from_pretrained(__snake_case , from_pt=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : Dict = AutoModelForSequenceClassification.from_pretrained(__snake_case , from_tf=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowercase_ ( self : str ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: a : Optional[Any] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : int = TFAutoModelForQuestionAnswering.from_pretrained(__snake_case , from_pt=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : Tuple = AutoModelForQuestionAnswering.from_pretrained(__snake_case , from_tf=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowercase_ ( self : Tuple ): a : List[Any] = TFAutoModelWithLMHead.from_pretrained(__snake_case , from_pt=__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__snake_case ) , 1_44_10 ) a : Optional[int] = AutoModelWithLMHead.from_pretrained(__snake_case , from_tf=__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__snake_case ) , 1_44_10 ) def lowercase_ ( self : Any ): a : int = TFAutoModelWithLMHead.from_pretrained(__snake_case , from_pt=__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__snake_case ) , 1_44_10 ) a : Optional[Any] = AutoModelWithLMHead.from_pretrained(__snake_case , from_tf=__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__snake_case ) , 1_44_10 )
297
0
"""simple docstring""" from __future__ import annotations from dataclasses import dataclass @dataclass class a : _snake_case : float _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None def __UpperCAmelCase ( lowercase ): """simple docstring""" # Validation def is_valid_tree(lowercase ) -> bool: if node is None: return True if not isinstance(lowercase ,lowercase ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(lowercase ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( lowercase ,lowercase ,lowercase ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,lowercase ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,lowercase ) ) return is_binary_search_tree_recursive_check(lowercase ,-float("""inf""" ) ,float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __A ={ '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase_ ( ): lowerCamelCase_ , lowerCamelCase_ = 9, 1_4 # noqa: F841 lowerCamelCase_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] lowerCamelCase_ = defaultdict(lowerCamelCase__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase_ = mst(lowerCamelCase__ ) lowerCamelCase_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase_ = tuple(answer[:2] ) lowerCamelCase_ = tuple(edge[::-1] ) assert edge in result or reverse in result
19
1
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib __snake_case : str = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } __snake_case : Tuple = logging.WARNING def _lowercase ( ) -> Optional[Any]: __lowerCAmelCase : List[str] = os.getenv("DATASETS_VERBOSITY" ,__snake_case ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def _lowercase ( ) -> str: return __name__.split("." )[0] def _lowercase ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def _lowercase ( ) -> None: # Apply our default configuration to the library root logger. __lowerCAmelCase : int = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def _lowercase ( ) -> None: __lowerCAmelCase : Any = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def _lowercase ( __snake_case = None ) -> logging.Logger: if name is None: __lowerCAmelCase : int = _get_library_name() return logging.getLogger(__snake_case ) def _lowercase ( ) -> int: return _get_library_root_logger().getEffectiveLevel() def _lowercase ( __snake_case ) -> None: _get_library_root_logger().setLevel(__snake_case ) def _lowercase ( ) -> Dict: return set_verbosity(__snake_case ) def _lowercase ( ) -> Any: return set_verbosity(__snake_case ) def _lowercase ( ) -> Dict: return set_verbosity(__snake_case ) def _lowercase ( ) -> List[str]: return set_verbosity(__snake_case ) def _lowercase ( ) -> None: __lowerCAmelCase : List[str] = False def _lowercase ( ) -> None: __lowerCAmelCase : Union[str, Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class A__ : '''simple docstring''' def __init__( self: List[Any] , *_SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: List[str]) -> Dict: # pylint: disable=unused-argument """simple docstring""" __lowerCAmelCase : int = args[0] if args else None def __iter__( self: int) -> int: """simple docstring""" return iter(self._iterator) def __getattr__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str]) -> Optional[int]: """simple docstring""" def empty_fn(*_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: List[str]): # pylint: disable=unused-argument return return empty_fn def __enter__( self: str) -> Optional[int]: """simple docstring""" return self def __exit__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: int) -> int: """simple docstring""" return __snake_case : str = True class A__ : '''simple docstring''' def __call__( self: Tuple , *_SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Union[str, Any]=False , **_SCREAMING_SNAKE_CASE: Any) -> Tuple: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) else: return EmptyTqdm(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any , *_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: Dict) -> int: """simple docstring""" __lowerCAmelCase : Dict = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Union[str, Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() __snake_case : Optional[int] = _tqdm_cls() def _lowercase ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def _lowercase ( ) -> int: global _tqdm_active __lowerCAmelCase : List[Any] = True def _lowercase ( ) -> Union[str, Any]: global _tqdm_active __lowerCAmelCase : int = False
58
"""simple docstring""" import sys __snake_case : List[Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _lowercase ( __snake_case ) -> int: __lowerCAmelCase : int = 1 for digit in s: product *= int(__snake_case ) return product def _lowercase ( __snake_case = N ) -> int: __lowerCAmelCase : Optional[Any] = -sys.maxsize - 1 __lowerCAmelCase : Union[str, Any] = n[:13] __lowerCAmelCase : Dict = 13 while cur_index < len(__snake_case ) - 13: if int(n[cur_index] ) >= int(substr[0] ): __lowerCAmelCase : List[str] = substr[1:] + n[cur_index] cur_index += 1 else: __lowerCAmelCase : Dict = max(__snake_case ,str_eval(__snake_case ) ) __lowerCAmelCase : Optional[int] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
58
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available SCREAMING_SNAKE_CASE__ = { """configuration_audio_spectrogram_transformer""": [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ASTConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ASTForAudioClassification""", """ASTModel""", """ASTPreTrainedModel""", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""ASTFeatureExtractor"""] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
325
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
130
0
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _lowerCamelCase = (7_20, 12_80) # Height, Width _lowerCamelCase = (0.4, 0.6) # if height or width lower than this scale, drop it. _lowerCamelCase = 1 / 1_00 _lowerCamelCase = '' _lowerCamelCase = '' _lowerCamelCase = '' _lowerCamelCase = 2_50 def SCREAMING_SNAKE_CASE ( ) -> None: UpperCAmelCase_ , UpperCAmelCase_ = get_dataset(__UpperCamelCase , __UpperCamelCase ) for index in range(__UpperCamelCase ): UpperCAmelCase_ = random.sample(range(len(__UpperCamelCase ) ) , 4 ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = update_image_and_anno( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , filter_scale=__UpperCamelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase_ = random_chars(32 ) UpperCAmelCase_ = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] UpperCAmelCase_ = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}' cva.imwrite(f'{file_root}.jpg' , __UpperCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' ) UpperCAmelCase_ = [] for anno in new_annos: UpperCAmelCase_ = anno[3] - anno[1] UpperCAmelCase_ = anno[4] - anno[2] UpperCAmelCase_ = anno[1] + width / 2 UpperCAmelCase_ = anno[2] + height / 2 UpperCAmelCase_ = f'{anno[0]} {x_center} {y_center} {width} {height}' annos_list.append(__UpperCamelCase ) with open(f'{file_root}.txt' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str ) -> tuple[list, list]: UpperCAmelCase_ = [] UpperCAmelCase_ = [] for label_file in glob.glob(os.path.join(__UpperCamelCase , '''*.txt''' ) ): UpperCAmelCase_ = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__UpperCamelCase ) as in_file: UpperCAmelCase_ = in_file.readlines() UpperCAmelCase_ = os.path.join(__UpperCamelCase , f'{label_name}.jpg' ) UpperCAmelCase_ = [] for obj_list in obj_lists: UpperCAmelCase_ = obj_list.rstrip('''\n''' ).split(''' ''' ) UpperCAmelCase_ = float(obj[1] ) - float(obj[3] ) / 2 UpperCAmelCase_ = float(obj[2] ) - float(obj[4] ) / 2 UpperCAmelCase_ = float(obj[1] ) + float(obj[3] ) / 2 UpperCAmelCase_ = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__UpperCamelCase ) labels.append(__UpperCamelCase ) return img_paths, labels def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list , __UpperCamelCase : list , __UpperCamelCase : list[int] , __UpperCamelCase : tuple[int, int] , __UpperCamelCase : tuple[float, float] , __UpperCamelCase : float = 0.0 , ) -> tuple[list, list, str]: UpperCAmelCase_ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) UpperCAmelCase_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCAmelCase_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCAmelCase_ = int(scale_x * output_size[1] ) UpperCAmelCase_ = int(scale_y * output_size[0] ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] for i, index in enumerate(__UpperCamelCase ): UpperCAmelCase_ = all_img_list[index] path_list.append(__UpperCamelCase ) UpperCAmelCase_ = all_annos[index] UpperCAmelCase_ = cva.imread(__UpperCamelCase ) if i == 0: # top-left UpperCAmelCase_ = cva.resize(__UpperCamelCase , (divid_point_x, divid_point_y) ) UpperCAmelCase_ = img for bbox in img_annos: UpperCAmelCase_ = bbox[1] * scale_x UpperCAmelCase_ = bbox[2] * scale_y UpperCAmelCase_ = bbox[3] * scale_x UpperCAmelCase_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right UpperCAmelCase_ = cva.resize(__UpperCamelCase , (output_size[1] - divid_point_x, divid_point_y) ) UpperCAmelCase_ = img for bbox in img_annos: UpperCAmelCase_ = scale_x + bbox[1] * (1 - scale_x) UpperCAmelCase_ = bbox[2] * scale_y UpperCAmelCase_ = scale_x + bbox[3] * (1 - scale_x) UpperCAmelCase_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left UpperCAmelCase_ = cva.resize(__UpperCamelCase , (divid_point_x, output_size[0] - divid_point_y) ) UpperCAmelCase_ = img for bbox in img_annos: UpperCAmelCase_ = bbox[1] * scale_x UpperCAmelCase_ = scale_y + bbox[2] * (1 - scale_y) UpperCAmelCase_ = bbox[3] * scale_x UpperCAmelCase_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right UpperCAmelCase_ = cva.resize( __UpperCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) UpperCAmelCase_ = img for bbox in img_annos: UpperCAmelCase_ = scale_x + bbox[1] * (1 - scale_x) UpperCAmelCase_ = scale_y + bbox[2] * (1 - scale_y) UpperCAmelCase_ = scale_x + bbox[3] * (1 - scale_x) UpperCAmelCase_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: UpperCAmelCase_ = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> str: assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase_ = ascii_lowercase + digits return "".join(random.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) if __name__ == "__main__": main() print('DONE ✅')
362
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str]=5 ) -> Dict: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''' ) == 1 UpperCAmelCase_ = torch.tensor(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ).unsqueeze(0 ) # Batch size 1 UpperCAmelCase_ = model(__UpperCamelCase )[0] # The last hidden-state is the first element of the output tuple UpperCAmelCase_ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() UpperCAmelCase_ = logits[0, masked_index, :] UpperCAmelCase_ = logits.softmax(dim=0 ) UpperCAmelCase_ , UpperCAmelCase_ = prob.topk(k=__UpperCamelCase , dim=0 ) UpperCAmelCase_ = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__UpperCamelCase ) )] ) UpperCAmelCase_ = tokenizer.mask_token UpperCAmelCase_ = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): UpperCAmelCase_ = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(__UpperCamelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(__UpperCamelCase ) , __UpperCamelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__UpperCamelCase , __UpperCamelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _lowerCamelCase = CamembertTokenizer.from_pretrained('camembert-base') _lowerCamelCase = CamembertForMaskedLM.from_pretrained('camembert-base') model.eval() _lowerCamelCase = 'Le camembert est <mask> :)' print(fill_mask(masked_input, model, tokenizer, topk=3))
177
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def __UpperCAmelCase ( a_: Dict=None ): _UpperCAmelCase : Any = argparse.ArgumentParser(add_help=__UpperCamelCase, allow_abbrev=__UpperCamelCase ) # The main config parser _UpperCAmelCase : Optional[int] = config_command_parser(__UpperCamelCase ) # The subparser to add commands to _UpperCAmelCase : Dict = config_parser.add_subparsers(title="subcommands", dest="subcommand" ) # Then add other parsers with the parent parser default_command_parser(__UpperCamelCase, parents=[parent_parser] ) update_command_parser(__UpperCamelCase, parents=[parent_parser] ) return config_parser def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = get_config_parser() _UpperCAmelCase : Optional[int] = config_parser.parse_args() if not hasattr(__UpperCamelCase, "func" ): config_parser.print_help() exit(1 ) # Run args.func(__UpperCamelCase ) if __name__ == "__main__": main()
145
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __snake_case : def __init__( self : Optional[int] , _lowercase : Union[str, Any] , _lowercase : List[Any]=13 , _lowercase : List[Any]=7 , _lowercase : Optional[int]=True , _lowercase : str=True , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : List[str]=99 , _lowercase : List[str]=32 , _lowercase : str=5 , _lowercase : str=4 , _lowercase : str=4 , _lowercase : Union[str, Any]="gelu" , _lowercase : str=0.0 , _lowercase : Union[str, Any]=0.1 , _lowercase : List[str]=True , _lowercase : Union[str, Any]=5_12 , _lowercase : List[str]=16 , _lowercase : Dict=2 , _lowercase : int=0.02 , _lowercase : Any=3 , _lowercase : int=4 , _lowercase : List[str]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_multiple_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = weight_tying SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self : Optional[int] ): """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = True return config, input_ids, input_mask, token_labels def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int , _lowercase : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseModel(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = model(_lowercase , attention_mask=_lowercase ) SCREAMING_SNAKE_CASE__ = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Dict , _lowercase : int , _lowercase : str , _lowercase : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseModel(_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Any , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : int , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() # first forward pass SCREAMING_SNAKE_CASE__ = model(_lowercase , attention_mask=_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE__ = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE__ = model(_lowercase , attention_mask=_lowercase , output_hidden_states=_lowercase ) SCREAMING_SNAKE_CASE__ = output_from_no_past["""hidden_states"""][0] SCREAMING_SNAKE_CASE__ = model( _lowercase , attention_mask=_lowercase , past_key_values=_lowercase , output_hidden_states=_lowercase , )["""hidden_states"""][0] # select random slice SCREAMING_SNAKE_CASE__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-3 ) ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __snake_case ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCAmelCase_ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCAmelCase_ = ( {"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def __a ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowercase , _lowercase , _lowercase ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowercase , _lowercase , _lowercase ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_decoder() SCREAMING_SNAKE_CASE__ = None self.model_tester.create_and_check_model_as_decoder(_lowercase , _lowercase , _lowercase ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowercase , _lowercase , _lowercase ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowercase ) @slow def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """abeja/gpt-neox-japanese-2.7b""" SCREAMING_SNAKE_CASE__ = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] SCREAMING_SNAKE_CASE__ = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseTokenizer.from_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseForCausalLM.from_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = [] for prompt in prompts: SCREAMING_SNAKE_CASE__ = tokenizer(_lowercase , return_tensors="""pt""" ).input_ids SCREAMING_SNAKE_CASE__ = model.generate(_lowercase , max_length=50 ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) predicted_outputs += generated_string self.assertListEqual(_lowercase , _lowercase )
219
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a : def __init__( self : Optional[int] , __lowerCAmelCase : Union[str, Any] , ): _UpperCAmelCase = parent _UpperCAmelCase = 13 _UpperCAmelCase = 7 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 99 _UpperCAmelCase = 32 _UpperCAmelCase = 2 _UpperCAmelCase = 4 _UpperCAmelCase = 37 _UpperCAmelCase = """gelu""" _UpperCAmelCase = 0.1 _UpperCAmelCase = 0.1 _UpperCAmelCase = 512 _UpperCAmelCase = 16 _UpperCAmelCase = 2 _UpperCAmelCase = 0.02 _UpperCAmelCase = 3 _UpperCAmelCase = 4 _UpperCAmelCase = None def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Dict ): ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = self.prepare_config_and_inputs() _UpperCAmelCase = True _UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ): _UpperCAmelCase = TFEsmModel(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : int , ): _UpperCAmelCase = True _UpperCAmelCase = TFEsmModel(config=__lowerCAmelCase ) _UpperCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase ) # Also check the case where encoder outputs are not passed _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ): _UpperCAmelCase = TFEsmForMaskedLM(config=__lowerCAmelCase ) _UpperCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFEsmForTokenClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : List[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _snake_case : List[str] = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _snake_case : str = False _snake_case : Optional[int] = False def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = TFEsmModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : int ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[int] ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFEsmModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def lowerCAmelCase_ ( self : List[Any] ): pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def lowerCAmelCase_ ( self : str ): pass def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__lowerCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _UpperCAmelCase = model.get_bias() assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) for k, v in name.items(): assert isinstance(__lowerCAmelCase , tf.Variable ) else: _UpperCAmelCase = model.get_output_embeddings() assert x is None _UpperCAmelCase = model.get_bias() assert name is None @require_tf class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , __lowerCAmelCase ) # compare the actual values for a slice. _UpperCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _UpperCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] # compare the actual values for a slice. _UpperCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
30
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase__ = CLIPImageProcessor() UpperCAmelCase__ = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") UpperCAmelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
30
1
"""simple docstring""" from math import pow, sqrt def lowercase ( *lowerCAmelCase__ : float ) -> Optional[Any]: __a = len(snake_case__ ) > 0 and all(value > 0.0 for value in values ) return result def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> int: return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(snake_case__ , snake_case__ ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> Any: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> int: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> Optional[Any]: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> List[str]: return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
45
import os def a ( ): '''simple docstring''' lowercase_ = os.path.join(os.path.dirname(snake_case__ ) , '''num.txt''' ) with open(snake_case__ ) as file_hand: return str(sum(int(snake_case__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
30
0
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def UpperCamelCase_ ( lowerCAmelCase__ : NDArray[floataa] , lowerCAmelCase__ : NDArray[floataa] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int , ) -> list[float]: """simple docstring""" lowerCAmelCase_ ,lowerCAmelCase_ : List[Any] = coefficient_matrix.shape lowerCAmelCase_ ,lowerCAmelCase_ : List[Any] = constant_matrix.shape if rowsa != colsa: lowerCAmelCase_ : int = f"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(lowerCAmelCase__ ) if colsa != 1: lowerCAmelCase_ : Union[str, Any] = f"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(lowerCAmelCase__ ) if rowsa != rowsa: lowerCAmelCase_ : Tuple = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' f"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) != rowsa: lowerCAmelCase_ : Dict = ( 'Number of initial values must be equal to number of rows in coefficient ' f"matrix but received {len(lowerCAmelCase__ )} and {rowsa}" ) raise ValueError(lowerCAmelCase__ ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) lowerCAmelCase_ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowerCAmelCase_ ,lowerCAmelCase_ : List[str] = table.shape strictly_diagonally_dominant(lowerCAmelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCAmelCase__ ): lowerCAmelCase_ : Dict = [] for row in range(lowerCAmelCase__ ): lowerCAmelCase_ : int = 0 for col in range(lowerCAmelCase__ ): if col == row: lowerCAmelCase_ : Optional[Any] = table[row][col] elif col == cols - 1: lowerCAmelCase_ : Dict = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCAmelCase_ : str = (temp + val) / denom new_val.append(lowerCAmelCase__ ) lowerCAmelCase_ : str = new_val return [float(lowerCAmelCase__ ) for i in new_val] def UpperCamelCase_ ( lowerCAmelCase__ : NDArray[floataa] ) -> bool: """simple docstring""" lowerCAmelCase_ ,lowerCAmelCase_ : Optional[Any] = table.shape lowerCAmelCase_ : List[Any] = True for i in range(0 , lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
289
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : Optional[int] = 1_6 lowercase__ : List[str] = 3_2 def UpperCamelCase_ ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 ) -> Dict: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCAmelCase_ : Union[str, Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCAmelCase__ : Tuple ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ : Dict = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase_ : Dict = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ : int = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCAmelCase__ : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase_ : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase_ : Dict = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase_ : str = 8 else: lowerCAmelCase_ : str = None return tokenizer.pad( lowerCAmelCase__ , padding='longest' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='pt' , ) # Instantiate dataloaders. lowerCAmelCase_ : List[Any] = DataLoader( tokenized_datasets['train'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : int = mocked_dataloaders # noqa: F811 def UpperCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS' , lowerCAmelCase__ ) == "1": lowerCAmelCase_ : Optional[int] = 2 # Initialize accelerator lowerCAmelCase_ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ : Optional[int] = config['lr'] lowerCAmelCase_ : Tuple = int(config['num_epochs'] ) lowerCAmelCase_ : int = int(config['seed'] ) lowerCAmelCase_ : str = int(config['batch_size'] ) lowerCAmelCase_ : str = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase__ ) def inner_training_loop(lowerCAmelCase__ : Optional[int] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ : str = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase_ : int = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase_ : List[Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) lowerCAmelCase_ ,lowerCAmelCase_ : Any = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate scheduler lowerCAmelCase_ : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : List[Any] = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase_ : List[str] = model(**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = outputs.loss accelerator.backward(lowerCAmelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ : Union[str, Any] = model(**lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase_ ,lowerCAmelCase_ : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) lowerCAmelCase_ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , lowerCAmelCase__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCamelCase_ ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : int = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) lowerCAmelCase_ : str = parser.parse_args() lowerCAmelCase_ : Union[str, Any] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
289
1
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowercase_ = logging.get_logger(__name__) # General docstring lowercase_ = """RegNetConfig""" # Base docstring lowercase_ = """facebook/regnet-y-040""" lowercase_ = [1, 1_088, 7, 7] # Image classification docstring lowercase_ = """facebook/regnet-y-040""" lowercase_ = """tabby, tabby cat""" lowercase_ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class a_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , A , A = 3 , A = 1 , A = 1 , A = "relu" , **A , ) -> Optional[Any]: super().__init__(**A ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _SCREAMING_SNAKE_CASE = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _SCREAMING_SNAKE_CASE = tf.keras.layers.ConvaD( filters=A , kernel_size=A , strides=A , padding="""VALID""" , groups=A , use_bias=A , name="""convolution""" , ) _SCREAMING_SNAKE_CASE = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) _SCREAMING_SNAKE_CASE = ACTaFN[activation] if activation is not None else tf.identity def snake_case_( self , A ) -> str: _SCREAMING_SNAKE_CASE = self.convolution(self.padding(A ) ) _SCREAMING_SNAKE_CASE = self.normalization(A ) _SCREAMING_SNAKE_CASE = self.activation(A ) return hidden_state class a_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , A , **A ) -> Optional[int]: super().__init__(**A ) _SCREAMING_SNAKE_CASE = config.num_channels _SCREAMING_SNAKE_CASE = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def snake_case_( self , A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = shape_list(A )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _SCREAMING_SNAKE_CASE = tf.transpose(A , perm=(0, 2, 3, 1) ) _SCREAMING_SNAKE_CASE = self.embedder(A ) return hidden_state class a_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , A , A = 2 , **A ) -> List[str]: super().__init__(**A ) _SCREAMING_SNAKE_CASE = tf.keras.layers.ConvaD( filters=A , kernel_size=1 , strides=A , use_bias=A , name="""convolution""" ) _SCREAMING_SNAKE_CASE = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) def snake_case_( self , A , A = False ) -> tf.Tensor: return self.normalization(self.convolution(A ) , training=A ) class a_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , A , A , **A ) -> str: super().__init__(**A ) _SCREAMING_SNAKE_CASE = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A , name="""pooler""" ) _SCREAMING_SNAKE_CASE = [ tf.keras.layers.ConvaD(filters=A , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=A , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def snake_case_( self , A ) -> Dict: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] _SCREAMING_SNAKE_CASE = self.pooler(A ) for layer_module in self.attention: _SCREAMING_SNAKE_CASE = layer_module(A ) _SCREAMING_SNAKE_CASE = hidden_state * pooled return hidden_state class a_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , A , A , A , A = 1 , **A ) -> int: super().__init__(**A ) _SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 _SCREAMING_SNAKE_CASE = max(1 , out_channels // config.groups_width ) _SCREAMING_SNAKE_CASE = ( TFRegNetShortCut(A , stride=A , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _SCREAMING_SNAKE_CASE = [ TFRegNetConvLayer(A , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( A , stride=A , groups=A , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(A , kernel_size=1 , activation=A , name="""layer.2""" ), ] _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] def snake_case_( self , A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = hidden_state for layer_module in self.layers: _SCREAMING_SNAKE_CASE = layer_module(A ) _SCREAMING_SNAKE_CASE = self.shortcut(A ) hidden_state += residual _SCREAMING_SNAKE_CASE = self.activation(A ) return hidden_state class a_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , A , A , A , A = 1 , **A ) -> Tuple: super().__init__(**A ) _SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 _SCREAMING_SNAKE_CASE = max(1 , out_channels // config.groups_width ) _SCREAMING_SNAKE_CASE = ( TFRegNetShortCut(A , stride=A , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) _SCREAMING_SNAKE_CASE = [ TFRegNetConvLayer(A , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( A , stride=A , groups=A , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(A , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(A , kernel_size=1 , activation=A , name="""layer.3""" ), ] _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] def snake_case_( self , A ) -> Optional[int]: _SCREAMING_SNAKE_CASE = hidden_state for layer_module in self.layers: _SCREAMING_SNAKE_CASE = layer_module(A ) _SCREAMING_SNAKE_CASE = self.shortcut(A ) hidden_state += residual _SCREAMING_SNAKE_CASE = self.activation(A ) return hidden_state class a_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , A , A , A , A = 2 , A = 2 , **A ) -> int: super().__init__(**A ) _SCREAMING_SNAKE_CASE = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer _SCREAMING_SNAKE_CASE = [ # downsampling is done in the first layer with stride of 2 layer(A , A , A , stride=A , name="""layers.0""" ), *[layer(A , A , A , name=f'layers.{i+1}' ) for i in range(depth - 1 )], ] def snake_case_( self , A ) -> Optional[Any]: for layer_module in self.layers: _SCREAMING_SNAKE_CASE = layer_module(A ) return hidden_state class a_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , A , **A ) -> Tuple: super().__init__(**A ) _SCREAMING_SNAKE_CASE = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( A , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) _SCREAMING_SNAKE_CASE = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(A , config.depths[1:] ) ): self.stages.append(TFRegNetStage(A , A , A , depth=A , name=f'stages.{i+1}' ) ) def snake_case_( self , A , A = False , A = True ) -> TFBaseModelOutputWithNoAttention: _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) _SCREAMING_SNAKE_CASE = stage_module(A ) if output_hidden_states: _SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=A , hidden_states=A ) @keras_serializable class a_ ( tf.keras.layers.Layer ): '''simple docstring''' UpperCamelCase = RegNetConfig def __init__( self , A , **A ) -> Any: super().__init__(**A ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = TFRegNetEmbeddings(A , name="""embedder""" ) _SCREAMING_SNAKE_CASE = TFRegNetEncoder(A , name="""encoder""" ) _SCREAMING_SNAKE_CASE = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A , name="""pooler""" ) @unpack_inputs def snake_case_( self , A , A = None , A = None , A = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.embedder(A , training=A ) _SCREAMING_SNAKE_CASE = self.encoder( A , output_hidden_states=A , return_dict=A , training=A ) _SCREAMING_SNAKE_CASE = encoder_outputs[0] _SCREAMING_SNAKE_CASE = self.pooler(A ) # Change to NCHW output format have uniformity in the modules _SCREAMING_SNAKE_CASE = tf.transpose(A , perm=(0, 3, 1, 2) ) _SCREAMING_SNAKE_CASE = tf.transpose(A , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _SCREAMING_SNAKE_CASE = tuple([tf.transpose(A , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A , pooler_output=A , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = RegNetConfig UpperCamelCase = '''regnet''' UpperCamelCase = '''pixel_values''' @property def snake_case_( self ) -> str: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} lowercase_ = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ lowercase_ = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , snake_case_ , ) class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A , *A , **A ) -> Any: super().__init__(A , *A , **A ) _SCREAMING_SNAKE_CASE = TFRegNetMainLayer(A , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case_( self , A , A = None , A = None , A=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.regnet( pixel_values=A , output_hidden_states=A , return_dict=A , training=A , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , snake_case_ , ) class a_ ( snake_case_ , snake_case_ ): '''simple docstring''' def __init__( self , A , *A , **A ) -> str: super().__init__(A , *A , **A ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = TFRegNetMainLayer(A , name="""regnet""" ) # classification head _SCREAMING_SNAKE_CASE = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case_( self , A = None , A = None , A = None , A = None , A=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.regnet( A , output_hidden_states=A , return_dict=A , training=A ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier[0](A ) _SCREAMING_SNAKE_CASE = self.classifier[1](A ) _SCREAMING_SNAKE_CASE = None if labels is None else self.hf_compute_loss(labels=A , logits=A ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=A , logits=A , hidden_states=outputs.hidden_states )
58
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def lowerCamelCase ( __lowerCamelCase : str ) ->Optional[int]: def decorator(__lowerCamelCase : int ): _SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(__lowerCamelCase , """handle_key""" , __lowerCamelCase ) return func return decorator def lowerCamelCase ( *__lowerCamelCase : List[str] ) ->Dict: def decorator(__lowerCamelCase : int ): _SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(__lowerCamelCase , """handle_key""" , __lowerCamelCase ) return func return decorator class a_ ( snake_case_ ): '''simple docstring''' def __new__( cls , A , A , A ) -> int: _SCREAMING_SNAKE_CASE = super().__new__(cls , A , A , A ) if not hasattr(A , """key_handler""" ): setattr(A , """key_handler""" , {} ) setattr(A , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): _SCREAMING_SNAKE_CASE = getattr(A , """handle_key""" , [] ) for key in handled_keys: _SCREAMING_SNAKE_CASE = value return new_cls @staticmethod def snake_case_( cls ) -> str: _SCREAMING_SNAKE_CASE = get_character() if char != KEYMAP["undefined"]: _SCREAMING_SNAKE_CASE = ord(A ) _SCREAMING_SNAKE_CASE = cls.key_handler.get(A ) if handler: _SCREAMING_SNAKE_CASE = char return handler(cls ) else: return None def lowerCamelCase ( cls : Any ) ->Dict: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
58
1
"""simple docstring""" def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(F"""{price_plus_tax(100, 0.2_5) = }""") print(F"""{price_plus_tax(125.50, 0.0_5) = }""")
350
