code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def lowercase_ ( ): """simple docstring""" A_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=_UpperCAmelCase , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=_UpperCAmelCase , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=_UpperCAmelCase , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=_UpperCAmelCase , default=0 , help='''cuda_id.''' , ) A_ : int = parser.parse_args() return args def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if not len(_UpperCAmelCase ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) A_ , A_ : str = imgs[0].size A_ : List[str] = Image.new('''RGB''' , size=(cols * w, rows * h) ) A_ , A_ : Any = grid.size for i, img in enumerate(_UpperCAmelCase ): grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase="robotic cat with wings" , _UpperCAmelCase=7.5 , _UpperCAmelCase=50 , _UpperCAmelCase=1 , _UpperCAmelCase=42 , ): """simple docstring""" A_ : Optional[int] = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase ) A_ : str = pipeline( _UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images A_ : Any = int(math.sqrt(_UpperCAmelCase ) ) A_ : str = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images _lowerCamelCase : Dict = parse_args() # Load models and create wrapper for stable diffusion _lowerCamelCase : Optional[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') _lowerCamelCase : Any = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') _lowerCamelCase : int = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') _lowerCamelCase : List[Any] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') _lowerCamelCase : Optional[Any] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) _lowerCamelCase : Dict = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): _lowerCamelCase : Optional[int] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: _lowerCamelCase : List[Any] = unet.to(torch.device('cuda', args.cuda_id)) _lowerCamelCase : str = pipeline.to(unet.device) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) _lowerCamelCase : List[Any] = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
167
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowercase_ ( _UpperCAmelCase = "" ): """simple docstring""" A_ : Optional[int] = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' A_ : str = BeautifulSoup(requests.get(_UpperCAmelCase ).text , '''html.parser''' ) A_ : List[Any] = soup.find_all('''td''' , attrs='''titleColumn''' ) A_ : List[str] = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_UpperCAmelCase , _UpperCAmelCase ) } def lowercase_ ( _UpperCAmelCase = "IMDb_Top_250_Movies.csv" ): """simple docstring""" A_ : Any = get_imdb_top_aaa_movies() with open(_UpperCAmelCase , '''w''' , newline='''''' ) as out_file: A_ : List[Any] = csv.writer(_UpperCAmelCase ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
167
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __a ( unittest.TestCase ): __lowercase : Union[str, Any] = StableDiffusionLDMaDPipeline __lowercase : Optional[Any] = TEXT_TO_IMAGE_PARAMS __lowercase : int = TEXT_TO_IMAGE_BATCH_PARAMS __lowercase : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase__: str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowercase__: Tuple = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) lowercase__: str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__: Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase__: Dict = CLIPTextModel(lowerCAmelCase__ ) lowercase__: Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase__: Any = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> Optional[Any]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith('mps' ): lowercase__: str = torch.manual_seed(lowerCAmelCase__ ) else: lowercase__: Optional[Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowercase__: List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase__: Optional[int] = self.get_dummy_components() lowercase__: Tuple = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) lowercase__: List[Any] = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: List[Any] = self.get_dummy_inputs(lowerCAmelCase__ ) lowercase__: Union[str, Any] = ldmad_pipe(**lowerCAmelCase__ ) lowercase__ , lowercase__: int = output.rgb, output.depth lowercase__: List[str] = rgb[0, -3:, -3:, -1] lowercase__: Optional[Any] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowercase__: Optional[int] = np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) lowercase__: int = np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: Any = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) lowercase__: Union[str, Any] = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) lowercase__: List[str] = 3 * [inputs['prompt']] # forward lowercase__: List[Any] = ldmad_pipe(**lowerCAmelCase__ ) lowercase__ , lowercase__: Optional[int] = output.rgb, output.depth lowercase__: Union[str, Any] = rgb_slice_a[0, -3:, -3:, -1] lowercase__: List[str] = depth_slice_a[0, -3:, -1] lowercase__: str = self.get_dummy_inputs(lowerCAmelCase__ ) lowercase__: str = 3 * [inputs.pop('prompt' )] lowercase__: Dict = ldmad_pipe.tokenizer( lowerCAmelCase__ , padding='max_length' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=lowerCAmelCase__ , return_tensors='pt' , ) lowercase__: int = text_inputs['input_ids'].to(lowerCAmelCase__ ) lowercase__: Union[str, Any] = ldmad_pipe.text_encoder(lowerCAmelCase__ )[0] lowercase__: Dict = prompt_embeds # forward lowercase__: Dict = ldmad_pipe(**lowerCAmelCase__ ) lowercase__ , lowercase__: Any = output.rgb, output.depth lowercase__: Optional[Any] = rgb_slice_a[0, -3:, -3:, -1] lowercase__: Tuple = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase__: str = self.get_dummy_components() lowercase__: Any = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) lowercase__: List[str] = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) lowercase__: Any = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: Tuple = self.get_dummy_inputs(lowerCAmelCase__ ) lowercase__: List[str] = 'french fries' lowercase__: Tuple = ldmad_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) lowercase__ , lowercase__: Union[str, Any] = output.rgb, output.depth lowercase__: str = rgb[0, -3:, -3:, -1] lowercase__: Union[str, Any] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowercase__: Union[str, Any] = np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) lowercase__: List[Any] = np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__="cpu" , lowerCAmelCase__=torch.floataa , lowerCAmelCase__=0 ) -> List[Any]: '''simple docstring''' lowercase__: List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowercase__: int = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 64, 64) ) lowercase__: List[str] = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) lowercase__: Optional[Any] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: int = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) lowercase__: str = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: Dict = self.get_inputs(lowerCAmelCase__ ) lowercase__: Tuple = ldmad_pipe(**lowerCAmelCase__ ) lowercase__ , lowercase__: List[str] = output.rgb, output.depth lowercase__: Optional[Any] = rgb[0, -3:, -3:, -1].flatten() lowercase__: List[str] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) lowercase__: Any = np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) lowercase__: Optional[int] = np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__="cpu" , lowerCAmelCase__=torch.floataa , lowerCAmelCase__=0 ) -> Any: '''simple docstring''' lowercase__: Optional[Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowercase__: List[Any] = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 64, 64) ) lowercase__: Any = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) lowercase__: List[str] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: int = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: List[Any] = self.get_inputs(lowerCAmelCase__ ) lowercase__: Dict = ldmad_pipe(**lowerCAmelCase__ ) lowercase__ , lowercase__: Tuple = output.rgb, output.depth lowercase__: Optional[int] = 0.4_9_5_5_8_6 lowercase__: List[Any] = 0.3_3_7_9_5_5_1_5 lowercase__: Dict = 1_1_2.4_8_5_1_8 lowercase__: str = 9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: Any = self.get_inputs(lowerCAmelCase__ ) lowercase__: Tuple = ldmad_pipe(**lowerCAmelCase__ ) lowercase__ , lowercase__: Optional[Any] = output.rgb, output.depth lowercase__: Tuple = 0.4_1_9_4_1_2_7 lowercase__: Any = 0.3_5_3_7_5_5_8_6 lowercase__: str = 0.5_6_3_8_5_0_2 lowercase__: Any = 0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
288
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __a ( tf.keras.layers.Layer ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None ) -> int: '''simple docstring''' super().__init__() lowercase__: Union[str, Any] = pad_token_id lowercase__: List[str] = max_length lowercase__: int = vocab lowercase__: List[Any] = merges lowercase__: str = BytePairTokenizer(lowerCAmelCase__ , lowerCAmelCase__ , sequence_length=lowerCAmelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Tuple = [' '.join(lowerCAmelCase__ ) for m in tokenizer.bpe_ranks.keys()] lowercase__: List[Any] = tokenizer.get_vocab() return cls(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' lowercase__: int = GPTaTokenizer.from_pretrained(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) return cls.from_tokenizer(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCAmelCase__ ) -> Dict: '''simple docstring''' return cls(**lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Optional[Any]: '''simple docstring''' lowercase__: Optional[Any] = self.tf_tokenizer(lowerCAmelCase__ ) lowercase__: List[Any] = tf.ones_like(lowerCAmelCase__ ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__: int = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__: List[Any] = pad_model_inputs( lowerCAmelCase__ , max_seq_length=lowerCAmelCase__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
288
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Optional[int] = '''levit''' def __init__( self , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=3 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=1_6 , lowerCAmelCase__=[1_2_8, 2_5_6, 3_8_4] , lowerCAmelCase__=[4, 8, 1_2] , lowerCAmelCase__=[4, 4, 4] , lowerCAmelCase__=[1_6, 1_6, 1_6] , lowerCAmelCase__=0 , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=0.02 , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = kernel_size __SCREAMING_SNAKE_CASE = stride __SCREAMING_SNAKE_CASE = padding __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = key_dim __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = attention_ratio __SCREAMING_SNAKE_CASE = mlp_ratio __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : int = version.parse('''1.11''' ) @property def snake_case_ ( self): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def snake_case_ ( self): return 1E-4
100
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Dict = "openai/whisper-base" __A : str = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __A : Any = "transcriber" __A : Any = WhisperProcessor __A : int = WhisperForConditionalGeneration __A : Any = ["audio"] __A : List[str] = ["text"] def _snake_case ( self , __A ): """simple docstring""" return self.pre_processor(__A , return_tensors="pt" ).input_features def _snake_case ( self , __A ): """simple docstring""" return self.model.generate(inputs=__A ) def _snake_case ( self , __A ): """simple docstring""" return self.pre_processor.batch_decode(__A , skip_special_tokens=__A )[0]
283
0
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 snake_case = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 128, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @classmethod def _A ( cls : Optional[Any] ): SCREAMING_SNAKE_CASE : Tuple = TOKEN HfFolder.save_token(UpperCAmelCase_ ) @classmethod def _A ( cls : Optional[int] ): try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _A ( self : Dict ): SCREAMING_SNAKE_CASE : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ , repo_id="test-config" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Optional[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Optional[Any] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase_ , repo_id="valid_org/test-config-org" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Any = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _A ( self : List[Any] ): CustomConfig.register_for_auto_class() SCREAMING_SNAKE_CASE : Union[str, Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=UpperCAmelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated SCREAMING_SNAKE_CASE : Optional[int] = c.n_embd + 1 # int SCREAMING_SNAKE_CASE : Any = c.resid_pdrop + 1.0 # float SCREAMING_SNAKE_CASE : Optional[int] = not c.scale_attn_weights # bool SCREAMING_SNAKE_CASE : Union[str, Any] = c.summary_type + "foo" # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(UpperCAmelCase_ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(UpperCAmelCase_ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(UpperCAmelCase_ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(UpperCAmelCase_ , c.summary_type , "mismatch for key: summary_type" ) def _A ( self : int ): SCREAMING_SNAKE_CASE : List[str] = PretrainedConfig() SCREAMING_SNAKE_CASE : Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase_ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) SCREAMING_SNAKE_CASE : str = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase_ , UpperCAmelCase_ )] if len(UpperCAmelCase_ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f''' {', '.join(UpperCAmelCase_ )}.''' ) def _A ( self : str ): with self.assertRaises(UpperCAmelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(UpperCAmelCase_ ) def _A ( self : Optional[int] ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE : Tuple = mock.Mock() SCREAMING_SNAKE_CASE : str = 500 SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : Dict = HTTPError SCREAMING_SNAKE_CASE : Dict = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE : Optional[int] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase_ ) as mock_head: SCREAMING_SNAKE_CASE : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _A ( self : Any ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE : Optional[int] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE : List[Any] = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase_ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 SCREAMING_SNAKE_CASE : str = ["config.42.0.0.json"] SCREAMING_SNAKE_CASE : List[str] = 768 configuration.save_pretrained(UpperCAmelCase_ ) shutil.move(os.path.join(UpperCAmelCase_ , "config.4.0.0.json" ) , os.path.join(UpperCAmelCase_ , "config.42.0.0.json" ) ) SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 768 ) def _A ( self : Dict ): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. SCREAMING_SNAKE_CASE : Dict = "hf-internal-testing/test-two-configs" import transformers as new_transformers SCREAMING_SNAKE_CASE : Optional[int] = "v4.0.0" SCREAMING_SNAKE_CASE : Any = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase_ , return_unused_kwargs=UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers SCREAMING_SNAKE_CASE : int = "v3.0.0" SCREAMING_SNAKE_CASE : Any = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(old_configuration.hidden_size , 768 )
354
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''ClapFeatureExtractor''' UpperCamelCase_ : Any = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("sampling_rate" , UpperCAmelCase_ ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if audios is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor( UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and audios is not None: SCREAMING_SNAKE_CASE : Optional[Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _A ( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _A ( self : str ): SCREAMING_SNAKE_CASE : Any = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
319
0
def __SCREAMING_SNAKE_CASE ( snake_case_ = 1000 ): '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
133
"""simple docstring""" import random def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> bool: '''simple docstring''' lowercase_ = num - 1 lowercase_ = 0 while s % 2 == 0: lowercase_ = s // 2 t += 1 for _ in range(5 ): lowercase_ = random.randrange(2 , num - 1 ) lowercase_ = pow(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if v != 1: lowercase_ = 0 while v != (num - 1): if i == t - 1: return False else: lowercase_ = i + 1 lowercase_ = (v**2) % num return True def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> bool: '''simple docstring''' if num < 2: return False lowercase_ = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 10_24 ) -> int: '''simple docstring''' while True: lowercase_ = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(__lowerCAmelCase ): return num if __name__ == "__main__": UpperCAmelCase : Tuple = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
136
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class a ( UpperCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEImgaImgPipeline SCREAMING_SNAKE_CASE : Optional[Any] = ['''image'''] SCREAMING_SNAKE_CASE : Optional[int] = ['''image'''] SCREAMING_SNAKE_CASE : Optional[int] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] SCREAMING_SNAKE_CASE : Tuple = False @property def lowerCamelCase__ ( self : List[Any] ) -> Union[str, Any]: return 32 @property def lowerCamelCase__ ( self : Union[str, Any] ) -> int: return 32 @property def lowerCamelCase__ ( self : str ) -> List[str]: return self.time_input_dim * 4 @property def lowerCamelCase__ ( self : List[Any] ) -> str: return 8 @property def lowerCamelCase__ ( self : int ) -> Dict: torch.manual_seed(0 ) __UpperCAmelCase : int = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __UpperCAmelCase : List[Any] = CLIPVisionModel(UpperCamelCase_ ) return model @property def lowerCamelCase__ ( self : Dict ) -> List[Any]: __UpperCAmelCase : Optional[Any] = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ ( self : List[str] ) -> str: torch.manual_seed(0 ) __UpperCAmelCase : Dict = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __UpperCAmelCase : Tuple = PriorTransformer(**UpperCamelCase_ ) return model @property def lowerCamelCase__ ( self : Dict ) -> List[Any]: torch.manual_seed(0 ) __UpperCAmelCase : int = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } __UpperCAmelCase : Tuple = ShapERenderer(**UpperCamelCase_ ) return model def lowerCamelCase__ ( self : str ) -> Any: __UpperCAmelCase : List[Any] = self.dummy_prior __UpperCAmelCase : Any = self.dummy_image_encoder __UpperCAmelCase : Optional[Any] = self.dummy_image_processor __UpperCAmelCase : Any = self.dummy_renderer __UpperCAmelCase : Optional[Any] = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) __UpperCAmelCase : Dict = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowerCamelCase__ ( self : Optional[Any] , snake_case : Tuple , snake_case : Optional[int]=0 ) -> Tuple: __UpperCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith('''mps''' ): __UpperCAmelCase : Any = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : str = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def lowerCamelCase__ ( self : int ) -> str: __UpperCAmelCase : Tuple = '''cpu''' __UpperCAmelCase : Any = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ ) __UpperCAmelCase : Any = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : List[Any] = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) __UpperCAmelCase : Optional[int] = output.images[0] __UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __UpperCAmelCase : Optional[int] = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : int ) -> int: self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase : List[str] = torch_device == '''cpu''' __UpperCAmelCase : Any = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def lowerCamelCase__ ( self : List[str] ) -> str: __UpperCAmelCase : int = self.get_dummy_components() __UpperCAmelCase : Dict = self.pipeline_class(**UpperCamelCase_ ) __UpperCAmelCase : Any = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : int = 1 __UpperCAmelCase : Tuple = 2 __UpperCAmelCase : Optional[int] = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: __UpperCAmelCase : Optional[int] = batch_size * [inputs[key]] __UpperCAmelCase : int = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : str ) -> str: __UpperCAmelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) __UpperCAmelCase : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) __UpperCAmelCase : str = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) __UpperCAmelCase : int = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Dict = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __UpperCAmelCase : Optional[int] = pipe( UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCAmelCase :Union[str, Any] = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Dict = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Dict = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __UpperCAmelCase :Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
240
0
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __UpperCamelCase : List[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ , A_ ): for attribute in key.split('''.''' ): lowerCAmelCase__ : Any = getattr(A_ , A_ ) if weight_type is not None: lowerCAmelCase__ : Tuple = getattr(A_ , A_ ).shape else: lowerCAmelCase__ : int = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCAmelCase__ : Any = value elif weight_type == "weight_g": lowerCAmelCase__ : List[str] = value elif weight_type == "weight_v": lowerCAmelCase__ : Union[str, Any] = value elif weight_type == "bias": lowerCAmelCase__ : Dict = value else: lowerCAmelCase__ : Union[str, Any] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Union[str, Any] = fairseq_model.state_dict() lowerCAmelCase__ : List[str] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowerCAmelCase__ : Any = None for name, value in fairseq_dict.items(): lowerCAmelCase__ : Dict = False if "conv_layers" in name: load_conv_layer( A_ , A_ , A_ , A_ , hf_model.config.feat_extract_norm == '''group''' , ) lowerCAmelCase__ : List[Any] = True elif name.split('''.''' )[0] == "proj": lowerCAmelCase__ : List[Any] = fairseq_model.proj lowerCAmelCase__ : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCAmelCase__ : Optional[Any] = True if "*" in mapped_key: lowerCAmelCase__ : List[Any] = name.split(A_ )[0].split('''.''' )[-2] lowerCAmelCase__ : Optional[Any] = mapped_key.replace('''*''' , A_ ) if "weight_g" in name: lowerCAmelCase__ : Dict = '''weight_g''' elif "weight_v" in name: lowerCAmelCase__ : Dict = '''weight_v''' elif "bias" in name: lowerCAmelCase__ : List[Any] = '''bias''' elif "weight" in name: lowerCAmelCase__ : Union[str, Any] = '''weight''' else: lowerCAmelCase__ : str = None set_recursively(A_ , A_ , A_ , A_ , A_ ) continue if not is_used: unused_weights.append(A_ ) logger.warning(f'Unused weights: {unused_weights}' ) return proj_weight def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ , A_ ): lowerCAmelCase__ : List[Any] = full_name.split('''conv_layers.''' )[-1] lowerCAmelCase__ : int = name.split('''.''' ) lowerCAmelCase__ : Tuple = int(items[0] ) lowerCAmelCase__ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCAmelCase__ : Dict = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCAmelCase__ : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowerCAmelCase__ : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCAmelCase__ : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(A_ ) def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = emb.weight.shape lowerCAmelCase__ : List[str] = nn.Linear(A_ , A_ , bias=A_ ) lowerCAmelCase__ : Optional[Any] = emb.weight.data return lin_layer def __SCREAMING_SNAKE_CASE ( A_ ): with open(A_ , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase__ : str = f.readlines() lowerCAmelCase__ : Any = [line.split(''' ''' )[0] for line in lines] lowerCAmelCase__ : Tuple = len(A_ ) lowerCAmelCase__ : Dict = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(A_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): lowerCAmelCase__ : Optional[int] = WavaVecaConfig.from_pretrained(A_ ) lowerCAmelCase__ : Dict = SpeechaTextaConfig.from_pretrained( A_ , vocab_size=A_ , decoder_layers=A_ , do_stable_layer_norm=A_ ) lowerCAmelCase__ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=A_ , return_attention_mask=A_ , ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) lowerCAmelCase__ : Optional[int] = model[0].eval() # set weights for wav2vec2 encoder lowerCAmelCase__ : str = WavaVecaModel(A_ ) lowerCAmelCase__ : Dict = recursively_load_weights_wavaveca(model.encoder , A_ ) lowerCAmelCase__ : List[Any] = SpeechaTextaForCausalLM(A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=A_ ) # set output linear layer unexpected_keys.remove('''embed_out''' ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowerCAmelCase__ : Union[str, Any] = SpeechEncoderDecoderModel(encoder=A_ , decoder=A_ ) lowerCAmelCase__ : Union[str, Any] = False # add projection layer lowerCAmelCase__ : Optional[int] = nn.Parameter(projection_layer.weight ) lowerCAmelCase__ : List[Any] = nn.Parameter(projection_layer.bias ) lowerCAmelCase__ : str = create_vocab_dict(A_ ) with open(os.path.join(A_ , '''vocab.json''' ) , '''w''' ) as fp: json.dump(A_ , A_ ) lowerCAmelCase__ : str = SpeechaTextaTokenizer(os.path.join(A_ , '''vocab.json''' ) ) tokenizer.save_pretrained(A_ ) lowerCAmelCase__ : Any = hf_wavavec.config.to_dict() lowerCAmelCase__ : Any = tokenizer.pad_token_id lowerCAmelCase__ : Optional[Any] = tokenizer.bos_token_id lowerCAmelCase__ : str = tokenizer.eos_token_id lowerCAmelCase__ : Optional[Any] = '''speech_to_text_2''' lowerCAmelCase__ : List[str] = '''wav2vec2''' lowerCAmelCase__ : Dict = SpeechEncoderDecoderConfig.from_dict(A_ ) hf_wavavec.save_pretrained(A_ ) feature_extractor.save_pretrained(A_ ) if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=1_0_2_2_4, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') __UpperCamelCase : List[Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
106