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Any = (PNDMScheduler,) _lowercase : str = (("""num_inference_steps""", 50),) def _lowercase ( self , **lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : Dict ={ "num_train_timesteps": 1_0_0_0, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def _lowercase ( self , lowerCAmelCase__=0 , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ : Optional[int] =dict(self.forward_default_kwargs ) a__ : Tuple =kwargs.pop("num_inference_steps" , lowerCAmelCase__ ) a__ : List[str] =self.dummy_sample a__ : List[str] =0.1 * sample a__ : str =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a__ : int =self.get_scheduler_config(**lowerCAmelCase__ ) a__ : Union[str, Any] =scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals a__ : Any =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__ ) a__ : List[Any] =scheduler_class.from_pretrained(lowerCAmelCase__ ) new_scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals a__ : str =dummy_past_residuals[:] a__ : Any =scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample a__ : Dict =new_scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" a__ : Optional[int] =scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample a__ : Union[str, Any] =new_scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowercase ( self ) -> int: '''simple docstring''' pass def _lowercase ( self , lowerCAmelCase__=0 , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' a__ : Optional[int] =dict(self.forward_default_kwargs ) a__ : List[str] =kwargs.pop("num_inference_steps" , lowerCAmelCase__ ) a__ : List[str] =self.dummy_sample a__ : int =0.1 * sample a__ : Tuple =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a__ : Dict =self.get_scheduler_config() a__ : List[str] =scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals (must be after setting timesteps) a__ : Dict =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__ ) a__ : Dict =scheduler_class.from_pretrained(lowerCAmelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residual (must be after setting timesteps) a__ : Optional[int] =dummy_past_residuals[:] a__ : Optional[Any] =scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample a__ : List[Any] =new_scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" a__ : List[str] =scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample a__ : Any =new_scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowercase ( self , **lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : Union[str, Any] =self.scheduler_classes[0] a__ : Optional[Any] =self.get_scheduler_config(**lowerCAmelCase__ ) a__ : Any =scheduler_class(**lowerCAmelCase__ ) a__ : int =1_0 a__ : Union[str, Any] =self.dummy_model() a__ : Optional[int] =self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase__ ) for i, t in enumerate(scheduler.prk_timesteps ): a__ : List[Any] =model(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Optional[Any] =scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): a__ : int =model(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : int =scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample return sample def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : str =dict(self.forward_default_kwargs ) a__ : Tuple =kwargs.pop("num_inference_steps" , lowerCAmelCase__ ) for scheduler_class in self.scheduler_classes: a__ : Union[str, Any] =self.get_scheduler_config() a__ : List[str] =scheduler_class(**lowerCAmelCase__ ) a__ : List[Any] =self.dummy_sample a__ : Dict =0.1 * sample if num_inference_steps is not None and hasattr(lowerCAmelCase__ , "set_timesteps" ): scheduler.set_timesteps(lowerCAmelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCAmelCase__ , "set_timesteps" ): a__ : int =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a__ : Tuple =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a__ : str =dummy_past_residuals[:] a__ : List[Any] =scheduler.step_prk(lowerCAmelCase__ , 0 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample a__ : int =scheduler.step_prk(lowerCAmelCase__ , 1 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) a__ : List[str] =scheduler.step_plms(lowerCAmelCase__ , 0 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample a__ : Dict =scheduler.step_plms(lowerCAmelCase__ , 1 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowercase ( self ) -> Tuple: '''simple docstring''' for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase__ ) a__ : Optional[Any] =self.scheduler_classes[0] a__ : Tuple =self.get_scheduler_config(steps_offset=1 ) a__ : Optional[Any] =scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def _lowercase ( self ) -> Tuple: '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowercase ( self ) -> Dict: '''simple docstring''' for t in [1, 5, 1_0]: self.check_over_forward(time_step=lowerCAmelCase__ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=lowerCAmelCase__ ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : Dict =2_7 for scheduler_class in self.scheduler_classes: a__ : Tuple =self.dummy_sample a__ : Dict =0.1 * sample a__ : Dict =self.get_scheduler_config() a__ : int =scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): a__ : Any =scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' with self.assertRaises(lowerCAmelCase__ ): a__ : List[Any] =self.scheduler_classes[0] a__ : Dict =self.get_scheduler_config() a__ : Tuple =scheduler_class(**lowerCAmelCase__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] =self.full_loop() a__ : str =torch.sum(torch.abs(lowerCAmelCase__ ) ) a__ : Optional[Any] =torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def _lowercase ( self ) -> str: '''simple docstring''' a__ : str =self.full_loop(prediction_type="v_prediction" ) a__ : int =torch.sum(torch.abs(lowerCAmelCase__ ) ) a__ : Optional[int] =torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Tuple =self.full_loop(set_alpha_to_one=lowerCAmelCase__ , beta_start=0.01 ) a__ : str =torch.sum(torch.abs(lowerCAmelCase__ ) ) a__ : Dict =torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Dict =self.full_loop(set_alpha_to_one=lowerCAmelCase__ , beta_start=0.01 ) a__ : Union[str, Any] =torch.sum(torch.abs(lowerCAmelCase__ ) ) a__ : Union[str, Any] =torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
148
0
from random import shuffle import tensorflow as tf from numpy import array def lowerCamelCase__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = int(__UpperCAmelCase ) assert noofclusters < len(__UpperCAmelCase ) # Find out the dimensionality lowerCAmelCase_ = len(vectors[0] ) # Will help select random centroids from among the available vectors lowerCAmelCase_ = list(range(len(__UpperCAmelCase ) ) ) shuffle(__UpperCAmelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowerCAmelCase_ = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowerCAmelCase_ = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowerCAmelCase_ = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__UpperCAmelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowerCAmelCase_ = tf.placeholder("float64" , [dim] ) lowerCAmelCase_ = [] for centroid in centroids: cent_assigns.append(tf.assign(__UpperCAmelCase , __UpperCAmelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowerCAmelCase_ = [tf.Variable(0 ) for i in range(len(__UpperCAmelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowerCAmelCase_ = tf.placeholder("int32" ) lowerCAmelCase_ = [] for assignment in assignments: cluster_assigns.append(tf.assign(__UpperCAmelCase , __UpperCAmelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowerCAmelCase_ = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowerCAmelCase_ = tf.reduce_mean(__UpperCAmelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowerCAmelCase_ = tf.placeholder("float" , [dim] ) lowerCAmelCase_ = tf.placeholder("float" , [dim] ) lowerCAmelCase_ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__UpperCAmelCase , __UpperCAmelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowerCAmelCase_ = tf.placeholder("float" , [noofclusters] ) lowerCAmelCase_ = tf.argmin(__UpperCAmelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowerCAmelCase_ = tf.initialize_all_variables() # Initialize all variables sess.run(__UpperCAmelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowerCAmelCase_ = 100 for _ in range(__UpperCAmelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__UpperCAmelCase ) ): lowerCAmelCase_ = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowerCAmelCase_ = [ sess.run(__UpperCAmelCase , feed_dict={va: vect, va: sess.run(__UpperCAmelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowerCAmelCase_ = sess.run( __UpperCAmelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__UpperCAmelCase ): # Collect all the vectors assigned to this cluster lowerCAmelCase_ = [ vectors[i] for i in range(len(__UpperCAmelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowerCAmelCase_ = sess.run( __UpperCAmelCase , feed_dict={mean_input: array(__UpperCAmelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowerCAmelCase_ = sess.run(__UpperCAmelCase ) lowerCAmelCase_ = sess.run(__UpperCAmelCase ) return centroids, assignments
231
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "efficientformer" def __init__( self , _UpperCAmelCase = [3, 2, 6, 4] , _UpperCAmelCase = [48, 96, 224, 448] , _UpperCAmelCase = [True, True, True, True] , _UpperCAmelCase = 448 , _UpperCAmelCase = 32 , _UpperCAmelCase = 4 , _UpperCAmelCase = 7 , _UpperCAmelCase = 5 , _UpperCAmelCase = 8 , _UpperCAmelCase = 4 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 16 , _UpperCAmelCase = 3 , _UpperCAmelCase = 3 , _UpperCAmelCase = 3 , _UpperCAmelCase = 2 , _UpperCAmelCase = 1 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 1 , _UpperCAmelCase = True , _UpperCAmelCase = True , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = "gelu" , _UpperCAmelCase = 0.02 , _UpperCAmelCase = 1e-1_2 , _UpperCAmelCase = 224 , _UpperCAmelCase = 1e-0_5 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: List[str] = hidden_act lowercase__: Union[str, Any] = hidden_dropout_prob lowercase__: Union[str, Any] = hidden_sizes lowercase__: Any = num_hidden_layers lowercase__: int = num_attention_heads lowercase__: Dict = initializer_range lowercase__: Optional[int] = layer_norm_eps lowercase__: int = patch_size lowercase__: int = num_channels lowercase__: str = depths lowercase__: List[str] = mlp_expansion_ratio lowercase__: List[str] = downsamples lowercase__: List[str] = dim lowercase__: Optional[Any] = key_dim lowercase__: Union[str, Any] = attention_ratio lowercase__: Any = resolution lowercase__: Any = pool_size lowercase__: List[Any] = downsample_patch_size lowercase__: Optional[int] = downsample_stride lowercase__: Union[str, Any] = downsample_pad lowercase__: List[Any] = drop_path_rate lowercase__: Optional[Any] = num_metaad_blocks lowercase__: Any = distillation lowercase__: Optional[int] = use_layer_scale lowercase__: List[str] = layer_scale_init_value lowercase__: Dict = image_size lowercase__: List[str] = batch_norm_eps
177
0
"""simple docstring""" import re def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' try: __lowerCAmelCase = split_input(_UpperCamelCase ) if upper: __lowerCAmelCase = "".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __lowerCAmelCase = "".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return to_simple_case(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' try: __lowerCAmelCase = to_simple_case(_UpperCamelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return to_complex_case(_UpperCamelCase , _UpperCamelCase , "_" ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return to_complex_case(_UpperCamelCase , _UpperCamelCase , "-" ) if __name__ == "__main__": __import__("doctest").testmod()
259
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() A : Tuple = logging.get_logger(__name__) A : Union[str, Any] = "https://openaipublic.azureedge.net/jukebox/models/" A : Tuple = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: __lowerCAmelCase = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: __lowerCAmelCase = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: __lowerCAmelCase = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: __lowerCAmelCase = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: __lowerCAmelCase = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: __lowerCAmelCase = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __lowerCAmelCase = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: __lowerCAmelCase = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = {} import re __lowerCAmelCase = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) __lowerCAmelCase = re.compile( R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) __lowerCAmelCase = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) __lowerCAmelCase = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) __lowerCAmelCase = re.compile( R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) __lowerCAmelCase = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) __lowerCAmelCase = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) __lowerCAmelCase = re.compile( R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) __lowerCAmelCase = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCamelCase ): __lowerCAmelCase = re_encoder_block_conv_in.match(_UpperCamelCase ) __lowerCAmelCase = regex_match.groups() __lowerCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) __lowerCAmelCase = f"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" __lowerCAmelCase = re_encoder_block_conv_in.sub(_UpperCamelCase , _UpperCamelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCamelCase ): __lowerCAmelCase = re_encoder_block_resnet.match(_UpperCamelCase ) __lowerCAmelCase = regex_match.groups() __lowerCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) __lowerCAmelCase = {"1": 1, "3": 2}[groups[-2]] __lowerCAmelCase = f"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." __lowerCAmelCase = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" __lowerCAmelCase = prefix + resnet_block __lowerCAmelCase = re_encoder_block_resnet.sub(_UpperCamelCase , _UpperCamelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCamelCase ): __lowerCAmelCase = re_encoder_block_proj_out.match(_UpperCamelCase ) __lowerCAmelCase = regex_match.groups() __lowerCAmelCase = f"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" __lowerCAmelCase = re_encoder_block_proj_out.sub(_UpperCamelCase , _UpperCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCamelCase ): __lowerCAmelCase = re_decoder_block_conv_out.match(_UpperCamelCase ) __lowerCAmelCase = regex_match.groups() __lowerCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 __lowerCAmelCase = f"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" __lowerCAmelCase = re_decoder_block_conv_out.sub(_UpperCamelCase , _UpperCamelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCamelCase ): __lowerCAmelCase = re_decoder_block_resnet.match(_UpperCamelCase ) __lowerCAmelCase = regex_match.groups() __lowerCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 __lowerCAmelCase = {"1": 1, "3": 2}[groups[-2]] __lowerCAmelCase = f"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." __lowerCAmelCase = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" __lowerCAmelCase = prefix + resnet_block __lowerCAmelCase = re_decoder_block_resnet.sub(_UpperCamelCase , _UpperCamelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCamelCase ): __lowerCAmelCase = re_decoder_block_proj_in.match(_UpperCamelCase ) __lowerCAmelCase = regex_match.groups() __lowerCAmelCase = f"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" __lowerCAmelCase = re_decoder_block_proj_in.sub(_UpperCamelCase , _UpperCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCamelCase ): __lowerCAmelCase = re_prior_cond_conv_out.match(_UpperCamelCase ) __lowerCAmelCase = regex_match.groups() __lowerCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 __lowerCAmelCase = f"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" __lowerCAmelCase = re_prior_cond_conv_out.sub(_UpperCamelCase , _UpperCamelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCamelCase ): __lowerCAmelCase = re_prior_cond_resnet.match(_UpperCamelCase ) __lowerCAmelCase = regex_match.groups() __lowerCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 __lowerCAmelCase = {"1": 1, "3": 2}[groups[-2]] __lowerCAmelCase = f"conditioner_blocks.upsampler.upsample_block.{block_index}." __lowerCAmelCase = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" __lowerCAmelCase = prefix + resnet_block __lowerCAmelCase = re_prior_cond_resnet.sub(_UpperCamelCase , _UpperCamelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCamelCase ): __lowerCAmelCase = re_prior_cond_proj_in.match(_UpperCamelCase ) __lowerCAmelCase = regex_match.groups() __lowerCAmelCase = f"conditioner_blocks.upsampler.proj_in.{groups[-1]}" __lowerCAmelCase = re_prior_cond_proj_in.sub(_UpperCamelCase , _UpperCamelCase ) # keep original key else: __lowerCAmelCase = original_key __lowerCAmelCase = replace_key(_UpperCamelCase ) if f"{key_prefix}.{key}" not in model_state_dict or key is None: print(f"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[f"{key_prefix}.{key}"].shape: __lowerCAmelCase = model_state_dict[f"{key_prefix}.{key}"] print(f"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) __lowerCAmelCase = original_key __lowerCAmelCase = original_key __lowerCAmelCase = value return new_dict @torch.no_grad() def _lowerCamelCase ( _UpperCamelCase=None , _UpperCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): __lowerCAmelCase = requests.get(f"{PREFIX}{file}" , allow_redirects=_UpperCamelCase ) os.makedirs(f"{pytorch_dump_folder_path}/" , exist_ok=_UpperCamelCase ) open(f"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) __lowerCAmelCase = MODEL_MAPPING[model_name.split("/" )[-1]] __lowerCAmelCase = JukeboxConfig.from_pretrained(_UpperCamelCase ) __lowerCAmelCase = JukeboxModel(_UpperCamelCase ) __lowerCAmelCase = [] __lowerCAmelCase = {} for i, dict_name in enumerate(_UpperCamelCase ): __lowerCAmelCase = torch.load(f"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] __lowerCAmelCase = {} for k in old_dic.keys(): if k.endswith(".b" ): __lowerCAmelCase = old_dic[k] elif k.endswith(".w" ): __lowerCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __lowerCAmelCase = old_dic[k] else: __lowerCAmelCase = old_dic[k] __lowerCAmelCase = "vqvae" if i == 0 else f"priors.{3 - i}" __lowerCAmelCase = fix_jukebox_keys(_UpperCamelCase , model.state_dict() , _UpperCamelCase , _UpperCamelCase ) weight_dict.append(_UpperCamelCase ) __lowerCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) with open(f"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_UpperCamelCase , _UpperCamelCase ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCamelCase ) return weight_dict if __name__ == "__main__": A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) A : Union[str, Any] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
259
1
def a ( snake_case__: str , snake_case__: str ): '''simple docstring''' lowercase_ = len(snake_case__ ) lowercase_ = len(snake_case__ ) lowercase_ = ( first_str_length if first_str_length > second_str_length else second_str_length ) lowercase_ = [] for char_count in range(snake_case__ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(snake_case__ ) if __name__ == "__main__": print(alternative_string_arrange('AB', 'XYZ'), end=' ')
30
def a ( snake_case__: list , snake_case__: list , snake_case__: int , snake_case__: int , snake_case__: int ): '''simple docstring''' if index == number_of_items: return 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = knapsack(snake_case__ , snake_case__ , snake_case__ , snake_case__ , index + 1 ) if weights[index] <= max_weight: lowercase_ = values[index] + knapsack( snake_case__ , snake_case__ , snake_case__ , max_weight - weights[index] , index + 1 ) return max(snake_case__ , snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
30
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _lowerCamelCase : int = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class __UpperCAmelCase ( unittest.TestCase ): UpperCamelCase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCamelCase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCamelCase = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def __magic_name__ ( self : Tuple, __A : List[str], __A : Tuple, __A : str ): UpperCAmelCase : Optional[int] = ZeroShotClassificationPipeline( model=__A, tokenizer=__A, candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def __magic_name__ ( self : Dict, __A : Tuple, __A : Optional[Any] ): UpperCAmelCase : Dict = classifier('''Who are you voting for in 2020?''', candidate_labels='''politics''' ) self.assertEqual(__A, {'''sequence''': ANY(__A ), '''labels''': [ANY(__A )], '''scores''': [ANY(__A )]} ) # No kwarg UpperCAmelCase : List[Any] = classifier('''Who are you voting for in 2020?''', ['''politics'''] ) self.assertEqual(__A, {'''sequence''': ANY(__A ), '''labels''': [ANY(__A )], '''scores''': [ANY(__A )]} ) UpperCAmelCase : int = classifier('''Who are you voting for in 2020?''', candidate_labels=['''politics'''] ) self.assertEqual(__A, {'''sequence''': ANY(__A ), '''labels''': [ANY(__A )], '''scores''': [ANY(__A )]} ) UpperCAmelCase : List[str] = classifier('''Who are you voting for in 2020?''', candidate_labels='''politics, public health''' ) self.assertEqual( __A, {'''sequence''': ANY(__A ), '''labels''': [ANY(__A ), ANY(__A )], '''scores''': [ANY(__A ), ANY(__A )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ), 1.0 ) UpperCAmelCase : Tuple = classifier('''Who are you voting for in 2020?''', candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( __A, {'''sequence''': ANY(__A ), '''labels''': [ANY(__A ), ANY(__A )], '''scores''': [ANY(__A ), ANY(__A )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ), 1.0 ) UpperCAmelCase : List[Any] = classifier( '''Who are you voting for in 2020?''', candidate_labels='''politics''', hypothesis_template='''This text is about {}''' ) self.assertEqual(__A, {'''sequence''': ANY(__A ), '''labels''': [ANY(__A )], '''scores''': [ANY(__A )]} ) # https://github.com/huggingface/transformers/issues/13846 UpperCAmelCase : Dict = classifier(['''I am happy'''], ['''positive''', '''negative'''] ) self.assertEqual( __A, [ {'''sequence''': ANY(__A ), '''labels''': [ANY(__A ), ANY(__A )], '''scores''': [ANY(__A ), ANY(__A )]} for i in range(1 ) ], ) UpperCAmelCase : List[Any] = classifier(['''I am happy''', '''I am sad'''], ['''positive''', '''negative'''] ) self.assertEqual( __A, [ {'''sequence''': ANY(__A ), '''labels''': [ANY(__A ), ANY(__A )], '''scores''': [ANY(__A ), ANY(__A )]} for i in range(2 ) ], ) with self.assertRaises(__A ): classifier('''''', candidate_labels='''politics''' ) with self.assertRaises(__A ): classifier(__A, candidate_labels='''politics''' ) with self.assertRaises(__A ): classifier('''Who are you voting for in 2020?''', candidate_labels='''''' ) with self.assertRaises(__A ): classifier('''Who are you voting for in 2020?''', candidate_labels=__A ) with self.assertRaises(__A ): classifier( '''Who are you voting for in 2020?''', candidate_labels='''politics''', hypothesis_template='''Not formatting template''', ) with self.assertRaises(__A ): classifier( '''Who are you voting for in 2020?''', candidate_labels='''politics''', hypothesis_template=__A, ) self.run_entailment_id(__A ) def __magic_name__ ( self : str, __A : Pipeline ): UpperCAmelCase : Dict = zero_shot_classifier.model.config UpperCAmelCase : Optional[Any] = config.labelaid UpperCAmelCase : Any = zero_shot_classifier.entailment_id UpperCAmelCase : Dict = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id, -1 ) UpperCAmelCase : Tuple = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id, 0 ) UpperCAmelCase : Dict = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id, 0 ) UpperCAmelCase : List[str] = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id, 2 ) UpperCAmelCase : List[Any] = original_labelaid self.assertEqual(__A, zero_shot_classifier.entailment_id ) @require_torch def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : str = pipeline( '''zero-shot-classification''', model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''', framework='''pt''', ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 1_0_0, candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Optional[int] = pipeline( '''zero-shot-classification''', model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''', framework='''pt''', ) UpperCAmelCase : str = zero_shot_classifier( '''Who are you voting for in 2020?''', candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__A ), { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_3_3, 0.3_3_3, 0.3_3_3], }, ) @require_tf def __magic_name__ ( self : Any ): UpperCAmelCase : Union[str, Any] = pipeline( '''zero-shot-classification''', model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''', framework='''tf''', ) UpperCAmelCase : List[Any] = zero_shot_classifier( '''Who are you voting for in 2020?''', candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__A ), { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_3_3, 0.3_3_3, 0.3_3_3], }, ) @slow @require_torch def __magic_name__ ( self : Dict ): UpperCAmelCase : Optional[int] = pipeline('''zero-shot-classification''', model='''roberta-large-mnli''', framework='''pt''' ) UpperCAmelCase : Union[str, Any] = zero_shot_classifier( '''Who are you voting for in 2020?''', candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__A ), { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_7_6, 0.0_1_5, 0.0_0_9], }, ) UpperCAmelCase : Dict = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''', candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''], multi_label=__A, ) self.assertEqual( nested_simplify(__A ), { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], }, ) @slow @require_tf def __magic_name__ ( self : Tuple ): UpperCAmelCase : Tuple = pipeline('''zero-shot-classification''', model='''roberta-large-mnli''', framework='''tf''' ) UpperCAmelCase : Tuple = zero_shot_classifier( '''Who are you voting for in 2020?''', candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__A ), { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_7_6, 0.0_1_5, 0.0_0_9], }, ) UpperCAmelCase : Any = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''', candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''], multi_label=__A, ) self.assertEqual( nested_simplify(__A ), { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], }, )
358
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _lowerCamelCase : Dict = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Optional[Any], *__A : Tuple, **__A : Tuple ): super().__init__(*__A, **__A ) self.check_model_type(__A ) def __magic_name__ ( self : Union[str, Any], __A : int=None, __A : Tuple=None, __A : Any=None, **__A : Optional[int] ): UpperCAmelCase , UpperCAmelCase : List[Any] = {}, {} if padding is not None: UpperCAmelCase : Optional[int] = padding if truncation is not None: UpperCAmelCase : Optional[int] = truncation if top_k is not None: UpperCAmelCase : Tuple = top_k return preprocess_params, {}, postprocess_params def __call__( self : Union[str, Any], __A : Union["Image.Image", str], __A : str = None, **__A : Optional[int] ): if isinstance(__A, (Image.Image, str) ) and isinstance(__A, __A ): UpperCAmelCase : int = {'''image''': image, '''question''': question} else: UpperCAmelCase : str = image UpperCAmelCase : Union[str, Any] = super().__call__(__A, **__A ) return results def __magic_name__ ( self : List[str], __A : Union[str, Any], __A : Tuple=False, __A : List[Any]=False ): UpperCAmelCase : int = load_image(inputs['''image'''] ) UpperCAmelCase : List[str] = self.tokenizer( inputs['''question'''], return_tensors=self.framework, padding=__A, truncation=__A ) UpperCAmelCase : Union[str, Any] = self.image_processor(images=__A, return_tensors=self.framework ) model_inputs.update(__A ) return model_inputs def __magic_name__ ( self : Optional[Any], __A : List[Any] ): UpperCAmelCase : Optional[int] = self.model(**__A ) return model_outputs def __magic_name__ ( self : Any, __A : List[str], __A : Union[str, Any]=5 ): if top_k > self.model.config.num_labels: UpperCAmelCase : Any = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase : Any = model_outputs.logits.sigmoid()[0] UpperCAmelCase , UpperCAmelCase : Union[str, Any] = probs.topk(__A ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) UpperCAmelCase : str = scores.tolist() UpperCAmelCase : Tuple = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__A, __A )]
99
0
"""simple docstring""" import math def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 0 while num > 0: _UpperCAmelCase = num % 8 _UpperCAmelCase = octal + (remainder * math.floor(math.pow(10 ,lowercase ) )) counter += 1 _UpperCAmelCase = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f'''0o{int(lowercase )}''' def __UpperCAmelCase ( ): """simple docstring""" print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(65 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(2_16 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(5_12 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
289
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = get_failure_array(lowercase ) # 2) Step through text searching for pattern _UpperCAmelCase , _UpperCAmelCase = 0, 0 # index into text, pattern while i < len(lowercase ): if pattern[j] == text[i]: if j == (len(lowercase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _UpperCAmelCase = failure[j - 1] continue i += 1 return False def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [0] _UpperCAmelCase = 0 _UpperCAmelCase = 1 while j < len(lowercase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _UpperCAmelCase = failure[i - 1] continue j += 1 failure.append(lowercase ) return failure if __name__ == "__main__": # Test 1) UpperCAmelCase__ = """abc1abc12""" UpperCAmelCase__ = """alskfjaldsabc1abc1abc12k23adsfabcabc""" UpperCAmelCase__ = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCAmelCase__ = """ABABX""" UpperCAmelCase__ = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) UpperCAmelCase__ = """AAAB""" UpperCAmelCase__ = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) UpperCAmelCase__ = """abcdabcy""" UpperCAmelCase__ = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) UpperCAmelCase__ = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
289
1
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case ( a__ ): snake_case__ = "new-model" if is_tf_available(): class _snake_case ( a__ ): snake_case__ = NewModelConfig @require_tf class _snake_case ( unittest.TestCase ): @slow def lowerCamelCase__ ( self : Optional[int] ): __lowerCamelCase : str = "bert-base-cased" __lowerCamelCase : str = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Any = TFAutoModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) @slow def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Tuple = "bert-base-cased" __lowerCamelCase : Tuple = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Optional[Any] = TFAutoModelForPreTraining.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) @slow def lowerCamelCase__ ( self : str ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Tuple = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : List[str] = TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : Optional[Any] = TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) @slow def lowerCamelCase__ ( self : Optional[Any] ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Any = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : int = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) @slow def lowerCamelCase__ ( self : int ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) @slow def lowerCamelCase__ ( self : Tuple ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Any = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) @slow def lowerCamelCase__ ( self : Tuple ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : Tuple = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : int = TFAutoModelForSequenceClassification.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) @slow def lowerCamelCase__ ( self : Dict ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : Dict = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Tuple = TFAutoModelForQuestionAnswering.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) @slow @require_tensorflow_probability def lowerCamelCase__ ( self : Optional[int] ): for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : str = TFAutoModelForTableQuestionAnswering.from_pretrained( UpperCAmelCase , output_loading_info=UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase__ ( self : str ): __lowerCamelCase : Tuple = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase ) , 14410 ) def lowerCamelCase__ ( self : Any ): __lowerCamelCase : List[str] = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase ) , 14410 ) def lowerCamelCase__ ( self : Optional[Any] ): # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel __lowerCamelCase : str = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Optional[Any] = copy.deepcopy(model.config ) __lowerCamelCase : Optional[int] = ["FunnelBaseModel"] __lowerCamelCase : Dict = TFAutoModel.from_config(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase ) __lowerCamelCase : Dict = TFAutoModel.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ): try: AutoConfig.register("new-model" , UpperCAmelCase ) __lowerCamelCase : List[str] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(UpperCAmelCase ): auto_class.register(UpperCAmelCase , UpperCAmelCase ) auto_class.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): auto_class.register(UpperCAmelCase , UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCamelCase : Optional[int] = BertModelTester(self ).get_config() __lowerCamelCase : List[Any] = NewModelConfig(**tiny_config.to_dict() ) __lowerCamelCase : List[Any] = auto_class.from_config(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase ) __lowerCamelCase : List[str] = auto_class.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowerCamelCase__ ( self : Dict ): with self.assertRaisesRegex( UpperCAmelCase , "bert-base is not a local folder and is not a valid model identifier" ): __lowerCamelCase : List[Any] = TFAutoModel.from_pretrained("bert-base" ) def lowerCamelCase__ ( self : Dict ): with self.assertRaisesRegex( UpperCAmelCase , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __lowerCamelCase : Dict = TFAutoModel.from_pretrained(UpperCAmelCase , revision="aaaaaa" ) def lowerCamelCase__ ( self : Dict ): with self.assertRaisesRegex( UpperCAmelCase , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): __lowerCamelCase : Any = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def lowerCamelCase__ ( self : Optional[Any] ): with self.assertRaisesRegex(UpperCAmelCase , "Use `from_pt=True` to load this model" ): __lowerCamelCase : int = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def lowerCamelCase__ ( self : List[str] ): # Make sure we have cached the model. __lowerCamelCase : List[Any] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: __lowerCamelCase : List[Any] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __lowerCamelCase : Any = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: __lowerCamelCase : List[str] = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
64
"""simple docstring""" def lowercase_ ( _lowerCamelCase: int = 100 ) -> int: '''simple docstring''' __lowerCamelCase : Optional[Any] = set() __lowerCamelCase : Union[str, Any] = 0 __lowerCamelCase : Optional[Any] = n + 1 # maximum limit for a in range(2 , _lowerCamelCase ): for b in range(2 , _lowerCamelCase ): __lowerCamelCase : Union[str, Any] = a**b # calculates the current power collect_powers.add(_lowerCamelCase ) # adds the result to the set return len(_lowerCamelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
64
1
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter a_ = True except ImportError: a_ = False a_ = logging.get_logger(__name__) # pylint: disable=invalid-name def _a( UpperCamelCase__ : Namespace ): '''simple docstring''' return AddNewModelCommand(args.testing, args.testing_file, path=args.path ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): @staticmethod def __magic_name__ ( __lowercase : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] =parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=__lowercase , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=__lowercase , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=__lowercase ) def __init__( self : Dict , __lowercase : Any , __lowercase : Tuple , __lowercase : Tuple=None , *__lowercase : str ) -> List[str]: SCREAMING_SNAKE_CASE__ : Optional[Any] =testing SCREAMING_SNAKE_CASE__ : Union[str, Any] =testing_file SCREAMING_SNAKE_CASE__ : Optional[int] =path def __magic_name__ ( self : Tuple ) -> List[Any]: warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory SCREAMING_SNAKE_CASE__ : List[str] =[directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(__lowercase ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) SCREAMING_SNAKE_CASE__ : Tuple =( Path(__lowercase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) SCREAMING_SNAKE_CASE__ : Dict =path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(__lowercase ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: SCREAMING_SNAKE_CASE__ : List[str] =json.load(__lowercase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__lowercase , extra_context=__lowercase , ) SCREAMING_SNAKE_CASE__ : Dict =[directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: SCREAMING_SNAKE_CASE__ : Optional[Any] =json.load(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =configuration["lowercase_modelname"] SCREAMING_SNAKE_CASE__ : List[Any] =configuration["generate_tensorflow_pytorch_and_flax"] os.remove(F"{directory}/configuration.json" ) SCREAMING_SNAKE_CASE__ : str ="PyTorch" in generate_tensorflow_pytorch_and_flax SCREAMING_SNAKE_CASE__ : int ="TensorFlow" in generate_tensorflow_pytorch_and_flax SCREAMING_SNAKE_CASE__ : List[str] ="Flax" in generate_tensorflow_pytorch_and_flax SCREAMING_SNAKE_CASE__ : int =F"{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}" os.makedirs(__lowercase , exist_ok=__lowercase ) os.makedirs(F"{path_to_transformer_root}/tests/models/{lowercase_model_name}" , exist_ok=__lowercase ) # Tests require submodules as they have parent imports with open(F"{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py" , '''w''' ): pass shutil.move( F"{directory}/__init__.py" , F"{model_dir}/__init__.py" , ) shutil.move( F"{directory}/configuration_{lowercase_model_name}.py" , F"{model_dir}/configuration_{lowercase_model_name}.py" , ) def remove_copy_lines(__lowercase : Dict ): with open(__lowercase , '''r''' ) as f: SCREAMING_SNAKE_CASE__ : List[Any] =f.readlines() with open(__lowercase , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__lowercase ) if output_pytorch: if not self._testing: remove_copy_lines(F"{directory}/modeling_{lowercase_model_name}.py" ) shutil.move( F"{directory}/modeling_{lowercase_model_name}.py" , F"{model_dir}/modeling_{lowercase_model_name}.py" , ) shutil.move( F"{directory}/test_modeling_{lowercase_model_name}.py" , F"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py" , ) else: os.remove(F"{directory}/modeling_{lowercase_model_name}.py" ) os.remove(F"{directory}/test_modeling_{lowercase_model_name}.py" ) if output_tensorflow: if not self._testing: remove_copy_lines(F"{directory}/modeling_tf_{lowercase_model_name}.py" ) shutil.move( F"{directory}/modeling_tf_{lowercase_model_name}.py" , F"{model_dir}/modeling_tf_{lowercase_model_name}.py" , ) shutil.move( F"{directory}/test_modeling_tf_{lowercase_model_name}.py" , F"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py" , ) else: os.remove(F"{directory}/modeling_tf_{lowercase_model_name}.py" ) os.remove(F"{directory}/test_modeling_tf_{lowercase_model_name}.py" ) if output_flax: if not self._testing: remove_copy_lines(F"{directory}/modeling_flax_{lowercase_model_name}.py" ) shutil.move( F"{directory}/modeling_flax_{lowercase_model_name}.py" , F"{model_dir}/modeling_flax_{lowercase_model_name}.py" , ) shutil.move( F"{directory}/test_modeling_flax_{lowercase_model_name}.py" , F"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py" , ) else: os.remove(F"{directory}/modeling_flax_{lowercase_model_name}.py" ) os.remove(F"{directory}/test_modeling_flax_{lowercase_model_name}.py" ) shutil.move( F"{directory}/{lowercase_model_name}.md" , F"{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md" , ) shutil.move( F"{directory}/tokenization_{lowercase_model_name}.py" , F"{model_dir}/tokenization_{lowercase_model_name}.py" , ) shutil.move( F"{directory}/tokenization_fast_{lowercase_model_name}.py" , F"{model_dir}/tokenization_{lowercase_model_name}_fast.py" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__lowercase : List[Any] , __lowercase : List[Any] , __lowercase : int ): # Create temp file SCREAMING_SNAKE_CASE__ : int =mkstemp() SCREAMING_SNAKE_CASE__ : str =False with fdopen(__lowercase , '''w''' ) as new_file: with open(__lowercase ) as old_file: for line in old_file: new_file.write(__lowercase ) if line_to_copy_below in line: SCREAMING_SNAKE_CASE__ : Dict =True for line_to_copy in lines_to_copy: new_file.write(__lowercase ) if not line_found: raise ValueError(F"Line {line_to_copy_below} was not found in file." ) # Copy the file permissions from the old file to the new file copymode(__lowercase , __lowercase ) # Remove original file remove(__lowercase ) # Move new file move(__lowercase , __lowercase ) def skip_units(__lowercase : Union[str, Any] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__lowercase : int ): with open(__lowercase ) as datafile: SCREAMING_SNAKE_CASE__ : Any =[] SCREAMING_SNAKE_CASE__ : List[str] =False SCREAMING_SNAKE_CASE__ : int =False for line in datafile: if "# To replace in: " in line and "##" not in line: SCREAMING_SNAKE_CASE__ : List[Any] =line.split('''\"''' )[1] SCREAMING_SNAKE_CASE__ : List[Any] =skip_units(__lowercase ) elif "# Below: " in line and "##" not in line: SCREAMING_SNAKE_CASE__ : int =line.split('''\"''' )[1] SCREAMING_SNAKE_CASE__ : str =skip_units(__lowercase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__lowercase , __lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : int =[] elif "# Replace with" in line and "##" not in line: SCREAMING_SNAKE_CASE__ : Union[str, Any] =[] elif "##" not in line: lines_to_copy.append(__lowercase ) remove(__lowercase ) replace_in_files(F"{directory}/to_replace_{lowercase_model_name}.py" ) os.rmdir(__lowercase )
152
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowerCamelCase__ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 13 , SCREAMING_SNAKE_CASE = 64 , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 128 , SCREAMING_SNAKE_CASE=[16, 32, 64, 128] , SCREAMING_SNAKE_CASE = 7 , SCREAMING_SNAKE_CASE = 4 , SCREAMING_SNAKE_CASE = 37 , SCREAMING_SNAKE_CASE = "gelu" , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 10 , SCREAMING_SNAKE_CASE = 0.02 , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 128 , SCREAMING_SNAKE_CASE = [2, 2, 2, 2] , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 2 , ): """simple docstring""" snake_case : int = parent snake_case : List[Any] = batch_size snake_case : List[str] = image_size snake_case : int = patch_size snake_case : int = num_channels snake_case : Any = is_training snake_case : int = use_labels snake_case : Optional[Any] = hidden_size snake_case : str = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Union[str, Any] = intermediate_size snake_case : Dict = hidden_act snake_case : Any = hidden_dropout_prob snake_case : Optional[Any] = attention_probs_dropout_prob snake_case : List[Any] = type_sequence_label_size snake_case : Optional[Any] = initializer_range snake_case : Any = encoder_stride snake_case : Tuple = num_attention_outputs snake_case : Dict = embed_dim snake_case : Optional[Any] = embed_dim + 1 snake_case : Any = resolution snake_case : int = depths snake_case : int = hidden_sizes snake_case : int = dim snake_case : Tuple = mlp_expansion_ratio def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : Optional[int] = None if self.use_labels: snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : str = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ): """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : str = TFEfficientFormerModel(config=SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = model(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[int] = self.type_sequence_label_size snake_case : Tuple = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE ) snake_case : List[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case : Tuple = 1 snake_case : Any = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE ) snake_case : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = self.prepare_config_and_inputs() snake_case , snake_case , snake_case : Tuple = config_and_inputs snake_case : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): a__ : Dict = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) a__ : int = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) a__ : int = False a__ : List[str] = False a__ : Union[str, Any] = False a__ : Optional[Any] = False a__ : str = False def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[Any] = TFEfficientFormerModelTester(self ) snake_case : Dict = ConfigTester( self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def lowerCamelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def lowerCamelCase_ ( self ): """simple docstring""" pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" snake_case , snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : str = model_class(SCREAMING_SNAKE_CASE ) snake_case : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : Optional[int] = [*signature.parameters.keys()] snake_case : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" def check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case : List[str] = model_class(SCREAMING_SNAKE_CASE ) snake_case : Any = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case : List[Any] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) if hasattr(self.model_tester , "encoder_seq_length" ): snake_case : List[Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: snake_case : Optional[int] = seq_length * self.model_tester.chunk_length else: snake_case : List[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: snake_case : List[Any] = outputs.decoder_hidden_states self.asseretIsInstance(SCREAMING_SNAKE_CASE , (list, tuple) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) snake_case : Tuple = getattr(self.model_tester , "seq_length" , SCREAMING_SNAKE_CASE ) snake_case : Tuple = getattr(self.model_tester , "decoder_seq_length" , SCREAMING_SNAKE_CASE ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) snake_case , snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : List[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" snake_case : str = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : str = TFEfficientFormerModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case , snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : str = True snake_case : Tuple = getattr(self.model_tester , "seq_length" , SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = getattr(self.model_tester , "key_length" , SCREAMING_SNAKE_CASE ) snake_case : Tuple = getattr(self.model_tester , "chunk_length" , SCREAMING_SNAKE_CASE ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): snake_case : Optional[int] = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: snake_case : Optional[int] = True snake_case : List[Any] = False snake_case : Optional[int] = True snake_case : List[str] = model_class(SCREAMING_SNAKE_CASE ) snake_case : List[str] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE ) snake_case : int = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case : Tuple = True snake_case : List[str] = model_class(SCREAMING_SNAKE_CASE ) snake_case : int = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE ) snake_case : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case , snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model snake_case : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes snake_case : Optional[Any] = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=SCREAMING_SNAKE_CASE ) for key, val in model.input_signature.items() if key in model.dummy_inputs } snake_case : Any = model(SCREAMING_SNAKE_CASE ) self.assertTrue(outputs_dict is not None ) def UpperCamelCase__ ( ): snake_case : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCamelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self ): """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) snake_case : List[Any] = self.default_image_processor snake_case : Optional[Any] = prepare_img() snake_case : int = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="tf" ) # forward pass snake_case : Union[str, Any] = model(**SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) # verify the logits snake_case : int = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) snake_case : Dict = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) snake_case : int = self.default_image_processor snake_case : List[Any] = prepare_img() snake_case : Optional[Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="tf" ) # forward pass snake_case : Any = model(**SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) # verify the logits snake_case : Any = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
148
0
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __UpperCamelCase ( _A ): def SCREAMING_SNAKE_CASE__ (self : Tuple): A = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "tf_padding")) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "depth_multiplier")) class __UpperCamelCase : def __init__(self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str=1_3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : List[Any]=3_2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.2_5 , __SCREAMING_SNAKE_CASE : Tuple=8 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Any=1_0_2_4 , __SCREAMING_SNAKE_CASE : List[str]=3_2 , __SCREAMING_SNAKE_CASE : Any="relu6" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : str=0.0_2 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Tuple=1_0 , __SCREAMING_SNAKE_CASE : Optional[Any]=None , ): A = parent A = batch_size A = num_channels A = image_size A = depth_multiplier A = min_depth A = tf_padding A = int(last_hidden_size * depth_multiplier) A = output_stride A = hidden_act A = classifier_dropout_prob A = use_labels A = is_training A = num_labels A = initializer_range A = scope def SCREAMING_SNAKE_CASE__ (self : Tuple): A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.num_labels) A = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) A = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ (self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any): A = MobileNetVaModel(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() A = model(_SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE__ (self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple): A = self.num_labels A = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() A = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = self.prepare_config_and_inputs() A = config_and_inputs A = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = MobileNetVaModelTester(self) A = MobileNetVaConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Tuple): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds") def SCREAMING_SNAKE_CASE__ (self : int): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings") def SCREAMING_SNAKE_CASE__ (self : str): pass @unittest.skip(reason="MobileNetV1 does not output attentions") def SCREAMING_SNAKE_CASE__ (self : int): pass def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(_SCREAMING_SNAKE_CASE) A = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : List[str]): def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any]): A = model_class(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): A = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) A = outputs.hidden_states A = 2_6 self.assertEqual(len(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE) @slow def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = MobileNetVaModel.from_pretrained(_SCREAMING_SNAKE_CASE) self.assertIsNotNone(_SCREAMING_SNAKE_CASE) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ (self : Optional[int]): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224") if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ (self : List[str]): A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224").to(_SCREAMING_SNAKE_CASE) A = self.default_image_processor A = prepare_img() A = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt").to(_SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): A = model(**_SCREAMING_SNAKE_CASE) # verify the logits A = torch.Size((1, 1_0_0_1)) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE) A = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5]).to(_SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4))
370
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __A : Any = open # noqa: we just need to have a builtin inside this module to test it properly
57
0
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker __snake_case = """CompVis/stable-diffusion-v1-1""" __snake_case = """CompVis/stable-diffusion-v1-2""" __snake_case = """CompVis/stable-diffusion-v1-3""" __snake_case = """CompVis/stable-diffusion-v1-4""" class UpperCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True , ) -> Optional[int]: super()._init_() UpperCamelCase :List[Any] = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :int = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Tuple = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = StableDiffusionPipeline( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , requires_safety_checker=SCREAMING_SNAKE_CASE_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def UpperCAmelCase ( self ) -> Dict[str, Any]: return {k: getattr(self , SCREAMING_SNAKE_CASE_ ) for k in self.config.keys() if not k.startswith('''_''' )} def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ = "auto" ) -> Dict: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase :List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , **SCREAMING_SNAKE_CASE_ , ) -> Optional[int]: return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , **SCREAMING_SNAKE_CASE_ , ) -> Union[str, Any]: return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , **SCREAMING_SNAKE_CASE_ , ) -> int: return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , **SCREAMING_SNAKE_CASE_ , ) -> Any: UpperCamelCase :str = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(SCREAMING_SNAKE_CASE_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCamelCase :str = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCamelCase :int = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCamelCase :Tuple = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCamelCase :Union[str, Any] = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
259
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : List[Any] =['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = size if size is not None else {'''height''': 224, '''width''': 224} UpperCamelCase :Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCamelCase :Dict = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) UpperCamelCase :Optional[int] = do_resize UpperCamelCase :int = do_rescale UpperCamelCase :Tuple = do_normalize UpperCamelCase :str = do_center_crop UpperCamelCase :int = crop_size UpperCamelCase :Tuple = size UpperCamelCase :List[str] = resample UpperCamelCase :Tuple = rescale_factor UpperCamelCase :Optional[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase :Optional[int] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: UpperCamelCase :Dict = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "shortest_edge" in size: UpperCamelCase :str = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCamelCase :Optional[int] = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: UpperCamelCase :Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ ) -> np.ndarray: return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ) -> BatchFeature: UpperCamelCase :Union[str, Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase :Optional[int] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase :Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase :Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase :Optional[int] = crop_size if crop_size is not None else self.crop_size UpperCamelCase :Dict = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' , default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = resample if resample is not None else self.resample UpperCamelCase :List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase :Optional[Any] = image_mean if image_mean is not None else self.image_mean UpperCamelCase :Dict = image_std if image_std is not None else self.image_std UpperCamelCase :Dict = size if size is not None else self.size UpperCamelCase :Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if not is_batched(SCREAMING_SNAKE_CASE_ ): UpperCamelCase :str = [images] if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. UpperCamelCase :Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: UpperCamelCase :List[Any] = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: UpperCamelCase :Tuple = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: UpperCamelCase :Union[str, Any] = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: UpperCamelCase :Union[str, Any] = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase :List[str] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase :int = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
259
1
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : Tuple ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] ): A__ = tmp_path / "cache" A__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A__ = SqlDatasetReader( "dataset" , "sqlite:///" + sqlite_path , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_sql_dataset(_lowerCamelCase , _lowerCamelCase ) @require_sqlalchemy @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def UpperCamelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : str ): A__ = tmp_path / "cache" A__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A__ = features.copy() if features else default_expected_features A__ = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A__ = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_sql_dataset(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : List[Any] ): with contextlib.closing(sqlitea.connect(_lowerCamelCase ) ) as con: A__ = con.cursor() cur.execute("SELECT * FROM dataset" ) for row in cur: yield row @require_sqlalchemy def UpperCamelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Any ): A__ = tmp_path / "cache" A__ = os.path.join(_lowerCamelCase , "tmp.sql" ) A__ = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=_lowerCamelCase ).read() SqlDatasetWriter(_lowerCamelCase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=1 ).write() A__ = iter_sql_file(_lowerCamelCase ) A__ = iter_sql_file(_lowerCamelCase ) for rowa, rowa in zip(_lowerCamelCase , _lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : str ): A__ = tmp_path / "cache" A__ = os.path.join(_lowerCamelCase , "tmp.sql" ) A__ = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=_lowerCamelCase ).read() SqlDatasetWriter(_lowerCamelCase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=2 ).write() A__ = iter_sql_file(_lowerCamelCase ) A__ = iter_sql_file(_lowerCamelCase ) for rowa, rowa in zip(_lowerCamelCase , _lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : int , _lowerCamelCase : int ): A__ = tmp_path / "cache" A__ = os.path.join(_lowerCamelCase , "tmp.sql" ) A__ = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=_lowerCamelCase ).read() with pytest.raises(_lowerCamelCase ): SqlDatasetWriter(_lowerCamelCase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=0 ).write()
123
'''simple docstring''' from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def UpperCamelCase ( _lowerCamelCase : bool = True , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : Optional[Any] ): if not is_tqdm_available(): raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`." ) A__ = False if main_process_only: A__ = PartialState().local_process_index == 0 return _tqdm(*_lowerCamelCase , **_lowerCamelCase , disable=_lowerCamelCase )
123
1
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[Any] = np.array([[1, item, train_mtch[i]] for i, item in enumerate(A__ )] ) lowercase__ : Dict = np.array(A__ ) lowercase__ : List[Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , A__ ) ) , x.transpose() ) , A__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): '''simple docstring''' lowercase__ : List[Any] = (1, 2, 1) lowercase__ : Union[str, Any] = (1, 1, 0, 7) lowercase__ : str = SARIMAX( A__ , exog=A__ , order=A__ , seasonal_order=A__ ) lowercase__ : List[str] = model.fit(disp=A__ , maxiter=600 , method='nm' ) lowercase__ : List[Any] = model_fit.predict(1 , len(A__ ) , exog=[test_match] ) return result[0] def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): '''simple docstring''' lowercase__ : Optional[Any] = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(A__ , A__ ) lowercase__ : Optional[int] = regressor.predict(A__ ) return y_pred[0] def a_ ( _lowerCAmelCase : Any ): '''simple docstring''' train_user.sort() lowercase__ : Union[str, Any] = np.percentile(A__ , 25 ) lowercase__ : Dict = np.percentile(A__ , 75 ) lowercase__ : Union[str, Any] = qa - qa lowercase__ : str = qa - (iqr * 0.1) return low_lim def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Optional[Any] = 0 lowercase__ : List[Any] = 0 for i in list_vote: if i > actual_result: lowercase__ : Tuple = not_safe + 1 else: if abs(abs(A__ ) - abs(A__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) _UpperCamelCase : Optional[int] = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] _UpperCamelCase : List[str] = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) _UpperCamelCase : str = Normalizer().fit_transform(data_input_df.values) # split data _UpperCamelCase : List[str] = normalize_df[:, 2].tolist() _UpperCamelCase : int = normalize_df[:, 0].tolist() _UpperCamelCase : int = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) _UpperCamelCase : Optional[int] = normalize_df[:, [1, 2]].tolist() _UpperCamelCase : Optional[Any] = x[: len(x) - 1] _UpperCamelCase : Any = x[len(x) - 1 :] # for linear regression & sarimax _UpperCamelCase : Union[str, Any] = total_date[: len(total_date) - 1] _UpperCamelCase : Optional[Any] = total_user[: len(total_user) - 1] _UpperCamelCase : List[Any] = total_match[: len(total_match) - 1] _UpperCamelCase : List[Any] = total_date[len(total_date) - 1 :] _UpperCamelCase : Optional[Any] = total_user[len(total_user) - 1 :] _UpperCamelCase : Union[str, Any] = total_match[len(total_match) - 1 :] # voting system with forecasting _UpperCamelCase : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data _UpperCamelCase : Dict = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("Today's data is {not_str}safe.")
77
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=64 , lowercase=2 , lowercase=3 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=[1, 16, 4, 4] , lowercase=None , ) -> List[Any]: '''simple docstring''' a__ : Optional[int] = parent a__ : Optional[int] = batch_size a__ : Any = image_size a__ : Optional[Any] = patch_size a__ : Optional[Any] = num_channels a__ : int = is_training a__ : List[str] = use_labels a__ : List[str] = hidden_size a__ : Tuple = num_hidden_layers a__ : Optional[Any] = num_attention_heads a__ : Union[str, Any] = intermediate_size a__ : Optional[int] = hidden_act a__ : Optional[Any] = hidden_dropout_prob a__ : Any = attention_probs_dropout_prob a__ : Any = type_sequence_label_size a__ : Tuple = initializer_range a__ : Tuple = scope a__ : int = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size a__ : Any = (self.image_size // 32) ** 2 a__ : List[Any] = num_patches + 1 def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ : int = None if self.use_labels: a__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self) -> Dict: '''simple docstring''' a__ : List[str] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=lowercase , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> List[str]: '''simple docstring''' a__ : List[str] = ViTHybridModel(config=lowercase) model.to(lowercase) model.eval() a__ : Union[str, Any] = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __lowercase ( self , lowercase , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' a__ : Dict = self.type_sequence_label_size a__ : Union[str, Any] = ViTHybridForImageClassification(lowercase) model.to(lowercase) model.eval() a__ : Tuple = model(lowercase , labels=lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[str] = self.prepare_config_and_inputs() a__ , a__ , a__ : Union[str, Any] = config_and_inputs a__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Optional[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __A : List[str] = ( {'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification} if is_torch_available() else {} ) __A : Any = False __A : Optional[int] = False __A : Optional[Any] = False def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Any = ViTHybridModelTester(self) a__ : Any = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37) def __lowercase ( self) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def __lowercase ( self) -> Dict: '''simple docstring''' pass def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ , a__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : str = model_class(lowercase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear)) def __lowercase ( self) -> int: '''simple docstring''' a__ , a__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Union[str, Any] = model_class(lowercase) a__ : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[Any] = [*signature.parameters.keys()] a__ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase) def __lowercase ( self) -> Dict: '''simple docstring''' a__ , a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : Tuple = _config_zero_init(lowercase) for model_class in self.all_model_classes: a__ : List[Any] = model_class(config=lowercase) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": a__ : Dict = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __lowercase ( self) -> Any: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Optional[Any] = ViTHybridModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def A_ ( ) -> int: a__ : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self) -> Optional[Any]: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[str] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( lowercase) a__ : List[str] = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Any = image_processor(images=lowercase , return_tensors='pt').to(lowercase) # forward pass with torch.no_grad(): a__ : Optional[Any] = model(**lowercase) # verify the logits a__ : Optional[Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Any = torch.tensor([-1.90_90, -0.49_93, -0.23_89]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4)) @slow @require_accelerate def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : List[str] = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384') a__ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto') a__ : Any = prepare_img() a__ : str = image_processor(images=lowercase , return_tensors='pt') a__ : List[Any] = model(**lowercase) a__ : int = outputs.logits # model predicts one of the 1000 ImageNet classes a__ : List[str] = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat')
99
0
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 A : Union[str, Any] = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') A : Union[str, Any] = get_tests_dir('''fixtures/vocab.json''') A : Tuple = get_tests_dir('''fixtures''') class A (unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def a_ ( self : Optional[Any] ) -> List[str]: """simple docstring""" A__ = 0 def a_ ( self : List[str] ) -> Tuple: """simple docstring""" A__ = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : int ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: A__ = WavaVecaConfig() A__ = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) A__ = AutoProcessor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Dict ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) copyfile(__lowerCAmelCase , os.path.join(__lowerCAmelCase , """vocab.json""" ) ) A__ = AutoProcessor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : List[str] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: A__ = WavaVecaFeatureExtractor() A__ = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) A__ = WavaVecaProcessor(__lowerCAmelCase , __lowerCAmelCase ) # save in new folder processor.save_pretrained(__lowerCAmelCase ) # drop `processor_class` in tokenizer with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) as f: A__ = json.load(__lowerCAmelCase ) config_dict.pop("""processor_class""" ) with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , """w""" ) as f: f.write(json.dumps(__lowerCAmelCase ) ) A__ = AutoProcessor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Optional[Any] ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: A__ = WavaVecaFeatureExtractor() A__ = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) A__ = WavaVecaProcessor(__lowerCAmelCase , __lowerCAmelCase ) # save in new folder processor.save_pretrained(__lowerCAmelCase ) # drop `processor_class` in feature extractor with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) as f: A__ = json.load(__lowerCAmelCase ) config_dict.pop("""processor_class""" ) with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , """w""" ) as f: f.write(json.dumps(__lowerCAmelCase ) ) A__ = AutoProcessor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : str ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: A__ = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(__lowerCAmelCase ) # copy relevant files copyfile(__lowerCAmelCase , os.path.join(__lowerCAmelCase , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , """w""" ) as f: f.write("""{}""" ) A__ = AutoProcessor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" with self.assertRaises(__lowerCAmelCase ): A__ = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): A__ = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__lowerCAmelCase ) A__ = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__lowerCAmelCase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) A__ = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) A__ = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version A__ = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__lowerCAmelCase , use_fast=__lowerCAmelCase ) A__ = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def a_ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register("""custom""" , __lowerCAmelCase ) AutoFeatureExtractor.register(__lowerCAmelCase , __lowerCAmelCase ) AutoTokenizer.register(__lowerCAmelCase , slow_tokenizer_class=__lowerCAmelCase ) AutoProcessor.register(__lowerCAmelCase , __lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoProcessor.register(__lowerCAmelCase , __lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API A__ = CustomFeatureExtractor.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: A__ = os.path.join(__lowerCAmelCase , """vocab.txt""" ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) A__ = CustomTokenizer(__lowerCAmelCase ) A__ = CustomProcessor(__lowerCAmelCase , __lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__lowerCAmelCase ) A__ = AutoProcessor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def a_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = False class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : List[str] = False class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : str = '''AutoFeatureExtractor''' __lowerCamelCase : Optional[int] = '''AutoTokenizer''' __lowerCamelCase : Dict = False try: AutoConfig.register("""custom""" , __lowerCAmelCase ) AutoFeatureExtractor.register(__lowerCAmelCase , __lowerCAmelCase ) AutoTokenizer.register(__lowerCAmelCase , slow_tokenizer_class=__lowerCAmelCase ) AutoProcessor.register(__lowerCAmelCase , __lowerCAmelCase ) # If remote code is not set, the default is to use local classes. A__ = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__lowerCAmelCase ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__lowerCAmelCase ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def a_ ( self : List[str] ) -> List[Any]: """simple docstring""" A__ = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def a_ ( self : str ) -> Dict: """simple docstring""" A__ = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class A (unittest.TestCase ): '''simple docstring''' __lowerCamelCase : int = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def a_ ( cls : Dict ) -> Tuple: """simple docstring""" A__ = TOKEN HfFolder.save_token(__lowerCAmelCase ) @classmethod def a_ ( cls : int ) -> List[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def a_ ( self : Dict ) -> Optional[int]: """simple docstring""" A__ = WavaVecaProcessor.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowerCAmelCase , """test-processor""" ) , push_to_hub=__lowerCAmelCase , use_auth_token=self._token ) A__ = WavaVecaProcessor.from_pretrained(f'{USER}/test-processor' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase , getattr(new_processor.feature_extractor , __lowerCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def a_ ( self : Tuple ) -> Tuple: """simple docstring""" A__ = WavaVecaProcessor.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowerCAmelCase , """test-processor-org""" ) , push_to_hub=__lowerCAmelCase , use_auth_token=self._token , organization="""valid_org""" , ) A__ = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase , getattr(new_processor.feature_extractor , __lowerCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def a_ ( self : List[str] ) -> Any: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ = CustomFeatureExtractor.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: A__ = os.path.join(__lowerCAmelCase , """vocab.txt""" ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) A__ = CustomTokenizer(__lowerCAmelCase ) A__ = CustomProcessor(__lowerCAmelCase , __lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'{USER}/test-dynamic-processor' , token=self._token ) A__ = Repository(__lowerCAmelCase , clone_from=f'{USER}/test-dynamic-processor' , token=self._token ) processor.save_pretrained(__lowerCAmelCase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__lowerCAmelCase , """tokenizer_config.json""" ) ) as f: A__ = json.load(__lowerCAmelCase ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__lowerCAmelCase , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__lowerCAmelCase , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__lowerCAmelCase , """custom_processing.py""" ) ) ) repo.push_to_hub() A__ = AutoProcessor.from_pretrained(f'{USER}/test-dynamic-processor' , trust_remote_code=__lowerCAmelCase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
276