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowercase : Dict = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: A : Union[str, Any] = os.path.abspath(snake_case__ ) logger.info(F'Loading PyTorch weights from {pt_path}' ) A : Any = torch.load(snake_case__ , map_location='''cpu''' ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) A : List[str] = convert_pytorch_state_dict_to_flax(snake_case__ , snake_case__ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files A : Any = convert_pytorch_sharded_state_dict_to_flax(snake_case__ , snake_case__ ) return flax_state_dict def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): '''simple docstring''' def is_key_or_prefix_key_in_dict(snake_case__ ) -> bool: return len(set(snake_case__ ) & {key, (model_prefix,) + key} ) > 0 # layer norm A : Union[str, Any] = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean A : Tuple = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var A : Dict = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # embedding A : Any = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # conv layer A : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(snake_case__ ): A : List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A : Optional[int] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(snake_case__ ): A : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A : Dict = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 A : Dict = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): A : List[Any] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): A : List[str] = pt_tuple_key[-2] + '''_v''' if name is not None: A : int = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} A : int = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: A : List[str] = flax_model.params['''params'''] else: A : Dict = flax_model.params A : List[Any] = flatten_dict(snake_case__ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: A : List[str] = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(snake_case__ ) A : int = {} A : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) A : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A : str = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary A : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: A : Any = pt_tuple_key[1:] # Correctly rename weight parameters A, A : Dict = rename_key_and_reshape_tensor( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # add model prefix if necessary A : Any = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: A : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: A : Tuple = jnp.asarray(snake_case__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(snake_case__ , snake_case__ ) continue # also add unexpected weight so that warning is thrown A : List[str] = jnp.asarray(snake_case__ ) else: # also add unexpected weight so that warning is thrown A : Optional[Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' import torch # Load the index A : Union[str, Any] = {} for shard_file in shard_filenames: # load using msgpack utils A : List[str] = torch.load(snake_case__ ) A : int = {k: v.numpy() for k, v in pt_state_dict.items()} A : Tuple = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: A : Optional[int] = flax_model.params['''params'''] A : List[Any] = flatten_dict(snake_case__ ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: A : Dict = flax_model.params A : Tuple = flatten_dict(snake_case__ ) A : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) A : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A : int = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary A : List[str] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: A : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters A, A : Any = rename_key_and_reshape_tensor( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # add model prefix if necessary A : int = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: A : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: A : Optional[int] = jnp.asarray(snake_case__ ) continue if "var" in flax_key[-1]: A : Optional[int] = jnp.asarray(snake_case__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(snake_case__ , snake_case__ ) continue # also add unexpected weight so that warning is thrown A : Optional[Any] = jnp.asarray(snake_case__ ) else: # also add unexpected weight so that warning is thrown A : Optional[Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Dict = os.path.abspath(snake_case__ ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class A : List[str] = getattr(snake_case__ , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(snake_case__ , '''rb''' ) as state_f: try: A : int = from_bytes(snake_case__ , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights A : List[str] = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa , snake_case__ ) ).values() if any(snake_case__ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) A : Optional[Any] = jax.tree_util.tree_map( lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ ) A : Union[str, Any] = flatten_dict(snake_case__ ) A : List[Any] = pt_model.state_dict() A : Union[str, Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) A : Tuple = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys A : int = [] A : Any = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A : Union[str, Any] = flax_key_tuple[0] == pt_model.base_model_prefix A : int = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: A : List[str] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: A : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(snake_case__ ) not in pt_model_dict: # conv layer A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) A : Optional[int] = jnp.transpose(snake_case__ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ) not in pt_model_dict: # linear layer A : Tuple = flax_key_tuple[:-1] + ('''weight''',) A : Tuple = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: A : Tuple = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: A : Tuple = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: A : List[Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: A : Union[str, Any] = '''.'''.join(snake_case__ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. A : int = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: A : Optional[int] = key.split('''.''' ) A : Dict = None if key_components[-3::2] == ["parametrizations", "original0"]: A : List[str] = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: A : List[Any] = key_components[-2] + '''_v''' if name is not None: A : str = key_components[:-3] + [name] A : Optional[Any] = '''.'''.join(snake_case__ ) A : Optional[Any] = key if flax_key in special_pt_names: A : Optional[Any] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict A : Dict = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor A : Dict = torch.from_numpy(snake_case__ ) # remove from missing keys missing_keys.remove(snake_case__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(snake_case__ ) pt_model.load_state_dict(snake_case__ ) # re-transform missing_keys to list A : List[Any] = list(snake_case__ ) if len(snake_case__ ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(snake_case__ ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' '''If your task is similar to the task the model of the checkpoint was trained on, ''' F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
3
0
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _A : Optional[int] =10 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: for i in range(_UpperCamelCase , _UpperCamelCase ): if array[i] == target: return i return -1 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: lowerCamelCase__ : str = 0 lowerCamelCase__ : str = len(_UpperCamelCase ) while left <= right: if right - left < precision: return lin_search(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowerCamelCase__ : Optional[int] = (left + right) // 3 + 1 lowerCamelCase__ : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowerCamelCase__ : Any = one_third - 1 elif array[two_third] < target: lowerCamelCase__ : List[Any] = two_third + 1 else: lowerCamelCase__ : Any = one_third + 1 lowerCamelCase__ : Optional[Any] = two_third - 1 else: return -1 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: if left < right: if right - left < precision: return lin_search(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowerCamelCase__ : Optional[Any] = (left + right) // 3 + 1 lowerCamelCase__ : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_UpperCamelCase , one_third - 1 , _UpperCamelCase , _UpperCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _UpperCamelCase , _UpperCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _A : Union[str, Any] =input('''Enter numbers separated by comma:\n''').strip() _A : Union[str, Any] =[int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." _A : Union[str, Any] =int(input('''Enter the number to be found in the list:\n''').strip()) _A : Optional[Any] =ite_ternary_search(collection, target) _A : Optional[Any] =rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'Iterative search: {target} found at positions: {resulta}') print(F'Recursive search: {target} found at positions: {resulta}') else: print('''Not found''')
368
'''simple docstring''' from torch import nn def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
129
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = StableDiffusionPanoramaPipeline __a = TEXT_TO_IMAGE_PARAMS __a = TEXT_TO_IMAGE_BATCH_PARAMS __a = TEXT_TO_IMAGE_IMAGE_PARAMS __a = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase ( self : int ): torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) _snake_case = DDIMScheduler() torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _snake_case = CLIPTextModel(_lowerCamelCase ) _snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _snake_case = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase ( self : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any=0 ): _snake_case = torch.manual_seed(_lowerCamelCase ) _snake_case = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowercase ( self : Tuple ): _snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionPanoramaPipeline(**_lowerCamelCase ) _snake_case = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) _snake_case = self.get_dummy_inputs(_lowerCamelCase ) _snake_case = sd_pipe(**_lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Optional[Any] ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase ( self : Union[str, Any] ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def lowercase ( self : Optional[int] ): _snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionPanoramaPipeline(**_lowerCamelCase ) _snake_case = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) _snake_case = self.get_dummy_inputs(_lowerCamelCase ) _snake_case = '''french fries''' _snake_case = sd_pipe(**_lowerCamelCase , negative_prompt=_lowerCamelCase ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Tuple ): _snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionPanoramaPipeline(**_lowerCamelCase ) _snake_case = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) _snake_case = self.get_dummy_inputs(_lowerCamelCase ) _snake_case = sd_pipe(**_lowerCamelCase , view_batch_size=2 ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : str ): _snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' ) _snake_case = StableDiffusionPanoramaPipeline(**_lowerCamelCase ) _snake_case = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) _snake_case = self.get_dummy_inputs(_lowerCamelCase ) _snake_case = sd_pipe(**_lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : List[Any] ): _snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = PNDMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , skip_prk_steps=_lowerCamelCase ) _snake_case = StableDiffusionPanoramaPipeline(**_lowerCamelCase ) _snake_case = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) _snake_case = self.get_dummy_inputs(_lowerCamelCase ) _snake_case = sd_pipe(**_lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def lowercase ( self : int ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : List[Any] , _lowerCamelCase : List[Any]=0 ): _snake_case = torch.manual_seed(_lowerCamelCase ) _snake_case = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowercase ( self : Tuple ): _snake_case = '''stabilityai/stable-diffusion-2-base''' _snake_case = DDIMScheduler.from_pretrained(_lowerCamelCase , subfolder='''scheduler''' ) _snake_case = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() _snake_case = pipe(**_lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _snake_case = np.array( [ 0.3_6_9_6_8_3_9_2, 0.2_7_0_2_5_3_7_2, 0.3_2_4_4_6_7_6_6, 0.2_8_3_7_9_3_8_7, 0.3_6_3_6_3_2_7_4, 0.3_0_7_3_3_3_4_7, 0.2_7_1_0_0_0_2_7, 0.2_7_0_5_4_1_2_5, 0.2_5_5_3_6_0_9_6, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def lowercase ( self : List[Any] ): _snake_case = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_lowerCamelCase ) _snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() _snake_case = pipe(**_lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _snake_case = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase ( self : Dict ): _snake_case = 0 def callback_fn(_lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : torch.FloatTensor ) -> None: _snake_case = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _snake_case = latents[0, -3:, -3:, -1] _snake_case = np.array( [ 0.1_8_6_8_1_8_6_9, 0.3_3_9_0_7_8_1_6, 0.5_3_6_1_2_7_6, 0.1_4_4_3_2_8_6_5, -0.0_2_8_5_6_6_1_1, -0.7_3_9_4_1_1_2_3, 0.2_3_3_9_7_9_8_7, 0.4_7_3_2_2_6_8_2, -0.3_7_8_2_3_1_6_4, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _snake_case = latents[0, -3:, -3:, -1] _snake_case = np.array( [ 0.1_8_5_3_9_6_4_5, 0.3_3_9_8_7_2_4_8, 0.5_3_7_8_5_5_9, 0.1_4_4_3_7_1_4_2, -0.0_2_4_5_5_2_6_1, -0.7_3_3_8_3_1_7, 0.2_3_9_9_0_7_5_5, 0.4_7_3_5_6_2_7_2, -0.3_7_8_6_5_0_5, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _snake_case = False _snake_case = '''stabilityai/stable-diffusion-2-base''' _snake_case = DDIMScheduler.from_pretrained(_lowerCamelCase , subfolder='''scheduler''' ) _snake_case = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase ) _snake_case = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() pipe(**_lowerCamelCase , callback=_lowerCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase ( self : Union[str, Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _snake_case = '''stabilityai/stable-diffusion-2-base''' _snake_case = DDIMScheduler.from_pretrained(_lowerCamelCase , subfolder='''scheduler''' ) _snake_case = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase ) _snake_case = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _snake_case = self.get_inputs() _snake_case = pipe(**_lowerCamelCase ) _snake_case = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
288
"""simple docstring""" import os import time import numpy as np import onnxruntime as ort UpperCAmelCase__ = '1' UpperCAmelCase__ = '0' UpperCAmelCase__ = '1' UpperCAmelCase__ = ort.SessionOptions() UpperCAmelCase__ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('Create inference session...') UpperCAmelCase__ = ['TensorrtExecutionProvider', 'CUDAExecutionProvider'] UpperCAmelCase__ = ort.InferenceSession('model.onnx', sess_options=sess_opt, providers=execution_provider) UpperCAmelCase__ = ort.RunOptions() UpperCAmelCase__ = 128 UpperCAmelCase__ = 1 UpperCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) UpperCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) UpperCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) print('Warm up phase...') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Start inference...') UpperCAmelCase__ = time.time() UpperCAmelCase__ = 2000 UpperCAmelCase__ = {} for iter in range(max_iters): UpperCAmelCase__ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Average Inference Time = {:.3f} ms'.format((time.time() - start_time) * 1000 / max_iters))
288
1
"""simple docstring""" from __future__ import annotations class snake_case__ : def __init__( self , lowerCamelCase ): __a = data __a = None __a = None def _lowerCamelCase( a ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def _lowerCamelCase( a ): return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def _lowerCamelCase( a ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def _lowerCamelCase( ): # Main function for testing. __a = Node(1 ) __a = Node(2 ) __a = Node(3 ) __a = Node(4 ) __a = Node(5 ) __a = Node(6 ) __a = Node(7 ) __a = Node(8 ) __a = Node(9 ) print(is_full_binary_tree(a ) ) print(depth_of_tree(a ) ) print("Tree is: " ) display(a ) if __name__ == "__main__": main()
268
"""simple docstring""" from __future__ import annotations def _lowerCamelCase( a , a , a , a , a , ): __a = len(a ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(a ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , a , a , ) def _lowerCamelCase( a ): __a = [] depth_first_search([] , [] , [] , a , a ) # Print all the boards for board in boards: for column in board: print(a ) print("" ) print(len(a ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
268
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Any = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100]) SCREAMING_SNAKE_CASE_: Dict = get_activation("gelu") self.assertTrue(torch.allclose(gelu_python(SCREAMING_SNAKE_CASE_) , torch_builtin(SCREAMING_SNAKE_CASE_))) self.assertFalse(torch.allclose(gelu_python(SCREAMING_SNAKE_CASE_) , gelu_new(SCREAMING_SNAKE_CASE_))) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100]) SCREAMING_SNAKE_CASE_: List[Any] = get_activation("gelu") SCREAMING_SNAKE_CASE_: Optional[int] = get_activation("gelu_10") SCREAMING_SNAKE_CASE_: Any = torch_builtin(SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE_: Optional[int] = geluaa(SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0) self.assertTrue(torch.max(SCREAMING_SNAKE_CASE_).item() == 10.0) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): get_activation("gelu") get_activation("gelu_10") get_activation("gelu_fast") get_activation("gelu_new") get_activation("gelu_python") get_activation("gelu_pytorch_tanh") get_activation("linear") get_activation("mish") get_activation("quick_gelu") get_activation("relu") get_activation("sigmoid") get_activation("silu") get_activation("swish") get_activation("tanh") with self.assertRaises(SCREAMING_SNAKE_CASE_): get_activation("bogus") with self.assertRaises(SCREAMING_SNAKE_CASE_): get_activation(SCREAMING_SNAKE_CASE_) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: int = get_activation("gelu") SCREAMING_SNAKE_CASE_: Optional[Any] = 1 SCREAMING_SNAKE_CASE_: List[Any] = get_activation("gelu") self.assertEqual(acta.a , 1) with self.assertRaises(SCREAMING_SNAKE_CASE_): SCREAMING_SNAKE_CASE_: Tuple = acta.a
13
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase ) -> bool: if len(__lowercase ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) A: Any = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Optional[int] = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "table-transformer" snake_case_ = ["past_key_values"] snake_case_ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Optional[int] ,A : Optional[Any]=True ,A : Dict=None ,A : Any=3 ,A : Union[str, Any]=1_00 ,A : Dict=6 ,A : Optional[int]=20_48 ,A : Any=8 ,A : str=6 ,A : List[str]=20_48 ,A : Any=8 ,A : Optional[Any]=0.0 ,A : str=0.0 ,A : Union[str, Any]=True ,A : Tuple="relu" ,A : List[str]=2_56 ,A : Union[str, Any]=0.1 ,A : Tuple=0.0 ,A : Any=0.0 ,A : Tuple=0.02 ,A : Optional[Any]=1.0 ,A : Optional[int]=False ,A : List[str]="sine" ,A : List[Any]="resnet50" ,A : List[Any]=True ,A : Any=False ,A : Union[str, Any]=1 ,A : Dict=5 ,A : str=2 ,A : str=1 ,A : Union[str, Any]=1 ,A : Optional[Any]=5 ,A : List[Any]=2 ,A : Tuple=0.1 ,**A : Optional[int] ,): if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __A = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(A ,A ): __A = backbone_config.get("model_type" ) __A = CONFIG_MAPPING[backbone_model_type] __A = config_class.from_dict(A ) # set timm attributes to None __A , __A , __A = None, None, None __A = use_timm_backbone __A = backbone_config __A = num_channels __A = num_queries __A = d_model __A = encoder_ffn_dim __A = encoder_layers __A = encoder_attention_heads __A = decoder_ffn_dim __A = decoder_layers __A = decoder_attention_heads __A = dropout __A = attention_dropout __A = activation_dropout __A = activation_function __A = init_std __A = init_xavier_std __A = encoder_layerdrop __A = decoder_layerdrop __A = encoder_layers __A = auxiliary_loss __A = position_embedding_type __A = backbone __A = use_pretrained_backbone __A = dilation # Hungarian matcher __A = class_cost __A = bbox_cost __A = giou_cost # Loss coefficients __A = mask_loss_coefficient __A = dice_loss_coefficient __A = bbox_loss_coefficient __A = giou_loss_coefficient __A = eos_coefficient super().__init__(is_encoder_decoder=A ,**A ) @property def UpperCamelCase_ ( self : Any ): return self.encoder_attention_heads @property def UpperCamelCase_ ( self : Dict ): return self.d_model class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = version.parse("1.11" ) @property def UpperCamelCase_ ( self : int ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase_ ( self : Union[str, Any] ): return 1E-5 @property def UpperCamelCase_ ( self : str ): return 12
124
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "facebook/bart-large-mnli" snake_case_ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) snake_case_ = "text_classifier" snake_case_ = AutoTokenizer snake_case_ = AutoModelForSequenceClassification snake_case_ = ["text", ["text"]] snake_case_ = ["text"] def UpperCamelCase_ ( self : str ): super().setup() __A = self.model.config __A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): __A = int(A ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def UpperCamelCase_ ( self : int ,A : Optional[Any] ,A : Dict ): __A = labels return self.pre_processor( [text] * len(A ) ,[f'''This example is {label}''' for label in labels] ,return_tensors="pt" ,padding="max_length" ,) def UpperCamelCase_ ( self : Union[str, Any] ,A : Tuple ): __A = outputs.logits __A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
124
1
import glob import os import random from string import ascii_lowercase, digits import cva UpperCamelCase = '''''' UpperCamelCase = '''''' UpperCamelCase = '''''' UpperCamelCase = 1 # (0 is vertical, 1 is horizontal) def lowercase_ ( ): lowercase__ , lowercase__ : Optional[Any] = get_dataset(_lowerCamelCase , _lowerCamelCase) print("Processing...") lowercase__ , lowercase__ , lowercase__ : List[str] = update_image_and_anno(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) for index, image in enumerate(_lowerCamelCase): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase__ : Optional[Any] = random_chars(32) lowercase__ : Dict = paths[index].split(os.sep)[-1].rsplit("." , 1)[0] lowercase__ : Optional[Any] = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , _lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85]) print(f'''Success {index+1}/{len(_lowerCamelCase)} with {file_name}''') lowercase__ : Any = [] for anno in new_annos[index]: lowercase__ : Any = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(_lowerCamelCase) with open(f'''/{file_root}.txt''' , "w") as outfile: outfile.write("\n".join(line for line in annos_list)) def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : str): lowercase__ : List[Any] = [] lowercase__ : Optional[int] = [] for label_file in glob.glob(os.path.join(_lowerCamelCase , "*.txt")): lowercase__ : Optional[int] = label_file.split(os.sep)[-1].rsplit("." , 1)[0] with open(_lowerCamelCase) as in_file: lowercase__ : Optional[Any] = in_file.readlines() lowercase__ : str = os.path.join(_lowerCamelCase , f'''{label_name}.jpg''') lowercase__ : Dict = [] for obj_list in obj_lists: lowercase__ : List[str] = obj_list.rstrip("\n").split(" ") boxes.append( [ int(obj[0]), float(obj[1]), float(obj[2]), float(obj[3]), float(obj[4]), ]) if not boxes: continue img_paths.append(_lowerCamelCase) labels.append(_lowerCamelCase) return img_paths, labels def lowercase_ ( _lowerCamelCase : list , _lowerCamelCase : list , _lowerCamelCase : int = 1): lowercase__ : Union[str, Any] = [] lowercase__ : Any = [] lowercase__ : Optional[Any] = [] for idx in range(len(_lowerCamelCase)): lowercase__ : Tuple = [] lowercase__ : Dict = img_list[idx] path_list.append(_lowerCamelCase) lowercase__ : Optional[int] = anno_list[idx] lowercase__ : Optional[Any] = cva.imread(_lowerCamelCase) if flip_type == 1: lowercase__ : List[str] = cva.flip(_lowerCamelCase , _lowerCamelCase) for bbox in img_annos: lowercase__ : List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]]) elif flip_type == 0: lowercase__ : Any = cva.flip(_lowerCamelCase , _lowerCamelCase) for bbox in img_annos: lowercase__ : Dict = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]]) new_annos_lists.append(_lowerCamelCase) new_imgs_list.append(_lowerCamelCase) return new_imgs_list, new_annos_lists, path_list def lowercase_ ( _lowerCamelCase : int = 32): assert number_char > 1, "The number of character should greater than 1" lowercase__ : List[Any] = ascii_lowercase + digits return "".join(random.choice(_lowerCamelCase) for _ in range(_lowerCamelCase)) if __name__ == "__main__": main() print('''DONE ✅''')
87
import argparse snake_case : int = '''docs/source/_static/js/custom.js''' def __lowercase ( __lowerCAmelCase : Optional[Any] ): with open(__lowerCAmelCase , encoding='utf-8' , newline='\n' ) as f: a__ = f.readlines() a__ = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 a__ = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(__lowerCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') snake_case : Optional[int] = parser.parse_args() update_custom_js(args.version)
240
0
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar __SCREAMING_SNAKE_CASE : List[Any] = TypeVar('_T') class lowercase_ ( Generic[_T] ): def __init__( self , lowercase_ = None ): _snake_case : list[_T] = list(iterable or [] ) _snake_case : list[_T] = [] def __len__( self ): return len(self._stacka ) + len(self._stacka ) def __repr__( self ): return f"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def UpperCamelCase ( self , lowercase_ ): self._stacka.append(lowercase_ ) def UpperCamelCase ( self ): _snake_case : int = self._stacka.pop _snake_case : Optional[int] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
371
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def snake_case (__lowercase ) -> str: '''simple docstring''' _snake_case : int = args.pruning_method _snake_case : List[Any] = args.threshold _snake_case : Optional[Any] = args.model_name_or_path.rstrip("/" ) _snake_case : List[str] = args.target_model_path print(F"""Load fine-pruned model from {model_name_or_path}""" ) _snake_case : List[Any] = torch.load(os.path.join(__lowercase , "pytorch_model.bin" ) ) _snake_case : List[str] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _snake_case : Tuple = tensor print(F"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: _snake_case : Optional[int] = tensor print(F"""Copied layer {name}""" ) elif "bias" in name: _snake_case : List[Any] = tensor print(F"""Copied layer {name}""" ) else: if pruning_method == "magnitude": _snake_case : Tuple = MagnitudeBinarizer.apply(inputs=__lowercase , threshold=__lowercase ) _snake_case : List[str] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue _snake_case : Optional[Any] = name[:-6] _snake_case : Any = model[F"""{prefix_}mask_scores"""] _snake_case : Tuple = TopKBinarizer.apply(__lowercase , __lowercase ) _snake_case : Optional[Any] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _snake_case : int = name[:-6] _snake_case : List[Any] = model[F"""{prefix_}mask_scores"""] _snake_case : List[str] = ThresholdBinarizer.apply(__lowercase , __lowercase , __lowercase ) _snake_case : List[str] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue _snake_case : int = name[:-6] _snake_case : Any = model[F"""{prefix_}mask_scores"""] _snake_case ,_snake_case : Union[str, Any] = -0.1, 1.1 _snake_case : Dict = torch.sigmoid(__lowercase ) _snake_case : List[str] = s * (r - l) + l _snake_case : Tuple = s_bar.clamp(min=0.0 , max=1.0 ) _snake_case : Union[str, Any] = tensor * mask print(F"""Pruned layer {name}""" ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: _snake_case : Any = os.path.join( os.path.dirname(__lowercase ) , F"""bertarized_{os.path.basename(__lowercase )}""" ) if not os.path.isdir(__lowercase ): shutil.copytree(__lowercase , __lowercase ) print(F"""\nCreated folder {target_model_path}""" ) torch.save(__lowercase , os.path.join(__lowercase , "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) __SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() main(args)