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class A : '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple=13 , __lowerCAmelCase : Optional[Any]=7 , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Any=True , __lowerCAmelCase : Union[str, Any]=33 , __lowerCAmelCase : List[str]=32 , __lowerCAmelCase : Optional[Any]=5 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : List[Any]=37 , __lowerCAmelCase : str="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : List[Any]=5_12 , __lowerCAmelCase : Dict=16 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : List[str]=0.0_2 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : Optional[int]=4 , __lowerCAmelCase : Tuple=None , ) -> int: """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def a_ ( self : List[Any] ) -> Tuple: """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self : Optional[int] ) -> str: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def a_ ( self : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" A__ = EsmModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) A__ = model(__lowerCAmelCase ) A__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a_ ( self : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any ) -> str: """simple docstring""" A__ = EsmForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ) -> Any: """simple docstring""" A__ = self.num_labels A__ = EsmForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self : Any ) -> Dict: """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[str] = False __lowerCamelCase : Union[str, Any] = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __lowerCamelCase : List[Any] = () __lowerCamelCase : Optional[int] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : Any = True def a_ ( self : Tuple ) -> Optional[int]: """simple docstring""" A__ = EsmModelTester(self ) A__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def a_ ( self : Any ) -> str: """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : List[str] ) -> Optional[int]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def a_ ( self : Optional[int] ) -> str: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*__lowerCAmelCase ) def a_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def a_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def a_ ( self : Optional[int] ) -> int: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = EsmModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def a_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs()[0] A__ = EsmEmbeddings(config=__lowerCAmelCase ) A__ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) A__ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) A__ = create_position_ids_from_input_ids(__lowerCAmelCase , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__lowerCAmelCase , __lowerCAmelCase ) ) ) def a_ ( self : List[Any] ) -> str: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs()[0] A__ = EsmEmbeddings(config=__lowerCAmelCase ) A__ = torch.empty(2 , 4 , 30 ) A__ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] A__ = torch.as_tensor([expected_single_positions, expected_single_positions] ) A__ = embeddings.create_position_ids_from_inputs_embeds(__lowerCAmelCase ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__lowerCAmelCase , __lowerCAmelCase ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def a_ ( self : Dict ) -> Tuple: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def a_ ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def a_ ( self : List[Any] ) -> Dict: """simple docstring""" pass @require_torch class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' @slow def a_ ( self : int ) -> Optional[int]: """simple docstring""" with torch.no_grad(): A__ = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() A__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A__ = model(__lowerCAmelCase )[0] A__ = 33 A__ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __lowerCAmelCase ) A__ = torch.tensor( [[[8.9_2_1_5, -1_0.5_8_9_8, -6.4_6_7_1], [-6.3_9_6_7, -1_3.9_1_1_4, -1.1_2_1_2], [-7.7_8_1_2, -1_3.9_5_1_6, -3.7_4_0_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 ) ) @slow def a_ ( self : List[str] ) -> Tuple: """simple docstring""" with torch.no_grad(): A__ = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() A__ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A__ = model(__lowerCAmelCase )[0] # compare the actual values for a slice. A__ = torch.tensor( [[[0.1_4_4_4, 0.5_4_1_3, 0.3_2_4_8], [0.3_0_3_4, 0.0_0_5_3, 0.3_1_0_8], [0.3_2_2_8, -0.2_4_9_9, 0.3_4_1_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 ) )
276
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''YolosFeatureExtractor'''] A_ = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
64
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase( metaclass=__a ): '''simple docstring''' lowercase__ = ["note_seq"] def __init__( self: Dict, *a_: Union[str, Any], **a_: List[str] ): '''simple docstring''' requires_backends(self, ["""note_seq"""] ) @classmethod def UpperCamelCase_ ( cls: Optional[int], *a_: Any, **a_: Optional[Any] ): '''simple docstring''' requires_backends(cls, ["""note_seq"""] ) @classmethod def UpperCamelCase_ ( cls: Tuple, *a_: Optional[Any], **a_: List[str] ): '''simple docstring''' requires_backends(cls, ["""note_seq"""] )
64
1
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) __snake_case : int =logging.getLogger(__name__) __snake_case : Dict ={'facebook/bart-base': BartForConditionalGeneration} __snake_case : Optional[int] ={'facebook/bart-base': BartTokenizer} def lowerCAmelCase__ ( ): lowerCAmelCase__ : Dict = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''') parser.add_argument( '''--validation_file''' ,type=lowerCamelCase_ ,default=lowerCamelCase_ ,help='''A csv or a json file containing the validation data.''') parser.add_argument( '''--max_length''' ,type=lowerCamelCase_ ,default=5 ,help='''The maximum total input sequence length after tokenization.''' ,) parser.add_argument( '''--num_beams''' ,type=lowerCamelCase_ ,default=lowerCamelCase_ ,help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) ,) parser.add_argument( '''--model_name_or_path''' ,type=lowerCamelCase_ ,help='''Path to pretrained model or model identifier from huggingface.co/models.''' ,required=lowerCamelCase_ ,) parser.add_argument( '''--config_name''' ,type=lowerCamelCase_ ,default=lowerCamelCase_ ,help='''Pretrained config name or path if not the same as model_name''' ,) parser.add_argument( '''--device''' ,type=lowerCamelCase_ ,default='''cpu''' ,help='''Device where the model will be run''' ,) parser.add_argument('''--output_file_path''' ,type=lowerCamelCase_ ,default=lowerCamelCase_ ,help='''Where to store the final ONNX file.''') lowerCAmelCase__ : List[Any] = parser.parse_args() return args def lowerCAmelCase__ ( lowerCamelCase_ : Optional[int] ,lowerCamelCase_ : str="cpu"): lowerCAmelCase__ : Optional[int] = model_dict[model_name].from_pretrained(lowerCamelCase_).to(lowerCamelCase_) lowerCAmelCase__ : Dict = tokenizer_dict[model_name].from_pretrained(lowerCamelCase_) if model_name in ["facebook/bart-base"]: lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : int = 0 return huggingface_model, tokenizer def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : Dict ,lowerCamelCase_ : int ,lowerCamelCase_ : Any): model.eval() lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : Optional[int] = torch.jit.script(BARTBeamSearchGenerator(lowerCamelCase_)) with torch.no_grad(): lowerCAmelCase__ : Any = '''My friends are cool but they eat too many carbs.''' lowerCAmelCase__ : List[Any] = tokenizer([ARTICLE_TO_SUMMARIZE] ,max_length=1024 ,return_tensors='''pt''').to(model.device) lowerCAmelCase__ : Tuple = model.generate( inputs['''input_ids'''] ,attention_mask=inputs['''attention_mask'''] ,num_beams=lowerCamelCase_ ,max_length=lowerCamelCase_ ,early_stopping=lowerCamelCase_ ,decoder_start_token_id=model.config.decoder_start_token_id ,) torch.onnx.export( lowerCamelCase_ ,( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) ,lowerCamelCase_ ,opset_version=14 ,input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] ,output_names=['''output_ids'''] ,dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } ,example_outputs=lowerCamelCase_ ,) logger.info('''Model exported to {}'''.format(lowerCamelCase_)) lowerCAmelCase__ : int = remove_dup_initializers(os.path.abspath(lowerCamelCase_)) logger.info('''Deduplicated and optimized model written to {}'''.format(lowerCamelCase_)) lowerCAmelCase__ : List[str] = onnxruntime.InferenceSession(lowerCamelCase_) lowerCAmelCase__ : Dict = ort_sess.run( lowerCamelCase_ ,{ '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(lowerCamelCase_), '''max_length''': np.array(lowerCamelCase_), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id), } ,) np.testing.assert_allclose(summary_ids.cpu().numpy() ,ort_out[0] ,rtol=1E-3 ,atol=1E-3) logger.info('''Model outputs from torch and ONNX Runtime are similar.''') logger.info('''Success.''') def lowerCAmelCase__ ( ): lowerCAmelCase__ : Any = parse_args() lowerCAmelCase__ : Union[str, Any] = 5 lowerCAmelCase__ : int = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,level=logging.INFO ,) logger.setLevel(logging.INFO) transformers.utils.logging.set_verbosity_error() lowerCAmelCase__ : Any = torch.device(args.device) lowerCAmelCase__ : Dict = load_model_tokenizer(args.model_name_or_path ,lowerCamelCase_) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''') model.to(lowerCamelCase_) if args.max_length: lowerCAmelCase__ : int = args.max_length if args.num_beams: lowerCAmelCase__ : Optional[Any] = args.num_beams if args.output_file_path: lowerCAmelCase__ : Dict = args.output_file_path else: lowerCAmelCase__ : Union[str, Any] = '''BART.onnx''' logger.info('''Exporting model to ONNX''') export_and_validate_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) if __name__ == "__main__": main()
354
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =IFInpaintingSuperResolutionPipeline snake_case_ =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} snake_case_ =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""}) snake_case_ =PipelineTesterMixin.required_optional_params - {"""latents"""} def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" return self._get_superresolution_dummy_components() def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=0 ) -> Dict: """simple docstring""" if str(__lowerCamelCase ).startswith('''mps''' ): lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(__lowerCamelCase ) else: lowerCAmelCase__ : int = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCAmelCase__ : str = floats_tensor((1, 3, 16, 16) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCAmelCase__ : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def lowerCAmelCase__ (self ) -> int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' ,reason='''float16 requires CUDA''' ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" self._test_save_load_local() def lowerCAmelCase__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 ,)
94
0
'''simple docstring''' from __future__ import annotations from typing import TypedDict class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =42 __a =42 def _lowerCamelCase ( lowercase : str ) -> list[str]: if not isinstance(lowercase , lowercase ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(lowercase ) )] def _lowerCamelCase ( lowercase : str ) -> BWTTransformDict: if not isinstance(lowercase , lowercase ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) _a = all_rotations(lowercase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _a = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(lowercase ), } return response def _lowerCamelCase ( lowercase : str , lowercase : int ) -> str: if not isinstance(lowercase , lowercase ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: _a = int(lowercase ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(lowercase ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) _a = [""] * len(lowercase ) for _ in range(len(lowercase ) ): for i in range(len(lowercase ) ): _a = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCAmelCase_ : str = 'Provide a string that I will generate its BWT transform: ' lowerCAmelCase_ : List[str] = input(entry_msg).strip() lowerCAmelCase_ : List[str] = bwt_transform(s) print( f"""Burrows Wheeler transform for string '{s}' results """ f"""in '{result['bwt_string']}'""" ) lowerCAmelCase_ : Optional[Any] = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f"""Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' """ f"""we get original string '{original_string}'""" )
63
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __lowerCAmelCase = { "do_resize": True, "size": {"height": 2_24, "width": 2_24}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], "do_convert_rgb": True, } __lowerCAmelCase = os.path.join(self.tmpdirname , __a ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__a , __a ) def snake_case ( self , **__a ): return BertTokenizer.from_pretrained(self.tmpdirname , **__a ) def snake_case ( self , **__a ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def snake_case ( self , **__a ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__a ) def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__a ) __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __a ) self.assertIsInstance(processor_fast.tokenizer , __a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __a ) self.assertIsInstance(processor_fast.image_processor , __a ) def snake_case ( self ): __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" ) __lowerCAmelCase = self.get_image_processor(do_normalize=__a ) __lowerCAmelCase = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=__a ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__a , return_tensors="np" ) __lowerCAmelCase = processor(images=__a , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = "Alexandra,T-shirt的价格是15便士。" __lowerCAmelCase = processor(text=__a ) __lowerCAmelCase = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = "Alexandra,T-shirt的价格是15便士。" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__a ) __lowerCAmelCase = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = "Alexandra,T-shirt的价格是15便士。" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
57
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
166
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = dataset UpperCAmelCase__ : Union[str, Any] = process UpperCAmelCase__ : List[Any] = params def __len__(self ): """simple docstring""" return len(self.dataset ) def __getitem__(self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : int = self.dataset[i] UpperCAmelCase__ : Any = self.process(_lowerCamelCase , **self.params ) return processed class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): """simple docstring""" UpperCAmelCase__ : Tuple = loader UpperCAmelCase__ : int = infer UpperCAmelCase__ : Optional[Any] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Any = loader_batch_size # Internal bookkeeping UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Union[str, Any] = None def __len__(self ): """simple docstring""" return len(self.loader ) def __iter__(self ): """simple docstring""" UpperCAmelCase__ : List[str] = iter(self.loader ) return self def _a (self ): """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice UpperCAmelCase__ : Optional[int] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) UpperCAmelCase__ : List[str] = {} for k, element in self._loader_batch_data.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): # Convert ModelOutput to tuple first UpperCAmelCase__ : List[Any] = element.to_tuple() if isinstance(element[0] , torch.Tensor ): UpperCAmelCase__ : str = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCAmelCase__ : List[str] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCamelCase , _lowerCamelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): UpperCAmelCase__ : Optional[Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCAmelCase__ : int = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around UpperCAmelCase__ : str = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase__ : Tuple = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase__ : Dict = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. UpperCAmelCase__ : Optional[Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 UpperCAmelCase__ : Union[str, Any] = self._loader_batch_data.__class__(_lowerCamelCase ) self._loader_batch_index += 1 return result def _a (self ): """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch UpperCAmelCase__ : str = next(self.iterator ) UpperCAmelCase__ : Union[str, Any] = self.infer(_lowerCamelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_lowerCamelCase , torch.Tensor ): UpperCAmelCase__ : List[Any] = processed else: UpperCAmelCase__ : List[str] = list(processed.keys() )[0] UpperCAmelCase__ : List[str] = processed[key] if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCAmelCase__ : Any = len(_lowerCamelCase ) else: UpperCAmelCase__ : Union[str, Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase__ : Optional[int] = observed_batch_size # Setting internal index to unwrap the batch UpperCAmelCase__ : List[Any] = processed UpperCAmelCase__ : Optional[int] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): """simple docstring""" super().__init__(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __iter__(self ): """simple docstring""" UpperCAmelCase__ : Tuple = iter(self.loader ) UpperCAmelCase__ : List[Any] = None return self def _a (self ): """simple docstring""" if self.subiterator is None: UpperCAmelCase__ : Optional[Any] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item UpperCAmelCase__ : List[str] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators UpperCAmelCase__ : Optional[Any] = self.infer(next(self.iterator ) , **self.params ) UpperCAmelCase__ : List[str] = next(self.subiterator ) return processed class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __iter__(self ): """simple docstring""" UpperCAmelCase__ : str = iter(self.loader ) return self def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase__ : List[Any] = self.loader_batch_item() UpperCAmelCase__ : Dict = item.pop("""is_last""" ) accumulator.append(_lowerCamelCase ) if is_last: return accumulator while not is_last: UpperCAmelCase__ : List[str] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_lowerCamelCase , torch.Tensor ): UpperCAmelCase__ : Dict = processed else: UpperCAmelCase__ : List[Any] = list(processed.keys() )[0] UpperCAmelCase__ : List[Any] = processed[key] if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCAmelCase__ : int = len(_lowerCamelCase ) else: UpperCAmelCase__ : List[Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase__ : str = observed_batch_size UpperCAmelCase__ : Union[str, Any] = processed UpperCAmelCase__ : List[Any] = 0 while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase__ : Union[str, Any] = self.loader_batch_item() UpperCAmelCase__ : int = item.pop("""is_last""" ) accumulator.append(_lowerCamelCase ) if is_last: return accumulator else: UpperCAmelCase__ : Any = processed UpperCAmelCase__ : Any = item.pop("""is_last""" ) accumulator.append(_lowerCamelCase ) return accumulator class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = dataset UpperCAmelCase__ : Union[str, Any] = key def __len__(self ): """simple docstring""" return len(self.dataset ) def __getitem__(self , _lowerCamelCase ): """simple docstring""" return self.dataset[i][self.key] class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : int = dataset UpperCAmelCase__ : Any = keya UpperCAmelCase__ : str = keya def __len__(self ): """simple docstring""" return len(self.dataset ) def __getitem__(self , _lowerCamelCase ): """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
166
1
from ...processing_utils import ProcessorMixin class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Dict = "SpeechT5FeatureExtractor" __UpperCAmelCase : List[str] = "SpeechT5Tokenizer" def __init__( self : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] ) -> List[str]: super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self : Dict , *lowerCamelCase : int , **lowerCamelCase : Optional[Any] ) -> Optional[Any]: __snake_case : List[str] = kwargs.pop("audio" , lowerCamelCase ) __snake_case : Dict = kwargs.pop("text" , lowerCamelCase ) __snake_case : Union[str, Any] = kwargs.pop("text_target" , lowerCamelCase ) __snake_case : Any = kwargs.pop("audio_target" , lowerCamelCase ) __snake_case : int = kwargs.pop("sampling_rate" , lowerCamelCase ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: __snake_case : str = self.feature_extractor(lowerCamelCase , *lowerCamelCase , sampling_rate=lowerCamelCase , **lowerCamelCase ) elif text is not None: __snake_case : Optional[int] = self.tokenizer(lowerCamelCase , **lowerCamelCase ) else: __snake_case : str = None if audio_target is not None: __snake_case : Any = self.feature_extractor(audio_target=lowerCamelCase , *lowerCamelCase , sampling_rate=lowerCamelCase , **lowerCamelCase ) __snake_case : str = targets["input_values"] elif text_target is not None: __snake_case : int = self.tokenizer(lowerCamelCase , **lowerCamelCase ) __snake_case : List[str] = targets["input_ids"] else: __snake_case : Optional[int] = None if inputs is None: return targets if targets is not None: __snake_case : str = labels __snake_case : List[Any] = targets.get("attention_mask" ) if decoder_attention_mask is not None: __snake_case : int = decoder_attention_mask return inputs def __snake_case ( self : str , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Dict ) -> List[Any]: __snake_case : Optional[Any] = kwargs.pop("input_values" , lowerCamelCase ) __snake_case : int = kwargs.pop("input_ids" , lowerCamelCase ) __snake_case : Optional[Any] = kwargs.pop("labels" , lowerCamelCase ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: __snake_case : Union[str, Any] = self.feature_extractor.pad(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) elif input_ids is not None: __snake_case : int = self.tokenizer.pad(lowerCamelCase , **lowerCamelCase ) else: __snake_case : List[Any] = None if labels is not None: if "input_ids" in labels or (isinstance(lowerCamelCase , lowerCamelCase ) and "input_ids" in labels[0]): __snake_case : Any = self.tokenizer.pad(lowerCamelCase , **lowerCamelCase ) __snake_case : List[str] = targets["input_ids"] else: __snake_case : Any = self.feature_extractor.feature_size __snake_case : List[Any] = self.feature_extractor.num_mel_bins __snake_case : str = self.feature_extractor.pad(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) __snake_case : List[Any] = feature_size_hack __snake_case : str = targets["input_values"] else: __snake_case : int = None if inputs is None: return targets if targets is not None: __snake_case : str = labels __snake_case : int = targets.get("attention_mask" ) if decoder_attention_mask is not None: __snake_case : int = decoder_attention_mask return inputs def __snake_case ( self : List[Any] , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : List[Any] ) -> Any: return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Tuple , *lowerCamelCase : Optional[Any] , **lowerCamelCase : int ) -> Optional[Any]: return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase )
123
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = VideoToVideoSDPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} __UpperCAmelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} __UpperCAmelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"latents"} __UpperCAmelCase : Tuple = False # No `output_type`. __UpperCAmelCase : Dict = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def __snake_case ( self : List[Any] ) -> Optional[int]: torch.manual_seed(0 ) __snake_case : Dict = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) __snake_case : List[str] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=lowerCamelCase , set_alpha_to_one=lowerCamelCase , ) torch.manual_seed(0 ) __snake_case : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __snake_case : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) __snake_case : List[Any] = CLIPTextModel(lowerCamelCase ) __snake_case : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __snake_case : Optional[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def __snake_case ( self : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int]=0 ) -> Dict: # 3 frames __snake_case : List[Any] = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if str(lowerCamelCase ).startswith("mps" ): __snake_case : str = torch.manual_seed(lowerCamelCase ) else: __snake_case : str = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __snake_case : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def __snake_case ( self : Optional[Any] ) -> Union[str, Any]: __snake_case : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case : Optional[int] = self.get_dummy_components() __snake_case : int = VideoToVideoSDPipeline(**lowerCamelCase ) __snake_case : List[Any] = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __snake_case : str = self.get_dummy_inputs(lowerCamelCase ) __snake_case : Tuple = "np" __snake_case : List[Any] = sd_pipe(**lowerCamelCase ).frames __snake_case : Union[str, Any] = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __snake_case : str = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __snake_case ( self : Any ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase , expected_max_diff=5E-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def __snake_case ( self : str ) -> Any: pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def __snake_case ( self : Optional[int] ) -> int: pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def __snake_case ( self : Optional[Any] ) -> List[Any]: pass def __snake_case ( self : str ) -> Optional[Any]: return super().test_progress_bar() @slow @skip_mps class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Union[str, Any] ) -> int: __snake_case : List[str] = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __snake_case : str = torch.Generator(device="cpu" ).manual_seed(0 ) __snake_case : Dict = torch.randn((1, 10, 3, 1024, 576) , generator=lowerCamelCase ) __snake_case : int = video.to("cuda" ) __snake_case : int = "Spiderman is surfing" __snake_case : List[Any] = pipe(lowerCamelCase , video=lowerCamelCase , generator=lowerCamelCase , num_inference_steps=3 , output_type="pt" ).frames __snake_case : str = np.array([-1.0_45_89_84, -1.1_27_92_97, -0.9_66_30_86, -0.91_50_39_06, -0.75_09_76_56] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
123
1
import numpy as np def _a ( UpperCAmelCase ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
265
def _a ( UpperCAmelCase , UpperCAmelCase ) -> Dict: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) else: return a * actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) def _a ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(UpperCAmelCase , UpperCAmelCase ) return actual_power(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
265
1
'''simple docstring''' import re from filelock import FileLock try: import nltk A__: Optional[Any] = True except (ImportError, ModuleNotFoundError): A__: Optional[Any] = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> str: re.sub("""<n>""" ,"""""" ,_UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_UpperCAmelCase ) )
276
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A__: str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Tuple = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys A__: str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = """unispeech-sat""" def __init__( self : str , _UpperCAmelCase : Any=32 , _UpperCAmelCase : int=768 , _UpperCAmelCase : str=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[Any]=3_072 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1E-5 , _UpperCAmelCase : int="group" , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Any=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase : str=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase : Tuple=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Tuple=128 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=0.05 , _UpperCAmelCase : Optional[Any]=10 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Any=10 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Union[str, Any]=320 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=100 , _UpperCAmelCase : Tuple=256 , _UpperCAmelCase : Any=256 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Optional[int]="mean" , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Any=256 , _UpperCAmelCase : List[Any]=(512, 512, 512, 512, 1_500) , _UpperCAmelCase : Optional[int]=(5, 3, 3, 1, 1) , _UpperCAmelCase : List[Any]=(1, 2, 3, 1, 1) , _UpperCAmelCase : List[Any]=512 , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Optional[Any]=504 , **_UpperCAmelCase : Dict , ): super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) _A = hidden_size _A = feat_extract_norm _A = feat_extract_activation _A = list(_A ) _A = list(_A ) _A = list(_A ) _A = conv_bias _A = num_conv_pos_embeddings _A = num_conv_pos_embedding_groups _A = len(self.conv_dim ) _A = num_hidden_layers _A = intermediate_size _A = hidden_act _A = num_attention_heads _A = hidden_dropout _A = attention_dropout _A = activation_dropout _A = feat_proj_dropout _A = final_dropout _A = layerdrop _A = layer_norm_eps _A = initializer_range _A = vocab_size _A = num_clusters _A = do_stable_layer_norm _A = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _A = apply_spec_augment _A = mask_time_prob _A = mask_time_length _A = mask_time_min_masks _A = mask_feature_prob _A = mask_feature_length _A = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _A = num_codevectors_per_group _A = num_codevector_groups _A = contrastive_logits_temperature _A = feat_quantizer_dropout _A = num_negatives _A = codevector_dim _A = proj_codevector_dim _A = diversity_loss_weight # ctc loss _A = ctc_loss_reduction _A = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. _A = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _A = list(_A ) _A = list(_A ) _A = list(_A ) _A = xvector_output_dim @property def lowerCAmelCase_ ( self : Any ): return functools.reduce(operator.mul , self.conv_stride , 1 )
357
"""simple docstring""" import argparse from collections import defaultdict import yaml a = '''docs/source/en/_toctree.yml''' def _snake_case ( _snake_case : List[Any] ) -> Optional[Any]: '''simple docstring''' _A = defaultdict(_snake_case ) _A = [] _A = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(_snake_case ) _A = new_doc_list _A = [key for key, value in counts.items() if value > 1] _A = [] for duplicate_key in duplicates: _A = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(_snake_case ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) _A = sorted(_snake_case , key=lambda _snake_case : s["title"].lower() ) # "overview" gets special treatment and is always first if len(_snake_case ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(_snake_case ) # Sort return overview_doc def _snake_case ( _snake_case : Tuple=False ) -> List[Any]: '''simple docstring''' with open(_snake_case , encoding='utf-8' ) as f: _A = yaml.safe_load(f.read() ) # Get to the API doc _A = 0 while content[api_idx]["title"] != "API": api_idx += 1 _A = content[api_idx]['sections'] # Then to the model doc _A = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _A = api_doc[scheduler_idx]['sections'] _A = clean_doc_toc(_snake_case ) _A = False if new_scheduler_doc != scheduler_doc: _A = True if overwrite: _A = new_scheduler_doc if diff: if overwrite: _A = api_doc with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_snake_case , allow_unicode=_snake_case ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def _snake_case ( _snake_case : str=False ) -> Union[str, Any]: '''simple docstring''' with open(_snake_case , encoding='utf-8' ) as f: _A = yaml.safe_load(f.read() ) # Get to the API doc _A = 0 while content[api_idx]["title"] != "API": api_idx += 1 _A = content[api_idx]['sections'] # Then to the model doc _A = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _A = False _A = api_doc[pipeline_idx]['sections'] _A = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _A = pipeline_doc['section'] _A = clean_doc_toc(_snake_case ) if overwrite: _A = new_sub_pipeline_doc new_pipeline_docs.append(_snake_case ) # sort overall pipeline doc _A = clean_doc_toc(_snake_case ) if new_pipeline_docs != pipeline_docs: _A = True if overwrite: _A = new_pipeline_docs if diff: if overwrite: _A = api_doc with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_snake_case , allow_unicode=_snake_case ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
271
0
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A ( snake_case :Union[str, Any] , snake_case :Optional[int]=1_0 ) -> Dict: __UpperCamelCase = [] for _ in range(UpperCAmelCase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def A ( snake_case :Optional[Any] , snake_case :Tuple=1_0 ) -> Dict: __UpperCamelCase = [] for step in range(UpperCAmelCase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = os.path.join(UpperCAmelCase_ , 'schedule.bin' ) torch.save(scheduler.state_dict() , UpperCAmelCase_ ) __UpperCamelCase = torch.load(UpperCAmelCase_ ) scheduler.load_state_dict(UpperCAmelCase_ ) return lrs @require_torch class __lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ): self.assertAlmostEqual(_lowerCamelCase , _lowerCamelCase , delta=_lowerCamelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_lowerCamelCase ) __UpperCamelCase = torch.tensor([0.4, 0.2, -0.5] ) __UpperCamelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __UpperCamelCase = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): __UpperCamelCase = criterion(_lowerCamelCase , _lowerCamelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_lowerCamelCase ) __UpperCamelCase = torch.tensor([0.4, 0.2, -0.5] ) __UpperCamelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __UpperCamelCase = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_lowerCamelCase , weight_decay=0.0 , relative_step=_lowerCamelCase , scale_parameter=_lowerCamelCase , warmup_init=_lowerCamelCase , ) for _ in range(1000 ): __UpperCamelCase = criterion(_lowerCamelCase , _lowerCamelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): lowercase = nn.Linear(50 , 50 ) if is_torch_available() else None lowercase = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None lowercase = 10 def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ): '''simple docstring''' self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ): self.assertAlmostEqual(_lowerCamelCase , _lowerCamelCase , delta=_lowerCamelCase , msg=_lowerCamelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = {'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __UpperCamelCase = { get_constant_schedule: ({}, [1_0.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 8.7_5, 7.5, 6.2_5, 5.0, 3.7_5, 2.5, 1.2_5], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 9.6_1, 8.5_3, 6.9_1, 5.0, 3.0_8, 1.4_6, 0.3_8], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 1_0.0, 8.5_3, 5.0, 1.4_6, 1_0.0, 8.5_3, 5.0, 1.4_6], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 1_0.0, 7.6_5_6, 5.6_2_5, 3.9_0_6, 2.5, 1.4_0_6, 0.6_2_5, 0.1_5_6], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 1_0.0, 8.1_6_5, 7.0_7_1, 6.3_2_5, 5.7_7_4, 5.3_4_5, 5.0, 4.7_1_4], ), } for scheduler_func, data in scheds.items(): __UpperCamelCase = data __UpperCamelCase = scheduler_func(self.optimizer , **_lowerCamelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) __UpperCamelCase = unwrap_schedule(_lowerCamelCase , self.num_steps ) self.assertListAlmostEqual( _lowerCamelCase , _lowerCamelCase , tol=1E-2 , msg=F'failed for {scheduler_func} in normal scheduler' , ) __UpperCamelCase = scheduler_func(self.optimizer , **_lowerCamelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_lowerCamelCase ) # wrap to test picklability of the schedule __UpperCamelCase = unwrap_and_save_reload_schedule(_lowerCamelCase , self.num_steps ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase , msg=F'failed for {scheduler_func} in save and reload' ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = fn def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.fn(*_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = list(map(self , scheduler.lr_lambdas ) )
316
from __future__ import annotations import collections import pprint from pathlib import Path def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" return "".join(sorted(UpperCAmelCase_ ) ) def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" return word_by_signature[signature(UpperCAmelCase_ )] snake_case : str = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') snake_case : Optional[int] = sorted({word.strip().lower() for word in data.splitlines()}) snake_case : str = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": snake_case : Optional[int] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
94
0
def UpperCAmelCase_ (_lowerCAmelCase : int , _lowerCAmelCase : int ): return int((input_a, input_a).count(0 ) == 0 ) def UpperCAmelCase_ (): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
171
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : Union[str, Any] = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = ["GLPNFeatureExtractor"] lowercase : Tuple = ["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
171
1
'''simple docstring''' from datetime import datetime import requests def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase ='https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __lowercase =requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(_lowerCAmelCase ).content if __name__ == "__main__": lowerCamelCase = input("""Enter Video/IGTV url: """).strip() lowerCamelCase = f"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"Done. Video saved to disk as {file_name}.")