284
0
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): SCREAMING_SNAKE_CASE :Optional[Any] = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) SCREAMING_SNAKE_CASE :Optional[int] = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } SCREAMING_SNAKE_CASE :List[str] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' SCREAMING_SNAKE_CASE :Union[str, Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' SCREAMING_SNAKE_CASE :List[str] = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } SCREAMING_SNAKE_CASE :Optional[int] = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' SCREAMING_SNAKE_CASE :int = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) SCREAMING_SNAKE_CASE :Dict = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' SCREAMING_SNAKE_CASE :List[str] = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) SCREAMING_SNAKE_CASE :str = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' SCREAMING_SNAKE_CASE :int = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' SCREAMING_SNAKE_CASE :Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' SCREAMING_SNAKE_CASE :List[str] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' SCREAMING_SNAKE_CASE :Dict = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' SCREAMING_SNAKE_CASE :Dict = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' SCREAMING_SNAKE_CASE :Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' SCREAMING_SNAKE_CASE :str = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' SCREAMING_SNAKE_CASE :Optional[int] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' SCREAMING_SNAKE_CASE :int = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' SCREAMING_SNAKE_CASE :str = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' SCREAMING_SNAKE_CASE :int = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' SCREAMING_SNAKE_CASE :List[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' SCREAMING_SNAKE_CASE :int = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' SCREAMING_SNAKE_CASE :Union[str, Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' SCREAMING_SNAKE_CASE :str = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' SCREAMING_SNAKE_CASE :Tuple = '' SCREAMING_SNAKE_CASE :Tuple = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' SCREAMING_SNAKE_CASE :str = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' SCREAMING_SNAKE_CASE :Optional[Any] = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" assert ReadMe.from_string(a_ , a_ ).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def UpperCAmelCase ( a_ , a_ ) -> List[Any]: """simple docstring""" with pytest.raises(a_ , match=re.escape(expected_error.format(path="root" ) ) ): __A = ReadMe.from_string(a_ , a_ ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]: """simple docstring""" with pytest.raises(a_ , match=re.escape(expected_error.format(path="root" ) ) ): ReadMe.from_string(a_ , a_ ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" ReadMe.from_string(a_ , a_ , suppress_parsing_errors=a_ ) @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def UpperCAmelCase ( a_ , a_ ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __A = Path(a_ ) / "README.md" with open(a_ , "w+" ) as readme_file: readme_file.write(a_ ) __A = ReadMe.from_readme(a_ , a_ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __A = Path(a_ ) / "README.md" with open(a_ , "w+" ) as readme_file: readme_file.write(a_ ) __A = expected_error.format(path=a_ ) with pytest.raises(a_ , match=re.escape(a_ ) ): __A = ReadMe.from_readme(a_ , a_ ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __A = Path(a_ ) / "README.md" with open(a_ , "w+" ) as readme_file: readme_file.write(a_ ) __A = expected_error.format(path=a_ ) with pytest.raises(a_ , match=re.escape(a_ ) ): ReadMe.from_readme(a_ , a_ ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase ( a_ ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __A = Path(a_ ) / "README.md" with open(a_ , "w+" ) as readme_file: readme_file.write(a_ ) ReadMe.from_readme(a_ , a_ , suppress_parsing_errors=a_ )
15
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =(DPMSolverSDEScheduler,) snake_case_ =10 def lowerCAmelCase__ (self ,**__lowerCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase__ : List[str] = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__lowerCamelCase ) return config def lowerCAmelCase__ (self ) -> int: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] ,[0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__lowerCamelCase ,beta_end=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : List[str] = self.scheduler_classes[0] lowerCAmelCase__ : str = self.get_scheduler_config() lowerCAmelCase__ : Optional[Any] = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Union[str, Any] = self.dummy_model() lowerCAmelCase__ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Union[str, Any] = sample.to(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : Dict = scheduler.scale_model_input(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Any = model(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : List[Any] = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase__ : List[Any] = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Tuple = sample.to(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : Optional[Any] = scheduler.scale_model_input(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = model(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Any = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1e-3 def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Any = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : str = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ,device=__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = self.dummy_model() lowerCAmelCase__ : List[Any] = self.dummy_sample_deter.to(__lowerCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Any = model(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : List[Any] = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : List[Any] = output.prev_sample lowerCAmelCase__ : List[str] = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : str = self.scheduler_classes[0] lowerCAmelCase__ : List[Any] = self.get_scheduler_config() lowerCAmelCase__ : Union[str, Any] = scheduler_class(**__lowerCamelCase ,use_karras_sigmas=__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ,device=__lowerCamelCase ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter.to(__lowerCamelCase ) * scheduler.init_noise_sigma lowerCAmelCase__ : Union[str, Any] = sample.to(__lowerCamelCase ) for t in scheduler.timesteps: lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : str = model(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Tuple = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : str = output.prev_sample lowerCAmelCase__ : Tuple = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase__ : List[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2
129
0
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.999 , _SCREAMING_SNAKE_CASE="cosine" , ) ->Dict: if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) a__: List[str] = [] for i in range(__SCREAMING_SNAKE_CASE ): a__: Tuple = i / num_diffusion_timesteps a__: Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__SCREAMING_SNAKE_CASE ) / alpha_bar_fn(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) ) return torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class __snake_case ( __UpperCamelCase , __UpperCamelCase ): a__ = [e.name for e in KarrasDiffusionSchedulers] a__ = 2 @register_to_config def __init__( self , lowercase = 10_00 , lowercase = 0.00085 , lowercase = 0.012 , lowercase = "linear" , lowercase = None , lowercase = "epsilon" , lowercase = False , lowercase = False , lowercase = 1.0 , lowercase = "linspace" , lowercase = 0 , ) -> Tuple: '''simple docstring''' if trained_betas is not None: a__: Tuple = torch.tensor(_lowerCAmelCase , dtype=torch.floataa) elif beta_schedule == "linear": a__: int = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a__: Tuple = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a__: Union[str, Any] = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type='cosine') elif beta_schedule == "exp": a__: Optional[Any] = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type='exp') else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}') a__: Union[str, Any] = 1.0 - self.betas a__: Optional[Any] = torch.cumprod(self.alphas , dim=0) # set all values self.set_timesteps(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) a__: Optional[Any] = use_karras_sigmas def lowerCamelCase_ ( self , lowercase , lowercase=None) -> Optional[int]: '''simple docstring''' if schedule_timesteps is None: a__: List[str] = self.timesteps a__: str = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter) == 0: a__: Union[str, Any] = 1 if len(_lowerCAmelCase) > 1 else 0 else: a__: List[Any] = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase) else timestep a__: int = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase_ ( self , lowercase , lowercase , ) -> Union[str, Any]: '''simple docstring''' a__: Dict = self.index_for_timestep(_lowerCAmelCase) a__: Optional[Any] = self.sigmas[step_index] a__: str = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase_ ( self , lowercase , lowercase = None , lowercase = None , ) -> str: '''simple docstring''' a__: int = num_inference_steps a__: Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": a__: Any = np.linspace(0 , num_train_timesteps - 1 , _lowerCAmelCase , dtype=_lowerCAmelCase)[::-1].copy() elif self.config.timestep_spacing == "leading": a__: Optional[int] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a__: List[Any] = (np.arange(0 , _lowerCAmelCase) * step_ratio).round()[::-1].copy().astype(_lowerCAmelCase) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": a__: Optional[int] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a__: Tuple = (np.arange(_lowerCAmelCase , 0 , -step_ratio)).round().copy().astype(_lowerCAmelCase) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.') a__: str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) a__: Optional[int] = np.log(_lowerCAmelCase) a__: Tuple = np.interp(_lowerCAmelCase , np.arange(0 , len(_lowerCAmelCase)) , _lowerCAmelCase) if self.config.use_karras_sigmas: a__: List[str] = self._convert_to_karras(in_sigmas=_lowerCAmelCase , num_inference_steps=self.num_inference_steps) a__: Dict = np.array([self._sigma_to_t(_lowerCAmelCase , _lowerCAmelCase) for sigma in sigmas]) a__: Dict = np.concatenate([sigmas, [0.0]]).astype(np.floataa) a__: str = torch.from_numpy(_lowerCAmelCase).to(device=_lowerCAmelCase) a__: Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]]) a__: int = torch.from_numpy(_lowerCAmelCase) a__: int = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)]) if str(_lowerCAmelCase).startswith('mps'): # mps does not support float64 a__: Union[str, Any] = timesteps.to(_lowerCAmelCase , dtype=torch.floataa) else: a__: List[Any] = timesteps.to(device=_lowerCAmelCase) # empty dt and derivative a__: Tuple = None a__: List[str] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter a__: Optional[int] = defaultdict(_lowerCAmelCase) def lowerCamelCase_ ( self , lowercase , lowercase) -> Any: '''simple docstring''' a__: Optional[Any] = np.log(_lowerCAmelCase) # get distribution a__: str = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range a__: Union[str, Any] = np.cumsum((dists >= 0) , axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) a__: Optional[Any] = low_idx + 1 a__: int = log_sigmas[low_idx] a__: int = log_sigmas[high_idx] # interpolate sigmas a__: Union[str, Any] = (low - log_sigma) / (low - high) a__: Any = np.clip(_lowerCAmelCase , 0 , 1) # transform interpolation to time range a__: List[str] = (1 - w) * low_idx + w * high_idx a__: int = t.reshape(sigma.shape) return t def lowerCamelCase_ ( self , lowercase , lowercase) -> Dict: '''simple docstring''' a__: float = in_sigmas[-1].item() a__: float = in_sigmas[0].item() a__: Optional[int] = 7.0 # 7.0 is the value used in the paper a__: int = np.linspace(0 , 1 , _lowerCAmelCase) a__: Dict = sigma_min ** (1 / rho) a__: Any = sigma_max ** (1 / rho) a__: Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowerCamelCase_ ( self) -> str: '''simple docstring''' return self.dt is None def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase = True , ) -> List[Any]: '''simple docstring''' a__: List[str] = self.index_for_timestep(_lowerCAmelCase) # advance index counter by 1 a__: Optional[int] = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: a__: Any = self.sigmas[step_index] a__: Tuple = self.sigmas[step_index + 1] else: # 2nd order / Heun's method a__: Any = self.sigmas[step_index - 1] a__: int = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API a__: List[Any] = 0 a__: Optional[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": a__: Optional[Any] = sigma_hat if self.state_in_first_order else sigma_next a__: List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": a__: List[str] = sigma_hat if self.state_in_first_order else sigma_next a__: int = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": a__: Dict = model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`') if self.config.clip_sample: a__: List[Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order a__: Any = (sample - pred_original_sample) / sigma_hat # 3. delta timestep a__: Dict = sigma_next - sigma_hat # store for 2nd order step a__: int = derivative a__: Optional[int] = dt a__: List[Any] = sample else: # 2. 2nd order / Heun's method a__: str = (sample - pred_original_sample) / sigma_next a__: str = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample a__: int = self.dt a__: List[Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" a__: int = None a__: Union[str, Any] = None a__: int = None a__: List[str] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCAmelCase) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , ) -> Union[str, Any]: '''simple docstring''' a__: List[str] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(_lowerCAmelCase): # mps does not support float64 a__: Any = self.timesteps.to(original_samples.device , dtype=torch.floataa) a__: int = timesteps.to(original_samples.device , dtype=torch.floataa) else: a__: Any = self.timesteps.to(original_samples.device) a__: Tuple = timesteps.to(original_samples.device) a__: List[str] = [self.index_for_timestep(_lowerCAmelCase , _lowerCAmelCase) for t in timesteps] a__: Optional[int] = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): a__: List[Any] = sigma.unsqueeze(-1) a__: Dict = original_samples + noise * sigma return noisy_samples def __len__( self) -> str: '''simple docstring''' return self.config.num_train_timesteps
370
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __snake_case ( unittest.TestCase ): @property def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' torch.manual_seed(0) a__: str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def lowerCamelCase_ ( self) -> int: '''simple docstring''' torch.manual_seed(0) a__: List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0) a__: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowercase) def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Union[str, Any] = self.dummy_uncond_unet a__: Optional[int] = DDIMScheduler() a__: Optional[int] = self.dummy_vq_model a__: Union[str, Any] = LDMPipeline(unet=lowercase , vqvae=lowercase , scheduler=lowercase) ldm.to(lowercase) ldm.set_progress_bar_config(disable=lowercase) a__: str = torch.manual_seed(0) a__: Dict = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy').images a__: Union[str, Any] = torch.manual_seed(0) a__: int = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase)[0] a__: Union[str, Any] = image[0, -3:, -3:, -1] a__: int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a__: int = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172]) a__: Optional[Any] = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance @slow @require_torch class __snake_case ( unittest.TestCase ): def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' a__: Union[str, Any] = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256') ldm.to(lowercase) ldm.set_progress_bar_config(disable=lowercase) a__: List[str] = torch.manual_seed(0) a__: Optional[int] = ldm(generator=lowercase , num_inference_steps=5 , output_type='numpy').images a__: Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) a__: int = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447]) a__: Any = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
203
0
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class UpperCamelCase_ (__A , unittest.TestCase ): __magic_name__ = XGLMTokenizer __magic_name__ = XGLMTokenizerFast __magic_name__ = True __magic_name__ = True def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ : Tuple = XGLMTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: UpperCAmelCase_ : List[str] = "<pad>" UpperCAmelCase_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: UpperCAmelCase_ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(lowerCAmelCase_ ) , 1_008 ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: UpperCAmelCase_ : Any = XGLMTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) UpperCAmelCase_ : str = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ : Tuple = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase_ , f.name ) UpperCAmelCase_ : Union[str, Any] = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = pickle.dumps(lowerCAmelCase_ ) pickle.loads(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: if not self.test_rust_tokenizer: return UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : str = self.get_rust_tokenizer() UpperCAmelCase_ : Tuple = "I was born in 92000, and this is falsé." UpperCAmelCase_ : Dict = tokenizer.tokenize(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Dict = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: UpperCAmelCase_ : Any = "Hello World!" UpperCAmelCase_ : Optional[Any] = [2, 31_227, 4_447, 35] self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: UpperCAmelCase_ : Optional[Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off UpperCAmelCase_ : Optional[int] = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> int: # fmt: off UpperCAmelCase_ : Dict = { "input_ids": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase_ , )
268
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase_ (__A ): def __init__( self : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict=768 ) -> List[Any]: super().__init__(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = proj_size UpperCAmelCase_ : Optional[Any] = CLIPVisionModel(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = PaintByExampleMapper(lowerCAmelCase_ ) UpperCAmelCase_ : str = nn.LayerNorm(config.hidden_size ) UpperCAmelCase_ : List[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling UpperCAmelCase_ : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict=False ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = self.model(pixel_values=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = clip_output.pooler_output UpperCAmelCase_ : List[Any] = self.mapper(latent_states[:, None] ) UpperCAmelCase_ : List[str] = self.final_layer_norm(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = self.proj_out(lowerCAmelCase_ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class UpperCamelCase_ (nn.Module ): def __init__( self : Dict , lowerCAmelCase_ : Union[str, Any] ) -> Tuple: super().__init__() UpperCAmelCase_ : List[Any] = (config.num_hidden_layers + 1) // 5 UpperCAmelCase_ : Optional[Any] = config.hidden_size UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Union[str, Any] = nn.ModuleList( [ BasicTransformerBlock(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , activation_fn="gelu" , attention_bias=lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ) ] ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : List[str] ) -> str: for block in self.blocks: UpperCAmelCase_ : int = block(lowerCAmelCase_ ) return hidden_states
268
1
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class snake_case__ : """simple docstring""" def __init__( self , __lowercase , __lowercase=1_3 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=9_9 , __lowercase=3_2 , __lowercase=2 , __lowercase=4 , __lowercase=3_7 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_1_2 , __lowercase=1_6 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=False , __lowercase=True , __lowercase="None" , __lowercase=3 , __lowercase=4 , __lowercase=None , ) -> List[Any]: """simple docstring""" a__ : Tuple = parent a__ : Optional[int] = batch_size a__ : Union[str, Any] = seq_length a__ : Union[str, Any] = is_training a__ : List[Any] = use_input_mask a__ : str = use_token_type_ids a__ : Optional[int] = use_labels a__ : List[str] = vocab_size a__ : Optional[Any] = hidden_size a__ : Dict = num_hidden_layers a__ : Tuple = num_attention_heads a__ : Tuple = intermediate_size a__ : int = hidden_act a__ : Any = hidden_dropout_prob a__ : List[Any] = attention_probs_dropout_prob a__ : List[str] = max_position_embeddings a__ : List[Any] = type_vocab_size a__ : List[Any] = type_sequence_label_size a__ : Tuple = initializer_range a__ : Optional[int] = num_labels a__ : str = num_choices a__ : Union[str, Any] = relative_attention a__ : Dict = position_biased_input a__ : List[str] = pos_att_type a__ : Any = scope def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : List[str] = None if self.use_input_mask: a__ : int = random_attention_mask([self.batch_size, self.seq_length] ) a__ : List[str] = None if self.use_token_type_ids: a__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__ : Optional[int] = None a__ : int = None a__ : Optional[int] = None if self.use_labels: a__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ : Tuple = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> List[str]: """simple docstring""" a__ : Tuple = TFDebertaVaModel(config=__lowercase ) a__ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} a__ : Optional[int] = [input_ids, input_mask] a__ : Dict = model(__lowercase ) a__ : List[str] = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict: """simple docstring""" a__ : int = TFDebertaVaForMaskedLM(config=__lowercase ) a__ : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } a__ : Optional[Any] = model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Optional[int]: """simple docstring""" a__ : Optional[Any] = self.num_labels a__ : Dict = TFDebertaVaForSequenceClassification(config=__lowercase ) a__ : Optional[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } a__ : List[str] = model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> List[str]: """simple docstring""" a__ : Tuple = self.num_labels a__ : Union[str, Any] = TFDebertaVaForTokenClassification(config=__lowercase ) a__ : Optional[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } a__ : Union[str, Any] = model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict: """simple docstring""" a__ : Any = TFDebertaVaForQuestionAnswering(config=__lowercase ) a__ : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } a__ : List[str] = model(__lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" a__ : List[str] = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : List[str] = config_and_inputs a__ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class snake_case__ (A__ , A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :Optional[Any] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __lowerCAmelCase :Dict = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __lowerCAmelCase :Tuple = False __lowerCAmelCase :Union[str, Any] = False def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : Dict = TFDebertaVaModelTester(self ) a__ : Dict = ConfigTester(self , config_class=__lowercase , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" a__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowercase ) @slow def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : Union[str, Any] = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(__lowercase ) @require_tf class snake_case__ (unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" pass @slow def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : Dict = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) a__ : List[str] = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) a__ : List[str] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) a__ : List[Any] = model(__lowercase , attention_mask=__lowercase )[0] a__ : List[Any] = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __lowercase , atol=1E-4 )
266
def lowerCAmelCase_ ( _lowercase : int) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase): raise TypeError("""only integers accepted as input""") else: a__ : Any = str(abs(_lowercase)) a__ : str = [list(_lowercase) for char in range(len(_lowercase))] for index in range(len(_lowercase)): num_transpositions[index].pop(_lowercase) return max( int("""""".join(list(_lowercase))) for transposition in num_transpositions) if __name__ == "__main__": __import__("doctest").testmod()
266
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Any = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
124
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> float: if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) snake_case : Optional[Any] = sum(lowercase ) / len(lowercase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
124
1
'''simple docstring''' # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Dict = {} __SCREAMING_SNAKE_CASE :int = {} __SCREAMING_SNAKE_CASE :str = {} def UpperCAmelCase_ ( __lowercase : type , __lowercase : Optional[str] , __lowercase : Optional[List[str]] = None , ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) _UpperCAmelCase = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) _UpperCAmelCase = format_type def UpperCAmelCase_ ( __lowercase : Exception , __lowercase : Optional[str] , __lowercase : Optional[List[str]] = None ) -> int: '''simple docstring''' _UpperCAmelCase = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _UpperCAmelCase = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: __SCREAMING_SNAKE_CASE :Union[str, Any] = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: __SCREAMING_SNAKE_CASE :Tuple = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: __SCREAMING_SNAKE_CASE :List[str] = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def UpperCAmelCase_ ( __lowercase : Optional[str] ) -> Optional[str]: '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCAmelCase_ ( __lowercase : Optional[str] , **__lowercase : List[Any] ) -> Formatter: '''simple docstring''' _UpperCAmelCase = get_format_type_from_alias(lowercase__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**lowercase__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
356
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int = 100_0000 ) -> int: '''simple docstring''' _UpperCAmelCase = limit + 1 _UpperCAmelCase = [0] * limit for first_term in range(1 , __lowercase ): for n in range(__lowercase , __lowercase , __lowercase ): _UpperCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _UpperCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"{solution() = }")
156
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase__ = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' lowercase__ = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' lowercase__ = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def UpperCAmelCase_ ( self : Any , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = len(references[0] ) if any(len(lowerCAmelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) UpperCAmelCase : Optional[Any] = [[refs[i] for refs in references] for i in range(lowerCAmelCase_ )] UpperCAmelCase : Any = TER( normalized=lowerCAmelCase_ , no_punct=lowerCAmelCase_ , asian_support=lowerCAmelCase_ , case_sensitive=lowerCAmelCase_ , ) UpperCAmelCase : int = sb_ter.corpus_score(lowerCAmelCase_ , lowerCAmelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
151
def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int ): return [sentence[i : i + ngram_size] for i in range(len(lowerCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
284
0
import fire from utils import calculate_rouge, save_json def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : Any = [x.strip() for x in open(_UpperCAmelCase ).readlines()] lowerCamelCase__ : Dict = [x.strip() for x in open(_UpperCAmelCase ).readlines()][: len(_UpperCAmelCase )] lowerCamelCase__ : str = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) if save_path is not None: save_json(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
45
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } _UpperCAmelCase : Optional[Any] = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } _UpperCAmelCase : Dict = { """ctrl""": 2_56, } _UpperCAmelCase : str = { """Pregnancy""": 16_86_29, """Christianity""": 76_75, """Explain""": 10_64_23, """Fitness""": 6_34_40, """Saving""": 6_31_63, """Ask""": 2_71_71, """Ass""": 9_59_85, """Joke""": 16_35_09, """Questions""": 4_56_22, """Thoughts""": 4_96_05, """Retail""": 5_23_42, """Feminism""": 16_43_38, """Writing""": 1_19_92, """Atheism""": 19_22_63, """Netflix""": 4_86_16, """Computing""": 3_96_39, """Opinion""": 4_32_13, """Alone""": 4_49_67, """Funny""": 5_89_17, """Gaming""": 4_03_58, """Human""": 40_88, """India""": 13_31, """Joker""": 7_71_38, """Diet""": 3_62_06, """Legal""": 1_18_59, """Norman""": 49_39, """Tip""": 7_26_89, """Weight""": 5_23_43, """Movies""": 4_62_73, """Running""": 2_34_25, """Science""": 20_90, """Horror""": 3_77_93, """Confession""": 6_05_72, """Finance""": 1_22_50, """Politics""": 1_63_60, """Scary""": 19_19_85, """Support""": 1_26_54, """Technologies""": 3_25_16, """Teenage""": 6_61_60, """Event""": 3_27_69, """Learned""": 6_74_60, """Notion""": 18_27_70, """Wikipedia""": 3_75_83, """Books""": 66_65, """Extract""": 7_60_50, """Confessions""": 10_27_01, """Conspiracy""": 7_59_32, """Links""": 6_36_74, """Narcissus""": 15_04_25, """Relationship""": 5_47_66, """Relationships""": 13_47_96, """Reviews""": 4_16_71, """News""": 42_56, """Translation""": 2_68_20, """multilingual""": 12_84_06, } def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : Tuple = set() lowerCamelCase__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase__ : Optional[Any] = char lowerCamelCase__ : Any = set(_UpperCAmelCase ) return pairs class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = CONTROL_CODES def __init__( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str]="<unk>" , **UpperCAmelCase : List[Any] ) -> Union[str, Any]: super().__init__(unk_token=UpperCAmelCase , **UpperCAmelCase ) with open(UpperCAmelCase , encoding='utf-8' ) as vocab_handle: lowerCamelCase__ : List[Any] = json.load(UpperCAmelCase ) lowerCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} with open(UpperCAmelCase , encoding='utf-8' ) as merges_handle: lowerCamelCase__ : Any = merges_handle.read().split('\n' )[1:-1] lowerCamelCase__ : Any = [tuple(merge.split() ) for merge in merges] lowerCamelCase__ : List[str] = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowerCamelCase__ : Any = {} @property def A_ ( self : int ) -> Dict: return len(self.encoder ) def A_ ( self : List[str] ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def A_ ( self : Any , UpperCAmelCase : Any ) -> Union[str, Any]: if token in self.cache: return self.cache[token] lowerCamelCase__ : List[str] = tuple(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) lowerCamelCase__ : Optional[Any] = get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowerCamelCase__ : Optional[Any] = min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase__ , lowerCamelCase__ : str = bigram lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Dict = 0 while i < len(UpperCAmelCase ): try: lowerCamelCase__ : Any = word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase__ : int = j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase__ : Dict = tuple(UpperCAmelCase ) lowerCamelCase__ : str = new_word if len(UpperCAmelCase ) == 1: break else: lowerCamelCase__ : Any = get_pairs(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = '@@ '.join(UpperCAmelCase ) lowerCamelCase__ : int = word[:-4] lowerCamelCase__ : str = word return word def A_ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Optional[int]: lowerCamelCase__ : Tuple = [] lowerCamelCase__ : Tuple = re.findall(R'\S+\n?' , UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(UpperCAmelCase ).split(' ' ) ) ) return split_tokens def A_ ( self : str , UpperCAmelCase : Union[str, Any] ) -> Dict: return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A_ ( self : List[Any] , UpperCAmelCase : Union[str, Any] ) -> List[Any]: return self.decoder.get(UpperCAmelCase , self.unk_token ) def A_ ( self : str , UpperCAmelCase : Tuple ) -> Optional[int]: lowerCamelCase__ : Tuple = ' '.join(UpperCAmelCase ).replace('@@ ' , '' ).strip() return out_string def A_ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase__ : List[Any] = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : str = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '\n' ) lowerCamelCase__ : str = 0 with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase__ : str = token_index writer.write(' '.join(UpperCAmelCase ) + '\n' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
45
1
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __A : '''simple docstring''' def __init__( self : Dict ,_snake_case : Dict ,_snake_case : str=None ,_snake_case : Optional[Any]=None ,_snake_case : Union[str, Any]=None ,_snake_case : Dict="resnet50" ,_snake_case : Dict=3 ,_snake_case : Union[str, Any]=32 ,_snake_case : int=3 ,_snake_case : List[Any]=True ,_snake_case : Optional[int]=True ,) -> Any: """simple docstring""" lowercase__ : Optional[int] = parent lowercase__ : List[str] = out_indices if out_indices is not None else [4] lowercase__ : Optional[int] = stage_names lowercase__ : Optional[int] = out_features lowercase__ : int = backbone lowercase__ : List[str] = batch_size lowercase__ : List[str] = image_size lowercase__ : int = num_channels lowercase__ : Any = use_pretrained_backbone lowercase__ : Any = is_training def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size ,num_channels=self.num_channels ,out_features=self.out_features ,out_indices=self.out_indices ,stage_names=self.stage_names ,use_pretrained_backbone=self.use_pretrained_backbone ,backbone=self.backbone ,) def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : List[Any] = TimmBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : str = model(_snake_case ) self.parent.assertEqual( result.feature_map[-1].shape ,(self.batch_size, model.channels[-1], 14, 14) ,) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.prepare_config_and_inputs() lowercase__ , lowercase__ : str = config_and_inputs lowercase__ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class __A ( A_ ,A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[Any] = (TimmBackbone,) if is_torch_available() else () lowerCAmelCase : List[Any] = {"feature-extraction": TimmBackbone} if is_torch_available() else {} lowerCAmelCase : int = False lowerCAmelCase : List[str] = False lowerCAmelCase : Tuple = False lowerCAmelCase : int = False def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" lowercase__ : Optional[Any] = TimmBackboneModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = '''resnet18''' lowercase__ : List[Any] = '''microsoft/resnet-18''' lowercase__ : str = AutoBackbone.from_pretrained(_snake_case ,use_timm_backbone=_snake_case ) lowercase__ : List[str] = AutoBackbone.from_pretrained(_snake_case ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) ,len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices ,(-1,) ) self.assertEqual(transformers_model.out_indices ,[len(timm_model.stage_names ) - 1] ) lowercase__ : Optional[Any] = AutoBackbone.from_pretrained(_snake_case ,use_timm_backbone=_snake_case ,out_indices=[1, 2, 3] ) lowercase__ : int = AutoBackbone.from_pretrained(_snake_case ,out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices ,transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def UpperCAmelCase ( self : str ) -> int: """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def UpperCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def UpperCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''Safetensors is not supported by timm.''' ) def UpperCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase ( self : List[Any] ) -> int: """simple docstring""" pass def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = True lowercase__ : List[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality lowercase__ : Union[str, Any] = self.all_model_classes[0] lowercase__ : Optional[int] = model_class(_snake_case ) model.to(_snake_case ) lowercase__ : List[str] = self._prepare_for_class(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = model(**_snake_case ) lowercase__ : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models lowercase__ : Optional[Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowercase__ : str = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_snake_case ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = model_class(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Optional[Any] = model(**_snake_case ) self.assertEqual(len(result.feature_maps ) ,len(config.out_indices ) ) self.assertEqual(len(model.channels ) ,len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowercase__ : Optional[int] = copy.deepcopy(_snake_case ) lowercase__ : Union[str, Any] = None lowercase__ : Optional[int] = model_class(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Any = model(**_snake_case ) self.assertEqual(len(result.feature_maps ) ,1 ) self.assertEqual(len(model.channels ) ,1 ) # Check backbone can be initialized with fresh weights lowercase__ : List[Any] = copy.deepcopy(_snake_case ) lowercase__ : List[Any] = False lowercase__ : Dict = model_class(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : List[str] = model(**_snake_case )
16
"""simple docstring""" def __lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" snake_case : Dict = [] snake_case : List[Any] = 1 while len(lowercase ) < 1e6: constant.append(str(lowercase ) ) i += 1 snake_case : Tuple = "".join(lowercase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
203
0
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever _A = logging.getLogger(__name__) class lowerCamelCase ( A_ ): def __init__(self : List[Any] , _A : Optional[int] , _A : Dict , _A : int , _A : Any=None ) -> Dict: super().__init__( _A , question_encoder_tokenizer=_A , generator_tokenizer=_A , index=_A , init_retrieval=_A , ) snake_case = None def UpperCAmelCase(self : Any , _A : int ) -> Tuple: logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually snake_case = self._infer_socket_ifname() # avoid clash with the NCCL port snake_case = str(distributed_port + 1 ) snake_case = dist.new_group(ranks=_A , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def UpperCAmelCase(self : Dict ) -> Any: return dist.get_rank(group=self.process_group ) == 0 def UpperCAmelCase(self : Dict , _A : Optional[Any] , _A : Tuple , _A : Optional[Any]=torch.floataa ) -> Optional[Any]: snake_case = torch.empty(_A , dtype=_A ) dist.scatter(_A , src=0 , scatter_list=_A , group=self.process_group ) return target_tensor def UpperCAmelCase(self : str ) -> str: snake_case = psutil.net_if_addrs() # a hacky way to deal with varying network interface names snake_case = next((addr for addr in addrs if addr.startswith("e" )) , _A ) return ifname def UpperCAmelCase(self : str , _A : np.ndarray , _A : int ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): snake_case , snake_case = self._main_retrieve(_A , _A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_A ) # distributed training snake_case = dist.get_world_size(group=self.process_group ) # gather logic snake_case = None if self._is_main(): snake_case = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(_A )] dist.gather(torch.tensor(_A ) , dst=0 , gather_list=_A , group=self.process_group ) # scatter logic snake_case = question_hidden_states.shape[0] snake_case = [] snake_case = [] if self._is_main(): assert len(_A ) == world_size snake_case , snake_case = self._main_retrieve(torch.cat(_A ).numpy() , _A ) snake_case , snake_case = torch.tensor(_A ), torch.tensor(_A ) snake_case = self._chunk_tensor(_A , _A ) snake_case = self._chunk_tensor(_A , _A ) snake_case = self._scattered(_A , [n_queries, n_docs] , target_type=torch.intaa ) snake_case = self._scattered(_A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_A )
357
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _A = "bert-base-cased" _A = "google/pegasus-xsum" _A = [" Sam ate lunch today.", "Sams lunch ingredients."] _A = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] _A = "patrickvonplaten/t5-tiny-random" _A = "sshleifer/bart-tiny-random" _A = "sshleifer/tiny-mbart" _A = "sshleifer/tiny-marian-en-de" def lowercase_ ( A__ , A__ ) -> Optional[int]: """simple docstring""" snake_case = "\n".join(A__ ) Path(A__ ).open("w" ).writelines(A__ ) def lowercase_ ( A__ ) -> List[Any]: """simple docstring""" for split in ["train", "val", "test"]: _dump_articles(os.path.join(A__ , F'{split}.source' ) , A__ ) _dump_articles(os.path.join(A__ , F'{split}.target' ) , A__ ) return tmp_dir class lowerCamelCase ( A_ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def UpperCAmelCase(self : Tuple , _A : List[str] ) -> Optional[int]: snake_case = AutoTokenizer.from_pretrained(_A ) snake_case = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) snake_case = max(len(tokenizer.encode(_A ) ) for a in ARTICLES ) snake_case = max(len(tokenizer.encode(_A ) ) for a in SUMMARIES ) snake_case = 4 snake_case = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated snake_case , snake_case = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. snake_case = SeqaSeqDataset( _A , data_dir=_A , type_path="train" , max_source_length=_A , max_target_length=_A , src_lang=_A , tgt_lang=_A , ) snake_case = DataLoader(_A , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_A , _A ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place snake_case = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def UpperCAmelCase(self : str , _A : Dict ) -> Dict: snake_case = AutoTokenizer.from_pretrained(_A ) snake_case = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) snake_case = max(len(tokenizer.encode(_A ) ) for a in ARTICLES ) snake_case = max(len(tokenizer.encode(_A ) ) for a in SUMMARIES ) snake_case = 4 snake_case = LegacySeqaSeqDataset( _A , data_dir=_A , type_path="train" , max_source_length=2_0 , max_target_length=_A , ) snake_case = DataLoader(_A , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def UpperCAmelCase(self : Union[str, Any] ) -> Optional[Any]: snake_case = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) snake_case = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) snake_case = tmp_dir.joinpath("train.source" ).open().readlines() snake_case = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_A , _A , 1_2_8 , _A ) snake_case = {x.name for x in tmp_dir.iterdir()} snake_case = {x.name for x in save_dir.iterdir()} snake_case = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_A ) < len(_A ) assert len(_A ) == 1 assert len(packed_examples[0] ) == sum(len(_A ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def UpperCAmelCase(self : Optional[int] ) -> Union[str, Any]: if not FAIRSEQ_AVAILABLE: return snake_case , snake_case , snake_case = self._get_dataset(max_len=6_4 ) snake_case = 6_4 snake_case = ds.make_dynamic_sampler(_A , required_batch_size_multiple=_A ) snake_case = [len(_A ) for x in batch_sampler] assert len(set(_A ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_A ) == len(_A ) # no dropped or added examples snake_case = DataLoader(_A , batch_sampler=_A , collate_fn=ds.collate_fn , num_workers=2 ) snake_case = [] snake_case = [] for batch in data_loader: snake_case = batch["input_ids"].shape snake_case = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple snake_case = np.product(batch["input_ids"].shape ) num_src_per_batch.append(_A ) if num_src_tokens > (max_tokens * 1.1): failures.append(_A ) assert num_src_per_batch[0] == max(_A ) if failures: raise AssertionError(f'too many tokens in {len(_A )} batches' ) def UpperCAmelCase(self : int ) -> str: snake_case , snake_case , snake_case = self._get_dataset(max_len=5_1_2 ) snake_case = 2 snake_case = ds.make_sortish_sampler(_A , shuffle=_A ) snake_case = DataLoader(_A , batch_size=_A , collate_fn=ds.collate_fn , num_workers=2 ) snake_case = DataLoader(_A , batch_size=_A , collate_fn=ds.collate_fn , num_workers=2 , sampler=_A ) snake_case = tokenizer.pad_token_id def count_pad_tokens(_A : Dict , _A : Union[str, Any]="input_ids" ): return [batch[k].eq(_A ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_A , k="labels" ) ) < sum(count_pad_tokens(_A , k="labels" ) ) assert sum(count_pad_tokens(_A ) ) < sum(count_pad_tokens(_A ) ) assert len(_A ) == len(_A ) def UpperCAmelCase(self : Union[str, Any] , _A : Union[str, Any]=1_0_0_0 , _A : Optional[int]=1_2_8 ) -> List[Any]: if os.getenv("USE_REAL_DATA" , _A ): snake_case = "examples/seq2seq/wmt_en_ro" snake_case = max_len * 2 * 6_4 if not Path(_A ).joinpath("train.len" ).exists(): save_len_file(_A , _A ) else: snake_case = "examples/seq2seq/test_data/wmt_en_ro" snake_case = max_len * 4 save_len_file(_A , _A ) snake_case = AutoTokenizer.from_pretrained(_A ) snake_case = SeqaSeqDataset( _A , data_dir=_A , type_path="train" , max_source_length=_A , max_target_length=_A , n_obs=_A , ) return ds, max_tokens, tokenizer def UpperCAmelCase(self : List[Any] ) -> Union[str, Any]: snake_case , snake_case , snake_case = self._get_dataset() snake_case = set(DistributedSortishSampler(_A , 2_5_6 , num_replicas=2 , rank=0 , add_extra_examples=_A ) ) snake_case = set(DistributedSortishSampler(_A , 2_5_6 , num_replicas=2 , rank=1 , add_extra_examples=_A ) ) assert idsa.intersection(_A ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def UpperCAmelCase(self : Any , _A : Optional[Any] ) -> Union[str, Any]: snake_case = AutoTokenizer.from_pretrained(_A , use_fast=_A ) if tok_name == MBART_TINY: snake_case = SeqaSeqDataset( _A , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) snake_case = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: snake_case = SeqaSeqDataset( _A , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) snake_case = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_A ) == 1 if tok_name == BART_TINY else len(_A ) == 0
137
0
"""simple docstring""" from __future__ import annotations from collections.abc import MutableSequence class snake_case : '''simple docstring''' def __init__( self : Dict, _lowerCamelCase : int, _lowerCamelCase : MutableSequence[float] ): '''simple docstring''' if len(_lowerCamelCase ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) __A = list(_lowerCamelCase ) __A = degree def __add__( self : List[Any], _lowerCamelCase : Polynomial ): '''simple docstring''' if self.degree > polynomial_a.degree: __A = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, _lowerCamelCase ) else: __A = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, _lowerCamelCase ) def __sub__( self : Optional[int], _lowerCamelCase : Polynomial ): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1] ) def __neg__( self : Optional[int] ): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients] ) def __mul__( self : List[Any], _lowerCamelCase : Polynomial ): '''simple docstring''' __A = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any], _lowerCamelCase : int | float ): '''simple docstring''' __A = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Tuple ): '''simple docstring''' __A = '''''' for i in range(self.degree, -1, -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_lowerCamelCase ) return polynomial def __repr__( self : List[str] ): '''simple docstring''' return self.__str__() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = [0] * self.degree for i in range(self.degree ): __A = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : int | float = 0 ): '''simple docstring''' __A = [0] * (self.degree + 2) __A = constant for i in range(self.degree + 1 ): __A = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, _lowerCamelCase ) def __eq__( self : Optional[int], _lowerCamelCase : object ): '''simple docstring''' if not isinstance(_lowerCamelCase, _lowerCamelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : List[Any], _lowerCamelCase : object ): '''simple docstring''' return not self.__eq__(_lowerCamelCase )
266
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowercase_ = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowercase_ = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowercase_ = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''', id='''token''' ), id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''', id='''token''' ), id='''sequence''' ), id='''references''' ), } ), ) def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : List[List[List[str]]], _lowerCamelCase : List[List[str]], _lowerCamelCase : int = 1, _lowerCamelCase : int = 4, ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCamelCase, hypotheses=_lowerCamelCase, min_len=_lowerCamelCase, max_len=_lowerCamelCase ) }
266
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Dict =["""pixel_values"""] def __init__( self : Dict , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 2_55 , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = True , **UpperCamelCase : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : List[str] = size if size is not None else {'shortest_edge': 2_24} _snake_case : List[Any] = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) _snake_case : Dict = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _snake_case : Dict = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase , param_name='crop_size' ) _snake_case : str = do_resize _snake_case : str = size _snake_case : int = resample _snake_case : Optional[int] = do_center_crop _snake_case : List[Any] = crop_size _snake_case : Tuple = do_rescale _snake_case : Optional[int] = rescale_factor _snake_case : List[str] = do_normalize _snake_case : Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _snake_case : str = image_std if image_std is not None else OPENAI_CLIP_STD _snake_case : Optional[int] = do_convert_rgb def UpperCamelCase_ ( self : int , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ): '''simple docstring''' _snake_case : Optional[Any] = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _snake_case : int = get_resize_output_image_size(UpperCamelCase , size=size['shortest_edge'] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : int , ): '''simple docstring''' _snake_case : Union[str, Any] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(UpperCamelCase , size=(size['height'], size['width']) , data_format=UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[int, float] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Optional[int] , ): '''simple docstring''' return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Optional[int] , ): '''simple docstring''' return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Any , UpperCamelCase : ImageInput , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : int = None , UpperCamelCase : bool = None , UpperCamelCase : float = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase : List[Any] , ): '''simple docstring''' _snake_case : Dict = do_resize if do_resize is not None else self.do_resize _snake_case : Union[str, Any] = size if size is not None else self.size _snake_case : List[Any] = get_size_dict(UpperCamelCase , param_name='size' , default_to_square=UpperCamelCase ) _snake_case : Union[str, Any] = resample if resample is not None else self.resample _snake_case : str = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case : str = crop_size if crop_size is not None else self.crop_size _snake_case : Union[str, Any] = get_size_dict(UpperCamelCase , param_name='crop_size' , default_to_square=UpperCamelCase ) _snake_case : str = do_rescale if do_rescale is not None else self.do_rescale _snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case : List[Any] = do_normalize if do_normalize is not None else self.do_normalize _snake_case : List[Any] = image_mean if image_mean is not None else self.image_mean _snake_case : Any = image_std if image_std is not None else self.image_std _snake_case : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _snake_case : Tuple = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _snake_case : str = [convert_to_rgb(UpperCamelCase ) for image in images] # All transformations expect numpy arrays. _snake_case : Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: _snake_case : List[Any] = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: _snake_case : Tuple = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: _snake_case : str = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: _snake_case : Union[str, Any] = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] _snake_case : Dict = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] _snake_case : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