166
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =0 @slow def __lowerCamelCase ( self : Dict): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsNotNone(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , (BertTokenizer, BertTokenizerFast)) self.assertGreater(len(_lowerCAmelCase) , 0) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsNotNone(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , (GPTaTokenizer, GPTaTokenizerFast)) self.assertGreater(len(_lowerCAmelCase) , 0) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 1_2) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , (RobertaTokenizer, RobertaTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 2_0) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =AutoConfig.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) # Check that tokenizer_type ≠ model_type __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 1_2) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(_lowerCAmelCase , 'vocab.txt')) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , tokenizer_type='bert' , use_fast=_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(_lowerCAmelCase , 'vocab.json')) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(_lowerCAmelCase , 'merges.txt')) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , tokenizer_type='gpt2' , use_fast=_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) @require_tokenizers def __lowerCamelCase ( self : int): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(_lowerCAmelCase , 'vocab.txt')) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , tokenizer_type='bert') self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(_lowerCAmelCase , 'vocab.json')) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(_lowerCAmelCase , 'merges.txt')) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , tokenizer_type='gpt2') self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) def __lowerCamelCase ( self : Any): '''simple docstring''' with pytest.raises(_lowerCAmelCase): AutoTokenizer.from_pretrained('./' , tokenizer_type='xxx') @require_tokenizers def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __lowercase =tokenizer_class.from_pretrained('wietsedv/bert-base-dutch-cased') self.assertIsInstance(_lowerCAmelCase , (BertTokenizer, BertTokenizerFast)) if isinstance(_lowerCAmelCase , _lowerCAmelCase): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _lowerCAmelCase) else: self.assertEqual(tokenizer.do_lower_case , _lowerCAmelCase) self.assertEqual(tokenizer.model_max_length , 5_1_2) @require_tokenizers def __lowerCamelCase ( self : List[Any]): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _lowerCAmelCase , 'julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier' , ): __lowercase =tokenizer_class.from_pretrained('julien-c/herlolip-not-exists') def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =TOKENIZER_MAPPING.values() __lowercase =[] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_lowerCAmelCase) @require_tokenizers def __lowerCamelCase ( self : int): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=_lowerCAmelCase) , _lowerCAmelCase) self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased') , _lowerCAmelCase) @require_tokenizers def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained('distilbert-base-uncased' , do_lower_case=_lowerCAmelCase) __lowercase ='Hello, world. How are you?' __lowercase =tokenizer.tokenize(_lowerCAmelCase) self.assertEqual('[UNK]' , tokens[0]) __lowercase =AutoTokenizer.from_pretrained('microsoft/mpnet-base' , do_lower_case=_lowerCAmelCase) __lowercase =tokenizer.tokenize(_lowerCAmelCase) self.assertEqual('[UNK]' , tokens[0]) @require_tokenizers def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained('robot-test/dummy-tokenizer-fast-with-model-config') self.assertEqual(type(_lowerCAmelCase) , _lowerCAmelCase) self.assertEqual(tokenizer.model_max_length , 5_1_2) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0) self.assertEqual(tokenizer.unk_token , '[UNK]') self.assertEqual(tokenizer.padding_side , 'right') self.assertEqual(tokenizer.truncation_side , 'right') def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , (BertTokenizer, BertTokenizerFast)) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , tokenizer.__class__) self.assertEqual(tokenizera.vocab_size , 1_2) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained('ctrl') # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =get_tokenizer_config('bert-base-cased') __lowercase =config.pop('_commit_hash' , _lowerCAmelCase) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_lowerCAmelCase , {'do_lower_case': False}) # This model does not have a tokenizer_config so we get back an empty dict. __lowercase =get_tokenizer_config(_lowerCAmelCase) self.assertDictEqual(_lowerCAmelCase , {}) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =get_tokenizer_config(_lowerCAmelCase) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['tokenizer_class'] , 'BertTokenizer') def __lowerCamelCase ( self : List[Any]): '''simple docstring''' try: AutoConfig.register('custom' , _lowerCAmelCase) AutoTokenizer.register(_lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase): AutoTokenizer.register(_lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase) __lowercase =CustomTokenizer.from_pretrained(_lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def __lowerCamelCase ( self : int): '''simple docstring''' try: AutoConfig.register('custom' , _lowerCAmelCase) # Can register in two steps AutoTokenizer.register(_lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None)) AutoTokenizer.register(_lowerCAmelCase , fast_tokenizer_class=_lowerCAmelCase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase , fast_tokenizer_class=_lowerCAmelCase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase): AutoTokenizer.register(_lowerCAmelCase , fast_tokenizer_class=_lowerCAmelCase) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __lowercase =BertTokenizerFast.from_pretrained(_lowerCAmelCase) bert_tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =CustomTokenizerFast.from_pretrained(_lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , use_fast=_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' with self.assertRaises(_lowerCAmelCase): __lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer') # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase): __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase) self.assertTrue(tokenizer.special_attribute_present) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase) self.assertTrue(reloaded_tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizerFast') # Test we can also load the slow version __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase , use_fast=_lowerCAmelCase) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase , use_fast=_lowerCAmelCase) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer') self.assertTrue(reloaded_tokenizer.special_attribute_present) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer') @require_tokenizers def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = False class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = NewTokenizer lowerCAmelCase__ = False try: AutoConfig.register('custom' , _lowerCAmelCase) AutoTokenizer.register(_lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase) AutoTokenizer.register(_lowerCAmelCase , fast_tokenizer_class=_lowerCAmelCase) # If remote code is not set, the default is to use local __lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer') self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertFalse(tokenizer.special_attribute_present) __lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , use_fast=_lowerCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertFalse(tokenizer.special_attribute_present) # If remote code is disabled, we load the local one. __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertFalse(tokenizer.special_attribute_present) __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase , use_fast=_lowerCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertFalse(tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertTrue(tokenizer.special_attribute_present) __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase , use_fast=_lowerCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertTrue(tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=_lowerCAmelCase) self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') # Test we can also load the slow version __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=_lowerCAmelCase , use_fast=_lowerCAmelCase) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') def __lowerCamelCase ( self : List[str]): '''simple docstring''' with self.assertRaisesRegex( _lowerCAmelCase , 'bert-base is not a local folder and is not a valid model identifier'): __lowercase =AutoTokenizer.from_pretrained('bert-base') def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' with self.assertRaisesRegex( _lowerCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , revision='aaaaaa') def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') with RequestCounter() as counter: __lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
166
1
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): _lowercase : Dict = StableDiffusionControlNetImgaImgPipeline _lowercase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} _lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowercase : str = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""}) _lowercase : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) a__ : Optional[Any] =UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) a__ : Optional[Any] =ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) torch.manual_seed(0 ) a__ : List[str] =DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) a__ : Optional[int] =AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) a__ : Optional[int] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) a__ : List[Any] =CLIPTextModel(lowerCAmelCase__ ) a__ : int =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) a__ : Optional[Any] ={ "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> List[Any]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith("mps" ): a__ : Optional[Any] =torch.manual_seed(lowerCAmelCase__ ) else: a__ : Dict =torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) a__ : int =2 a__ : List[Any] =randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase__ , device=torch.device(lowerCAmelCase__ ) , ) a__ : Optional[Any] =floats_tensor(control_image.shape , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) a__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] a__ : int =Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((6_4, 6_4) ) a__ : Optional[int] ={ "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowercase ( self ) -> Tuple: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): _lowercase : Any = StableDiffusionControlNetImgaImgPipeline _lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} _lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowercase : Optional[Any] = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _lowercase ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) a__ : Union[str, Any] =UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) def init_weights(lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) a__ : Tuple =ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(lowerCAmelCase__ ) torch.manual_seed(0 ) a__ : List[str] =ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(lowerCAmelCase__ ) torch.manual_seed(0 ) a__ : List[Any] =DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) a__ : Tuple =AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) a__ : str =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) a__ : Union[str, Any] =CLIPTextModel(lowerCAmelCase__ ) a__ : int =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) a__ : List[Any] =MultiControlNetModel([controlneta, controlneta] ) a__ : List[Any] ={ "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> Optional[Any]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith("mps" ): a__ : Union[str, Any] =torch.manual_seed(lowerCAmelCase__ ) else: a__ : Optional[Any] =torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) a__ : Optional[Any] =2 a__ : List[str] =[ randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase__ , device=torch.device(lowerCAmelCase__ ) , ), randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase__ , device=torch.device(lowerCAmelCase__ ) , ), ] a__ : Optional[Any] =floats_tensor(control_image[0].shape , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) a__ : Optional[int] =image.cpu().permute(0 , 2 , 3 , 1 )[0] a__ : int =Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((6_4, 6_4) ) a__ : Any ={ "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : str =self.get_dummy_components() a__ : List[Any] =self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) a__ : Union[str, Any] =10.0 a__ : Union[str, Any] =4 a__ : str =self.get_dummy_inputs(lowerCAmelCase__ ) a__ : List[str] =steps a__ : Tuple =scale a__ : Optional[int] =pipe(**lowerCAmelCase__ )[0] a__ : Optional[int] =self.get_dummy_inputs(lowerCAmelCase__ ) a__ : str =steps a__ : Optional[Any] =scale a__ : Union[str, Any] =pipe(**lowerCAmelCase__ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] a__ : List[Any] =self.get_dummy_inputs(lowerCAmelCase__ ) a__ : Optional[Any] =steps a__ : int =scale a__ : Tuple =pipe(**lowerCAmelCase__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] a__ : Dict =self.get_dummy_inputs(lowerCAmelCase__ ) a__ : Any =steps a__ : List[Any] =scale a__ : Union[str, Any] =pipe(**lowerCAmelCase__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def _lowercase ( self ) -> Dict: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def _lowercase ( self ) -> Any: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Tuple =self.get_dummy_components() a__ : Tuple =self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowerCAmelCase__ ) except NotImplementedError: pass @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> int: '''simple docstring''' a__ : int =ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) a__ : Any =StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=lowerCAmelCase__ , controlnet=lowerCAmelCase__ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : Optional[int] =torch.Generator(device="cpu" ).manual_seed(0 ) a__ : int ="evil space-punk bird" a__ : List[Any] =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((5_1_2, 5_1_2) ) a__ : List[str] =load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((5_1_2, 5_1_2) ) a__ : List[Any] =pipe( lowerCAmelCase__ , lowerCAmelCase__ , control_image=lowerCAmelCase__ , generator=lowerCAmelCase__ , output_type="np" , num_inference_steps=5_0 , strength=0.6 , ) a__ : Optional[int] =output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) a__ : List[Any] =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9E-2
367
UpperCAmelCase : Dict = [0, 2, 4, 6, 8] UpperCAmelCase : Tuple = [1, 3, 5, 7, 9] def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 a__ : str =0 for digit in range(10 ): a__ : int =digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return result a__ : List[str] =0 for digita in range(10 ): a__ : Optional[int] =digita if (remainder + digita) % 2 == 0: a__ : Dict =ODD_DIGITS else: a__ : Any =EVEN_DIGITS for digita in other_parity_digits: a__ : Union[str, Any] =digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) return result def _A ( SCREAMING_SNAKE_CASE : int = 9 ): """simple docstring""" a__ : List[str] =0 for length in range(1 , max_power + 1 ): result += reversible_numbers(SCREAMING_SNAKE_CASE , 0 , [0] * length , SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(F"""{solution() = }""")
148
0
'''simple docstring''' from math import factorial, radians def __lowerCamelCase ( _lowercase , _lowercase = 1_8 , _lowercase = 1_0 ) -> float: UpperCAmelCase : Tuple = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians UpperCAmelCase : Dict = radians(_lowercase ) UpperCAmelCase : List[Any] = angle_in_radians UpperCAmelCase : Optional[Any] = 3 UpperCAmelCase : List[Any] = -1 for _ in range(_lowercase ): result += (b * (angle_in_radians**a)) / factorial(_lowercase ) UpperCAmelCase : Tuple = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_lowercase , _lowercase ) if __name__ == "__main__": __import__("""doctest""").testmod()
265
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 a : List[str] = get_tests_dir("""fixtures""") class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> int: # A mock response for an HTTP head request to emulate server down UpperCAmelCase : Tuple = mock.Mock() UpperCAmelCase : List[str] = 500 UpperCAmelCase : Any = {} UpperCAmelCase : List[str] = HTTPError UpperCAmelCase : str = {} # Download this model to make sure it's in the cache. UpperCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=A ) as mock_head: UpperCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def _lowercase( self ) -> Any: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase : Tuple = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def _lowercase( self ) -> Union[str, Any]: with self.assertRaises(A ): # config is in subfolder, the following should not work without specifying the subfolder UpperCAmelCase : Any = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(A ) @is_staging_test class UpperCamelCase_ ( unittest.TestCase ): @classmethod def _lowercase( cls ) -> Dict: UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(A ) @classmethod def _lowercase( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) UpperCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A , repo_id="""test-image-processor""" , push_to_hub=A , use_auth_token=self._token ) UpperCAmelCase : Tuple = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) def _lowercase( self ) -> List[str]: UpperCAmelCase : List[str] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) UpperCAmelCase : Tuple = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=A , use_auth_token=self._token ) UpperCAmelCase : int = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) def _lowercase( self ) -> Optional[int]: CustomImageProcessor.register_for_auto_class() UpperCAmelCase : Optional[Any] = CustomImageProcessor.from_pretrained(A ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=A ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
265
1
"""simple docstring""" import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, **UpperCamelCase_ : Optional[int]) -> Tuple: '''simple docstring''' __lowercase = AutoConfig.from_pretrained(UpperCamelCase_, **UpperCamelCase_) __lowercase = AutoModelForSeqaSeqLM.from_config(UpperCamelCase_) model.save_pretrained(UpperCamelCase_) AutoTokenizer.from_pretrained(UpperCamelCase_).save_pretrained(UpperCamelCase_) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
355
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration _a = 5_00_00 _a = 50_00 _a , _a = os.path.split(__file__) _a = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def _A ( UpperCamelCase_ : datasets.Dataset, UpperCamelCase_ : List[str]) -> List[str]: '''simple docstring''' for i in range(UpperCamelCase_): __lowercase = dataset[i] @get_duration def _A ( UpperCamelCase_ : datasets.Dataset, UpperCamelCase_ : List[Any], UpperCamelCase_ : int) -> Dict: '''simple docstring''' for i in range(0, len(UpperCamelCase_), UpperCamelCase_): __lowercase = dataset[i : i + batch_size] @get_duration def _A ( UpperCamelCase_ : datasets.Dataset, UpperCamelCase_ : Any, UpperCamelCase_ : Optional[int]) -> List[str]: '''simple docstring''' with dataset.formatted_as(type=UpperCamelCase_): for i in range(UpperCamelCase_): __lowercase = dataset[i] @get_duration def _A ( UpperCamelCase_ : datasets.Dataset, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any]) -> Dict: '''simple docstring''' with dataset.formatted_as(type=UpperCamelCase_): for i in range(0, UpperCamelCase_, UpperCamelCase_): __lowercase = dataset[i : i + batch_size] def _A ( ) -> List[str]: '''simple docstring''' __lowercase = {"num examples": SPEED_TEST_N_EXAMPLES} __lowercase = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] __lowercase = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset") __lowercase = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32")), "numbers": datasets.Value("float32")}) __lowercase = generate_example_dataset( os.path.join(UpperCamelCase_, "dataset.arrow"), UpperCamelCase_, num_examples=UpperCamelCase_, seq_shapes={"list": (100,)}, ) print("first set of iterations") for func, kwargs in functions: print(func.__name__, str(UpperCamelCase_)) __lowercase = func(UpperCamelCase_, **UpperCamelCase_) print("shuffling dataset") __lowercase = dataset.shuffle() print("Second set of iterations (after shuffling") for func, kwargs in functions_shuffled: print("shuffled ", func.__name__, str(UpperCamelCase_)) __lowercase = func( UpperCamelCase_, **UpperCamelCase_) with open(UpperCamelCase_, "wb") as f: f.write(json.dumps(UpperCamelCase_).encode("utf-8")) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
144
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json', } class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = """xlnet""" a__ = ["""mems"""] a__ = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : int , UpperCamelCase__ : List[str]=3_2000 , UpperCamelCase__ : Optional[int]=1024 , UpperCamelCase__ : Union[str, Any]=24 , UpperCamelCase__ : Optional[int]=16 , UpperCamelCase__ : List[str]=4096 , UpperCamelCase__ : Union[str, Any]="gelu" , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Tuple="bi" , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : List[str]=1E-12 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=512 , UpperCamelCase__ : str=None , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : Any=-1 , UpperCamelCase__ : Dict=False , UpperCamelCase__ : int="last" , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[Any]="tanh" , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : List[str]=5 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : str=5 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : List[str]=2 , **UpperCamelCase__ : List[Any] , ) -> Any: """simple docstring""" __magic_name__ = vocab_size __magic_name__ = d_model __magic_name__ = n_layer __magic_name__ = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) __magic_name__ = d_model // n_head __magic_name__ = ff_activation __magic_name__ = d_inner __magic_name__ = untie_r __magic_name__ = attn_type __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = dropout __magic_name__ = mem_len __magic_name__ = reuse_len __magic_name__ = bi_data __magic_name__ = clamp_len __magic_name__ = same_length __magic_name__ = summary_type __magic_name__ = summary_use_proj __magic_name__ = summary_activation __magic_name__ = summary_last_dropout __magic_name__ = start_n_top __magic_name__ = end_n_top __magic_name__ = bos_token_id __magic_name__ = pad_token_id __magic_name__ = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" , UpperCamelCase__ , ) __magic_name__ = kwargs["""use_cache"""] __magic_name__ = use_mems_eval __magic_name__ = use_mems_train super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) @property def _lowercase ( self : int ) -> Tuple: """simple docstring""" logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def _lowercase ( self : Any , UpperCamelCase__ : Optional[Any] ) -> Dict: """simple docstring""" raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
88
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @property def __lowercase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) _a : int = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('DownBlock2D', 'AttnDownBlock2D') ,up_block_types=('AttnUpBlock2D', 'UpBlock2D') ,) return model def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : str = self.dummy_uncond_unet _a : int = PNDMScheduler() _a : str = PNDMPipeline(unet=_a ,scheduler=_a ) pndm.to(_a ) pndm.set_progress_bar_config(disable=_a ) _a : Optional[int] = torch.manual_seed(0 ) _a : Optional[Any] = pndm(generator=_a ,num_inference_steps=20 ,output_type='numpy' ).images _a : List[str] = torch.manual_seed(0 ) _a : Any = pndm(generator=_a ,num_inference_steps=20 ,output_type='numpy' ,return_dict=_a )[0] _a : List[Any] = image[0, -3:, -3:, -1] _a : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[Any] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Tuple ): '''simple docstring''' _a : List[str] = 'google/ddpm-cifar10-32' _a : str = UNetaDModel.from_pretrained(_a ) _a : Union[str, Any] = PNDMScheduler() _a : Tuple = PNDMPipeline(unet=_a ,scheduler=_a ) pndm.to(_a ) pndm.set_progress_bar_config(disable=_a ) _a : str = torch.manual_seed(0 ) _a : Optional[Any] = pndm(generator=_a ,output_type='numpy' ).images _a : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : Tuple = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
271
0
"""simple docstring""" import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging lowerCamelCase = logging.get_logger(__name__) class lowercase__ : '''simple docstring''' UpperCamelCase = None @experimental def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return _map_with_joblib(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = num_proc if num_proc <= len(lowerCAmelCase__ ) else len(lowerCAmelCase__ ) UpperCAmelCase_ = [] # We organize the splits ourselve (contiguous splits) for index in range(lowerCAmelCase__ ): UpperCAmelCase_ = len(lowerCAmelCase__ ) // num_proc UpperCAmelCase_ = len(lowerCAmelCase__ ) % num_proc UpperCAmelCase_ = div * index + min(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(lowerCAmelCase__ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f"""Error dividing inputs iterable among processes. """ f"""Total number of objects {len(lowerCAmelCase__ )}, """ f"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( f"""Spawning {num_proc} processes for {len(lowerCAmelCase__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) UpperCAmelCase_ , UpperCAmelCase_ = None, None if not disable_tqdm: UpperCAmelCase_ , UpperCAmelCase_ = (RLock(),), tqdm.set_lock with Pool(lowerCAmelCase__ , initargs=lowerCAmelCase__ , initializer=lowerCAmelCase__ ) as pool: UpperCAmelCase_ = pool.map(lowerCAmelCase__ , lowerCAmelCase__ ) logger.info(f"""Finished {num_proc} processes""" ) UpperCAmelCase_ = [obj for proc_res in mapped for obj in proc_res] logger.info(f"""Unpacked {len(lowerCAmelCase__ )} objects""" ) return mapped def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=lowerCAmelCase__ ): return joblib.Parallel()( joblib.delayed(lowerCAmelCase__ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: UpperCAmelCase_ = None
241
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowercase__ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase = namedtuple("""CoinsDistribResult""", """moves excess""") def a__ ( lowerCAmelCase__ ): if root is None: return 0 # Validation def count_nodes(lowerCAmelCase__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowerCAmelCase__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowerCAmelCase__ ) != count_coins(lowerCAmelCase__ ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(lowerCAmelCase__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCAmelCase_ , UpperCAmelCase_ = get_distrib(node.left ) UpperCAmelCase_ , UpperCAmelCase_ = get_distrib(node.right ) UpperCAmelCase_ = 1 - left_distrib_excess UpperCAmelCase_ = 1 - right_distrib_excess UpperCAmelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowerCAmelCase__ ) + abs(lowerCAmelCase__ ) ) UpperCAmelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowerCAmelCase__ , lowerCAmelCase__ ) return get_distrib(lowerCAmelCase__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
241
1
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase , lowerCAmelCase ) -> bool: if len(lowerCAmelCase ) == 0: return False UpperCAmelCase__ : Tuple = len(lowerCAmelCase ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowerCAmelCase ) else: return binary_search(a_list[midpoint + 1 :] , lowerCAmelCase ) if __name__ == "__main__": _A = input("""Enter numbers separated by comma:\n""").strip() _A = [int(item.strip()) for item in user_input.split(""",""")] _A = int(input("""Enter the number to be found in the list:\n""").strip()) _A = """""" if binary_search(sequence, target) else """not """ print(f'''{target} was {not_str}found in {sequence}''')
171
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=4 , ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Any = batch_size UpperCAmelCase__ : Optional[int] = seq_length UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : int = use_attention_mask UpperCAmelCase__ : Any = use_token_type_ids UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : Union[str, Any] = vocab_size UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : Optional[Any] = num_attention_heads UpperCAmelCase__ : str = intermediate_size UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Union[str, Any] = type_vocab_size UpperCAmelCase__ : Dict = type_sequence_label_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : int = num_choices def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : int = None if self.use_attention_mask: UpperCAmelCase__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : List[Any] = None if self.use_token_type_ids: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : Optional[Any] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _a (self ): """simple docstring""" UpperCAmelCase__ : int = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = config_and_inputs UpperCAmelCase__ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = config_and_inputs UpperCAmelCase__ : Dict = True UpperCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = FlaxRobertaModelTester(self ) @slow def _a (self ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ : Dict = model_class_name.from_pretrained("""roberta-base""" , from_pt=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase )
171
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class A_ ( lowerCAmelCase_ ): def __init__( self : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : int , ): super().__init__() self.register_modules( vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , ) def lowercase ( self : List[str] , snake_case_ : str = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCAmelCase ) def lowercase ( self : Any ): self.enable_attention_slicing(__lowerCAmelCase ) @torch.no_grad() def __call__( self : Union[str, Any] , snake_case_ : Any , snake_case_ : str = 5_1_2 , snake_case_ : List[Any] = 5_1_2 , snake_case_ : List[str] = 5_0 , snake_case_ : List[Any] = 7.5 , snake_case_ : Dict = None , snake_case_ : int = 1 , snake_case_ : int = 0.0 , snake_case_ : List[str] = None , snake_case_ : int = None , snake_case_ : Dict = "pil" , snake_case_ : Tuple = True , snake_case_ : Dict = None , snake_case_ : Any = 1 , snake_case_ : str = None , **snake_case_ : List[Any] , ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = 1 elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = len(__lowerCAmelCase ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(__lowerCAmelCase )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(__lowerCAmelCase )}.' ) # get prompt text embeddings _UpperCAmelCase = self.tokenizer( __lowerCAmelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) _UpperCAmelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _UpperCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) _UpperCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: _UpperCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = text_embeddings.shape _UpperCAmelCase = text_embeddings.repeat(1 , __lowerCAmelCase , 1 ) _UpperCAmelCase = text_embeddings.view(bs_embed * num_images_per_prompt , __lowerCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _UpperCAmelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _UpperCAmelCase = 4_2 if negative_prompt is None: _UpperCAmelCase = [""] elif type(__lowerCAmelCase ) is not type(__lowerCAmelCase ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(__lowerCAmelCase )} !=' f' {type(__lowerCAmelCase )}.' ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = [negative_prompt] elif batch_size != len(__lowerCAmelCase ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(__lowerCAmelCase )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' " the batch size of `prompt`." ) else: _UpperCAmelCase = negative_prompt _UpperCAmelCase = text_input_ids.shape[-1] _UpperCAmelCase = self.tokenizer( __lowerCAmelCase , padding="max_length" , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors="pt" , ) _UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _UpperCAmelCase = uncond_embeddings.shape[1] _UpperCAmelCase = uncond_embeddings.repeat(__lowerCAmelCase , __lowerCAmelCase , 1 ) _UpperCAmelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , __lowerCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _UpperCAmelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _UpperCAmelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 6_4, 6_4) _UpperCAmelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _UpperCAmelCase = torch.randn( __lowerCAmelCase , generator=__lowerCAmelCase , device="cpu" , dtype=__lowerCAmelCase ).to(self.device ) _UpperCAmelCase = torch.randn(__lowerCAmelCase , generator=__lowerCAmelCase , device="cpu" , dtype=__lowerCAmelCase ).to( self.device ) else: _UpperCAmelCase = torch.randn( __lowerCAmelCase , generator=__lowerCAmelCase , device=self.device , dtype=__lowerCAmelCase ) _UpperCAmelCase = torch.randn(__lowerCAmelCase , generator=__lowerCAmelCase , device=self.device , dtype=__lowerCAmelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) _UpperCAmelCase = latents_reference.to(self.device ) _UpperCAmelCase = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images _UpperCAmelCase = (latents_shape[3] - latents_shape_reference[3]) // 2 _UpperCAmelCase = (latents_shape[2] - latents_shape_reference[2]) // 2 _UpperCAmelCase = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx _UpperCAmelCase = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy _UpperCAmelCase = 0 if dx < 0 else dx _UpperCAmelCase = 0 if dy < 0 else dy _UpperCAmelCase = max(-dx , 0 ) _UpperCAmelCase = max(-dy , 0 ) # import pdb # pdb.set_trace() _UpperCAmelCase = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(__lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _UpperCAmelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCAmelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCAmelCase = {} if accepts_eta: _UpperCAmelCase = eta for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase = self.scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) # predict the noise residual _UpperCAmelCase = self.unet(__lowerCAmelCase , __lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase ).sample # perform guidance if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase = noise_pred.chunk(2 ) _UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = 1 / 0.1_8_2_1_5 * latents _UpperCAmelCase = self.vae.decode(__lowerCAmelCase ).sample _UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: _UpperCAmelCase = self.feature_extractor(self.numpy_to_pil(__lowerCAmelCase ) , return_tensors="pt" ).to( self.device ) _UpperCAmelCase , _UpperCAmelCase = self.safety_checker( images=__lowerCAmelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: _UpperCAmelCase = None if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=__lowerCAmelCase , nsfw_content_detected=__lowerCAmelCase )
360
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class A_ : def __init__( self : List[Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any]=1_3 , snake_case_ : List[Any]=1_0 , snake_case_ : Tuple=3 , snake_case_ : Tuple=2 , snake_case_ : List[str]=2 , snake_case_ : Optional[int]=2 , snake_case_ : Optional[Any]=True , snake_case_ : Union[str, Any]=True , snake_case_ : List[Any]=3_2 , snake_case_ : Optional[Any]=5 , snake_case_ : List[Any]=4 , snake_case_ : int=3_7 , snake_case_ : str="gelu" , snake_case_ : str=0.1 , snake_case_ : List[str]=0.1 , snake_case_ : Optional[Any]=1_0 , snake_case_ : List[str]=0.0_2 , snake_case_ : int=0.9 , snake_case_ : List[Any]=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = tubelet_size _UpperCAmelCase = num_frames _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = mask_ratio _UpperCAmelCase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _UpperCAmelCase = int(mask_ratio * self.seq_length ) def lowercase ( self : Tuple ): _UpperCAmelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : Optional[int] ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowercase ( self : Tuple , snake_case_ : int , snake_case_ : str , snake_case_ : str ): _UpperCAmelCase = VideoMAEModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Optional[int] , snake_case_ : Tuple ): _UpperCAmelCase = VideoMAEForPreTraining(snake_case_ ) model.to(snake_case_ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _UpperCAmelCase = torch.ones((self.num_masks,) ) _UpperCAmelCase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _UpperCAmelCase = mask.expand(self.batch_size , -1 ).bool() _UpperCAmelCase = model(snake_case_ , snake_case_ ) # model only returns predictions for masked patches _UpperCAmelCase = mask.sum().item() _UpperCAmelCase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowercase ( self : Dict ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : Any = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _lowerCamelCase : List[Any] = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Any = False _lowerCamelCase : str = False _lowerCamelCase : str = False def lowercase ( self : List[str] ): _UpperCAmelCase = VideoMAEModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def lowercase ( self : Any , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Union[str, Any]=False ): _UpperCAmelCase = copy.deepcopy(snake_case_ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _UpperCAmelCase = torch.ones((self.model_tester.num_masks,) ) _UpperCAmelCase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _UpperCAmelCase = mask.expand(self.model_tester.batch_size , -1 ).bool() _UpperCAmelCase = bool_masked_pos.to(snake_case_ ) if return_labels: if model_class in [ *get_values(snake_case_ ), ]: _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def lowercase ( self : Optional[int] ): self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def lowercase ( self : Union[str, Any] ): pass def lowercase ( self : str ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowercase ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowercase ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) @slow def lowercase ( self : List[Any] ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = VideoMAEModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowercase ( self : Tuple ): if not self.has_attentions: pass else: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: _UpperCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks _UpperCAmelCase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _UpperCAmelCase = len(snake_case_ ) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 1 , len(snake_case_ ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase ( self : Tuple ): def check_hidden_states_output(snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Dict ): _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(snake_case_ ) , snake_case_ ) _UpperCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks _UpperCAmelCase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase ( self : int ): pass def UpperCAmelCase_ ( ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) _UpperCAmelCase = np.load(__lowercase ) return list(__lowercase ) @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def lowercase ( self : List[str] ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase ( self : Tuple ): _UpperCAmelCase = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( snake_case_ ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_video() _UpperCAmelCase = image_processor(snake_case_ , return_tensors="pt" ).to(snake_case_ ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case_ ) # verify the logits _UpperCAmelCase = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _UpperCAmelCase = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 ) ) @slow def lowercase ( self : List[Any] ): _UpperCAmelCase = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(snake_case_ ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_video() _UpperCAmelCase = image_processor(snake_case_ , return_tensors="pt" ).to(snake_case_ ) # add boolean mask, indicating which patches to mask _UpperCAmelCase = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) _UpperCAmelCase = torch.load(snake_case_ ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case_ ) # verify the logits _UpperCAmelCase = torch.Size([1, 1_4_0_8, 1_5_3_6] ) _UpperCAmelCase = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=snake_case_ ) self.assertEqual(outputs.logits.shape , snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , snake_case_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _UpperCAmelCase = torch.tensor([0.5_1_4_2] , device=snake_case_ ) self.assertTrue(torch.allclose(outputs.loss , snake_case_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _UpperCAmelCase = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=snake_case_ ).to( snake_case_ ) with torch.no_grad(): _UpperCAmelCase = model(**snake_case_ ) _UpperCAmelCase = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=snake_case_ ) self.assertTrue(torch.allclose(outputs.loss , snake_case_ , atol=1e-4 ) )
156
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline __A = "path-to-your-trained-model" __A = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda") __A = "A photo of sks dog in a bucket" __A = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
148
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCAmelCase ( a_, a_, a_, a_, a_, a_ ): '''simple docstring''' if (ksize % 2) == 0: lowerCamelCase : Optional[int] = ksize + 1 lowerCamelCase : Any = np.zeros((ksize, ksize), dtype=np.floataa ) # each value for y in range(a_ ): for x in range(a_ ): # distance from center lowerCamelCase : Optional[int] = x - ksize // 2 lowerCamelCase : Optional[int] = y - ksize // 2 # degree to radiant lowerCamelCase : Optional[Any] = theta / 180 * np.pi lowerCamelCase : Union[str, Any] = np.cos(_theta ) lowerCamelCase : Any = np.sin(_theta ) # get kernel x lowerCamelCase : Union[str, Any] = cos_theta * px + sin_theta * py # get kernel y lowerCamelCase : int = -sin_theta * px + cos_theta * py # fill kernel lowerCamelCase : List[str] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _A = imread('../image_data/lena.jpg') # turn image in gray scale value _A = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _A = np.zeros(gray.shape[:2]) for theta in [0, 3_0, 6_0, 9_0, 1_2_0, 1_5_0]: _A = gabor_filter_kernel(1_0, 8, theta, 1_0, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _A = out / out.max() * 2_5_5 _A = out.astype(np.uinta) imshow('Original', gray) imshow('Gabor filter with 20x20 mask and 6 directions', out) waitKey(0)
205
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _A = pytest.mark.integration @require_faiss class _lowercase ( __UpperCAmelCase ): def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Any = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCAmelCase_ ) for x in np.arange(30 ).tolist()]} ) return dset def _UpperCamelCase ( self ) -> List[Any]: import faiss lowerCamelCase : Dataset = self._create_dummy_dataset() lowerCamelCase : Optional[int] = dset.map( lambda UpperCAmelCase_ , UpperCAmelCase_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ) lowerCamelCase : Dict = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase , lowerCamelCase : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def _UpperCamelCase ( self ) -> Tuple: import faiss lowerCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase , lowerCamelCase : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def _UpperCamelCase ( self ) -> int: import faiss lowerCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase_ ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase , lowerCamelCase : List[str] = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def _UpperCamelCase ( self ) -> Any: lowerCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCAmelCase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def _UpperCamelCase ( self ) -> Union[str, Any]: from elasticsearch import Elasticsearch lowerCamelCase : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase : Tuple = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase : int = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase : Optional[Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCAmelCase_ ) lowerCamelCase , lowerCamelCase : str = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class _lowercase ( __UpperCAmelCase ): def _UpperCamelCase ( self ) -> Union[str, Any]: import faiss lowerCamelCase : str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase : List[str] = 1 lowerCamelCase , lowerCamelCase : int = index.search(UpperCAmelCase_ ) self.assertRaises(UpperCAmelCase_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase : Tuple = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase , lowerCamelCase : List[str] = index.search_batch(UpperCAmelCase_ ) self.assertRaises(UpperCAmelCase_ , index.search_batch , queries[0] ) lowerCamelCase : List[str] = [scores[0] for scores in total_scores] lowerCamelCase : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Dict: import faiss lowerCamelCase : List[Any] = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase : int = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase_ ): lowerCamelCase : str = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def _UpperCamelCase ( self ) -> Any: import faiss lowerCamelCase : Any = faiss.IndexFlat(5 ) lowerCamelCase : Any = FaissIndex(custom_index=UpperCAmelCase_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _UpperCamelCase ( self ) -> Any: import faiss lowerCamelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase_ ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase : Dict = np.zeros(5 , dtype=np.floataa ) lowerCamelCase : Optional[Any] = 1 lowerCamelCase , lowerCamelCase : str = index.search(UpperCAmelCase_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def UpperCAmelCase ( a_ ): '''simple docstring''' import faiss lowerCamelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) lowerCamelCase : Union[str, Any] = 'index.faiss' lowerCamelCase : List[Any] = F"""mock://{index_name}""" index.save(a_, storage_options=mockfs.storage_options ) lowerCamelCase : Optional[int] = FaissIndex.load(a_, storage_options=mockfs.storage_options ) lowerCamelCase : str = np.zeros(5, dtype=np.floataa ) lowerCamelCase : str = 1 lowerCamelCase , lowerCamelCase : int = index.search(a_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _lowercase ( __UpperCAmelCase ): def _UpperCamelCase ( self ) -> int: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase : Union[str, Any] = Elasticsearch() lowerCamelCase : Optional[Any] = {'acknowledged': True} lowerCamelCase : str = ElasticSearchIndex(es_client=UpperCAmelCase_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase : Tuple = 'foo' lowerCamelCase : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase , lowerCamelCase : Any = index.search(UpperCAmelCase_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase : Dict = 'foo' lowerCamelCase : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase , lowerCamelCase : Optional[Any] = index.search(UpperCAmelCase_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase : str = ['foo', 'bar', 'foobar'] lowerCamelCase : Union[str, Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase , lowerCamelCase : Optional[int] = index.search_batch(UpperCAmelCase_ ) lowerCamelCase : Dict = [scores[0] for scores in total_scores] lowerCamelCase : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase_ ) # batched queries with timeout lowerCamelCase : List[str] = ['foo', 'bar', 'foobar'] lowerCamelCase : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase , lowerCamelCase : Dict = index.search_batch(UpperCAmelCase_ , request_timeout=30 ) lowerCamelCase : Dict = [scores[0] for scores in total_scores] lowerCamelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase_ )
205
1
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __lowercase ( snake_case__ ): '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = 42 class __lowercase ( nn.Module ): '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = (16, 32, 96, 256) __lowerCAmelCase = jnp.floataa def _lowerCamelCase ( self ): __a : Optional[int] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __a : Any = [] for i in range(len(self.block_out_channels ) - 1 ): __a : Union[str, Any] = self.block_out_channels[i] __a : Any = self.block_out_channels[i + 1] __a : List[str] = nn.Conv( snake_case__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case__ ) __a : List[str] = nn.Conv( snake_case__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case__ ) __a : Union[str, Any] = blocks __a : Optional[Any] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _UpperCAmelCase ): __a : int = self.conv_in(snake_case__ ) __a : List[Any] = nn.silu(snake_case__ ) for block in self.blocks: __a : Union[str, Any] = block(snake_case__ ) __a : List[str] = nn.silu(snake_case__ ) __a : Tuple = self.conv_out(snake_case__ ) return embedding @flax_register_to_config class __lowercase ( nn.Module , snake_case__ , snake_case__ ): '''simple docstring''' __lowerCAmelCase = 32 __lowerCAmelCase = 4 __lowerCAmelCase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __lowerCAmelCase = False __lowerCAmelCase = (320, 640, 1280, 1280) __lowerCAmelCase = 2 __lowerCAmelCase = 8 __lowerCAmelCase = None __lowerCAmelCase = 1280 __lowerCAmelCase = 0.0 __lowerCAmelCase = False __lowerCAmelCase = jnp.floataa __lowerCAmelCase = True __lowerCAmelCase = 0 __lowerCAmelCase = "rgb" __lowerCAmelCase = (16, 32, 96, 256) def _lowerCamelCase ( self , _UpperCAmelCase ): # init input tensors __a : str = (1, self.in_channels, self.sample_size, self.sample_size) __a : List[Any] = jnp.zeros(snake_case__ , dtype=jnp.floataa ) __a : int = jnp.ones((1,) , dtype=jnp.intaa ) __a : Union[str, Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __a : Optional[int] = (1, 3, self.sample_size * 8, self.sample_size * 8) __a : Any = jnp.zeros(snake_case__ , dtype=jnp.floataa ) __a : Any = jax.random.split(snake_case__ ) __a : Tuple = {"params": params_rng, "dropout": dropout_rng} return self.init(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )["params"] def _lowerCamelCase ( self ): __a : Union[str, Any] = self.block_out_channels __a : Optional[int] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __a : int = self.num_attention_heads or self.attention_head_dim # input __a : Any = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __a : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __a : List[Any] = FlaxTimestepEmbedding(snake_case__ , dtype=self.dtype ) __a : List[str] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) __a : Optional[int] = self.only_cross_attention if isinstance(snake_case__ , snake_case__ ): __a : str = (only_cross_attention,) * len(self.down_block_types ) if isinstance(snake_case__ , snake_case__ ): __a : Any = (num_attention_heads,) * len(self.down_block_types ) # down __a : Optional[int] = [] __a : Optional[Any] = [] __a : str = block_out_channels[0] __a : str = nn.Conv( snake_case__ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) for i, down_block_type in enumerate(self.down_block_types ): __a : Union[str, Any] = output_channel __a : Tuple = block_out_channels[i] __a : List[Any] = i == len(snake_case__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __a : Tuple = FlaxCrossAttnDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: __a : Union[str, Any] = FlaxDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(snake_case__ ) for _ in range(self.layers_per_block ): __a : List[Any] = nn.Conv( snake_case__ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) if not is_final_block: __a : Any = nn.Conv( snake_case__ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) __a : List[str] = down_blocks __a : int = controlnet_down_blocks # mid __a : int = block_out_channels[-1] __a : str = FlaxUNetMidBlockaDCrossAttn( in_channels=snake_case__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) __a : List[str] = nn.Conv( snake_case__ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1.0 , _UpperCAmelCase = True , _UpperCAmelCase = False , ): __a : int = self.controlnet_conditioning_channel_order if channel_order == "bgr": __a : Optional[Any] = jnp.flip(snake_case__ , axis=1 ) # 1. time if not isinstance(snake_case__ , jnp.ndarray ): __a : Dict = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(snake_case__ , jnp.ndarray ) and len(timesteps.shape ) == 0: __a : Any = timesteps.astype(dtype=jnp.floataa ) __a : Optional[Any] = jnp.expand_dims(snake_case__ , 0 ) __a : Any = self.time_proj(snake_case__ ) __a : Union[str, Any] = self.time_embedding(snake_case__ ) # 2. pre-process __a : List[str] = jnp.transpose(snake_case__ , (0, 2, 3, 1) ) __a : Union[str, Any] = self.conv_in(snake_case__ ) __a : List[str] = jnp.transpose(snake_case__ , (0, 2, 3, 1) ) __a : str = self.controlnet_cond_embedding(snake_case__ ) sample += controlnet_cond # 3. down __a : List[str] = (sample,) for down_block in self.down_blocks: if isinstance(snake_case__ , snake_case__ ): __a : Union[str, Any] = down_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) else: __a : Optional[int] = down_block(snake_case__ , snake_case__ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid __a : Optional[int] = self.mid_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) # 5. contronet blocks __a : Dict = () for down_block_res_sample, controlnet_block in zip(snake_case__ , self.controlnet_down_blocks ): __a : Dict = controlnet_block(snake_case__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __a : List[Any] = controlnet_down_block_res_samples __a : Tuple = self.controlnet_mid_block(snake_case__ ) # 6. scaling __a : Dict = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=snake_case__ , mid_block_res_sample=snake_case__ )
160
"""simple docstring""" import os def _snake_case ( ) -> Dict: with open(os.path.dirname(lowerCamelCase__ ) + "/p022_names.txt" ) as file: lowerCamelCase_ : str =str(file.readlines()[0] ) lowerCamelCase_ : Union[str, Any] =names.replace("\"" , "" ).split("," ) names.sort() lowerCamelCase_ : str =0 lowerCamelCase_ : Optional[int] =0 for i, name in enumerate(lowerCamelCase__ ): for letter in name: name_score += ord(lowerCamelCase__ ) - 64 total_score += (i + 1) * name_score lowerCamelCase_ : List[Any] =0 return total_score if __name__ == "__main__": print(solution())
144
0
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : List[str] = """""" for i in table: res += inp[i - 1] return res def _UpperCamelCase ( UpperCamelCase__ ): return data[1:] + data[0] def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : int = """""" for i in range(len(UpperCamelCase__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : List[Any] = int("""0b""" + data[0] + data[-1] , 2 ) UpperCAmelCase__ : str = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Optional[int] = message[:4] UpperCAmelCase__ : Tuple = message[4:] UpperCAmelCase__ : Optional[Any] = apply_table(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : Any = xor(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : Optional[int] = apply_sbox(UpperCamelCase__ , temp[:4] ) # noqa: E741 UpperCAmelCase__ : int = apply_sbox(UpperCamelCase__ , temp[4:] ) UpperCAmelCase__ : Tuple = """0""" * (2 - len(UpperCamelCase__ )) + l # noqa: E741 UpperCAmelCase__ : str = """0""" * (2 - len(UpperCamelCase__ )) + r UpperCAmelCase__ : List[Any] = apply_table(l + r , UpperCamelCase__ ) UpperCAmelCase__ : Optional[int] = xor(UpperCamelCase__ , UpperCamelCase__ ) return temp + right if __name__ == "__main__": __A =input('Enter 10 bit key: ') __A =input('Enter 8 bit message: ') __A =[6, 3, 7, 4, 8, 5, 10, 9] __A =[3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __A =[2, 4, 3, 1] __A =[2, 6, 3, 1, 4, 8, 5, 7] __A =[4, 1, 3, 5, 7, 2, 8, 6] __A =[4, 1, 2, 3, 2, 3, 4, 1] __A =[[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __A =[[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __A =apply_table(key, paa_table) __A =temp[:5] __A =temp[5:] __A =left_shift(left) __A =left_shift(right) __A =apply_table(left + right, pa_table) __A =left_shift(left) __A =left_shift(right) __A =left_shift(left) __A =left_shift(right) __A =apply_table(left + right, pa_table) # encryption __A =apply_table(message, IP) __A =function(expansion, sa, sa, keya, temp) __A =temp[4:] + temp[:4] __A =function(expansion, sa, sa, keya, temp) __A =apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption __A =apply_table(CT, IP) __A =function(expansion, sa, sa, keya, temp) __A =temp[4:] + temp[:4] __A =function(expansion, sa, sa, keya, temp) __A =apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
364
'''simple docstring''' import os from datetime import datetime as dt from github import Github __A =[ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _UpperCamelCase ( ): UpperCAmelCase__ : Union[str, Any] = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase__ : Any = g.get_repo("""huggingface/diffusers""" ) UpperCAmelCase__ : Optional[int] = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase__ : Any = sorted(issue.get_comments() , key=lambda UpperCamelCase__ : i.created_at , reverse=UpperCamelCase__ ) UpperCAmelCase__ : List[Any] = comments[0] if len(UpperCamelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
283
0
"""simple docstring""" import fire from utils import calculate_rouge, save_json def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , **__UpperCamelCase ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = [x.strip() for x in open(__UpperCamelCase ).readlines()] lowerCAmelCase_ : Any = [x.strip() for x in open(__UpperCamelCase ).readlines()][: len(__UpperCamelCase )] lowerCAmelCase_ : int = calculate_rouge(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) if save_path is not None: save_json(__UpperCamelCase , __UpperCamelCase , indent=__UpperCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
241
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Optional[int] = tempfile.mkdtemp() lowerCAmelCase_ : Optional[int] = BlipImageProcessor() lowerCAmelCase_ : Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) lowerCAmelCase_ : str = BlipProcessor(a_ , a_ ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : Optional[Any] , **a_ : Union[str, Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **a_ ).tokenizer def lowerCamelCase ( self : int , **a_ : int ): return AutoProcessor.from_pretrained(self.tmpdirname , **a_ ).image_processor def lowerCamelCase ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCAmelCase_ : List[str] = [Image.fromarray(np.moveaxis(a_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : Dict = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ : Optional[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase_ : Dict = self.get_image_processor(do_normalize=a_ , padding_value=1.0 ) lowerCAmelCase_ : str = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=a_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , a_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a_ ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : List[str] = self.get_image_processor() lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : str = BlipProcessor(tokenizer=a_ , image_processor=a_ ) lowerCAmelCase_ : Any = self.prepare_image_inputs() lowerCAmelCase_ : Any = image_processor(a_ , return_tensors="np" ) lowerCAmelCase_ : List[Any] = processor(images=a_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase ( self : str ): lowerCAmelCase_ : Dict = self.get_image_processor() lowerCAmelCase_ : int = self.get_tokenizer() lowerCAmelCase_ : Tuple = BlipProcessor(tokenizer=a_ , image_processor=a_ ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : List[str] = processor(text=a_ ) lowerCAmelCase_ : int = tokenizer(a_ , return_token_type_ids=a_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ : str = self.get_image_processor() lowerCAmelCase_ : Dict = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = BlipProcessor(tokenizer=a_ , image_processor=a_ ) lowerCAmelCase_ : Any = "lower newer" lowerCAmelCase_ : str = self.prepare_image_inputs() lowerCAmelCase_ : Any = processor(text=a_ , images=a_ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : int = self.get_image_processor() lowerCAmelCase_ : List[Any] = self.get_tokenizer() lowerCAmelCase_ : str = BlipProcessor(tokenizer=a_ , image_processor=a_ ) lowerCAmelCase_ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ : List[str] = processor.batch_decode(a_ ) lowerCAmelCase_ : List[str] = tokenizer.batch_decode(a_ ) self.assertListEqual(a_ , a_ ) def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Optional[Any] = self.get_image_processor() lowerCAmelCase_ : List[str] = self.get_tokenizer() lowerCAmelCase_ : str = BlipProcessor(tokenizer=a_ , image_processor=a_ ) lowerCAmelCase_ : List[str] = "lower newer" lowerCAmelCase_ : Optional[int] = self.prepare_image_inputs() lowerCAmelCase_ : Optional[int] = processor(text=a_ , images=a_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
241
1
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class a__ ( unittest.TestCase ): def __init__( self , A , A=100 , A=13 , A=30 , A=2 , A=3 , A=True , A=True , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=10 , A=0.0_2 , A=3 , ) -> Any: '''simple docstring''' a = parent a = vocab_size a = batch_size a = image_size a = patch_size a = num_channels a = is_training a = use_labels a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = type_sequence_label_size a = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a = (image_size // patch_size) ** 2 a = num_patches + 1 def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , ) return config, pixel_values, labels def lowerCAmelCase_ ( self , A , A , A ) -> List[Any]: '''simple docstring''' a = FlaxBeitModel(config=A ) a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self , A , A , A ) -> str: '''simple docstring''' a = FlaxBeitForMaskedImageModeling(config=A ) a = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCAmelCase_ ( self , A , A , A ) -> Dict: '''simple docstring''' a = self.type_sequence_label_size a = FlaxBeitForImageClassification(config=A ) a = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a = 1 a = FlaxBeitForImageClassification(A ) a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a = model(A ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class a__ ( UpperCamelCase__ , unittest.TestCase ): a : Optional[int] = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def lowerCAmelCase_ ( self ) -> None: '''simple docstring''' a = FlaxBeitModelTester(self ) a = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(A ) a = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ["pixel_values"] self.assertListEqual(arg_names[:1] , A ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a = self._prepare_for_class(A , A ) a = model_class(A ) @jax.jit def model_jitted(A , **A ): return model(pixel_values=A , **A ) with self.subTest("JIT Enabled" ): a = model_jitted(**A ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): a = model_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: a = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) a = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(A ) def SCREAMING_SNAKE_CASE ( ) -> Any: a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class a__ ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) a = self.default_image_processor a = prepare_img() a = image_processor(images=A , return_tensors="np" ).pixel_values # prepare bool_masked_pos a = np.ones((1, 196) , dtype=A ) # forward pass a = model(pixel_values=A , bool_masked_pos=A ) a = outputs.logits # verify the logits a = (1, 196, 8192) self.assertEqual(logits.shape , A ) a = np.array( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , A , atol=1e-2 ) ) @slow def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' a = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) a = self.default_image_processor a = prepare_img() a = image_processor(images=A , return_tensors="np" ) # forward pass a = model(**A ) a = outputs.logits # verify the logits a = (1, 1000) self.assertEqual(logits.shape , A ) a = np.array([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ) self.assertTrue(np.allclose(logits[0, :3] , A , atol=1e-4 ) ) a = 281 self.assertEqual(logits.argmax(-1 ).item() , A ) @slow def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' a = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) a = self.default_image_processor a = prepare_img() a = image_processor(images=A , return_tensors="np" ) # forward pass a = model(**A ) a = outputs.logits # verify the logits a = (1, 21841) self.assertEqual(logits.shape , A ) a = np.array([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ) self.assertTrue(np.allclose(logits[0, :3] , A , atol=1e-4 ) ) a = 2396 self.assertEqual(logits.argmax(-1 ).item() , A )
180
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowercase__ : Optional[int] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowercase__ : int = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowercase__ : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowercase__ : Tuple = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def lowerCAmelCase_ ( self , A ) -> List[str]: '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def lowerCAmelCase_ ( self , A , A , A=0.9 , A=3 , A=0.5 ) -> Tuple: '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): a = [ meteor_score.single_meteor_score( word_tokenize(A ) , word_tokenize(A ) , alpha=A , beta=A , gamma=A ) for ref, pred in zip(A , A ) ] else: a = [ meteor_score.single_meteor_score(A , A , alpha=A , beta=A , gamma=A ) for ref, pred in zip(A , A ) ] return {"meteor": np.mean(A )}
180
1
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=1_3 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=9_9 , _UpperCamelCase=3_2 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=3_7 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=5_0 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=None , ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : Any = batch_size UpperCAmelCase_ : str = seq_length UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Optional[int] = use_input_mask UpperCAmelCase_ : str = vocab_size UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : Optional[Any] = use_labels UpperCAmelCase_ : str = scope def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Optional[Any] = None if self.use_input_mask: UpperCAmelCase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __UpperCAmelCase ( self ) -> Dict: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self ) -> Tuple: ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = BertGenerationEncoder(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : Tuple = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) UpperCAmelCase_ : str = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : Optional[Any] = BertGenerationEncoder(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : Tuple = model( _UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , ) UpperCAmelCase_ : str = model( _UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ) -> Any: UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : Optional[int] = BertGenerationDecoder(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() # first forward pass UpperCAmelCase_ : List[str] = model( _UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase , ) UpperCAmelCase_ : List[str] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase_ : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : Optional[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase_ : List[str] = model( _UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , output_hidden_states=_UpperCamelCase , )['hidden_states'][0] UpperCAmelCase_ : List[Any] = model( _UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , output_hidden_states=_UpperCamelCase , )['hidden_states'][0] # select random slice UpperCAmelCase_ : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase , ) -> Union[str, Any]: UpperCAmelCase_ : int = BertGenerationDecoder(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : Tuple = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase (_snake_case , _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : str = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () _snake_case : List[Any] = (BertGenerationDecoder,) if is_torch_available() else () _snake_case : int = ( {'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder} if is_torch_available() else {} ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : Tuple = BertGenerationEncoderTester(self ) UpperCAmelCase_ : Tuple = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def __UpperCAmelCase ( self ) -> List[Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_ : Tuple = 'bert' self.model_tester.create_and_check_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: # This regression test was failing with PyTorch < 1.3 ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase_ : str = None self.model_tester.create_and_check_model_as_decoder( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*_UpperCamelCase ) @slow def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(_UpperCamelCase ) @require_torch class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : Any = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) UpperCAmelCase_ : Optional[int] = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(_UpperCamelCase )[0] UpperCAmelCase_ : Dict = torch.Size([1, 8, 1_0_2_4] ) self.assertEqual(output.shape , _UpperCamelCase ) UpperCAmelCase_ : Dict = torch.tensor( [[[0.17_75, 0.00_83, -0.03_21], [1.60_02, 0.12_87, 0.39_12], [2.14_73, 0.57_91, 0.60_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 ) ) @require_torch class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): UpperCAmelCase_ : str = model(_UpperCamelCase )[0] UpperCAmelCase_ : str = torch.Size([1, 8, 5_0_3_5_8] ) self.assertEqual(output.shape , _UpperCamelCase ) UpperCAmelCase_ : Dict = torch.tensor( [[[-0.57_88, -2.59_94, -3.70_54], [0.04_38, 4.79_97, 1.87_95], [1.58_62, 6.64_09, 4.46_38]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 ) )
29
from math import isqrt, loga def UpperCAmelCase_ ( __lowerCAmelCase ) -> list[int]: __lowercase : Optional[Any] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __lowerCAmelCase , __lowerCAmelCase ): __lowercase : Dict = False return [i for i in range(2 , __lowerCAmelCase ) if is_prime[i]] def UpperCAmelCase_ ( __lowerCAmelCase = 800_800 , __lowerCAmelCase = 800_800 ) -> int: __lowercase : Tuple = degree * loga(__lowerCAmelCase ) __lowercase : List[str] = int(__lowerCAmelCase ) __lowercase : Optional[Any] = calculate_prime_numbers(__lowerCAmelCase ) __lowercase : Any = 0 __lowercase : int = 0 __lowercase : Tuple = len(__lowerCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'{solution() = }')
156
0
"""simple docstring""" # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def lowerCAmelCase (__UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): """simple docstring""" __UpperCamelCase ={ '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __UpperCamelCase ={ '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } __UpperCamelCase =F"""{src_lang}-{tgt_lang}""" __UpperCamelCase =F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) __UpperCamelCase =os.path.join(__UpperCamelCase , '''README.md''' ) print(F"""Generating {path}""" ) with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(__UpperCamelCase ) # make sure we are under the root of the project __lowercase = Path(__file__).resolve().parent.parent.parent __lowercase = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __lowercase , __lowercase , __lowercase = model_name.split('''-''') __lowercase = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
85
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( __a , unittest.TestCase ): """simple docstring""" lowercase__ = LongformerTokenizer lowercase__ = True lowercase__ = LongformerTokenizerFast lowercase__ = True def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCamelCase =dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) __UpperCamelCase =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCamelCase ={'''unk_token''': '''<unk>'''} __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] , **UpperCamelCase__ : str ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , **UpperCamelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase ='''lower newer''' __UpperCamelCase ='''lower newer''' return input_text, output_text def UpperCAmelCase_ ( self : int ) -> List[Any]: '''simple docstring''' __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase ='''lower newer''' __UpperCamelCase =['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCamelCase =tokenizer.tokenize(UpperCamelCase__ ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokens + [tokenizer.unk_token] __UpperCamelCase =[0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: '''simple docstring''' __UpperCamelCase =self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=UpperCamelCase__ ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=UpperCamelCase__ ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCamelCase =tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' __UpperCamelCase =self.get_tokenizer() __UpperCamelCase ='''Encode this sequence.''' __UpperCamelCase =tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) # Testing spaces after special tokens __UpperCamelCase ='''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ )} ) # mask token has a left space __UpperCamelCase =tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) __UpperCamelCase ='''Encode <mask> sequence''' __UpperCamelCase ='''Encode <mask>sequence''' __UpperCamelCase =tokenizer.encode(UpperCamelCase__ ) __UpperCamelCase =encoded.index(UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ ) __UpperCamelCase =encoded.index(UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' pass def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase ='''A, <mask> AllenNLP sentence.''' __UpperCamelCase =tokenizer_r.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) __UpperCamelCase =tokenizer_p.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( UpperCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCamelCase =json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , UpperCamelCase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , UpperCamelCase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase ='''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCamelCase =f"""{text_of_1_token} {text_of_1_token}""" __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ) + 1, 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , )
85
1
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __lowerCAmelCase ( unittest.TestCase ): def A__ ( self ) -> Dict: '''simple docstring''' _lowercase ='laion/clap-htsat-unfused' _lowercase =tempfile.mkdtemp() def A__ ( self , **lowerCAmelCase ) -> str: '''simple docstring''' return RobertaTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase ) def A__ ( self , **lowerCAmelCase ) -> Any: '''simple docstring''' return ClapFeatureExtractor.from_pretrained(self.checkpoint , **lowerCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A__ ( self ) -> int: '''simple docstring''' _lowercase =self.get_tokenizer() _lowercase =self.get_feature_extractor() _lowercase =ClapProcessor(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowercase =ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' _lowercase =ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowercase =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowercase =self.get_feature_extractor(do_normalize=lowerCAmelCase , padding_value=1.0 ) _lowercase =ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase =self.get_feature_extractor() _lowercase =self.get_tokenizer() _lowercase =ClapProcessor(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase ) _lowercase =floats_list((3, 1_000) ) _lowercase =feature_extractor(lowerCAmelCase , return_tensors='np' ) _lowercase =processor(audios=lowerCAmelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A__ ( self ) -> int: '''simple docstring''' _lowercase =self.get_feature_extractor() _lowercase =self.get_tokenizer() _lowercase =ClapProcessor(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase ) _lowercase ='This is a test string' _lowercase =processor(text=lowerCAmelCase ) _lowercase =tokenizer(lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' _lowercase =self.get_feature_extractor() _lowercase =self.get_tokenizer() _lowercase =ClapProcessor(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase ) _lowercase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase =processor.batch_decode(lowerCAmelCase ) _lowercase =tokenizer.batch_decode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase =self.get_feature_extractor() _lowercase =self.get_tokenizer() _lowercase =ClapProcessor(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
205
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 1_6 lowercase_ = 3_2 def a ( A__ : Accelerator , A__ : int = 16 , A__ : str = "bert-base-cased" ) -> Optional[int]: """simple docstring""" _lowercase =AutoTokenizer.from_pretrained(A__ ) _lowercase =load_dataset('glue' , 'mrpc' ) def tokenize_function(A__ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) _lowercase =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowercase =datasets.map( A__ , batched=A__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A__ : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(A__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _lowercase =DataLoader( tokenized_datasets['train'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) _lowercase =DataLoader( tokenized_datasets['validation'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def a ( A__ : Optional[Any] , A__ : Optional[int] , A__ : List[str] , A__ : Dict ) -> Dict: """simple docstring""" model.eval() _lowercase =0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase =model(**A__ ) _lowercase =outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _lowercase , _lowercase =accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A__ ) - 1: _lowercase =predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowercase =references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A__ , references=A__ , ) _lowercase =metric.compute() return eval_metric["accuracy"] def a ( A__ : str , A__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" _lowercase =Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase =config['lr'] _lowercase =int(config['num_epochs'] ) _lowercase =int(config['seed'] ) _lowercase =int(config['batch_size'] ) _lowercase =args.model_name_or_path set_seed(A__ ) _lowercase , _lowercase =get_dataloaders(A__ , A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase =AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer _lowercase =( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowercase =optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: _lowercase =accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: _lowercase =1 _lowercase =(len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowercase =get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: _lowercase =DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over _lowercase =0 # We also need to keep track of the stating epoch so files are named properly _lowercase =0 _lowercase =evaluate.load('glue' , 'mrpc' ) _lowercase =num_epochs if args.partial_train_epoch is not None: _lowercase =args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _lowercase =args.resume_from_checkpoint.split('epoch_' )[1] _lowercase ='' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _lowercase =int(A__ ) + 1 _lowercase =evaluation_loop(A__ , A__ , A__ , A__ ) accelerator.print('resumed checkpoint performance:' , A__ ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , 'r' ) as f: _lowercase =json.load(A__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _lowercase ={} for epoch in range(A__ , A__ ): model.train() for step, batch in enumerate(A__ ): _lowercase =model(**A__ ) _lowercase =outputs.loss _lowercase =loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _lowercase =F'''epoch_{epoch}''' _lowercase =os.path.join(args.output_dir , A__ ) accelerator.save_state(A__ ) _lowercase =evaluation_loop(A__ , A__ , A__ , A__ ) _lowercase =accuracy _lowercase =lr_scheduler.get_lr()[0] _lowercase =optimizer.param_groups[0]['lr'] _lowercase =epoch _lowercase =overall_step accelerator.print(F'''epoch {epoch}:''' , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , 'w' ) as f: json.dump(A__ , A__ ) def a ( ) -> Tuple: """simple docstring""" _lowercase =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=A__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=A__ , ) parser.add_argument( '--output_dir' , type=A__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=A__ , default=A__ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=A__ , default=A__ , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=A__ , default=2 , help='Number of train epochs.' , ) _lowercase =parser.parse_args() _lowercase ={'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