260
from __future__ import annotations lowerCAmelCase_ = [] def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] , lowerCAmelCase: int , lowerCAmelCase: int )-> bool: for i in range(len(lowerCAmelCase ) ): if board[row][i] == 1: return False for i in range(len(lowerCAmelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(lowerCAmelCase , -1 , -1 ) , range(lowerCAmelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(lowerCAmelCase , -1 , -1 ) , range(lowerCAmelCase , len(lowerCAmelCase ) ) ): if board[i][j] == 1: return False return True def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] , lowerCAmelCase: int )-> bool: if row >= len(lowerCAmelCase ): solution.append(lowerCAmelCase ) printboard(lowerCAmelCase ) print() return True for i in range(len(lowerCAmelCase ) ): if is_safe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): _snake_case : Dict = 1 solve(lowerCAmelCase , row + 1 ) _snake_case : str = 0 return False def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] )-> None: for i in range(len(lowerCAmelCase ) ): for j in range(len(lowerCAmelCase ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) lowerCAmelCase_ = 8 lowerCAmelCase_ = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
260
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=a__ ) class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : str = field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCamelCase : ClassVar[Features] = Features({'''labels''': ClassLabel} ) __UpperCamelCase : str = "audio" __UpperCamelCase : str = "labels" def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , SCREAMING_SNAKE_CASE__ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) SCREAMING_SNAKE_CASE__ : List[Any] = copy.deepcopy(self ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.label_schema.copy() SCREAMING_SNAKE_CASE__ : Dict = features[self.label_column] SCREAMING_SNAKE_CASE__ : Any = label_schema return task_template @property def __magic_name__ (self ) -> Dict[str, str]: """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
25
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Optional[torch.FloatTensor] = None A__ : torch.FloatTensor = None A__ : Optional[Tuple[torch.FloatTensor]] = None A__ : Optional[Tuple[torch.FloatTensor]] = None class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , _snake_case : int=1 , _snake_case : int=0 , _snake_case : List[str]=2 , _snake_case : List[str]=512 , _snake_case : Tuple="cls" , _snake_case : Union[str, Any]=False , _snake_case : str=True , **_snake_case : Union[str, Any] , ): super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) __lowercase : Union[str, Any] = project_dim __lowercase : str = pooler_fn __lowercase : List[str] = learn_encoder __lowercase : int = use_attention_mask class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Any = [r'''pooler''', r'''logit_scale'''] A__ : Dict = [r'''position_ids''', r'''predictions.decoder.bias'''] A__ : Union[str, Any] = '''roberta''' A__ : str = RobertaSeriesConfig def __init__( self : List[str] , _snake_case : Any ): super().__init__(_snake_case ) __lowercase : Union[str, Any] = XLMRobertaModel(_snake_case ) __lowercase : Optional[int] = nn.Linear(config.hidden_size , config.project_dim ) __lowercase : Optional[int] = getattr(_snake_case , '''has_pre_transformation''' , _snake_case ) if self.has_pre_transformation: __lowercase : Union[str, Any] = nn.Linear(config.hidden_size , config.project_dim ) __lowercase : Any = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def snake_case_ ( self : Dict , _snake_case : Optional[torch.Tensor] = None , _snake_case : Optional[torch.Tensor] = None , _snake_case : Optional[torch.Tensor] = None , _snake_case : Optional[torch.Tensor] = None , _snake_case : Optional[torch.Tensor] = None , _snake_case : Optional[torch.Tensor] = None , _snake_case : Optional[torch.Tensor] = None , _snake_case : Optional[torch.Tensor] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , ): __lowercase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict __lowercase : Any = self.base_model( input_ids=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , position_ids=_snake_case , head_mask=_snake_case , inputs_embeds=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_attentions=_snake_case , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_snake_case , ) if self.has_pre_transformation: __lowercase : Optional[int] = outputs['''hidden_states'''][-2] __lowercase : Union[str, Any] = self.pre_LN(_snake_case ) __lowercase : Optional[int] = self.transformation_pre(_snake_case ) return TransformationModelOutput( projection_state=_snake_case , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __lowercase : str = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=_snake_case , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
156
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __A : Optional[Any] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __A : Optional[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __A : int = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> tuple[str, float]: '''simple docstring''' lowerCAmelCase : Optional[Any] = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> tuple[str, str]: '''simple docstring''' lowerCAmelCase : List[Any] = random.randint(0, len(_UpperCAmelCase ) - 1 ) lowerCAmelCase : str = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = list(_UpperCAmelCase ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: lowerCAmelCase : List[Any] = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) -> list[str]: '''simple docstring''' lowerCAmelCase : Optional[int] = [] # Generate more children proportionally to the fitness score. lowerCAmelCase : Optional[Any] = int(parent_a[1] * 100 ) + 1 lowerCAmelCase : Optional[int] = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): lowerCAmelCase : Dict = population_score[random.randint(0, _UpperCAmelCase )][0] lowerCAmelCase , lowerCAmelCase : str = crossover(parent_a[0], _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase, _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase, _UpperCAmelCase ) ) return pop def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = True ) -> tuple[int, int, str]: '''simple docstring''' if N_POPULATION < N_SELECTED: lowerCAmelCase : int = f"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase : List[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase : Optional[int] = f"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(_UpperCAmelCase ) # Generate random starting population. lowerCAmelCase : Any = [] for _ in range(_UpperCAmelCase ): population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase , lowerCAmelCase : Optional[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase : str = [evaluate(_UpperCAmelCase, _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. lowerCAmelCase : Union[str, Any] = sorted(_UpperCAmelCase, key=lambda _UpperCAmelCase : x[1], reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"\nGeneration: {generation}" f"\nTotal Population:{total_population}" f"\nBest score: {population_score[0][1]}" f"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase : Dict = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. lowerCAmelCase : List[Any] = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )], _UpperCAmelCase, _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __A : int = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __A : Any = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __A , __A , __A : Union[str, Any] = basic(target_str, genes_list) print( F'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
323
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
323
1
"""simple docstring""" import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[str] = KandinskyVaaPriorPipeline __UpperCAmelCase : Optional[int] = ['prompt'] __UpperCAmelCase : int = ['prompt', 'negative_prompt'] __UpperCAmelCase : Optional[Any] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __UpperCAmelCase : Any = False @property def __UpperCAmelCase ( self ): return 32 @property def __UpperCAmelCase ( self ): return 32 @property def __UpperCAmelCase ( self ): return self.time_input_dim @property def __UpperCAmelCase ( self ): return self.time_input_dim * 4 @property def __UpperCAmelCase ( self ): return 100 @property def __UpperCAmelCase ( self ): __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_a ) @property def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } __a = PriorTransformer(**_a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __a = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __a = CLIPVisionModelWithProjection(_a ) return model @property def __UpperCAmelCase ( self ): __a = CLIPImageProcessor( crop_size=224 , do_center_crop=_a , do_normalize=_a , do_resize=_a , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor def __UpperCAmelCase ( self ): __a = self.dummy_prior __a = self.dummy_image_encoder __a = self.dummy_text_encoder __a = self.dummy_tokenizer __a = self.dummy_image_processor __a = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=_a , clip_sample_range=10.0 , ) __a = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def __UpperCAmelCase ( self , _a , _a=0 ): if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) __a = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __UpperCAmelCase ( self ): __a = '''cpu''' __a = self.get_dummy_components() __a = self.pipeline_class(**_a ) __a = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __a = pipe(**self.get_dummy_inputs(_a ) ) __a = output.image_embeds __a = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] __a = image[0, -10:] __a = image_from_tuple[0, -10:] assert image.shape == (1, 32) __a = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __UpperCAmelCase ( self ): __a = torch_device == '''cpu''' __a = True __a = False self._test_inference_batch_single_identical( test_max_difference=_a , relax_max_difference=_a , test_mean_pixel_difference=_a , ) @skip_mps def __UpperCAmelCase ( self ): __a = torch_device == '''cpu''' __a = False self._test_attention_slicing_forward_pass( test_max_difference=_a , test_mean_pixel_difference=_a , )
45
"""simple docstring""" def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : list ) -> List[Any]: _enforce_args(lowerCAmelCase__ , lowerCAmelCase__ ) if n == 0: return 0 __a = float('''-inf''' ) for i in range(1 , n + 1 ): __a = max( lowerCAmelCase__ , prices[i - 1] + naive_cut_rod_recursive(n - i , lowerCAmelCase__ ) ) return max_revue def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : list ) -> List[str]: _enforce_args(lowerCAmelCase__ , lowerCAmelCase__ ) __a = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : list , lowerCAmelCase__ : list ) -> Union[str, Any]: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __a = float('''-inf''' ) for i in range(1 , n + 1 ): __a = max( lowerCAmelCase__ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , lowerCAmelCase__ , lowerCAmelCase__ ) , ) __a = max_revenue return max_rev[n] def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : list ) -> Dict: _enforce_args(lowerCAmelCase__ , lowerCAmelCase__ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __a = [float('''-inf''' ) for _ in range(n + 1 )] __a = 0 for i in range(1 , n + 1 ): __a = max_rev[i] for j in range(1 , i + 1 ): __a = max(lowerCAmelCase__ , prices[j - 1] + max_rev[i - j] ) __a = max_revenue_i return max_rev[n] def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : list ) -> str: if n < 0: __a = f'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(lowerCAmelCase__ ) if n > len(lowerCAmelCase__ ): __a = ( '''Each integral piece of rod must have a corresponding price. ''' f'''Got n = {n} but length of prices = {len(lowerCAmelCase__ )}''' ) raise ValueError(lowerCAmelCase__ ) def lowercase ( ) -> int: __a = [6, 10, 12, 15, 20, 23] __a = len(lowerCAmelCase__ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __a = 36 __a = top_down_cut_rod(lowerCAmelCase__ , lowerCAmelCase__ ) __a = bottom_up_cut_rod(lowerCAmelCase__ , lowerCAmelCase__ ) __a = naive_cut_rod_recursive(lowerCAmelCase__ , lowerCAmelCase__ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
45
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 'deberta-v2' def __init__( self : Dict ,lowercase__ : str=1_2_8_1_0_0 ,lowercase__ : List[str]=1_5_3_6 ,lowercase__ : Union[str, Any]=2_4 ,lowercase__ : int=2_4 ,lowercase__ : List[Any]=6_1_4_4 ,lowercase__ : str="gelu" ,lowercase__ : str=0.1 ,lowercase__ : Tuple=0.1 ,lowercase__ : int=5_1_2 ,lowercase__ : int=0 ,lowercase__ : List[str]=0.0_2 ,lowercase__ : List[Any]=1e-7 ,lowercase__ : Union[str, Any]=False ,lowercase__ : str=-1 ,lowercase__ : Dict=0 ,lowercase__ : Dict=True ,lowercase__ : List[Any]=None ,lowercase__ : Tuple=0 ,lowercase__ : Optional[Any]="gelu" ,**lowercase__ : Tuple ,): super().__init__(**lowercase__ ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = relative_attention __lowercase = max_relative_positions __lowercase = pad_token_id __lowercase = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: __lowercase = [x.strip() for x in pos_att_type.lower().split('''|''' )] __lowercase = pos_att_type __lowercase = vocab_size __lowercase = layer_norm_eps __lowercase = kwargs.get('''pooler_hidden_size''' ,lowercase__ ) __lowercase = pooler_dropout __lowercase = pooler_hidden_act class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): if self.task == "multiple-choice": __lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): return 1_2 def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional["TensorType"] = None ,lowercase__ : int = 3 ,lowercase__ : int = 4_0 ,lowercase__ : int = 4_0 ,lowercase__ : "PreTrainedTokenizerBase" = None ,): __lowercase = super().generate_dummy_inputs(preprocessor=lowercase__ ,framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
52
'''simple docstring''' lowerCAmelCase__ = { "joule": 1.0, "kilojoule": 1000, "megajoule": 100_0000, "gigajoule": 10_0000_0000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 360_0000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 418_6800.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 1055.0_5585, "footpound": 1.355_818, } def _A ( A__ , A__ , A__ ): """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __lowercase = ( F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" F"Valid values are: {', '.join(A__ )}" ) raise ValueError(A__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
52
1
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def snake_case__ ( *lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[Any] ) -> str: '''simple docstring''' pass def a__ ( lowercase : Optional[int] ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def a__ ( lowercase : str ) -> List[str]: """simple docstring""" _UpperCamelCase = np.array(_UpperCAmelCase ) _UpperCamelCase = npimg.shape return {"hash": hashimage(_UpperCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _snake_case : Any = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _snake_case : Union[str, Any] = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = MaskGenerationPipeline(model=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] ) -> List[str]: '''simple docstring''' pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' pass @slow @require_torch def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) _UpperCamelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing _UpperCamelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(lowerCAmelCase__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871} ] , ) # fmt: on @require_torch @slow def snake_case__ ( self : Dict ) -> List[str]: '''simple docstring''' _UpperCamelCase = '''facebook/sam-vit-huge''' _UpperCamelCase = pipeline('''mask-generation''' , model=lowerCAmelCase__ ) _UpperCamelCase = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing _UpperCamelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(lowerCAmelCase__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, ] , )
324
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , a , a=7 , a=3 , a=10 , a=18 , a=30 , a=400 , a=True , a=None , a=True , a=[0.5, 0.5, 0.5] , a=[0.5, 0.5, 0.5] , a=None , ) -> Dict: SCREAMING_SNAKE_CASE = size if size is not None else {'shortest_edge': 18} SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = num_frames SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std SCREAMING_SNAKE_CASE = crop_size def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _snake_case ( A__ , unittest.TestCase ): _lowercase : List[str] = VivitImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = VivitImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(a , 'image_mean')) self.assertTrue(hasattr(a , 'image_std')) self.assertTrue(hasattr(a , 'do_normalize')) self.assertTrue(hasattr(a , 'do_resize')) self.assertTrue(hasattr(a , 'do_center_crop')) self.assertTrue(hasattr(a , 'size')) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 18}) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18}) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {'shortest_edge': 42}) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84}) def SCREAMING_SNAKE_CASE__ ( self) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PIL videos SCREAMING_SNAKE_CASE = prepare_video_inputs(self.image_processor_tester , equal_resolution=a) for video in video_inputs: self.assertIsInstance(a , a) self.assertIsInstance(video[0] , Image.Image) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(video_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_video_inputs(self.image_processor_tester , equal_resolution=a , numpify=a) for video in video_inputs: self.assertIsInstance(a , a) self.assertIsInstance(video[0] , np.ndarray) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(video_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_video_inputs(self.image_processor_tester , equal_resolution=a , torchify=a) for video in video_inputs: self.assertIsInstance(a , a) self.assertIsInstance(video[0] , torch.Tensor) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(video_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
137
0
def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" UpperCamelCase : Any = set() # Replace all the whitespace in our sentence UpperCamelCase : Union[str, Any] = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == 2_6 def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" UpperCamelCase : str = [False] * 2_6 for char in input_str: if char.islower(): UpperCamelCase : List[Any] = True elif char.isupper(): UpperCamelCase : List[Any] = True return all(SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def a ( ): """simple docstring""" from timeit import timeit UpperCamelCase : int = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
315
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params __UpperCAmelCase : List[str] = getLogger(__name__) __UpperCAmelCase : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu" def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : str = DEFAULT_DEVICE , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : int="summarization" , SCREAMING_SNAKE_CASE_ : int=None , **SCREAMING_SNAKE_CASE_ : Any , ): """simple docstring""" UpperCamelCase : Dict = Path(SCREAMING_SNAKE_CASE_ ).open('''w''' , encoding='''utf-8''' ) UpperCamelCase : List[Any] = str(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) if fpaa: UpperCamelCase : List[Any] = model.half() UpperCamelCase : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. UpperCamelCase : int = time.time() # update config with task specific params use_task_specific_params(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if prefix is None: UpperCamelCase : Union[str, Any] = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ): UpperCamelCase : Optional[int] = [prefix + text for text in examples_chunk] UpperCamelCase : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , truncation=SCREAMING_SNAKE_CASE_ , padding='''longest''' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() UpperCamelCase : str = int(time.time() - start_time ) # seconds UpperCamelCase : Any = len(SCREAMING_SNAKE_CASE_ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def a ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def a ( SCREAMING_SNAKE_CASE_ : Union[str, Any]=True ): """simple docstring""" UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=SCREAMING_SNAKE_CASE_ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=SCREAMING_SNAKE_CASE_ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=SCREAMING_SNAKE_CASE_ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=SCREAMING_SNAKE_CASE_ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=SCREAMING_SNAKE_CASE_ , default=8 , required=SCREAMING_SNAKE_CASE_ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=SCREAMING_SNAKE_CASE_ , default=-1 , required=SCREAMING_SNAKE_CASE_ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=SCREAMING_SNAKE_CASE_ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate UpperCamelCase , UpperCamelCase : int = parser.parse_known_args() UpperCamelCase : str = parse_numeric_n_bool_cl_kwargs(SCREAMING_SNAKE_CASE_ ) if parsed_args and verbose: print(F"""parsed the following generate kwargs: {parsed_args}""" ) UpperCamelCase : str = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: UpperCamelCase : Tuple = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) UpperCamelCase : str = generate_summaries_or_translations( SCREAMING_SNAKE_CASE_ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **SCREAMING_SNAKE_CASE_ , ) if args.reference_path is None: return {} # Compute scores UpperCamelCase : Tuple = calculate_bleu if '''translation''' in args.task else calculate_rouge UpperCamelCase : Dict = [x.rstrip() for x in open(args.save_path ).readlines()] UpperCamelCase : Optional[int] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(SCREAMING_SNAKE_CASE_ )] UpperCamelCase : dict = score_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) scores.update(SCREAMING_SNAKE_CASE_ ) if args.dump_args: scores.update(SCREAMING_SNAKE_CASE_ ) if args.info: UpperCamelCase : Optional[Any] = args.info if verbose: print(SCREAMING_SNAKE_CASE_ ) if args.score_path is not None: json.dump(SCREAMING_SNAKE_CASE_ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
315
1
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np __A : str = re.compile(r"\b(a|an|the)\b", re.UNICODE) __A : List[str] = None def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=_SCREAMING_SNAKE_CASE , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=_SCREAMING_SNAKE_CASE , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _UpperCAmelCase = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' def remove_articles(_SCREAMING_SNAKE_CASE : Dict ): return ARTICLES_REGEX.sub(''' ''' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : List[Any] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Union[str, Any] ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Optional[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if not s: return [] return normalize_answer(_SCREAMING_SNAKE_CASE ).split() def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = collections.Counter(_SCREAMING_SNAKE_CASE ) & collections.Counter(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = sum(common.values() ) if len(_SCREAMING_SNAKE_CASE ) == 0 or len(_SCREAMING_SNAKE_CASE ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = {} _UpperCAmelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _UpperCAmelCase = qa['''id'''] _UpperCAmelCase = [t for t in qa['''answers''']['''text'''] if normalize_answer(_SCREAMING_SNAKE_CASE )] if not gold_answers: # For unanswerable questions, only correct answer is empty string _UpperCAmelCase = [''''''] if qid not in preds: print(f'Missing prediction for {qid}' ) continue _UpperCAmelCase = preds[qid] # Take max over all gold answers _UpperCAmelCase = max(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for a in gold_answers ) _UpperCAmelCase = max(compute_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for a in gold_answers ) return exact_scores, fa_scores def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = {} for qid, s in scores.items(): _UpperCAmelCase = na_probs[qid] > na_prob_thresh if pred_na: _UpperCAmelCase = float(not qid_to_has_ans[qid] ) else: _UpperCAmelCase = s return new_scores def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any]=None ): '''simple docstring''' if not qid_list: _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores.values() ) / total), ('''f1''', 100.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' for k in new_eval: _UpperCAmelCase = new_eval[k] def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' plt.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_SCREAMING_SNAKE_CASE ) plt.savefig(_SCREAMING_SNAKE_CASE ) plt.clf() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : Optional[int]=None ): '''simple docstring''' _UpperCAmelCase = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] ) _UpperCAmelCase = 0.0 _UpperCAmelCase = 1.0 _UpperCAmelCase = 0.0 _UpperCAmelCase = [1.0] _UpperCAmelCase = [0.0] _UpperCAmelCase = 0.0 for i, qid in enumerate(_SCREAMING_SNAKE_CASE ): if qid_to_has_ans[qid]: true_pos += scores[qid] _UpperCAmelCase = true_pos / float(i + 1 ) _UpperCAmelCase = true_pos / float(_SCREAMING_SNAKE_CASE ) if i == len(_SCREAMING_SNAKE_CASE ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_SCREAMING_SNAKE_CASE ) recalls.append(_SCREAMING_SNAKE_CASE ) if out_image: plot_pr_curve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return {"ap": 100.0 * avg_prec} def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if out_image_dir and not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return _UpperCAmelCase = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) _UpperCAmelCase = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) _UpperCAmelCase = {k: float(_SCREAMING_SNAKE_CASE ) for k, v in qid_to_has_ans.items()} _UpperCAmelCase = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''pr_exact''' ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''pr_f1''' ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''pr_oracle''' ) def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if not qid_list: return _UpperCAmelCase = [na_probs[k] for k in qid_list] _UpperCAmelCase = np.ones_like(_SCREAMING_SNAKE_CASE ) / float(len(_SCREAMING_SNAKE_CASE ) ) plt.hist(_SCREAMING_SNAKE_CASE , weights=_SCREAMING_SNAKE_CASE , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(f'Histogram of no-answer probability: {name}' ) plt.savefig(os.path.join(_SCREAMING_SNAKE_CASE , f'na_prob_hist_{name}.png' ) ) plt.clf() def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) _UpperCAmelCase = num_no_ans _UpperCAmelCase = cur_score _UpperCAmelCase = 0.0 _UpperCAmelCase = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] ) for i, qid in enumerate(_SCREAMING_SNAKE_CASE ): if qid not in scores: continue if qid_to_has_ans[qid]: _UpperCAmelCase = scores[qid] else: if preds[qid]: _UpperCAmelCase = -1 else: _UpperCAmelCase = 0 cur_score += diff if cur_score > best_score: _UpperCAmelCase = cur_score _UpperCAmelCase = na_probs[qid] return 100.0 * best_score / len(_SCREAMING_SNAKE_CASE ), best_thresh def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = find_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = find_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = best_exact _UpperCAmelCase = exact_thresh _UpperCAmelCase = best_fa _UpperCAmelCase = fa_thresh def lowercase ( ): '''simple docstring''' with open(OPTS.data_file ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = dataset_json['''data'''] with open(OPTS.pred_file ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = {k: 0.0 for k in preds} _UpperCAmelCase = make_qid_to_has_ans(_SCREAMING_SNAKE_CASE ) # maps qid to True/False _UpperCAmelCase = [k for k, v in qid_to_has_ans.items() if v] _UpperCAmelCase = [k for k, v in qid_to_has_ans.items() if not v] _UpperCAmelCase , _UpperCAmelCase = get_raw_scores(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = apply_no_ans_threshold(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.na_prob_thresh ) _UpperCAmelCase = apply_no_ans_threshold(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.na_prob_thresh ) _UpperCAmelCase = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if has_ans_qids: _UpperCAmelCase = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , qid_list=_SCREAMING_SNAKE_CASE ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''HasAns''' ) if no_ans_qids: _UpperCAmelCase = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , qid_list=_SCREAMING_SNAKE_CASE ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir ) histogram_na_prob(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: print(json.dumps(_SCREAMING_SNAKE_CASE , indent=2 ) ) if __name__ == "__main__": __A : Dict = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