205
1
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets _a = datasets.logging.get_logger(__name__) _a = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' _a = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' _a = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : List[Any], UpperCamelCase_ : Dict=False, UpperCamelCase_ : List[Any]=False, UpperCamelCase_ : Any=True, UpperCamelCase_ : Union[str, Any]=False, UpperCamelCase_ : List[Any]="dummy_doc") -> List[str]: '''simple docstring''' __lowercase = {doc: key_lines} __lowercase = {doc: sys_lines} __lowercase = {} __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = reader.get_doc_mentions(lowerCAmelCase__, key_doc_lines[doc], lowerCAmelCase__) key_singletons_num += singletons_num if NP_only or min_span: __lowercase = reader.set_annotated_parse_trees(lowerCAmelCase__, key_doc_lines[doc], lowerCAmelCase__, lowerCAmelCase__) __lowercase = reader.get_doc_mentions(lowerCAmelCase__, sys_doc_lines[doc], lowerCAmelCase__) sys_singletons_num += singletons_num if NP_only or min_span: __lowercase = reader.set_annotated_parse_trees(lowerCAmelCase__, key_doc_lines[doc], lowerCAmelCase__, lowerCAmelCase__) if remove_nested: __lowercase = reader.remove_nested_coref_mentions(lowerCAmelCase__, lowerCAmelCase__) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters __lowercase = reader.remove_nested_coref_mentions(lowerCAmelCase__, lowerCAmelCase__) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters __lowercase = reader.get_mention_assignments(lowerCAmelCase__, lowerCAmelCase__) __lowercase = reader.get_mention_assignments(lowerCAmelCase__, lowerCAmelCase__) __lowercase = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""") logger.info( "Number of resulting singleton clusters in the key " F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""") if not keep_singletons: logger.info( F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ "files, respectively") return doc_coref_infos def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : Dict, UpperCamelCase_ : int, UpperCamelCase_ : Any, UpperCamelCase_ : Optional[int], UpperCamelCase_ : Optional[Any], UpperCamelCase_ : int) -> Optional[Any]: '''simple docstring''' __lowercase = get_coref_infos(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) __lowercase = {} __lowercase = 0 __lowercase = 0 for name, metric in metrics: __lowercase = evaluator.evaluate_documents(lowerCAmelCase__, lowerCAmelCase__, beta=1) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa}) logger.info( name.ljust(10), F"""Recall: {recall * 100:.2f}""", F""" Precision: {precision * 100:.2f}""", F""" F1: {fa * 100:.2f}""", ) if conll_subparts_num == 3: __lowercase = (conll / 3) * 100 logger.info(F"""CoNLL score: {conll:.2f}""") output_scores.update({"conll_score": conll}) return output_scores def _A ( UpperCamelCase_ : Optional[Any]) -> Optional[int]: '''simple docstring''' __lowercase = False for line in key_lines: if not line.startswith("#"): if len(line.split()) > 6: __lowercase = line.split()[5] if not parse_col == "-": __lowercase = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ), codebase_urls=["https://github.com/ns-moosavi/coval"], reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ], ) def _lowercase ( self : Dict, UpperCAmelCase__ : str, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : Any=False, UpperCAmelCase__ : List[Any]=False, UpperCAmelCase__ : Dict=False ): __lowercase = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: __lowercase = util.check_gold_parse_annotation(SCREAMING_SNAKE_CASE_ ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" __lowercase = evaluate( key_lines=SCREAMING_SNAKE_CASE_, sys_lines=SCREAMING_SNAKE_CASE_, metrics=SCREAMING_SNAKE_CASE_, NP_only=SCREAMING_SNAKE_CASE_, remove_nested=SCREAMING_SNAKE_CASE_, keep_singletons=SCREAMING_SNAKE_CASE_, min_span=SCREAMING_SNAKE_CASE_, ) return score
366
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ["pixel_values"] def __init__( self : int, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Dict[str, int]] = None, UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Union[int, float] = 1 / 2_5_5, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, **UpperCAmelCase__ : str, ): super().__init__(**UpperCAmelCase__ ) __lowercase = size if size is not None else {"shortest_edge": 2_5_6} __lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ ) __lowercase = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} __lowercase = get_size_dict(UpperCAmelCase__ ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self : int, UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Dict[str, int], UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC, UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Dict, ): __lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowercase = get_resize_output_image_size(UpperCAmelCase__, size=size["shortest_edge"], default_to_square=UpperCAmelCase__ ) return resize(UpperCAmelCase__, size=UpperCAmelCase__, resample=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Dict[str, int], UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Dict, ): __lowercase = get_size_dict(UpperCAmelCase__ ) return center_crop(UpperCAmelCase__, size=(size["height"], size["width"]), data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : float, UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Union[str, Any] ): return rescale(UpperCAmelCase__, scale=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : List[Any], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Union[float, List[float]], UpperCAmelCase__ : Union[float, List[float]], UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : int, ): return normalize(UpperCAmelCase__, mean=UpperCAmelCase__, std=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Any, UpperCAmelCase__ : ImageInput, UpperCAmelCase__ : Optional[bool] = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : PILImageResampling = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : Optional[bool] = None, UpperCAmelCase__ : Optional[float] = None, UpperCAmelCase__ : Optional[bool] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[str, TensorType]] = None, UpperCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST, **UpperCAmelCase__ : Optional[int], ): __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = size if size is not None else self.size __lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ ) __lowercase = resample if resample is not None else self.resample __lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase = crop_size if crop_size is not None else self.crop_size __lowercase = get_size_dict(UpperCAmelCase__ ) __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: __lowercase = [self.resize(image=UpperCAmelCase__, size=UpperCAmelCase__, resample=UpperCAmelCase__ ) for image in images] if do_center_crop: __lowercase = [self.center_crop(image=UpperCAmelCase__, size=UpperCAmelCase__ ) for image in images] if do_rescale: __lowercase = [self.rescale(image=UpperCAmelCase__, scale=UpperCAmelCase__ ) for image in images] if do_normalize: __lowercase = [self.normalize(image=UpperCAmelCase__, mean=UpperCAmelCase__, std=UpperCAmelCase__ ) for image in images] __lowercase = [to_channel_dimension_format(UpperCAmelCase__, UpperCAmelCase__ ) for image in images] __lowercase = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase__, tensor_type=UpperCAmelCase__ )
144
0
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = "" lowercase__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowercase__ = None # compression type in fsspec. ex: "gzip" lowercase__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[Any], lowerCamelCase : Optional[int] = "", lowerCamelCase : Any = None, lowerCamelCase : int = None, **lowerCamelCase : Any ): '''simple docstring''' super().__init__(self, **__A ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowercase__ = fsspec.open( __A, mode='''rb''', protocol=__A, compression=self.compression, client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''', {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) lowercase__ = os.path.basename(self.file.path.split('''::''' )[0] ) lowercase__ = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if "." in self.compressed_name else self.compressed_name ) lowercase__ = None @classmethod def lowercase__ ( cls : Optional[Any], lowerCamelCase : Dict ): '''simple docstring''' return super()._strip_protocol(__A ).lstrip('''/''' ) def lowercase__ ( self : Tuple ): '''simple docstring''' if self.dir_cache is None: lowercase__ = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} lowercase__ = {f["name"]: f} def lowercase__ ( self : Union[str, Any], lowerCamelCase : Dict ): '''simple docstring''' return self.file.open().read() def lowercase__ ( self : Optional[int], lowerCamelCase : Dict, lowerCamelCase : Optional[Any] = "rb", lowerCamelCase : int=None, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : Optional[Any]=None, **lowerCamelCase : str, ): '''simple docstring''' lowercase__ = self._strip_protocol(__A ) if mode != "rb": raise ValueError(F"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = "bz2" lowercase__ = "bz2" lowercase__ = ".bz2" class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = "gzip" lowercase__ = "gzip" lowercase__ = ".gz" class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = "lz4" lowercase__ = "lz4" lowercase__ = ".lz4" class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = "xz" lowercase__ = "xz" lowercase__ = ".xz" class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = "zstd" lowercase__ = "zstd" lowercase__ = ".zst" def __init__( self : Optional[int], lowerCamelCase : List[Any], lowerCamelCase : Optional[int] = "rb", lowerCamelCase : List[Any] = None, lowerCamelCase : Any = None, lowerCamelCase : Optional[int] = DEFAULT_BLOCK_SIZE, **lowerCamelCase : Any, ): '''simple docstring''' super().__init__( fo=__A, mode=__A, target_protocol=__A, target_options=__A, block_size=__A, **__A, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowercase__ = self.file.__enter__ class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str], lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = file_ def __enter__( self : Optional[Any] ): '''simple docstring''' self._file.__enter__() return self def __exit__( self : Tuple, *lowerCamelCase : Union[str, Any], **lowerCamelCase : Optional[int] ): '''simple docstring''' self._file.__exit__(*__A, **__A ) def __iter__( self : int ): '''simple docstring''' return iter(self._file ) def lowercase__ ( self : Dict ): '''simple docstring''' return next(self._file ) def __getattr__( self : Any, lowerCamelCase : str ): '''simple docstring''' return getattr(self._file, __A ) def fixed_enter(*lowerCamelCase : List[Any], **lowerCamelCase : List[Any] ): return WrappedFile(_enter(*__A, **__A ) ) lowercase__ = fixed_enter
207
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Dict = "mobilenet_v2" def __init__( self , __A=3 , __A=224 , __A=1.0 , __A=8 , __A=8 , __A=6 , __A=32 , __A=True , __A=True , __A="relu6" , __A=True , __A=0.8 , __A=0.02 , __A=0.001 , __A=255 , **__A , ): """simple docstring""" super().__init__(**__A ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCamelCase : str = num_channels lowerCamelCase : Any = image_size lowerCamelCase : Union[str, Any] = depth_multiplier lowerCamelCase : Tuple = depth_divisible_by lowerCamelCase : Dict = min_depth lowerCamelCase : Dict = expand_ratio lowerCamelCase : Optional[Any] = output_stride lowerCamelCase : int = first_layer_is_expansion lowerCamelCase : Union[str, Any] = finegrained_output lowerCamelCase : Optional[Any] = hidden_act lowerCamelCase : Optional[Any] = tf_padding lowerCamelCase : Optional[Any] = classifier_dropout_prob lowerCamelCase : Dict = initializer_range lowerCamelCase : str = layer_norm_eps lowerCamelCase : Optional[Any] = semantic_loss_ignore_index class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Union[str, Any] = version.parse("1.11" ) @property def _snake_case ( self ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def _snake_case ( self ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def _snake_case ( self ): """simple docstring""" return 1e-4
283
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :str = '''gpt_neox_japanese''' def __init__( self , lowerCAmelCase_=3_20_00 , lowerCAmelCase_=25_60 , lowerCAmelCase_=32 , lowerCAmelCase_=32 , lowerCAmelCase_=4 , lowerCAmelCase_="gelu" , lowerCAmelCase_=1.00 , lowerCAmelCase_=1_00_00 , lowerCAmelCase_=20_48 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-5 , lowerCAmelCase_=True , lowerCAmelCase_=3_19_96 , lowerCAmelCase_=3_19_99 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.0 , **lowerCAmelCase_ , ) -> int: super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _A = vocab_size _A = max_position_embeddings _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_multiple_size _A = hidden_act _A = rotary_pct _A = rotary_emb_base _A = initializer_range _A = layer_norm_eps _A = use_cache _A = attention_dropout _A = hidden_dropout
81
import cva import numpy as np class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: if k in (0.04, 0.06): _A = k _A = window_size else: raise ValueError("""invalid k value""" ) def __str__( self ) -> str: return str(self.k ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> tuple[cva.Mat, list[list[int]]]: _A = cva.imread(lowerCAmelCase_ , 0 ) _A , _A = img.shape _A = [] _A = img.copy() _A = cva.cvtColor(lowerCAmelCase_ , cva.COLOR_GRAY2RGB ) _A , _A = np.gradient(lowerCAmelCase_ ) _A = dx**2 _A = dy**2 _A = dx * dy _A = 0.04 _A = self.window_size // 2 for y in range(lowerCAmelCase_ , h - offset ): for x in range(lowerCAmelCase_ , w - offset ): _A = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _A = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _A = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _A = (wxx * wyy) - (wxy**2) _A = wxx + wyy _A = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": _SCREAMING_SNAKE_CASE = HarrisCorner(0.04, 3) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
81
1
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def snake_case ( snake_case__ :int = 8) -> str: _A = ascii_letters + digits + punctuation return "".join(secrets.choice(snake_case__) for _ in range(snake_case__)) def snake_case ( snake_case__ :str , snake_case__ :int) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(snake_case__) _A = i // 3 _A = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _A = ( chars_incl + random(snake_case__ , quotient + remainder) + random(snake_case__ , snake_case__) + random(snake_case__ , snake_case__) ) _A = list(snake_case__) shuffle(snake_case__) return "".join(snake_case__) # random is a generalised function for letters, characters and numbers def snake_case ( snake_case__ :str , snake_case__ :int) -> str: return "".join(secrets.choice(snake_case__) for _ in range(snake_case__)) def snake_case ( snake_case__ :Optional[int] , snake_case__ :Union[str, Any]) -> Union[str, Any]: pass # Put your code here... def snake_case ( snake_case__ :Union[str, Any] , snake_case__ :List[Any]) -> List[str]: pass # Put your code here... def snake_case ( snake_case__ :List[Any] , snake_case__ :List[str]) -> Union[str, Any]: pass # Put your code here... def snake_case ( snake_case__ :str , snake_case__ :int = 8) -> bool: if len(snake_case__) < min_length: # Your Password must be at least 8 characters long return False _A = any(char in ascii_uppercase for char in password) _A = any(char in ascii_lowercase for char in password) _A = any(char in digits for char in password) _A = any(char in punctuation for char in password) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def snake_case ( ) -> List[Any]: _A = int(input("""Please indicate the max length of your password: """).strip()) _A = input( """Please indicate the characters that must be in your password: """).strip() print("""Password generated:""" , password_generator(snake_case__)) print( """Alternative Password generated:""" , alternative_password_generator(snake_case__ , snake_case__) , ) print("""[If you are thinking of using this passsword, You better save it.]""") if __name__ == "__main__": main()
180
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class a ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase :Dict = WavaVecaPhonemeCTCTokenizer lowerCamelCase :Optional[int] = False def UpperCAmelCase ( self ) -> Optional[int]: super().setUp() _A = ( """<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː """ """ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː """ """ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 """ """oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ """ """pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ """ """yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ """ """əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ """ """ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ """ """ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ """ """uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ """ """ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ """ """ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ """ """ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4""" ).split(""" """ ) _A = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A = {"""pad_token""": """<pad>""", """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>"""} _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=20 , lowerCAmelCase_=5 ) -> Tuple[str, list]: _A = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase_ )) for i in range(len(lowerCAmelCase_ ) )] _A = list(filter(lambda lowerCAmelCase_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=lowerCAmelCase_ ) , lowerCAmelCase_ ) ) if max_length is not None and len(lowerCAmelCase_ ) > max_length: _A = toks[:max_length] if min_length is not None and len(lowerCAmelCase_ ) < min_length and len(lowerCAmelCase_ ) > 0: while len(lowerCAmelCase_ ) < min_length: _A = toks + toks # toks_str = [t[1] for t in toks] _A = [t[0] for t in toks] # Ensure consistency _A = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) if " " not in output_txt and len(lowerCAmelCase_ ) > 1: _A = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase_ ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase_ ) ) if with_prefix_space: _A = """ """ + output_txt _A = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) return output_txt, output_ids def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Any: kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) # check adding a single token tokenizer.add_tokens("""xxx""" ) _A = tokenizer("""m xxx ɪ""" , do_phonemize=lowerCAmelCase_ ).input_ids self.assertEqual(lowerCAmelCase_ , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(["""aaa""", """bbb""", """ccc"""] ) _A = tokenizer("""m aaa ɪ ccc""" , do_phonemize=lowerCAmelCase_ ).input_ids self.assertEqual(lowerCAmelCase_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa _A = tokenizer("""maɪ c""" , do_phonemize=lowerCAmelCase_ ).input_ids self.assertEqual(lowerCAmelCase_ , [3, 2_00] ) # mai should be <unk> (=3) def UpperCAmelCase ( self ) -> int: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) self.assertEqual(lowerCAmelCase_ , """h ə l oʊ h aʊ ɑːɹ j uː""" ) def UpperCAmelCase ( self ) -> List[str]: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(lowerCAmelCase_ ).input_ids , tokenizer(lowerCAmelCase_ , do_phonemize=lowerCAmelCase_ ).input_ids ) def UpperCAmelCase ( self ) -> List[str]: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) _A = tokenizer.decode(tokenizer(lowerCAmelCase_ ).input_ids ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _A = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] _A = tokenizer.decode(sample_ids[0] ) _A = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , batch_tokens[0] ) self.assertEqual(lowerCAmelCase_ , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) def UpperCAmelCase ( self ) -> str: _A = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) self.assertEqual(lowerCAmelCase_ , """h ə l oʊ | h aʊ | ɑːɹ | j uː |""" ) def UpperCAmelCase ( self ) -> Tuple: _A = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(lowerCAmelCase_ ).input_ids , tokenizer(lowerCAmelCase_ , do_phonemize=lowerCAmelCase_ ).input_ids ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off _A = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter _A = tokenizer.decode(sample_ids[0] ) _A = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , batch_tokens[0] ) self.assertEqual(lowerCAmelCase_ , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) # decode with no word_del_token filter _A = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=lowerCAmelCase_ ) _A = tokenizer.batch_decode(lowerCAmelCase_ , filter_word_delimiter_token=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , batch_tokens[0] ) self.assertEqual(lowerCAmelCase_ , ["""k s ɾ | ɾ l | ɭʲ""", """| j ð | s j ð s oːɹ"""] ) def UpperCAmelCase ( self ) -> Dict: _A = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) _A = tokenizer.decode(tokenizer(lowerCAmelCase_ ).input_ids , filter_word_delimiter_token=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) _A = tokenizer.decode(tokenizer(lowerCAmelCase_ ).input_ids , filter_word_delimiter_token=lowerCAmelCase_ ) self.assertEqual(""" """.join([p.strip() for p in phonemes.split(""" |""" )] ).strip() , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token=lowerCAmelCase_ ) _A = """Hello how are you""" _A = tokenizer(lowerCAmelCase_ , phonemizer_lang="""en-us""" ).input_ids _A = tokenizer(lowerCAmelCase_ , phonemizer_lang="""fr-fr""" ).input_ids self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A = tokenizer.decode(lowerCAmelCase_ ) _A = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , """h ə l oʊ h aʊ ɑːɹ j uː""" ) self.assertEqual(lowerCAmelCase_ , """ɛ l o h aʊ a ʁ j u""" ) def UpperCAmelCase ( self ) -> Any: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _A = """Hello how Are you""" _A = """hello how are you""" _A = tokenizer(lowerCAmelCase_ ).input_ids _A = tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) tokenizer.add_tokens(["""!""", """?"""] ) tokenizer.add_special_tokens({"""cls_token""": """$$$"""} ) # fmt: off _A = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on _A = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , ["""k s ɾ ɾ l ɭʲ!?!? $$$""", """j ð s j ð s oːɹ $$$"""] ) @staticmethod def UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _A = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase ( self ) -> Tuple: _A = self.get_tokenizer(word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" _A = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on _A = tokenizer.decode(lowerCAmelCase_ , output_char_offsets=lowerCAmelCase_ , filter_word_delimiter_token=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""char_offsets""" in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(""" """.join(self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) , ["""k""", """s""", """ɾ""", """ɾ""", """|""", """ɾ""", """l""", """|""", """ɭʲ"""] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """start_offset""" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """end_offset""" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def UpperCAmelCase ( self ) -> Optional[int]: _A = self.get_tokenizer(word_delimiter_token="""|""" ) def check_list_tuples_equal(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertTrue(isinstance(outputs_list[0] , lowerCAmelCase_ ) ) # transform list to ModelOutput _A = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["""text"""] , outputs_batch_a["""text"""] ) def recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): [recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ) for la, la in zip(lowerCAmelCase_ , lowerCAmelCase_ )] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["""char_offsets"""] , outputs_batch_a["""char_offsets"""] ) # fmt: off _A = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char _A = tokenizer.batch_decode(lowerCAmelCase_ , output_char_offsets=lowerCAmelCase_ ) _A = [tokenizer.decode(lowerCAmelCase_ , output_char_offsets=lowerCAmelCase_ ) for ids in sample_ids] check_list_tuples_equal(lowerCAmelCase_ , lowerCAmelCase_ ) @unittest.skip("""Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes""" ) def UpperCAmelCase ( self ) -> int: pass @unittest.skip("""Wav2Vec2PhonemeTokenizer always puts spaces between phonemes""" ) def UpperCAmelCase ( self ) -> List[str]: pass @unittest.skip("""encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency""" ) def UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip("""Wav2Vec2PhonemeModel has no max model length => no testing""" ) def UpperCAmelCase ( self ) -> Optional[int]: pass def UpperCAmelCase ( self ) -> List[Any]: _A = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = tokenizer.vocab_size _A = len(lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _A = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] _A = tokenizer.add_tokens(lowerCAmelCase_ ) _A = tokenizer.vocab_size _A = len(lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , 0 ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) self.assertEqual(lowerCAmelCase_ , all_size + len(lowerCAmelCase_ ) ) _A = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=lowerCAmelCase_ ) self.assertGreaterEqual(len(lowerCAmelCase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _A = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} _A = tokenizer.add_special_tokens(lowerCAmelCase_ ) _A = tokenizer.vocab_size _A = len(lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , 0 ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) self.assertEqual(lowerCAmelCase_ , all_size_a + len(lowerCAmelCase_ ) ) _A = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=lowerCAmelCase_ ) self.assertGreaterEqual(len(lowerCAmelCase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def UpperCAmelCase ( self ) -> Union[str, Any]: pass def UpperCAmelCase ( self ) -> str: # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. _A = self.get_tokenizers(fast=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = ["""ð""", """ɪ""", """s""", """ɪ""", """z""", """ɐ""", """t""", """ɛ""", """k""", """s""", """t"""] _A = tokenizer.convert_tokens_to_string(lowerCAmelCase_ ) self.assertIsInstance(output["""text"""] , lowerCAmelCase_ )
180
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : int = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class __A (snake_case__): '''simple docstring''' __lowercase: List[str] = """canine""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : str=768 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : List[str]=16_384 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Tuple=1E-12 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : int=0XE000 , UpperCAmelCase_ : Optional[int]=0XE001 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : List[Any]=8 , UpperCAmelCase_ : Dict=16_384 , UpperCAmelCase_ : Optional[int]=128 , **UpperCAmelCase_ : Any , ) ->int: """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = type_vocab_size snake_case_ = layer_norm_eps # Character config: snake_case_ = downsampling_rate snake_case_ = upsampling_kernel_size snake_case_ = num_hash_functions snake_case_ = num_hash_buckets snake_case_ = local_transformer_stride
351
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(i + 1 , _SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: snake_case_ , snake_case_ = numbers[j], numbers[i] return numbers if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = input('Enter numbers separated by a comma:\n').strip() __SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
233
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE : Any = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
'''simple docstring''' from __future__ import annotations import requests def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = f'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(snake_case ).json() def UpperCamelCase_( snake_case : int = 1_0 ): '''simple docstring''' snake_case_ = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" snake_case_ = requests.get(snake_case ).json()[:max_stories] return [get_hackernews_story(snake_case ) for story_id in story_ids] def UpperCamelCase_( snake_case : int = 1_0 ): '''simple docstring''' snake_case_ = hackernews_top_stories(snake_case ) return "\n".join("* [{title}]({url})".format(**snake_case ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
85
1
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
91
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase : str = logging.get_logger(__name__) _lowercase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _lowercase : Tuple = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } _lowercase : Union[str, Any] = { """gpt2""": 1024, """gpt2-medium""": 1024, """gpt2-large""": 1024, """gpt2-xl""": 1024, """distilgpt2""": 1024, } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Dict = VOCAB_FILES_NAMES __magic_name__ : str = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : List[Any] = ["input_ids", "attention_mask"] __magic_name__ : List[Any] = GPTaTokenizer def __init__( self : Tuple , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Tuple="<|endoftext|>" , lowerCAmelCase : Union[str, Any]="<|endoftext|>" , lowerCAmelCase : Union[str, Any]="<|endoftext|>" , lowerCAmelCase : Optional[int]=False , **lowerCAmelCase : Tuple , )-> int: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''add_bos_token''' , lowerCAmelCase ) UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase ) != add_prefix_space: UpperCAmelCase = getattr(lowerCAmelCase , pre_tok_state.pop('''type''' ) ) UpperCAmelCase = add_prefix_space UpperCAmelCase = pre_tok_class(**lowerCAmelCase ) UpperCAmelCase = add_prefix_space def a__( self : Union[str, Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict )-> BatchEncoding: """simple docstring""" UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple )-> BatchEncoding: """simple docstring""" UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def a__( self : List[Any] , lowerCAmelCase : "Conversation" )-> List[int]: """simple docstring""" UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [self.eos_token_id] ) if len(lowerCAmelCase ) > self.model_max_length: UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
91
1
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib lowerCamelCase_ = get_logger() lowerCamelCase_ = None class _UpperCAmelCase ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): """simple docstring""" def __init__( self : int , __UpperCAmelCase : int=None , __UpperCAmelCase : List[str]=None , **__UpperCAmelCase : Optional[int] ): '''simple docstring''' super().__init__(features=__UpperCAmelCase ) import jax from jaxlib.xla_client import Device if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError( f'''Expected {device} to be a `str` not {type(__UpperCAmelCase )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) _A = device if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _A = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) _A = str(jax.devices()[0] ) _A = jnp_array_kwargs @staticmethod def lowerCAmelCase ( ): '''simple docstring''' import jax return {str(__UpperCAmelCase ): device for device in jax.devices()} def lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and column: if all( isinstance(__UpperCAmelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__UpperCAmelCase , axis=0 ) return column def lowerCAmelCase ( self : int , __UpperCAmelCase : List[str] ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__UpperCAmelCase , (str, bytes, type(__UpperCAmelCase )) ): return value elif isinstance(__UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _A = {} if isinstance(__UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _A = {"dtype": jnp.intaa} else: _A = {"dtype": jnp.intaa} elif isinstance(__UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _A = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__UpperCAmelCase , PIL.Image.Image ): _A = np.asarray(__UpperCAmelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _A = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__UpperCAmelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : int ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__UpperCAmelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__UpperCAmelCase , "__array__" ) and not isinstance(__UpperCAmelCase , jax.Array ): _A = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__UpperCAmelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__UpperCAmelCase ) for substruct in data_struct] ) elif isinstance(__UpperCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__UpperCAmelCase ) for substruct in data_struct] ) return self._tensorize(__UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : dict ): '''simple docstring''' return map_nested(self._recursive_tensorize , __UpperCAmelCase , map_list=__UpperCAmelCase ) def lowerCAmelCase ( self : str , __UpperCAmelCase : pa.Table ): '''simple docstring''' _A = self.numpy_arrow_extractor().extract_row(__UpperCAmelCase ) _A = self.python_features_decoder.decode_row(__UpperCAmelCase ) return self.recursive_tensorize(__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : pa.Table ): '''simple docstring''' _A = self.numpy_arrow_extractor().extract_column(__UpperCAmelCase ) _A = self.python_features_decoder.decode_column(__UpperCAmelCase , pa_table.column_names[0] ) _A = self.recursive_tensorize(__UpperCAmelCase ) _A = self._consolidate(__UpperCAmelCase ) return column def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : pa.Table ): '''simple docstring''' _A = self.numpy_arrow_extractor().extract_batch(__UpperCAmelCase ) _A = self.python_features_decoder.decode_batch(__UpperCAmelCase ) _A = self.recursive_tensorize(__UpperCAmelCase ) for column_name in batch: _A = self._consolidate(batch[column_name] ) return batch
79
"""simple docstring""" import math def _snake_case ( lowerCamelCase__ : list , lowerCamelCase__ : int ) -> int: lowerCamelCase_ : int =len(lowerCamelCase__ ) lowerCamelCase_ : List[Any] =int(math.floor(math.sqrt(lowerCamelCase__ ) ) ) lowerCamelCase_ : List[Any] =0 while arr[min(lowerCamelCase__ , lowerCamelCase__ ) - 1] < x: lowerCamelCase_ : str =step step += int(math.floor(math.sqrt(lowerCamelCase__ ) ) ) if prev >= n: return -1 while arr[prev] < x: lowerCamelCase_ : Dict =prev + 1 if prev == min(lowerCamelCase__ , lowerCamelCase__ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A__ : List[Any] = input('Enter numbers separated by a comma:\n').strip() A__ : Optional[Any] = [int(item) for item in user_input.split(',')] A__ : List[str] = int(input('Enter the number to be searched:\n')) A__ : Any = jump_search(arr, x) if res == -1: print('Number not found!') else: print(f'Number {x} is at index {res}')
144
0
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = len(lowerCAmelCase_ ) __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Tuple = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[Any] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['''PoolFormerFeatureExtractor'''] lowerCamelCase : Union[str, Any] = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
306
1
"""simple docstring""" from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run lowerCamelCase_ : str = True except (ImportError, AttributeError): lowerCamelCase_ : Optional[Any] = object def _A ( *lowercase , **lowercase ): """simple docstring""" pass lowerCamelCase_ : int = False lowerCamelCase_ : Dict = logging.get_logger("""transformers-cli/serving""") def _A ( lowercase ): """simple docstring""" a =pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(lowercase , args.host , args.port , args.workers ) class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = 42 class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = 42 __lowerCAmelCase = 42 class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = 42 class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = 42 class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE ( __A ) -> List[Any]: a =parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=__A , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=__A , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=__A , default=8888 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=__A , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=__A , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=__A , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=__A , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=__A , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=__A ) def __init__( self , __A , __A , __A , __A ) -> List[str]: a =pipeline a =host a =port a =workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(f'''Serving model over {host}:{port}''' ) a =FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=__A , response_class=__A , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=__A , response_class=__A , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=__A , response_class=__A , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=__A , response_class=__A , methods=['''POST'''] , ), ] , timeout=600 , ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: run(self._app , host=self.host , port=self.port , workers=self.workers ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def SCREAMING_SNAKE_CASE ( self , __A = Body(__A , embed=__A ) , __A = Body(__A , embed=__A ) ) -> str: try: a =self._pipeline.tokenizer.tokenize(__A ) if return_ids: a =self._pipeline.tokenizer.convert_tokens_to_ids(__A ) return ServeTokenizeResult(tokens=__A , tokens_ids=__A ) else: return ServeTokenizeResult(tokens=__A ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(__A )} ) def SCREAMING_SNAKE_CASE ( self , __A = Body(__A , embed=__A ) , __A = Body(__A , embed=__A ) , __A = Body(__A , embed=__A ) , ) -> str: try: a =self._pipeline.tokenizer.decode(__A , __A , __A ) return ServeDeTokenizeResult(model='''''' , text=__A ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(__A )} ) async def SCREAMING_SNAKE_CASE ( self , __A=Body(__A , embed=__A ) ) -> Any: # Check we don't have empty string if len(__A ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model a =self._pipeline(__A ) return ServeForwardResult(output=__A ) except Exception as e: raise HTTPException(500 , {'''error''': str(__A )} )
81
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = DistilBertTokenizer __lowerCAmelCase = DistilBertTokenizerFast __lowerCAmelCase = True @slow def SCREAMING_SNAKE_CASE ( self ) -> int: a =DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) a =tokenizer.encode('''sequence builders''' , add_special_tokens=__A ) a =tokenizer.encode('''multi-sequence build''' , add_special_tokens=__A ) a =tokenizer.build_inputs_with_special_tokens(__A ) a =tokenizer.build_inputs_with_special_tokens(__A , __A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
81
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Dict =logging.get_logger(__name__) # TODO Update this A__ : Tuple ={ '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase ( snake_case_ ): _lowercase: List[str] = '''esm''' def __init__( self : List[Any] , __snake_case : Dict=None , __snake_case : Tuple=None , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=7_68 , __snake_case : Dict=12 , __snake_case : List[str]=12 , __snake_case : Any=30_72 , __snake_case : Any=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Any=10_26 , __snake_case : str=0.02 , __snake_case : Dict=1E-1_2 , __snake_case : Union[str, Any]="absolute" , __snake_case : Optional[int]=True , __snake_case : Dict=None , __snake_case : Dict=False , __snake_case : Union[str, Any]=False , __snake_case : Dict=None , __snake_case : Any=None , **__snake_case : List[str] , ) -> str: super().__init__(pad_token_id=__snake_case , mask_token_id=__snake_case , **__snake_case ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = emb_layer_norm_before _lowerCAmelCase = token_dropout _lowerCAmelCase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) _lowerCAmelCase = EsmFoldConfig() elif isinstance(__snake_case , __snake_case ): _lowerCAmelCase = EsmFoldConfig(**__snake_case ) _lowerCAmelCase = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) _lowerCAmelCase = get_default_vocab_list() else: _lowerCAmelCase = vocab_list else: _lowerCAmelCase = None _lowerCAmelCase = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , __snake_case ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def lowercase__ ( self : Tuple ) -> List[str]: _lowerCAmelCase = super().to_dict() if isinstance(self.esmfold_config , __snake_case ): _lowerCAmelCase = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase : _lowercase: str = None _lowercase: bool = True _lowercase: bool = False _lowercase: bool = False _lowercase: bool = False _lowercase: float = 0 _lowercase: bool = True _lowercase: bool = False _lowercase: int = 128 _lowercase: "TrunkConfig" = None def lowercase__ ( self : Union[str, Any] ) -> List[Any]: if self.trunk is None: _lowerCAmelCase = TrunkConfig() elif isinstance(self.trunk , __snake_case ): _lowerCAmelCase = TrunkConfig(**self.trunk ) def lowercase__ ( self : str ) -> Union[str, Any]: _lowerCAmelCase = asdict(self ) _lowerCAmelCase = self.trunk.to_dict() return output @dataclass class UpperCAmelCase : _lowercase: int = 48 _lowercase: int = 1024 _lowercase: int = 128 _lowercase: int = 32 _lowercase: int = 32 _lowercase: int = 32 _lowercase: float = 0 _lowercase: float = 0 _lowercase: bool = False _lowercase: int = 4 _lowercase: Optional[int] = 128 _lowercase: "StructureModuleConfig" = None def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: if self.structure_module is None: _lowerCAmelCase = StructureModuleConfig() elif isinstance(self.structure_module , __snake_case ): _lowerCAmelCase = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowerCAmelCase = self.sequence_state_dim // self.sequence_head_width _lowerCAmelCase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def lowercase__ ( self : Optional[int] ) -> List[str]: _lowerCAmelCase = asdict(self ) _lowerCAmelCase = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase : _lowercase: int = 384 _lowercase: int = 128 _lowercase: int = 16 _lowercase: int = 128 _lowercase: int = 12 _lowercase: int = 4 _lowercase: int = 8 _lowercase: float = 0.1 _lowercase: int = 8 _lowercase: int = 1 _lowercase: int = 2 _lowercase: int = 7 _lowercase: int = 10 _lowercase: float = 1E-8 _lowercase: float = 1E5 def lowercase__ ( self : List[str] ) -> Optional[int]: return asdict(self ) def UpperCamelCase__ ( ): """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