260
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr _UpperCAmelCase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _UpperCAmelCase = arr[mi::-1] + arr[mi + 1 : len(_SCREAMING_SNAKE_CASE )] # Reverse whole list _UpperCAmelCase = arr[cur - 1 :: -1] + arr[cur : len(_SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": __A : List[str] = input("Enter numbers separated by a comma:\n").strip() __A : List[Any] = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
260
1
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Dict = DownBlockaD # noqa F405 UpperCamelCase_ : Tuple = "down" def UpperCamelCase_ ( self : str ) -> Optional[int]: _snake_case = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Tuple = ResnetDownsampleBlockaD # noqa F405 UpperCamelCase_ : Union[str, Any] = "down" def UpperCamelCase_ ( self : Any ) -> Union[str, Any]: _snake_case = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : str = AttnDownBlockaD # noqa F405 UpperCamelCase_ : List[str] = "down" def UpperCamelCase_ ( self : Any ) -> str: _snake_case = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Tuple = CrossAttnDownBlockaD # noqa F405 UpperCamelCase_ : int = "down" def UpperCamelCase_ ( self : Optional[int] ) -> Union[str, Any]: _snake_case, _snake_case = super().prepare_init_args_and_inputs_for_common() _snake_case = 32 return init_dict, inputs_dict def UpperCamelCase_ ( self : List[str] ) -> str: _snake_case = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Union[str, Any] = SimpleCrossAttnDownBlockaD # noqa F405 UpperCamelCase_ : Optional[Any] = "down" @property def UpperCamelCase_ ( self : str ) -> int: return super().get_dummy_input(include_encoder_hidden_states=A__ ) def UpperCamelCase_ ( self : List[Any] ) -> Any: _snake_case, _snake_case = super().prepare_init_args_and_inputs_for_common() _snake_case = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def UpperCamelCase_ ( self : Optional[int] ) -> Dict: _snake_case = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : List[Any] = SkipDownBlockaD # noqa F405 UpperCamelCase_ : List[Any] = "down" @property def UpperCamelCase_ ( self : Optional[int] ) -> List[str]: return super().get_dummy_input(include_skip_sample=A__ ) def UpperCamelCase_ ( self : Tuple ) -> Dict: _snake_case = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Dict = AttnSkipDownBlockaD # noqa F405 UpperCamelCase_ : List[str] = "down" @property def UpperCamelCase_ ( self : Any ) -> Any: return super().get_dummy_input(include_skip_sample=A__ ) def UpperCamelCase_ ( self : Tuple ) -> Optional[Any]: _snake_case = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Tuple = DownEncoderBlockaD # noqa F405 UpperCamelCase_ : int = "down" @property def UpperCamelCase_ ( self : Optional[int] ) -> Dict: return super().get_dummy_input(include_temb=A__ ) def UpperCamelCase_ ( self : int ) -> Optional[int]: _snake_case = { '''in_channels''': 32, '''out_channels''': 32, } _snake_case = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self : Optional[Any] ) -> Union[str, Any]: _snake_case = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = AttnDownEncoderBlockaD # noqa F405 UpperCamelCase_ : str = "down" @property def UpperCamelCase_ ( self : Optional[int] ) -> Optional[int]: return super().get_dummy_input(include_temb=A__ ) def UpperCamelCase_ ( self : Tuple ) -> Tuple: _snake_case = { '''in_channels''': 32, '''out_channels''': 32, } _snake_case = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self : List[str] ) -> Union[str, Any]: _snake_case = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : str = UNetMidBlockaD # noqa F405 UpperCamelCase_ : Optional[Any] = "mid" def UpperCamelCase_ ( self : Any ) -> List[Any]: _snake_case = { '''in_channels''': 32, '''temb_channels''': 128, } _snake_case = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self : Dict ) -> Any: _snake_case = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : List[str] = UNetMidBlockaDCrossAttn # noqa F405 UpperCamelCase_ : Dict = "mid" def UpperCamelCase_ ( self : str ) -> Optional[Any]: _snake_case, _snake_case = super().prepare_init_args_and_inputs_for_common() _snake_case = 32 return init_dict, inputs_dict def UpperCamelCase_ ( self : List[str] ) -> Optional[Any]: _snake_case = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = UNetMidBlockaDSimpleCrossAttn # noqa F405 UpperCamelCase_ : Any = "mid" @property def UpperCamelCase_ ( self : Tuple ) -> str: return super().get_dummy_input(include_encoder_hidden_states=A__ ) def UpperCamelCase_ ( self : Union[str, Any] ) -> List[str]: _snake_case, _snake_case = super().prepare_init_args_and_inputs_for_common() _snake_case = 32 return init_dict, inputs_dict def UpperCamelCase_ ( self : Any ) -> Dict: _snake_case = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : str = UpBlockaD # noqa F405 UpperCamelCase_ : Any = "up" @property def UpperCamelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: return super().get_dummy_input(include_res_hidden_states_tuple=A__ ) def UpperCamelCase_ ( self : Optional[Any] ) -> Dict: _snake_case = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Union[str, Any] = ResnetUpsampleBlockaD # noqa F405 UpperCamelCase_ : Optional[int] = "up" @property def UpperCamelCase_ ( self : Any ) -> int: return super().get_dummy_input(include_res_hidden_states_tuple=A__ ) def UpperCamelCase_ ( self : Union[str, Any] ) -> str: _snake_case = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : List[str] = CrossAttnUpBlockaD # noqa F405 UpperCamelCase_ : List[str] = "up" @property def UpperCamelCase_ ( self : Dict ) -> Any: return super().get_dummy_input(include_res_hidden_states_tuple=A__ ) def UpperCamelCase_ ( self : Dict ) -> Dict: _snake_case, _snake_case = super().prepare_init_args_and_inputs_for_common() _snake_case = 32 return init_dict, inputs_dict def UpperCamelCase_ ( self : Any ) -> List[Any]: _snake_case = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : List[str] = SimpleCrossAttnUpBlockaD # noqa F405 UpperCamelCase_ : int = "up" @property def UpperCamelCase_ ( self : List[Any] ) -> Optional[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=A__ , include_encoder_hidden_states=A__ ) def UpperCamelCase_ ( self : str ) -> Optional[Any]: _snake_case, _snake_case = super().prepare_init_args_and_inputs_for_common() _snake_case = 32 return init_dict, inputs_dict def UpperCamelCase_ ( self : List[str] ) -> List[str]: _snake_case = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = AttnUpBlockaD # noqa F405 UpperCamelCase_ : Optional[Any] = "up" @property def UpperCamelCase_ ( self : Union[str, Any] ) -> Optional[int]: return super().get_dummy_input(include_res_hidden_states_tuple=A__ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def UpperCamelCase_ ( self : Any ) -> Optional[Any]: _snake_case = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : str = SkipUpBlockaD # noqa F405 UpperCamelCase_ : List[str] = "up" @property def UpperCamelCase_ ( self : List[str] ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=A__ ) def UpperCamelCase_ ( self : Optional[int] ) -> str: _snake_case = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : List[Any] = AttnSkipUpBlockaD # noqa F405 UpperCamelCase_ : Tuple = "up" @property def UpperCamelCase_ ( self : Optional[int] ) -> Dict: return super().get_dummy_input(include_res_hidden_states_tuple=A__ ) def UpperCamelCase_ ( self : int ) -> List[Any]: _snake_case = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Any = UpDecoderBlockaD # noqa F405 UpperCamelCase_ : List[str] = "up" @property def UpperCamelCase_ ( self : int ) -> Any: return super().get_dummy_input(include_temb=A__ ) def UpperCamelCase_ ( self : Tuple ) -> Tuple: _snake_case = {'''in_channels''': 32, '''out_channels''': 32} _snake_case = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self : Optional[Any] ) -> Union[str, Any]: _snake_case = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(A__ ) class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = AttnUpDecoderBlockaD # noqa F405 UpperCamelCase_ : Dict = "up" @property def UpperCamelCase_ ( self : str ) -> Tuple: return super().get_dummy_input(include_temb=A__ ) def UpperCamelCase_ ( self : Dict ) -> int: _snake_case = {'''in_channels''': 32, '''out_channels''': 32} _snake_case = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self : List[str] ) -> Union[str, Any]: _snake_case = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(A__ )
278
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def snake_case_(_UpperCamelCase ) -> Optional[int]: """simple docstring""" _snake_case = checkpoints.load_tax_checkpoint(_UpperCamelCase ) _snake_case = flatten_dict(_UpperCamelCase ) return flax_params def snake_case_(_UpperCamelCase ) -> List[str]: """simple docstring""" _snake_case = {} _snake_case = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } _snake_case = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key _snake_case = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): _snake_case = new_key.replace(_UpperCamelCase , _UpperCamelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): _snake_case = new_key.replace(_UpperCamelCase , _UpperCamelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number _snake_case = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , _UpperCamelCase ) _snake_case = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number _snake_case = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , _UpperCamelCase ) _snake_case = flax_dict[key] _snake_case = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): _snake_case = torch.from_numpy(converted_dict[key].T ) else: _snake_case = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=False ) -> List[Any]: """simple docstring""" _snake_case = get_flax_param(_UpperCamelCase ) if not use_large: _snake_case = PixaStructVisionConfig() _snake_case = PixaStructTextConfig() else: _snake_case = PixaStructVisionConfig( hidden_size=1_536 , d_ff=3_968 , num_attention_heads=24 , num_hidden_layers=18 ) _snake_case = PixaStructTextConfig(hidden_size=1_536 , d_ff=3_968 , num_heads=24 , num_layers=18 ) _snake_case = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=_UpperCamelCase ) _snake_case = PixaStructForConditionalGeneration(_UpperCamelCase ) _snake_case = rename_and_convert_flax_params(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) _snake_case = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) _snake_case = PixaStructImageProcessor() _snake_case = PixaStructProcessor(image_processor=_UpperCamelCase , tokenizer=_UpperCamelCase ) if use_large: _snake_case = 4_096 _snake_case = True # mkdir if needed os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) print('''Model saved in {}'''.format(_UpperCamelCase ) ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') __A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
278
1
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCAmelCase = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCAmelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCAmelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = len([g for position, g in enumerate(lowerCamelCase_ ) if g == main_target[position]] ) return (item, float(lowerCamelCase_ )) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = random.randint(0 , len(lowerCamelCase_ ) - 1 ) SCREAMING_SNAKE_CASE : Tuple = parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE : List[Any] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = list(lowerCamelCase_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE : str = random.choice(lowerCamelCase_ ) return "".join(lowerCamelCase_ ) def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ): """simple docstring""" SCREAMING_SNAKE_CASE : str = [] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE : Tuple = int(parent_a[1] * 1_00 ) + 1 SCREAMING_SNAKE_CASE : int = 10 if child_n >= 10 else child_n for _ in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : List[Any] = population_score[random.randint(0 , lowerCamelCase_ )][0] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = crossover(parent_a[0] , lowerCamelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCamelCase_ , lowerCamelCase_ ) ) pop.append(mutate(lowerCamelCase_ , lowerCamelCase_ ) ) return pop def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = True ): """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE : Tuple = f'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(lowerCamelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE : List[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE : List[Any] = f'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(lowerCamelCase_ ) # Generate random starting population. SCREAMING_SNAKE_CASE : Any = [] for _ in range(lowerCamelCase_ ): population.append("""""".join([random.choice(lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCamelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE : int = [evaluate(lowerCamelCase_ , lowerCamelCase_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE : Union[str, Any] = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] , reverse=lowerCamelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'''\nGeneration: {generation}''' f'''\nTotal Population:{total_population}''' f'''\nBest score: {population_score[0][1]}''' f'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE : int = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCamelCase_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE : Union[str, Any] = [ (item, score / len(lowerCamelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCamelCase_ ): population.extend(select(population_score[int(lowerCamelCase_ )] , lowerCamelCase_ , lowerCamelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCamelCase_ ) > N_POPULATION: break if __name__ == "__main__": __UpperCAmelCase = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) __UpperCAmelCase = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
323
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __UpperCAmelCase = 0 __UpperCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __UpperCAmelCase = tuple[int, int] class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Node | None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = pos_x SCREAMING_SNAKE_CASE : Any = pos_y SCREAMING_SNAKE_CASE : Optional[int] = (pos_y, pos_x) SCREAMING_SNAKE_CASE : Tuple = goal_x SCREAMING_SNAKE_CASE : List[str] = goal_y SCREAMING_SNAKE_CASE : Optional[Any] = g_cost SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : int = self.calculate_heuristic() SCREAMING_SNAKE_CASE : Tuple = self.g_cost + self.h_cost def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.pos_x - self.goal_x SCREAMING_SNAKE_CASE : List[str] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowerCamelCase_ ) + abs(lowerCamelCase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Optional[Any] , lowerCamelCase_ : Node ): '''simple docstring''' return self.f_cost < other.f_cost class UpperCamelCase__ : """simple docstring""" def __init__( self : int , lowerCamelCase_ : TPosition , lowerCamelCase_ : TPosition ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = [self.start] SCREAMING_SNAKE_CASE : list[Node] = [] SCREAMING_SNAKE_CASE : str = False def lowerCamelCase_ ( self : Any ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() SCREAMING_SNAKE_CASE : Optional[Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowerCamelCase_ ) self.closed_nodes.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.get_successors(lowerCamelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCamelCase_ ) else: # retrieve the best current path SCREAMING_SNAKE_CASE : int = self.open_nodes.pop(self.open_nodes.index(lowerCamelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCamelCase_ ) else: self.open_nodes.append(lowerCamelCase_ ) return [self.start.pos] def lowerCamelCase_ ( self : int , lowerCamelCase_ : Node ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [] for action in delta: SCREAMING_SNAKE_CASE : Dict = parent.pos_x + action[1] SCREAMING_SNAKE_CASE : List[str] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCamelCase_ , lowerCamelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCamelCase_ , ) ) return successors def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Node | None ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = node SCREAMING_SNAKE_CASE : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE : Optional[Any] = current_node.parent path.reverse() return path class UpperCamelCase__ : """simple docstring""" def __init__( self : int , lowerCamelCase_ : TPosition , lowerCamelCase_ : TPosition ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AStar(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = AStar(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = False def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() SCREAMING_SNAKE_CASE : List[str] = self.fwd_astar.open_nodes.pop(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowerCamelCase_ , lowerCamelCase_ ) self.fwd_astar.closed_nodes.append(lowerCamelCase_ ) self.bwd_astar.closed_nodes.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = current_bwd_node SCREAMING_SNAKE_CASE : Any = current_fwd_node SCREAMING_SNAKE_CASE : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowerCamelCase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowerCamelCase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowerCamelCase_ ) else: # retrieve the best current path SCREAMING_SNAKE_CASE : int = astar.open_nodes.pop( astar.open_nodes.index(lowerCamelCase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowerCamelCase_ ) else: astar.open_nodes.append(lowerCamelCase_ ) return [self.fwd_astar.start.pos] def lowerCamelCase_ ( self : str , lowerCamelCase_ : Node , lowerCamelCase_ : Node ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.fwd_astar.retrace_path(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = self.bwd_astar.retrace_path(lowerCamelCase_ ) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE : str = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __UpperCAmelCase = (0, 0) __UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __UpperCAmelCase = time.time() __UpperCAmelCase = AStar(init, goal) __UpperCAmelCase = a_star.search() __UpperCAmelCase = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') __UpperCAmelCase = time.time() __UpperCAmelCase = BidirectionalAStar(init, goal) __UpperCAmelCase = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
323
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=True , _lowerCamelCase=1 / 255 , _lowerCamelCase=True , ): """simple docstring""" UpperCAmelCase__ : int = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} UpperCAmelCase__ : Any = parent UpperCAmelCase__ : Union[str, Any] = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : Optional[Any] = min_resolution UpperCAmelCase__ : Optional[int] = max_resolution UpperCAmelCase__ : int = do_resize UpperCAmelCase__ : List[str] = size UpperCAmelCase__ : Any = do_normalize UpperCAmelCase__ : Dict = image_mean UpperCAmelCase__ : Union[str, Any] = image_std UpperCAmelCase__ : List[str] = do_rescale UpperCAmelCase__ : Any = rescale_factor UpperCAmelCase__ : Union[str, Any] = do_pad def _a (self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _a (self , _lowerCamelCase , _lowerCamelCase=False ): """simple docstring""" if not batched: UpperCAmelCase__ : Optional[Any] = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ : Any = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : Any = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) UpperCAmelCase__ : Tuple = self.size["""shortest_edge"""] elif w > h: UpperCAmelCase__ : Tuple = self.size["""shortest_edge"""] UpperCAmelCase__ : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: UpperCAmelCase__ : Dict = self.size["""shortest_edge"""] UpperCAmelCase__ : Optional[int] = self.size["""shortest_edge"""] else: UpperCAmelCase__ : Dict = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Any = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0] UpperCAmelCase__ : Tuple = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = YolosImageProcessor if is_vision_available() else None def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = YolosImageProcessingTester(self ) @property def _a (self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowerCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , _lowerCamelCase ) def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input UpperCAmelCase__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input UpperCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : Tuple = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : Dict = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase__ : Optional[int] = self.image_processing_class(do_resize=_lowerCamelCase , do_normalize=_lowerCamelCase , do_rescale=_lowerCamelCase ) # create random PyTorch tensors UpperCAmelCase__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors UpperCAmelCase__ : Any = image_processing_a.pad(_lowerCamelCase , return_tensors="""pt""" ) UpperCAmelCase__ : Optional[Any] = image_processing_a(_lowerCamelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCAmelCase__ : Optional[int] = json.loads(f.read() ) UpperCAmelCase__ : Union[str, Any] = {"""image_id""": 39769, """annotations""": target} # encode them UpperCAmelCase__ : Union[str, Any] = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) UpperCAmelCase__ : str = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCAmelCase__ : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4 ) ) # verify area UpperCAmelCase__ : str = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCamelCase ) ) # verify boxes UpperCAmelCase__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCamelCase ) UpperCAmelCase__ : Tuple = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCamelCase , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : int = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCamelCase ) ) # verify is_crowd UpperCAmelCase__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCamelCase ) ) # verify class_labels UpperCAmelCase__ : Tuple = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCamelCase ) ) # verify orig_size UpperCAmelCase__ : Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCamelCase ) ) # verify size UpperCAmelCase__ : Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCamelCase ) ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCAmelCase__ : Dict = json.loads(f.read() ) UpperCAmelCase__ : Tuple = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} UpperCAmelCase__ : Dict = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCAmelCase__ : int = YolosImageProcessor(format="""coco_panoptic""" ) UpperCAmelCase__ : Optional[Any] = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , masks_path=_lowerCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCAmelCase__ : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , _lowerCamelCase ) UpperCAmelCase__ : Tuple = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4 ) ) # verify area UpperCAmelCase__ : str = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCamelCase ) ) # verify boxes UpperCAmelCase__ : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCamelCase ) UpperCAmelCase__ : Any = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCamelCase , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : int = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCamelCase ) ) # verify is_crowd UpperCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCamelCase ) ) # verify class_labels UpperCAmelCase__ : List[str] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCamelCase ) ) # verify masks UpperCAmelCase__ : Optional[Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , _lowerCamelCase ) # verify orig_size UpperCAmelCase__ : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCamelCase ) ) # verify size UpperCAmelCase__ : Optional[int] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCamelCase ) )
166
"""simple docstring""" _A = range(2, 20 + 1) _A = [10**k for k in range(ks[-1] + 1)] _A = {} def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> int: UpperCAmelCase__ : List[str] = sum(a_i[j] for j in range(lowerCAmelCase , len(lowerCAmelCase ) ) ) UpperCAmelCase__ : str = sum(a_i[j] * base[j] for j in range(min(len(lowerCAmelCase ) , lowerCAmelCase ) ) ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = 0, 0 UpperCAmelCase__ : Optional[Any] = n - i UpperCAmelCase__ : Union[str, Any] = memo.get(lowerCAmelCase ) if sub_memo is not None: UpperCAmelCase__ : Any = sub_memo.get(lowerCAmelCase ) if jumps is not None and len(lowerCAmelCase ) > 0: # find and make the largest jump without going over UpperCAmelCase__ : Optional[int] = -1 for _k in range(len(lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCAmelCase__ : str = _k break if max_jump >= 0: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = jumps[max_jump] # since the difference between jumps is cached, add c UpperCAmelCase__ : Any = diff + c for j in range(min(lowerCAmelCase , len(lowerCAmelCase ) ) ): UpperCAmelCase__ , UpperCAmelCase__ : Tuple = divmod(lowerCAmelCase , 10 ) if new_c > 0: add(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: UpperCAmelCase__ : int = [] else: UpperCAmelCase__ : Union[str, Any] = {c: []} UpperCAmelCase__ : Union[str, Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = next_term(lowerCAmelCase , k - 1 , i + dn , lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCAmelCase__ , UpperCAmelCase__ : Tuple = compute(lowerCAmelCase , lowerCAmelCase , i + dn , lowerCAmelCase ) diff += _diff dn += terms_jumped UpperCAmelCase__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCAmelCase__ : Any = 0 while j < len(lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> List[Any]: if i >= n: return 0, i if k > len(lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCAmelCase__ : Tuple = i UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = 0, 0, 0 for j in range(len(lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCAmelCase__ : Dict = ds_c + ds_b diff += addend UpperCAmelCase__ : Tuple = 0 for j in range(lowerCAmelCase ): UpperCAmelCase__ : Tuple = a_i[j] + addend UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = divmod(lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return diff, i - start_i def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: for j in range(lowerCAmelCase , len(lowerCAmelCase ) ): UpperCAmelCase__ : Optional[Any] = digits[j] + addend if s >= 10: UpperCAmelCase__ , UpperCAmelCase__ : Dict = divmod(lowerCAmelCase , 10 ) UpperCAmelCase__ : Any = addend // 10 + quotient else: UpperCAmelCase__ : Optional[Any] = s UpperCAmelCase__ : Tuple = addend // 10 if addend == 0: break while addend > 0: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = divmod(lowerCAmelCase , 10 ) digits.append(lowerCAmelCase ) def a__ ( lowerCAmelCase = 10**15 ) -> int: UpperCAmelCase__ : Optional[int] = [1] UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Dict = 0 while True: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = next_term(lowerCAmelCase , 20 , i + dn , lowerCAmelCase ) dn += terms_jumped if dn == n - i: break UpperCAmelCase__ : Optional[int] = 0 for j in range(len(lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
166
1
__lowerCamelCase : List[str] = 8.3_1_4_4_5_9_8 def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> float: if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example __lowerCamelCase : str = 300 __lowerCamelCase : List[Any] = 28 __lowerCamelCase : List[str] = rms_speed_of_molecule(temperature, molar_mass) print(f"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
52
def A_ ( _lowerCAmelCase ) -> str: UpperCamelCase : Optional[int] = int(_lowerCAmelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(_lowerCAmelCase ) UpperCamelCase , UpperCamelCase : Dict = divmod(_lowerCAmelCase , 2 ) return binary_recursive(_lowerCAmelCase ) + str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase ) -> str: UpperCamelCase : Tuple = str(_lowerCAmelCase ).strip() if not number: raise ValueError("No input value was provided" ) UpperCamelCase : Optional[int] = "-" if number.startswith("-" ) else "" UpperCamelCase : Any = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return F"""{negative}0b{binary_recursive(int(_lowerCAmelCase ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
52
1
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _A = logging.get_logger(__name__) _A = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _lowerCamelCase ( a_ ): _lowerCamelCase :Union[str, Any] = "gptj" _lowerCamelCase :List[Any] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[Any] , UpperCamelCase : Tuple=5_04_00 , UpperCamelCase : str=20_48 , UpperCamelCase : Union[str, Any]=40_96 , UpperCamelCase : Dict=28 , UpperCamelCase : List[str]=16 , UpperCamelCase : Any=64 , UpperCamelCase : Optional[int]=None , UpperCamelCase : Union[str, Any]="gelu_new" , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=1E-5 , UpperCamelCase : str=0.02 , UpperCamelCase : List[Any]=True , UpperCamelCase : Optional[int]=5_02_56 , UpperCamelCase : int=5_02_56 , UpperCamelCase : Dict=False , **UpperCamelCase : List[Any] , ) -> str: """simple docstring""" lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Dict = n_positions lowerCAmelCase__ : List[str] = n_embd lowerCAmelCase__ : Optional[int] = n_layer lowerCAmelCase__ : Any = n_head lowerCAmelCase__ : Union[str, Any] = n_inner lowerCAmelCase__ : int = rotary_dim lowerCAmelCase__ : int = activation_function lowerCAmelCase__ : Dict = resid_pdrop lowerCAmelCase__ : Optional[Any] = embd_pdrop lowerCAmelCase__ : List[str] = attn_pdrop lowerCAmelCase__ : Any = layer_norm_epsilon lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : List[str] = use_cache lowerCAmelCase__ : int = bos_token_id lowerCAmelCase__ : Optional[Any] = eos_token_id super().__init__( bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , tie_word_embeddings=UpperCamelCase , **UpperCamelCase ) class _lowerCamelCase ( a_ ): def __init__( self : str , UpperCamelCase : PretrainedConfig , UpperCamelCase : str = "default" , UpperCamelCase : List[PatchingSpec] = None , UpperCamelCase : bool = False , ) -> Union[str, Any]: """simple docstring""" super().__init__(UpperCamelCase , task=UpperCamelCase , patching_specs=UpperCamelCase , use_past=UpperCamelCase ) if not getattr(self._config , """pad_token_id""" , UpperCamelCase ): # TODO: how to do that better? lowerCAmelCase__ : List[str] = 0 @property def _lowerCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowerCAmelCase__ : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase , direction="""inputs""" ) lowerCAmelCase__ : Union[str, Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase__ : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return self._config.n_layer @property def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" return self._config.n_head def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : int = -1 , UpperCamelCase : int = -1 , UpperCamelCase : bool = False , UpperCamelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" lowerCAmelCase__ : Tuple = super(UpperCamelCase , self ).generate_dummy_inputs( UpperCamelCase , batch_size=UpperCamelCase , seq_length=UpperCamelCase , is_pair=UpperCamelCase , framework=UpperCamelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase__ : int = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase__ : Optional[Any] = seqlen + 2 lowerCAmelCase__ : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase__ : List[str] = [ (torch.zeros(UpperCamelCase ), torch.zeros(UpperCamelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase__ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase__ : Optional[Any] = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase__ : int = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCamelCase , UpperCamelCase , dtype=UpperCamelCase )] , dim=1 ) return ordered_inputs @property def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" return 13
212
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests _A = open # noqa: we just need to have a builtin inside this module to test it properly
212
1
"""simple docstring""" def _snake_case ( _snake_case : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' _A = set() # Replace all the whitespace in our sentence _A = input_str.replace(' ' , '' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_snake_case ) == 26 def _snake_case ( _snake_case : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' _A = [False] * 26 for char in input_str: if char.islower(): _A = True elif char.isupper(): _A = True return all(_snake_case ) def _snake_case ( _snake_case : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _snake_case ( ) -> None: '''simple docstring''' from timeit import timeit _A = 'from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest' print(timeit('is_pangram()' , setup=_snake_case ) ) print(timeit('is_pangram_faster()' , setup=_snake_case ) ) print(timeit('is_pangram_fastest()' , setup=_snake_case ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
315
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCAmelCase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase_ ( self : Dict ): _A = {} if self.train_dir is not None: _A = self.train_dir if self.validation_dir is not None: _A = self.validation_dir _A = data_files if data_files else None @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) UpperCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase : float = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : float = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def _snake_case ( _snake_case : int ) -> Optional[int]: '''simple docstring''' _A = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ) -> List[str]: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _snake_case , _snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _A = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0: _A = ds['train'].train_test_split(data_args.train_val_split ) _A = split['train'] _A = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTImageProcessor() # create model if model_args.model_name_or_path: _A = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _A = ViTMAEForPreTraining(_snake_case ) if training_args.do_train: _A = ds['train'].column_names else: _A = ds['validation'].column_names if data_args.image_column_name is not None: _A = data_args.image_column_name elif "image" in column_names: _A = 'image' elif "img" in column_names: _A = 'img' else: _A = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _A = image_processor.size['shortest_edge'] else: _A = (image_processor.size['height'], image_processor.size['width']) _A = Compose( [ Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_snake_case : List[Any] ): _A = [transforms(_snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _A = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_snake_case ) # Compute absolute learning rate _A = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _A = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _A = Trainer( model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) # Write model card and (optionally) push to hub _A = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def _snake_case ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
315
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = CTRLTokenizer a_ = False a_ = False def lowercase ( self : Union[str, Any] ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] __lowerCAmelCase = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) __lowerCAmelCase = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] __lowerCAmelCase = {'unk_token': '<unk>'} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase_ ) ) def lowercase ( self : Any , **lowerCAmelCase_ : Optional[int] ) -> Tuple: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> Dict: __lowerCAmelCase = 'adapt react readapt apt' __lowerCAmelCase = 'adapt react readapt apt' return input_text, output_text def lowercase ( self : int ) -> List[str]: __lowerCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCAmelCase = 'adapt react readapt apt' __lowerCAmelCase = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() __lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ )
207
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : Optional[int] , lowerCAmelCase_ : int = 1_6 , lowerCAmelCase_ : int = 8_8 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : str = "geglu" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , ) -> Dict: super().__init__() __lowerCAmelCase = num_attention_heads __lowerCAmelCase = attention_head_dim __lowerCAmelCase = num_attention_heads * attention_head_dim __lowerCAmelCase = in_channels __lowerCAmelCase = torch.nn.GroupNorm(num_groups=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , eps=1e-6 , affine=lowerCAmelCase_ ) __lowerCAmelCase = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. Define transformers blocks __lowerCAmelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dropout=lowerCAmelCase_ , cross_attention_dim=lowerCAmelCase_ , activation_fn=lowerCAmelCase_ , attention_bias=lowerCAmelCase_ , double_self_attention=lowerCAmelCase_ , norm_elementwise_affine=lowerCAmelCase_ , ) for d in range(lowerCAmelCase_ ) ] ) __lowerCAmelCase = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : bool = True , ) -> str: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = hidden_states.shape __lowerCAmelCase = batch_frames // num_frames __lowerCAmelCase = hidden_states __lowerCAmelCase = hidden_states[None, :].reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __lowerCAmelCase = self.norm(lowerCAmelCase_ ) __lowerCAmelCase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = self.proj_in(lowerCAmelCase_ ) # 2. Blocks for block in self.transformer_blocks: __lowerCAmelCase = block( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , timestep=lowerCAmelCase_ , cross_attention_kwargs=lowerCAmelCase_ , class_labels=lowerCAmelCase_ , ) # 3. Output __lowerCAmelCase = self.proj_out(lowerCAmelCase_ ) __lowerCAmelCase = ( hidden_states[None, None, :] .reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __lowerCAmelCase = hidden_states.reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=lowerCAmelCase_ )
207
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _A = Lock() def __UpperCamelCase ( _A , _A , _A , _A , _A , _A , _A ): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ = min(_A , _A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ = max(_A , _A ) # after all swaps are performed, send the values back to main result_pipe[1].send(_A ) def __UpperCamelCase ( _A ): lowerCAmelCase_ = [] lowerCAmelCase_ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ = Pipe() lowerCAmelCase_ = Pipe() process_array_.append( Process( target=_A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowerCAmelCase_ = temp_rs lowerCAmelCase_ = temp_rr for i in range(1 , len(_A ) - 1 ): lowerCAmelCase_ = Pipe() lowerCAmelCase_ = Pipe() process_array_.append( Process( target=_A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowerCAmelCase_ = temp_rs lowerCAmelCase_ = temp_rr process_array_.append( Process( target=_A , args=( len(_A ) - 1, arr[len(_A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_A ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_A ) ): lowerCAmelCase_ = result_pipe[p][0].recv() process_array_[p].join() return arr def __UpperCamelCase ( ): lowerCAmelCase_ = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*_A ) lowerCAmelCase_ = odd_even_transposition(_A ) print('''Sorted List\n''' ) print(*_A ) if __name__ == "__main__": main()
278
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __UpperCamelCase ( _A = 3 ): if isinstance(_A , _A ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_A ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) lowerCAmelCase_ = QuantumRegister(_A , '''qr''' ) lowerCAmelCase_ = ClassicalRegister(_A , '''cr''' ) lowerCAmelCase_ = QuantumCircuit(_A , _A ) lowerCAmelCase_ = number_of_qubits for i in range(_A ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_A ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _A , _A ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_A , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_A , _A ) # simulate with 10000 shots lowerCAmelCase_ = Aer.get_backend('''qasm_simulator''' ) lowerCAmelCase_ = execute(_A , _A , shots=10000 ) return job.result().get_counts(_A ) if __name__ == "__main__": print( f"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
278
1
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :str = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) SCREAMING_SNAKE_CASE :List[Any] = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) SCREAMING_SNAKE_CASE :Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) SCREAMING_SNAKE_CASE :Tuple = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) SCREAMING_SNAKE_CASE :List[Any] = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) SCREAMING_SNAKE_CASE :Tuple = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) SCREAMING_SNAKE_CASE :Any = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) SCREAMING_SNAKE_CASE :Tuple = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) SCREAMING_SNAKE_CASE :str = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) SCREAMING_SNAKE_CASE :List[str] = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) SCREAMING_SNAKE_CASE :int = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) SCREAMING_SNAKE_CASE :List[Any] = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) SCREAMING_SNAKE_CASE :List[str] = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) SCREAMING_SNAKE_CASE :Tuple = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) SCREAMING_SNAKE_CASE :List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE :List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE :Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE :Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE :Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE :Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE :Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE :int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE :int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE :List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE :str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE :Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE :Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE :Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :Optional[Any] = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE :List[Any] = auto_class_update(FlaxAutoModel) class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :List[str] = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE :str = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :Optional[int] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE :Any = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :int = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE :List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :Optional[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE :Tuple = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :Optional[int] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE :Optional[Any] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :Union[str, Any] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE :Optional[int] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :Optional[int] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE :Optional[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :int = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE :Optional[int] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :List[str] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE :Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :Union[str, Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE :Optional[int] = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :int = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE :str = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :Optional[int] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE :Tuple = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
60
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __magic_name__ : def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=4 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.1 , _lowercase=True , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , )-> str: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_multiple_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout UpperCamelCase_ = attention_dropout UpperCamelCase_ = weight_tying UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = num_choices UpperCamelCase_ = scope def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self )-> int: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = True return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Optional[Any]: UpperCamelCase_ = GPTNeoXJapaneseModel(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase ) UpperCamelCase_ = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Dict: UpperCamelCase_ = True UpperCamelCase_ = GPTNeoXJapaneseModel(_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase )-> List[str]: UpperCamelCase_ = GPTNeoXJapaneseForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Dict: UpperCamelCase_ = True UpperCamelCase_ = GPTNeoXJapaneseForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() # first forward pass UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase , use_cache=_lowercase ) UpperCamelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase , output_hidden_states=_lowercase ) UpperCamelCase_ = output_from_no_past["hidden_states"][0] UpperCamelCase_ = model( _lowercase , attention_mask=_lowercase , past_key_values=_lowercase , output_hidden_states=_lowercase , )["hidden_states"][0] # select random slice UpperCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1e-3 ) ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __magic_name__ ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase_ :Optional[Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () UpperCamelCase_ :str = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () UpperCamelCase_ :int = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) UpperCamelCase_ :int = False UpperCamelCase_ :Dict = False UpperCamelCase_ :List[str] = False UpperCamelCase_ :int = False def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ = GPTNeoXJapaneseModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> Any: # This regression test was failing with PyTorch < 1.3 UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase_ = None self.model_tester.create_and_check_model_as_decoder(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowercase ) @slow def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = "abeja/gpt-neox-japanese-2.7b" UpperCamelCase_ = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] UpperCamelCase_ = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] UpperCamelCase_ = GPTNeoXJapaneseTokenizer.from_pretrained(_lowercase ) UpperCamelCase_ = GPTNeoXJapaneseForCausalLM.from_pretrained(_lowercase ) UpperCamelCase_ = [] for prompt in prompts: UpperCamelCase_ = tokenizer(_lowercase , return_tensors="pt" ).input_ids UpperCamelCase_ = model.generate(_lowercase , max_length=50 ) UpperCamelCase_ = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) predicted_outputs += generated_string self.assertListEqual(_lowercase , _lowercase )
60
1
'''simple docstring''' def _A ( _lowerCAmelCase ): """simple docstring""" if len(_lowerCAmelCase ) <= 1: return [tuple(_lowerCAmelCase )] __lowercase =[] def generate(_lowerCAmelCase , _lowerCAmelCase ): __lowercase =[0] * n res.append(tuple(_lowerCAmelCase ) ) __lowercase =0 while i < n: if c[i] < i: if i % 2 == 0: __lowercase , __lowercase =arr[i], arr[0] else: __lowercase , __lowercase =arr[i], arr[c[i]] res.append(tuple(_lowerCAmelCase ) ) c[i] += 1 __lowercase =0 else: __lowercase =0 i += 1 generate(len(_lowerCAmelCase ) , _lowerCAmelCase ) return res if __name__ == "__main__": lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
166
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = """▁""" lowerCamelCase = {"""vocab_file""": """spiece.model"""} lowerCamelCase = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } lowerCamelCase = { """google/reformer-crime-and-punishment""": 52_4288, } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]="</s>" , _lowerCAmelCase : Any="<unk>" , _lowerCAmelCase : int=[] , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : List[Any] , ): '''simple docstring''' __lowercase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __lowercase =vocab_file __lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowerCAmelCase) @property def __lowerCamelCase ( self : int): '''simple docstring''' return self.sp_model.get_piece_size() def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase ={self.convert_ids_to_tokens(_lowerCAmelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any): '''simple docstring''' __lowercase =self.__dict__.copy() __lowercase =None return state def __setstate__( self : Optional[int] , _lowerCAmelCase : Union[str, Any]): '''simple docstring''' __lowercase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __lowercase ={} __lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : str): '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : List[Any]): '''simple docstring''' return self.sp_model.piece_to_id(_lowerCAmelCase) def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Optional[Any]): '''simple docstring''' if index < self.sp_model.get_piece_size(): __lowercase =self.sp_model.IdToPiece(_lowerCAmelCase) return token def __lowerCamelCase ( self : Any , _lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase =[] __lowercase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase) + token __lowercase =[] else: current_sub_tokens.append(_lowerCAmelCase) out_string += self.sp_model.decode(_lowerCAmelCase) return out_string.strip() def __lowerCamelCase ( self : int , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None): '''simple docstring''' if not os.path.isdir(_lowerCAmelCase): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return __lowercase =os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowerCAmelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowerCAmelCase) elif not os.path.isfile(self.vocab_file): with open(_lowerCAmelCase , 'wb') as fi: __lowercase =self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase) return (out_vocab_file,)
166
1
"""simple docstring""" import argparse import json from tqdm import tqdm def lowercase () -> List[str]: SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=__lowerCAmelCase , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=__lowerCAmelCase , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=__lowerCAmelCase , help='where to store parsed gold_data_path file' , ) SCREAMING_SNAKE_CASE = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: SCREAMING_SNAKE_CASE = json.load(__lowerCAmelCase ) for dpr_record in tqdm(__lowerCAmelCase ): SCREAMING_SNAKE_CASE = dpr_record['''question'''] SCREAMING_SNAKE_CASE = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(__lowerCAmelCase ) + '\n' ) if __name__ == "__main__": main()
371