364
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(snake_case_ ) , '''Tatoeba directory does not exist.''' ) class UpperCAmelCase ( unittest.TestCase ): @cached_property def lowercase__ ( self : int ) -> Any: _lowerCAmelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=__snake_case ) @slow def lowercase__ ( self : Dict ) -> int: self.resolver.convert_models(["""heb-eng"""] ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=__snake_case ) assert mmeta["long_pair"] == "heb-eng"
220
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) A_ = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
64
lowerCamelCase : Tuple = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} lowerCamelCase : int = ['''a''', '''b''', '''c''', '''d''', '''e'''] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] ): __lowercase : Dict = start # add current to visited visited.append(lowerCAmelCase_ ) __lowercase : Dict = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowercase : List[Any] = topological_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # if all neighbors visited add current to sort sort.append(lowerCAmelCase_ ) # if all vertices haven't been visited select a new one to visit if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): for vertice in vertices: if vertice not in visited: __lowercase : Tuple = topological_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # return sort return sort if __name__ == "__main__": lowerCamelCase : Any = topological_sort('''a''', [], []) print(sort)
233
0
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = mock.Mock() lowerCAmelCase_ = 500 lowerCAmelCase_ = {} lowerCAmelCase_ = HTTPError lowerCAmelCase_ = {} # Download this model to make sure it's in the cache. lowerCAmelCase_ = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''', return_value=__a ) as mock_head: lowerCAmelCase_ = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = mock.Mock() lowerCAmelCase_ = 500 lowerCAmelCase_ = {} lowerCAmelCase_ = HTTPError lowerCAmelCase_ = {} # Download this model to make sure it's in the cache. lowerCAmelCase_ = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''', return_value=__a ) as mock_head: lowerCAmelCase_ = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" try: lowerCAmelCase_ = tempfile.mktemp() with open(__a, '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', __a ) lowerCAmelCase_ = AlbertTokenizer.from_pretrained(__a ) finally: os.remove(__a ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''', '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''', __a ) lowerCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size, 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class A ( unittest.TestCase ): __snake_case = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): """simple docstring""" lowerCAmelCase_ = TOKEN HfFolder.save_token(__a ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): """simple docstring""" try: delete_repo(token=cls._token, repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = os.path.join(__a, '''vocab.txt''' ) with open(__a, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowerCAmelCase_ = BertTokenizer(__a ) tokenizer.push_to_hub('''test-tokenizer''', use_auth_token=self._token ) lowerCAmelCase_ = BertTokenizer.from_pretrained(f"{USER}/test-tokenizer" ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) # Reset repo delete_repo(token=self._token, repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a, repo_id='''test-tokenizer''', push_to_hub=__a, use_auth_token=self._token ) lowerCAmelCase_ = BertTokenizer.from_pretrained(f"{USER}/test-tokenizer" ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = os.path.join(__a, '''vocab.txt''' ) with open(__a, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowerCAmelCase_ = BertTokenizer(__a ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''', use_auth_token=self._token ) lowerCAmelCase_ = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) # Reset repo delete_repo(token=self._token, repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( __a, repo_id='''valid_org/test-tokenizer-org''', push_to_hub=__a, use_auth_token=self._token ) lowerCAmelCase_ = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) @require_tokenizers def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = os.path.join(__a, '''vocab.txt''' ) with open(__a, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowerCAmelCase_ = CustomTokenizer(__a ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''', use_auth_token=self._token ) lowerCAmelCase_ = AutoTokenizer.from_pretrained(f"{USER}/test-dynamic-tokenizer", trust_remote_code=__a ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = os.path.join(__a, '''vocab.txt''' ) with open(__a, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowerCAmelCase_ = BertTokenizerFast.from_pretrained(__a ) bert_tokenizer.save_pretrained(__a ) lowerCAmelCase_ = CustomTokenizerFast.from_pretrained(__a ) tokenizer.push_to_hub('''test-dynamic-tokenizer''', use_auth_token=self._token ) lowerCAmelCase_ = AutoTokenizer.from_pretrained(f"{USER}/test-dynamic-tokenizer", trust_remote_code=__a ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, '''CustomTokenizerFast''' ) lowerCAmelCase_ = AutoTokenizer.from_pretrained( f"{USER}/test-dynamic-tokenizer", use_fast=__a, trust_remote_code=__a ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, '''CustomTokenizer''' ) class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data, {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data, {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ), ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ), ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ), ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ), ['''BC''', '''A'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ), ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ), ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ), ['''AB''', '''C'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ), ['''ABC''', '''D'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = Trie() lowerCAmelCase_ = trie.cut_text('''ABC''', [0, 0, 2, 1, 2, 3] ) self.assertEqual(__a, ['''AB''', '''C'''] )
350
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device _A = False class A ( unittest.TestCase ): pass @nightly @require_torch_gpu class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = '''A painting of a squirrel eating a burger ''' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=UpperCamelCase__, generator=UpperCamelCase__, guidance_scale=7.5, num_inference_steps=2, output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase__ ) lowerCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained(UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = generator.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=UpperCamelCase__, generator=UpperCamelCase__, guidance_scale=7.5, num_inference_steps=2, output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''', torch_dtype=torch.floataa ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = '''A painting of a squirrel eating a burger ''' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=UpperCamelCase__, generator=UpperCamelCase__, guidance_scale=7.5, num_inference_steps=50, output_type='''numpy''' ).images lowerCAmelCase_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
167
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = CycleDiffusionPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } __UpperCamelCase = PipelineTesterMixin.required_optional_params - {"latents"} __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) __UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE_ : List[str] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , num_train_timesteps=1000 , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE_ : int = CLIPTextModel(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') SCREAMING_SNAKE_CASE_ : Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=0): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_)).to(lowercase_) SCREAMING_SNAKE_CASE_ : str = image / 2 + 0.5 if str(lowercase_).startswith('''mps'''): SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(lowercase_) else: SCREAMING_SNAKE_CASE_ : List[str] = torch.Generator(device=lowercase_).manual_seed(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : List[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : List[str] = CycleDiffusionPipeline(**lowercase_) SCREAMING_SNAKE_CASE_ : str = pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = pipe(**lowercase_) SCREAMING_SNAKE_CASE_ : int = output.images SCREAMING_SNAKE_CASE_ : Union[str, Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ : Dict = np.array([0.44_59, 0.49_43, 0.45_44, 0.66_43, 0.54_74, 0.43_27, 0.57_01, 0.59_59, 0.51_79]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.get_dummy_components() for name, module in components.items(): if hasattr(lowercase_ , '''half'''): SCREAMING_SNAKE_CASE_ : Union[str, Any] = module.half() SCREAMING_SNAKE_CASE_ : Tuple = CycleDiffusionPipeline(**lowercase_) SCREAMING_SNAKE_CASE_ : str = pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : int = self.get_dummy_inputs(lowercase_) SCREAMING_SNAKE_CASE_ : Any = pipe(**lowercase_) SCREAMING_SNAKE_CASE_ : int = output.images SCREAMING_SNAKE_CASE_ : List[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ : int = np.array([0.35_06, 0.45_43, 0.4_46, 0.45_75, 0.51_95, 0.41_55, 0.52_73, 0.5_18, 0.41_16]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''') def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' return super().test_inference_batch_single_identical() @skip_mps def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''') SCREAMING_SNAKE_CASE_ : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''') SCREAMING_SNAKE_CASE_ : List[str] = init_image.resize((512, 512)) SCREAMING_SNAKE_CASE_ : Optional[int] = '''CompVis/stable-diffusion-v1-4''' SCREAMING_SNAKE_CASE_ : int = DDIMScheduler.from_pretrained(lowercase_ , subfolder='''scheduler''') SCREAMING_SNAKE_CASE_ : List[str] = CycleDiffusionPipeline.from_pretrained( lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ , torch_dtype=torch.floataa , revision='''fp16''') pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ : Any = '''A black colored car''' SCREAMING_SNAKE_CASE_ : Optional[Any] = '''A blue colored car''' SCREAMING_SNAKE_CASE_ : str = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Tuple = pipe( prompt=lowercase_ , source_prompt=lowercase_ , image=lowercase_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image).max() < 5e-1 def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''') SCREAMING_SNAKE_CASE_ : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''') SCREAMING_SNAKE_CASE_ : List[Any] = init_image.resize((512, 512)) SCREAMING_SNAKE_CASE_ : Tuple = '''CompVis/stable-diffusion-v1-4''' SCREAMING_SNAKE_CASE_ : List[str] = DDIMScheduler.from_pretrained(lowercase_ , subfolder='''scheduler''') SCREAMING_SNAKE_CASE_ : Tuple = CycleDiffusionPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ : Optional[int] = '''A black colored car''' SCREAMING_SNAKE_CASE_ : Dict = '''A blue colored car''' SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe( prompt=lowercase_ , source_prompt=lowercase_ , image=lowercase_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Tuple = output.images assert np.abs(image - expected_image).max() < 2e-2
91
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowercase_ , '''hidden_sizes''')) self.parent.assertTrue(hasattr(lowercase_ , '''num_attention_heads''')) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : str , lowercase_ : Union[str, Any] , lowercase_ : List[Any]=13 , lowercase_ : Dict=64 , lowercase_ : Dict=3 , lowercase_ : Optional[Any]=3 , lowercase_ : List[Any]=2 , lowercase_ : Any=1 , lowercase_ : List[Any]=16 , lowercase_ : int=[128, 256, 384] , lowercase_ : str=[4, 6, 8] , lowercase_ : Optional[Any]=[2, 3, 4] , lowercase_ : Union[str, Any]=[16, 16, 16] , lowercase_ : Optional[Any]=0 , lowercase_ : Optional[int]=[2, 2, 2] , lowercase_ : Any=[2, 2, 2] , lowercase_ : List[str]=0.02 , lowercase_ : Any=True , lowercase_ : Union[str, Any]=True , lowercase_ : Optional[int]=2 , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = image_size SCREAMING_SNAKE_CASE_ : int = num_channels SCREAMING_SNAKE_CASE_ : List[Any] = kernel_size SCREAMING_SNAKE_CASE_ : Optional[Any] = stride SCREAMING_SNAKE_CASE_ : List[str] = padding SCREAMING_SNAKE_CASE_ : int = hidden_sizes SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : int = depths SCREAMING_SNAKE_CASE_ : Optional[Any] = key_dim SCREAMING_SNAKE_CASE_ : Optional[Any] = drop_path_rate SCREAMING_SNAKE_CASE_ : Tuple = patch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = attention_ratio SCREAMING_SNAKE_CASE_ : str = mlp_ratio SCREAMING_SNAKE_CASE_ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE_ : Any = is_training SCREAMING_SNAKE_CASE_ : Tuple = use_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size] , self.num_labels) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : Any , lowercase_ : int , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = LevitModel(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(lowercase_) SCREAMING_SNAKE_CASE_ : Any = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = image_size[0], image_size[1] for _ in range(4): SCREAMING_SNAKE_CASE_ : List[Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1) SCREAMING_SNAKE_CASE_ : Dict = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4) * ceil(width / 4), self.hidden_sizes[-1]) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = LevitForImageClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) __UpperCamelCase = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = LevitModelTester(self) SCREAMING_SNAKE_CASE_ : List[Any] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''') def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''') def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''') def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Any = model_class(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Dict = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' def check_hidden_states_output(lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : str): SCREAMING_SNAKE_CASE_ : str = model_class(lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Tuple = model(**self._prepare_for_class(lowercase_ , lowercase_)) SCREAMING_SNAKE_CASE_ : str = outputs.hidden_states SCREAMING_SNAKE_CASE_ : Optional[int] = len(self.model_tester.depths) + 1 self.assertEqual(len(lowercase_) , lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_size[0], image_size[1] for _ in range(4): SCREAMING_SNAKE_CASE_ : Optional[Any] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) SCREAMING_SNAKE_CASE_ : Optional[int] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[int] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ : Tuple = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Tuple=False): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Union[str, Any] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowercase_) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_class(lowercase_) model.to(lowercase_) model.train() SCREAMING_SNAKE_CASE_ : Optional[Any] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = model(**lowercase_).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Optional[int] = True for model_class in self.all_model_classes: if model_class in get_values(lowercase_) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE_ : List[str] = model_class(lowercase_) model.gradient_checkpointing_enable() model.to(lowercase_) model.train() SCREAMING_SNAKE_CASE_ : Dict = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = model(**lowercase_).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[Any] = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowercase_), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}'): SCREAMING_SNAKE_CASE_ : Optional[int] = problem_type['''title'''] SCREAMING_SNAKE_CASE_ : Optional[int] = problem_type['''num_labels'''] SCREAMING_SNAKE_CASE_ : str = model_class(lowercase_) model.to(lowercase_) model.train() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE_ : str = inputs['''labels'''].unsqueeze(1).repeat(1 , problem_type['''num_labels''']) SCREAMING_SNAKE_CASE_ : Any = inputs['''labels'''].to(problem_type['''dtype''']) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowercase_) as warning_list: SCREAMING_SNAKE_CASE_ : int = model(**lowercase_).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}') loss.backward() @slow def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Optional[Any] = LevitModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def _A () -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE_ : str = prepare_img() SCREAMING_SNAKE_CASE_ : List[Any] = image_processor(images=lowercase_ , return_tensors='''pt''').to(lowercase_) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Any = model(**lowercase_) # verify the logits SCREAMING_SNAKE_CASE_ : Tuple = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([1.04_48, -0.37_45, -1.83_17]).to(lowercase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4))
91
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __A =logging.getLogger(__name__) @dataclass class _snake_case : lowerCAmelCase :str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCAmelCase :Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCAmelCase :Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCAmelCase :Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowerCAmelCase :bool = field( default=_UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) lowerCAmelCase :str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCAmelCase :bool = field( default=_UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class _snake_case : lowerCAmelCase :Optional[str] = field(default=_UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) lowerCAmelCase :Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) lowerCAmelCase :bool = field( default=_UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) lowerCAmelCase :Optional[int] = field( default=_UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) lowerCAmelCase :Optional[int] = field( default=_UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowerCAmelCase :bool = field( default=_UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) lowerCAmelCase :Optional[int] = field( default=_UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCAmelCase :Optional[int] = field( default=_UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def snake_case__ ( self): if self.train_file is not None: UpperCAmelCase__ : List[str] = self.train_file.split(""".""")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCAmelCase__ : Union[str, Any] = self.validation_file.split(""".""")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _snake_case : lowerCAmelCase :PreTrainedTokenizerBase lowerCAmelCase :Union[bool, str, PaddingStrategy] = True lowerCAmelCase :Optional[int] = None lowerCAmelCase :Optional[int] = None def __call__( self , _lowerCamelCase): UpperCAmelCase__ : int = 'label' if 'label' in features[0].keys() else 'labels' UpperCAmelCase__ : int = [feature.pop(_UpperCAmelCase) for feature in features] UpperCAmelCase__ : int = len(_UpperCAmelCase) UpperCAmelCase__ : List[str] = len(features[0]["""input_ids"""]) UpperCAmelCase__ : Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase)] for feature in features ] UpperCAmelCase__ : List[str] = list(chain(*_UpperCAmelCase)) UpperCAmelCase__ : Optional[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCAmelCase__ : List[Any] = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1) for k, v in batch.items()} # Add back labels UpperCAmelCase__ : List[str] = torch.tensor(_UpperCAmelCase , dtype=torch.intaa) return batch def _UpperCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase__ : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase__ : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCAmelCase_ , lowerCAmelCase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase__ : Tuple = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) datasets.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCAmelCase__ : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase__ : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCAmelCase__ : List[str] = {} if data_args.train_file is not None: UpperCAmelCase__ : Optional[Any] = data_args.train_file if data_args.validation_file is not None: UpperCAmelCase__ : Dict = data_args.validation_file UpperCAmelCase__ : Dict = data_args.train_file.split(""".""" )[-1] UpperCAmelCase__ : Any = load_dataset( lowerCAmelCase_ , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCAmelCase__ : Optional[int] = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase__ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase__ : int = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCAmelCase__ : Optional[Any] = [f'''ending{i}''' for i in range(4 )] UpperCAmelCase__ : Optional[Any] = 'sent1' UpperCAmelCase__ : List[str] = 'sent2' if data_args.max_seq_length is None: UpperCAmelCase__ : str = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCAmelCase__ : Optional[Any] = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCAmelCase__ : Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCamelCase__ ): UpperCAmelCase__ : List[str] = [[context] * 4 for context in examples[context_name]] UpperCAmelCase__ : List[str] = examples[question_header_name] UpperCAmelCase__ : List[str] = [ [f'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCAmelCase_ ) ] # Flatten out UpperCAmelCase__ : List[Any] = list(chain(*lowerCAmelCase_ ) ) UpperCAmelCase__ : Tuple = list(chain(*lowerCAmelCase_ ) ) # Tokenize UpperCAmelCase__ : Union[str, Any] = tokenizer( lowerCAmelCase_ , lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCAmelCase_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCAmelCase__ : List[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: UpperCAmelCase__ : Dict = min(len(lowerCAmelCase_ ) , data_args.max_train_samples ) UpperCAmelCase__ : Tuple = train_dataset.select(range(lowerCAmelCase_ ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCAmelCase__ : int = train_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCAmelCase__ : Optional[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: UpperCAmelCase__ : str = min(len(lowerCAmelCase_ ) , data_args.max_eval_samples ) UpperCAmelCase__ : Optional[int] = eval_dataset.select(range(lowerCAmelCase_ ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCAmelCase__ : str = eval_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCAmelCase__ : Optional[Any] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCAmelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCamelCase__ ): UpperCAmelCase__ : Optional[Any] = eval_predictions UpperCAmelCase__ : Dict = np.argmax(lowerCAmelCase_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCAmelCase__ : List[str] = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , ) # Training if training_args.do_train: UpperCAmelCase__ : List[str] = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase__ : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase__ : int = last_checkpoint UpperCAmelCase__ : Union[str, Any] = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCAmelCase__ : Optional[Any] = train_result.metrics UpperCAmelCase__ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) UpperCAmelCase__ : List[Any] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("""train""" , lowerCAmelCase_ ) trainer.save_metrics("""train""" , lowerCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCAmelCase__ : Dict = trainer.evaluate() UpperCAmelCase__ : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase_ ) UpperCAmelCase__ : Union[str, Any] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("""eval""" , lowerCAmelCase_ ) trainer.save_metrics("""eval""" , lowerCAmelCase_ ) UpperCAmelCase__ : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) def _UpperCamelCase ( UpperCamelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
369
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType __A , __A , __A =False, False, False @dataclass class _snake_case : lowerCAmelCase :Optional[int] = None lowerCAmelCase :bool = True lowerCAmelCase :bool = True lowerCAmelCase :Optional[str] = None # Automatically constructed lowerCAmelCase :ClassVar[str] = "dict" lowerCAmelCase :ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) lowerCAmelCase :str = field(default='''Audio''' , init=a__ , repr=a__ ) def __call__( self): return self.pa_type def snake_case__ ( self , _lowerCamelCase): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""") from err if isinstance(_lowerCamelCase , _lowerCamelCase): return {"bytes": None, "path": value} elif isinstance(_lowerCamelCase , _lowerCamelCase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase__ : Optional[int] = BytesIO() sf.write(_lowerCamelCase , value["""array"""] , value["""sampling_rate"""] , format="""wav""") return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""") is not None and os.path.isfile(value["""path"""]): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm"""): # "PCM" only has raw audio bytes if value.get("""sampling_rate""") is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""") if value.get("""bytes"""): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase__ : Tuple = np.frombuffer(value["""bytes"""] , dtype=np.intaa).astype(np.floataa) / 3_2767 else: UpperCAmelCase__ : List[str] = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""").astype(np.floataa) / 3_2767 UpperCAmelCase__ : List[str] = BytesIO(bytes()) sf.write(_lowerCamelCase , _lowerCamelCase , value["""sampling_rate"""] , format="""wav""") return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""")} elif value.get("""bytes""") is not None or value.get("""path""") is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes"""), "path": value.get("""path""")} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''') def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""") UpperCAmelCase__ , UpperCAmelCase__ : Tuple = (value["""path"""], BytesIO(value["""bytes"""])) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''') try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""") from err UpperCAmelCase__ : Dict = xsplitext(_lowerCamelCase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """) if file is None: UpperCAmelCase__ : int = token_per_repo_id or {} UpperCAmelCase__ : Optional[int] = path.split("""::""")[-1] try: UpperCAmelCase__ : Dict = string_to_dict(_lowerCamelCase , config.HUB_DATASETS_URL)["""repo_id"""] UpperCAmelCase__ : Dict = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase__ : List[Any] = None with xopen(_lowerCamelCase , """rb""" , use_auth_token=_lowerCamelCase) as f: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = sf.read(_lowerCamelCase) else: UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = sf.read(_lowerCamelCase) UpperCAmelCase__ : str = array.T if self.mono: UpperCAmelCase__ : List[Any] = librosa.to_mono(_lowerCamelCase) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase__ : int = librosa.resample(_lowerCamelCase , orig_sr=_lowerCamelCase , target_sr=self.sampling_rate) UpperCAmelCase__ : Tuple = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def snake_case__ ( self): from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""") return { "bytes": Value("""binary"""), "path": Value("""string"""), } def snake_case__ ( self , _lowerCamelCase): if pa.types.is_string(storage.type): UpperCAmelCase__ : Dict = pa.array([None] * len(_lowerCamelCase) , type=pa.binary()) UpperCAmelCase__ : Tuple = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCAmelCase__ : Optional[int] = pa.array([None] * len(_lowerCamelCase) , type=pa.string()) UpperCAmelCase__ : str = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices("""array"""): UpperCAmelCase__ : Optional[Any] = pa.array([Audio().encode_example(_lowerCamelCase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index("""bytes""") >= 0: UpperCAmelCase__ : int = storage.field("""bytes""") else: UpperCAmelCase__ : List[str] = pa.array([None] * len(_lowerCamelCase) , type=pa.binary()) if storage.type.get_field_index("""path""") >= 0: UpperCAmelCase__ : List[Any] = storage.field("""path""") else: UpperCAmelCase__ : Optional[int] = pa.array([None] * len(_lowerCamelCase) , type=pa.string()) UpperCAmelCase__ : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null()) return array_cast(_lowerCamelCase , self.pa_type) def snake_case__ ( self , _lowerCamelCase): @no_op_if_value_is_null def path_to_bytes(_lowerCamelCase): with xopen(_lowerCamelCase , """rb""") as f: UpperCAmelCase__ : int = f.read() return bytes_ UpperCAmelCase__ : Optional[Any] = pa.array( [ (path_to_bytes(x["""path"""]) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase__ : Optional[Any] = pa.array( [os.path.basename(_lowerCamelCase) if path is not None else None for path in storage.field("""path""").to_pylist()] , type=pa.string() , ) UpperCAmelCase__ : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null()) return array_cast(_lowerCamelCase , self.pa_type)
283
0
from __future__ import annotations from math import pi def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
306
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCAmelCase : def __init__( self: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int=13 , UpperCAmelCase_: Optional[int]=7 , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=True , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]=33 , UpperCAmelCase_: Tuple=32 , UpperCAmelCase_: List[Any]=5 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Any=37 , UpperCAmelCase_: Optional[Any]="gelu" , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Dict=512 , UpperCAmelCase_: int=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = EsmForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = False __snake_case : Dict = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __snake_case : List[Any] = () __snake_case : Dict = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) __snake_case : int = True def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: int ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _SCREAMING_SNAKE_CASE = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _SCREAMING_SNAKE_CASE = create_position_ids_from_input_ids(UpperCAmelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.empty(2 , 4 , 30 ) _SCREAMING_SNAKE_CASE = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _SCREAMING_SNAKE_CASE = torch.as_tensor([expected_single_positions, expected_single_positions] ) _SCREAMING_SNAKE_CASE = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' pass @require_torch class __UpperCAmelCase (_UpperCAmelCase ): @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
1
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union __snake_case : Tuple = TypeVar('T') __snake_case : int = Union[List[T], Tuple[T, ...]] __snake_case : List[Any] = Union[T, List[T], Dict[str, T]] __snake_case : List[str] = Union[str, bytes, os.PathLike]
369
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] ) -> List[str]: '''simple docstring''' return f"gaussian_noise_s={seed}_shape={'_'.join([str(lowerCAmelCase_ ) for s in shape] )}.npy" def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase__ ( self : Tuple , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : List[str]=(4, 4, 64, 64) , lowerCAmelCase_ : Optional[Any]=False ) -> str: '''simple docstring''' A__ : Union[str, Any] =jnp.bfloataa if fpaa else jnp.floataa A__ : Any =jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase_ , lowerCAmelCase_ ) ) , dtype=lowerCAmelCase_ ) return image def lowercase__ ( self : int , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Dict="CompVis/stable-diffusion-v1-4" ) -> List[Any]: '''simple docstring''' A__ : Any =jnp.bfloataa if fpaa else jnp.floataa A__ : int ="""bf16""" if fpaa else None A__ , A__ : Any =FlaxUNetaDConditionModel.from_pretrained( lowerCAmelCase_ , subfolder="""unet""" , dtype=lowerCAmelCase_ , revision=lowerCAmelCase_ ) return model, params def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : Optional[Any]=(4, 77, 7_68) , lowerCAmelCase_ : List[str]=False ) -> Tuple: '''simple docstring''' A__ : Union[str, Any] =jnp.bfloataa if fpaa else jnp.floataa A__ : Optional[int] =jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase_ , lowerCAmelCase_ ) ) , dtype=lowerCAmelCase_ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 10_00, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def lowercase__ ( self : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ) -> int: '''simple docstring''' A__ , A__ : Tuple =self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=lowerCAmelCase_ ) A__ : List[Any] =self.get_latents(lowerCAmelCase_ , fpaa=lowerCAmelCase_ ) A__ : Optional[int] =self.get_encoder_hidden_states(lowerCAmelCase_ , fpaa=lowerCAmelCase_ ) A__ : Union[str, Any] =model.apply( {"""params""": params} , lowerCAmelCase_ , jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase_ , ).sample assert sample.shape == latents.shape A__ : Optional[int] =jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) A__ : Tuple =jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 10_00, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def lowercase__ ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] ) -> List[str]: '''simple docstring''' A__ , A__ : List[str] =self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=lowerCAmelCase_ ) A__ : Union[str, Any] =self.get_latents(lowerCAmelCase_ , shape=(4, 4, 96, 96) , fpaa=lowerCAmelCase_ ) A__ : Dict =self.get_encoder_hidden_states(lowerCAmelCase_ , shape=(4, 77, 10_24) , fpaa=lowerCAmelCase_ ) A__ : Optional[Any] =model.apply( {"""params""": params} , lowerCAmelCase_ , jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase_ , ).sample assert sample.shape == latents.shape A__ : Optional[Any] =jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) A__ : List[Any] =jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-2 )
136
0
'''simple docstring''' import argparse import json from tqdm import tqdm def a_ ( ) -> str: """simple docstring""" lowerCamelCase_ =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__snake_case , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__snake_case , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__snake_case , help='''where to store parsed gold_data_path file''' , ) lowerCamelCase_ =parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: lowerCamelCase_ =json.load(__snake_case ) for dpr_record in tqdm(__snake_case ): lowerCamelCase_ =dpr_record['''question'''] lowerCamelCase_ =[context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__snake_case ) + '''\n''' ) if __name__ == "__main__": main()
75
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a ( a_ ): UpperCAmelCase_ : List[Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : str ="AutoImageProcessor" UpperCAmelCase_ : Any ="AutoTokenizer" def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ): lowercase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _lowerCamelCase , ) lowercase = kwargs.pop('feature_extractor' ) lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_lowerCamelCase , _lowerCamelCase ) lowercase = self.image_processor lowercase = False def __call__( self , *_lowerCamelCase , **_lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCamelCase , **_lowerCamelCase ) lowercase = kwargs.pop('images' , _lowerCamelCase ) lowercase = kwargs.pop('text' , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowercase = args[0] lowercase = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: lowercase = self.image_processor(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) if text is not None: lowercase = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) if text is None: return inputs elif images is None: return encodings else: lowercase = encodings['input_ids'] return inputs def UpperCamelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def UpperCamelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @contextmanager def UpperCamelCase_ ( self ): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) lowercase = True lowercase = self.tokenizer yield lowercase = self.image_processor lowercase = False def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=None ): if added_vocab is None: lowercase = self.tokenizer.get_added_vocab() lowercase = {} while tokens: lowercase = re.search(R'<s_(.*?)>' , _lowerCamelCase , re.IGNORECASE ) if start_token is None: break lowercase = start_token.group(1 ) lowercase = re.search(RF'</s_{key}>' , _lowerCamelCase , re.IGNORECASE ) lowercase = start_token.group() if end_token is None: lowercase = tokens.replace(_lowerCamelCase , '' ) else: lowercase = end_token.group() lowercase = re.escape(_lowerCamelCase ) lowercase = re.escape(_lowerCamelCase ) lowercase = re.search(F'{start_token_escaped}(.*?){end_token_escaped}' , _lowerCamelCase , re.IGNORECASE ) if content is not None: lowercase = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowercase = self.tokenajson(_lowerCamelCase , is_inner_value=_lowerCamelCase , added_vocab=_lowerCamelCase ) if value: if len(_lowerCamelCase ) == 1: lowercase = value[0] lowercase = value else: # leaf nodes lowercase = [] for leaf in content.split(R'<sep/>' ): lowercase = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowercase = leaf[1:-2] # for categorical special tokens output[key].append(_lowerCamelCase ) if len(output[key] ) == 1: lowercase = output[key][0] lowercase = tokens[tokens.find(_lowerCamelCase ) + len(_lowerCamelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_lowerCamelCase , added_vocab=_lowerCamelCase ) if len(_lowerCamelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def UpperCamelCase_ ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _lowerCamelCase , ) return self.image_processor_class @property def UpperCamelCase_ ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _lowerCamelCase , ) return self.image_processor
220
0
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list[list[int | float]] ) -> int: snake_case = len(snake_case_ ) snake_case = len(matrix[0] ) snake_case = min(snake_case_ , snake_case_ ) for row in range(snake_case_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , snake_case_ ): snake_case = matrix[col][row] / matrix[row][row] for i in range(snake_case_ , snake_case_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows snake_case = True for i in range(row + 1 , snake_case_ ): if matrix[i][row] != 0: snake_case , snake_case = matrix[i], matrix[row] snake_case = False break if reduce: rank -= 1 for i in range(snake_case_ ): snake_case = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
367
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list: snake_case = len(__lowerCAmelCase ) snake_case = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): snake_case = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): snake_case = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
3
0