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = ["""image_processor""", """tokenizer"""] SCREAMING_SNAKE_CASE_ : Any = """FlavaImageProcessor""" SCREAMING_SNAKE_CASE_ : List[str] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> List[str]: SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.image_processor def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> List[str]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: SCREAMING_SNAKE_CASE = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) if images is not None: SCREAMING_SNAKE_CASE = self.image_processor( lowerCAmelCase__ , return_image_mask=lowerCAmelCase__ , return_codebook_pixels=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) if text is not None and images is not None: encoding.update(lowerCAmelCase__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ ) def __A ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __A ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __A ( self ) -> str: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCAmelCase__ , ) return self.image_processor_class @property def __A ( self ) -> Dict: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCAmelCase__ , ) return self.image_processor
38
0
import math def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: lowerCAmelCase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = int(math.floor(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) ) lowerCAmelCase__ : Any = 0 while arr[min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) - 1] < x: lowerCAmelCase__ : str = step step += int(math.floor(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) ) if prev >= n: return -1 while arr[prev] < x: lowerCAmelCase__ : Optional[int] = prev + 1 if prev == min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] lowerCamelCase__ = int(input("""Enter the number to be searched:\n""")) lowerCamelCase__ = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(F"""Number {x} is at index {res}""")
212
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class A__ : @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.get_dummy_input() @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def _lowerCamelCase ( self : Optional[int] , a : List[Any]=True , a : Any=False , a : Dict=False , a : Union[str, Any]=False , ): '''simple docstring''' lowerCAmelCase__ : Tuple = 4 lowerCAmelCase__ : int = 32 lowerCAmelCase__ : Tuple = (32, 32) lowerCAmelCase__ : List[Any] = torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = torch.device(a ) lowerCAmelCase__ : str = (batch_size, num_channels) + sizes lowerCAmelCase__ : Tuple = randn_tensor(a , generator=a , device=a ) lowerCAmelCase__ : Optional[Any] = {'hidden_states': hidden_states} if include_temb: lowerCAmelCase__ : int = 128 lowerCAmelCase__ : List[str] = randn_tensor((batch_size, temb_channels) , generator=a , device=a ) if include_res_hidden_states_tuple: lowerCAmelCase__ : int = torch.manual_seed(1 ) lowerCAmelCase__ : str = (randn_tensor(a , generator=a , device=a ),) if include_encoder_hidden_states: lowerCAmelCase__ : Any = floats_tensor((batch_size, 32, 32) ).to(a ) if include_skip_sample: lowerCAmelCase__ : Union[str, Any] = randn_tensor(((batch_size, 3) + sizes) , generator=a , device=a ) return dummy_input def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": lowerCAmelCase__ : Union[str, Any] = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) lowerCAmelCase__ : Optional[int] = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self : str , a : List[str] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase__ : int = self.block_class(**a ) unet_block.to(a ) unet_block.eval() with torch.no_grad(): lowerCAmelCase__ : int = unet_block(**a ) if isinstance(a , a ): lowerCAmelCase__ : List[str] = output[0] self.assertEqual(output.shape , self.output_shape ) lowerCAmelCase__ : List[str] = output[0, -1, -3:, -3:] lowerCAmelCase__ : Any = torch.tensor(a ).to(a ) assert torch_all_close(output_slice.flatten() , a , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase__ : Any = self.block_class(**a ) model.to(a ) model.train() lowerCAmelCase__ : int = model(**a ) if isinstance(a , a ): lowerCAmelCase__ : Dict = output[0] lowerCAmelCase__ : Optional[int] = torch.device(a ) lowerCAmelCase__ : List[Any] = randn_tensor(output.shape , device=a ) lowerCAmelCase__ : List[Any] = torch.nn.functional.mse_loss(a , a ) loss.backward()
212
1
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _a : Tuple= random.Random() if is_torch_available(): import torch def __UpperCAmelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=1.0 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[int]=None ) -> List[Any]: '''simple docstring''' if rng is None: __snake_case : List[Any] = global_rng __snake_case : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase ( unittest.TestCase ): def __init__(self : int , _A : Any , _A : int=7 , _A : int=4_00 , _A : Any=20_00 , _A : Tuple=1 , _A : Tuple=0.0 , _A : List[str]=1_60_00 , _A : Tuple=True , _A : Optional[int]=True , ) -> Tuple: __snake_case : Optional[Any] = parent __snake_case : Tuple = batch_size __snake_case : Optional[Any] = min_seq_length __snake_case : List[str] = max_seq_length __snake_case : int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __snake_case : Union[str, Any] = feature_size __snake_case : Optional[Any] = padding_value __snake_case : Optional[int] = sampling_rate __snake_case : Tuple = return_attention_mask __snake_case : Any = do_normalize def _lowercase (self : List[Any]) -> Any: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowercase (self : Optional[Any] , _A : Any=False , _A : int=False) -> Union[str, Any]: def _flatten(_A : int): return list(itertools.chain(*_A)) if equal_length: __snake_case : str = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size __snake_case : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: __snake_case : Any = [np.asarray(_A) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase ( lowercase , unittest.TestCase ): UpperCAmelCase : List[Any] = ASTFeatureExtractor def _lowercase (self : Optional[int]) -> Optional[int]: __snake_case : int = ASTFeatureExtractionTester(self) def _lowercase (self : Dict) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus __snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 __snake_case : Union[str, Any] = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] __snake_case : List[str] = [np.asarray(_A) for speech_input in speech_inputs] # Test not batched input __snake_case : Union[str, Any] = feat_extract(speech_inputs[0] , return_tensors='np').input_values __snake_case : int = feat_extract(np_speech_inputs[0] , return_tensors='np').input_values self.assertTrue(np.allclose(_A , _A , atol=1E-3)) # Test batched __snake_case : Tuple = feat_extract(_A , padding=_A , return_tensors='np').input_values __snake_case : Union[str, Any] = feat_extract(_A , padding=_A , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(_A , _A): self.assertTrue(np.allclose(_A , _A , atol=1E-3)) # Test 2-D numpy arrays are batched. __snake_case : Union[str, Any] = [floats_list((1, x))[0] for x in (8_00, 8_00, 8_00)] __snake_case : Dict = np.asarray(_A) __snake_case : Optional[int] = feat_extract(_A , return_tensors='np').input_values __snake_case : List[str] = feat_extract(_A , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(_A , _A): self.assertTrue(np.allclose(_A , _A , atol=1E-3)) @require_torch def _lowercase (self : List[Any]) -> str: import torch __snake_case : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __snake_case : str = np.random.rand(1_00).astype(np.floataa) __snake_case : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __snake_case : Optional[int] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np') self.assertTrue(np_processed.input_values.dtype == np.floataa) __snake_case : Dict = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt') self.assertTrue(pt_processed.input_values.dtype == torch.floataa) def _lowercase (self : List[str] , _A : Dict) -> List[str]: from datasets import load_dataset __snake_case : Union[str, Any] = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation') # automatic decoding with librispeech __snake_case : Optional[Any] = ds.sort('id').select(range(_A))[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def _lowercase (self : int) -> Dict: # fmt: off __snake_case : Tuple = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869]) # fmt: on __snake_case : int = self._load_datasamples(1) __snake_case : Dict = ASTFeatureExtractor() __snake_case : Union[str, Any] = feature_extractor(_A , return_tensors='pt').input_values self.assertEquals(input_values.shape , (1, 10_24, 1_28)) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _A , atol=1E-4))
357
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _a : int= NewType("DataClass", Any) _a : Dict= NewType("DataClassType", Any) def __UpperCAmelCase ( UpperCAmelCase_ : Any ) -> Optional[Any]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)." ) def __UpperCAmelCase ( UpperCAmelCase_ : list ) -> Callable[[str], Any]: '''simple docstring''' __snake_case : str = {str(UpperCAmelCase_ ): choice for choice in choices} return lambda UpperCAmelCase_ : str_to_choice.get(UpperCAmelCase_ , UpperCAmelCase_ ) def __UpperCAmelCase ( *, UpperCAmelCase_ : Union[str, List[str]] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Any = dataclasses.MISSING , UpperCAmelCase_ : Callable[[], Any] = dataclasses.MISSING , UpperCAmelCase_ : dict = None , **UpperCAmelCase_ : str , ) -> dataclasses.Field: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __snake_case : Optional[Any] = {} if aliases is not None: __snake_case : Optional[int] = aliases if help is not None: __snake_case : Optional[int] = help return dataclasses.field(metadata=UpperCAmelCase_ , default=UpperCAmelCase_ , default_factory=UpperCAmelCase_ , **UpperCAmelCase_ ) class UpperCamelCase ( lowercase ): UpperCAmelCase : Iterable[DataClassType] def __init__(self : Tuple , _A : Union[DataClassType, Iterable[DataClassType]] , **_A : int) -> int: # To make the default appear when using --help if "formatter_class" not in kwargs: __snake_case : Union[str, Any] = ArgumentDefaultsHelpFormatter super().__init__(**_A) if dataclasses.is_dataclass(_A): __snake_case : Optional[int] = [dataclass_types] __snake_case : Dict = list(_A) for dtype in self.dataclass_types: self._add_dataclass_arguments(_A) @staticmethod def _lowercase (_A : ArgumentParser , _A : dataclasses.Field) -> Tuple: __snake_case : Union[str, Any] = f"--{field.name}" __snake_case : Optional[int] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _A): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default') __snake_case : Any = kwargs.pop('aliases' , []) if isinstance(_A , _A): __snake_case : Optional[Any] = [aliases] __snake_case : Tuple = getattr(field.type , '__origin__' , field.type) if origin_type is Union or (hasattr(_A , 'UnionType') and isinstance(_A , types.UnionType)): if str not in field.type.__args__ and ( len(field.type.__args__) != 2 or type(_A) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' f" Problem encountered in field '{field.name}'.") if type(_A) not in field.type.__args__: # filter `str` in Union __snake_case : Tuple = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __snake_case : Optional[int] = getattr(field.type , '__origin__' , field.type) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __snake_case : Optional[Any] = ( field.type.__args__[0] if isinstance(_A , field.type.__args__[1]) else field.type.__args__[1] ) __snake_case : Tuple = getattr(field.type , '__origin__' , field.type) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __snake_case : Optional[int] = {} if origin_type is Literal or (isinstance(field.type , _A) and issubclass(field.type , _A)): if origin_type is Literal: __snake_case : Tuple = field.type.__args__ else: __snake_case : Dict = [x.value for x in field.type] __snake_case : Dict = make_choice_type_function(kwargs['choices']) if field.default is not dataclasses.MISSING: __snake_case : Dict = field.default else: __snake_case : Union[str, Any] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __snake_case : Tuple = copy(_A) # Hack because type=bool in argparse does not behave as we want. __snake_case : Dict = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __snake_case : str = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __snake_case : Any = default # This tells argparse we accept 0 or 1 value after --field_name __snake_case : Dict = '?' # This is the value that will get picked if we do --field_name (without value) __snake_case : List[str] = True elif isclass(_A) and issubclass(_A , _A): __snake_case : str = field.type.__args__[0] __snake_case : Any = '+' if field.default_factory is not dataclasses.MISSING: __snake_case : List[str] = field.default_factory() elif field.default is dataclasses.MISSING: __snake_case : Any = True else: __snake_case : Tuple = field.type if field.default is not dataclasses.MISSING: __snake_case : Optional[int] = field.default elif field.default_factory is not dataclasses.MISSING: __snake_case : List[Any] = field.default_factory() else: __snake_case : Union[str, Any] = True parser.add_argument(_A , *_A , **_A) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __snake_case : List[str] = False parser.add_argument(f"--no_{field.name}" , action='store_false' , dest=field.name , **_A) def _lowercase (self : List[Any] , _A : DataClassType) -> Optional[int]: if hasattr(_A , '_argument_group_name'): __snake_case : Union[str, Any] = self.add_argument_group(dtype._argument_group_name) else: __snake_case : int = self try: __snake_case : Dict[str, type] = get_type_hints(_A) except NameError: raise RuntimeError( f"Type resolution failed for {dtype}. Try declaring the class in global scope or " 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)') except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_A): __snake_case : Union[str, Any] = '.'.join(map(_A , sys.version_info[:3])) raise RuntimeError( f"Type resolution failed for {dtype} on Python {python_version}. Try removing " 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.') from ex raise for field in dataclasses.fields(_A): if not field.init: continue __snake_case : Optional[Any] = type_hints[field.name] self._parse_dataclass_field(_A , _A) def _lowercase (self : Union[str, Any] , _A : List[Any]=None , _A : Optional[Any]=False , _A : int=True , _A : List[Any]=None , _A : str=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv)): __snake_case : Any = [] if args_filename: args_files.append(Path(_A)) elif look_for_args_file and len(sys.argv): args_files.append(Path(sys.argv[0]).with_suffix('.args')) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __snake_case : int = ArgumentParser() args_file_parser.add_argument(_A , type=_A , action='append') # Use only remaining args for further parsing (remove the args_file_flag) __snake_case , __snake_case : int = args_file_parser.parse_known_args(args=_A) __snake_case : int = vars(_A).get(args_file_flag.lstrip('-') , _A) if cmd_args_file_paths: args_files.extend([Path(_A) for p in cmd_args_file_paths]) __snake_case : Optional[int] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __snake_case : List[str] = file_args + args if args is not None else file_args + sys.argv[1:] __snake_case , __snake_case : Tuple = self.parse_known_args(args=_A) __snake_case : Dict = [] for dtype in self.dataclass_types: __snake_case : List[Any] = {f.name for f in dataclasses.fields(_A) if f.init} __snake_case : List[str] = {k: v for k, v in vars(_A).items() if k in keys} for k in keys: delattr(_A , _A) __snake_case : List[str] = dtype(**_A) outputs.append(_A) if len(namespace.__dict__) > 0: # additional namespace. outputs.append(_A) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {remaining_args}") return (*outputs,) def _lowercase (self : Tuple , _A : Dict[str, Any] , _A : bool = False) -> Tuple[DataClass, ...]: __snake_case : List[Any] = set(args.keys()) __snake_case : Dict = [] for dtype in self.dataclass_types: __snake_case : List[str] = {f.name for f in dataclasses.fields(_A) if f.init} __snake_case : Union[str, Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys()) __snake_case : List[str] = dtype(**_A) outputs.append(_A) if not allow_extra_keys and unused_keys: raise ValueError(f"Some keys are not used by the HfArgumentParser: {sorted(_A)}") return tuple(_A) def _lowercase (self : int , _A : str , _A : bool = False) -> Tuple[DataClass, ...]: with open(Path(_A) , encoding='utf-8') as open_json_file: __snake_case : int = json.loads(open_json_file.read()) __snake_case : Optional[int] = self.parse_dict(_A , allow_extra_keys=_A) return tuple(_A) def _lowercase (self : List[str] , _A : str , _A : bool = False) -> Tuple[DataClass, ...]: __snake_case : Dict = self.parse_dict(yaml.safe_load(Path(_A).read_text()) , allow_extra_keys=_A) return tuple(_A)
95
0
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""vqvae"""] def __init__( self : Dict, lowerCamelCase : AutoencoderKL, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Mel, lowerCamelCase : Union[DDIMScheduler, DDPMScheduler], ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase, scheduler=lowerCamelCase, mel=lowerCamelCase, vqvae=lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' return 50 if isinstance(self.scheduler, lowerCamelCase ) else 1_000 @torch.no_grad() def __call__( self : List[str], lowerCamelCase : int = 1, lowerCamelCase : str = None, lowerCamelCase : np.ndarray = None, lowerCamelCase : int = 0, lowerCamelCase : int = 0, lowerCamelCase : int = None, lowerCamelCase : torch.Generator = None, lowerCamelCase : float = 0, lowerCamelCase : float = 0, lowerCamelCase : torch.Generator = None, lowerCamelCase : float = 0, lowerCamelCase : torch.Tensor = None, lowerCamelCase : torch.Tensor = None, lowerCamelCase : Union[str, Any]=True, ): '''simple docstring''' lowercase__ = steps or self.get_default_steps() self.scheduler.set_timesteps(lowerCamelCase ) lowercase__ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowercase__ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowercase__ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ), generator=lowerCamelCase, device=self.device, ) lowercase__ = noise lowercase__ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowerCamelCase, lowerCamelCase ) lowercase__ = self.mel.audio_slice_to_image(lowerCamelCase ) lowercase__ = np.frombuffer(input_image.tobytes(), dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) lowercase__ = (input_image / 255) * 2 - 1 lowercase__ = torch.tensor(input_image[np.newaxis, :, :], dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowercase__ = self.vqvae.encode(torch.unsqueeze(lowerCamelCase, 0 ) ).latent_dist.sample( generator=lowerCamelCase )[0] lowercase__ = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowercase__ = self.scheduler.add_noise(lowerCamelCase, lowerCamelCase, self.scheduler.timesteps[start_step - 1] ) lowercase__ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowercase__ = int(mask_start_secs * pixels_per_second ) lowercase__ = int(mask_end_secs * pixels_per_second ) lowercase__ = self.scheduler.add_noise(lowerCamelCase, lowerCamelCase, torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet, lowerCamelCase ): lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, lowerCamelCase )['''sample'''] else: lowercase__ = self.unet(lowerCamelCase, lowerCamelCase )['''sample'''] if isinstance(self.scheduler, lowerCamelCase ): lowercase__ = self.scheduler.step( model_output=lowerCamelCase, timestep=lowerCamelCase, sample=lowerCamelCase, eta=lowerCamelCase, generator=lowerCamelCase, )['''prev_sample'''] else: lowercase__ = self.scheduler.step( model_output=lowerCamelCase, timestep=lowerCamelCase, sample=lowerCamelCase, generator=lowerCamelCase, )['''prev_sample'''] if mask is not None: if mask_start > 0: lowercase__ = mask[:, step, :, :mask_start] if mask_end > 0: lowercase__ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowercase__ = 1 / self.vqvae.config.scaling_factor * images lowercase__ = self.vqvae.decode(lowerCamelCase )['''sample'''] lowercase__ = (images / 2 + 0.5).clamp(0, 1 ) lowercase__ = images.cpu().permute(0, 2, 3, 1 ).numpy() lowercase__ = (images * 255).round().astype('''uint8''' ) lowercase__ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowerCamelCase, mode='''RGB''' ).convert('''L''' ) for _ in images) ) lowercase__ = [self.mel.image_to_audio(lowerCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowerCamelCase )[:, np.newaxis, :] ), **ImagePipelineOutput(lowerCamelCase ) ) @torch.no_grad() def lowercase__ ( self : Dict, lowerCamelCase : List[Image.Image], lowerCamelCase : int = 50 ): '''simple docstring''' assert isinstance(self.scheduler, lowerCamelCase ) self.scheduler.set_timesteps(lowerCamelCase ) lowercase__ = np.array( [np.frombuffer(image.tobytes(), dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) lowercase__ = (sample / 255) * 2 - 1 lowercase__ = torch.Tensor(lowerCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps, (0,) ) ): lowercase__ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowercase__ = self.scheduler.alphas_cumprod[t] lowercase__ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowercase__ = 1 - alpha_prod_t lowercase__ = self.unet(lowerCamelCase, lowerCamelCase )['''sample'''] lowercase__ = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowercase__ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowercase__ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def lowercase__ ( lowerCamelCase : torch.Tensor, lowerCamelCase : torch.Tensor, lowerCamelCase : float ): '''simple docstring''' lowercase__ = acos(torch.dot(torch.flatten(lowerCamelCase ), torch.flatten(lowerCamelCase ) ) / torch.norm(lowerCamelCase ) / torch.norm(lowerCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(lowerCamelCase ) + sin(alpha * theta ) * xa / sin(lowerCamelCase )
207
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = TextToVideoSDPipeline lowercase__ = TEXT_TO_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowercase__ = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowercase__ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D'''), up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D'''), cross_attention_dim=32, attention_head_dim=4, ) lowercase__ = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule='''scaled_linear''', clip_sample=lowerCamelCase, set_alpha_to_one=lowerCamelCase, ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='''gelu''', projection_dim=512, ) lowercase__ = CLIPTextModel(lowerCamelCase ) lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def lowercase__ ( self : int, lowerCamelCase : Union[str, Any], lowerCamelCase : int=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(lowerCamelCase ) else: lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowercase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = TextToVideoSDPipeline(**lowerCamelCase ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = '''np''' lowercase__ = sd_pipe(**lowerCamelCase ).frames lowercase__ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) lowercase__ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : str ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase, expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available(), reason='''XFormers attention is only available with CUDA and `xformers` installed''', ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase, expected_max_diff=1E-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def lowercase__ ( self : int ): '''simple docstring''' pass def lowercase__ ( self : List[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) lowercase__ = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = pipe.to('''cuda''' ) lowercase__ = '''Spiderman is surfing''' lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ = pipe(lowerCamelCase, generator=lowerCamelCase, num_inference_steps=25, output_type='''pt''' ).frames lowercase__ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) lowercase__ = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) lowercase__ = pipe.to('''cuda''' ) lowercase__ = '''Spiderman is surfing''' lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ = pipe(lowerCamelCase, generator=lowerCamelCase, num_inference_steps=2, output_type='''pt''' ).frames lowercase__ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
207
1
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCamelCase__: def __init__( self : int , lowerCAmelCase : Collection[float] | None = None )-> None: """simple docstring""" if components is None: UpperCAmelCase = [] UpperCAmelCase = list(lowerCAmelCase ) def __len__( self : List[Any] )-> int: """simple docstring""" return len(self.__components ) def __str__( self : int )-> str: """simple docstring""" return "(" + ",".join(map(lowerCAmelCase , self.__components ) ) + ")" def __add__( self : Tuple , lowerCAmelCase : Vector )-> Vector: """simple docstring""" UpperCAmelCase = len(self ) if size == len(lowerCAmelCase ): UpperCAmelCase = [self.__components[i] + other.component(lowerCAmelCase ) for i in range(lowerCAmelCase )] return Vector(lowerCAmelCase ) else: raise Exception('''must have the same size''' ) def __sub__( self : int , lowerCAmelCase : Vector )-> Vector: """simple docstring""" UpperCAmelCase = len(self ) if size == len(lowerCAmelCase ): UpperCAmelCase = [self.__components[i] - other.component(lowerCAmelCase ) for i in range(lowerCAmelCase )] return Vector(lowerCAmelCase ) else: # error case raise Exception('''must have the same size''' ) @overload def __mul__( self : int , lowerCAmelCase : float )-> Vector: """simple docstring""" ... @overload def __mul__( self : Tuple , lowerCAmelCase : Vector )-> float: """simple docstring""" ... def __mul__( self : Optional[int] , lowerCAmelCase : float | Vector )-> float | Vector: """simple docstring""" if isinstance(lowerCAmelCase , (float, int) ): UpperCAmelCase = [c * other for c in self.__components] return Vector(lowerCAmelCase ) elif isinstance(lowerCAmelCase , lowerCAmelCase ) and len(self ) == len(lowerCAmelCase ): UpperCAmelCase = len(self ) UpperCAmelCase = [self.__components[i] * other.component(lowerCAmelCase ) for i in range(lowerCAmelCase )] return sum(lowerCAmelCase ) else: # error case raise Exception('''invalid operand!''' ) def a__( self : Union[str, Any] )-> Vector: """simple docstring""" return Vector(self.__components ) def a__( self : List[Any] , lowerCAmelCase : int )-> float: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('''index out of range''' ) def a__( self : Any , lowerCAmelCase : int , lowerCAmelCase : float )-> None: """simple docstring""" assert -len(self.__components ) <= pos < len(self.__components ) UpperCAmelCase = value def a__( self : int )-> float: """simple docstring""" if len(self.__components ) == 0: raise Exception('''Vector is empty''' ) UpperCAmelCase = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase ) ) def a__( self : Optional[int] , lowerCAmelCase : Vector , lowerCAmelCase : bool = False )-> float: """simple docstring""" UpperCAmelCase = self * other UpperCAmelCase = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def lowerCamelCase__ ( A : int ): '''simple docstring''' assert isinstance(A , A ) return Vector([0] * dimension ) def lowerCamelCase__ ( A : int , A : int ): '''simple docstring''' assert isinstance(A , A ) and (isinstance(A , A )) UpperCAmelCase = [0] * dimension UpperCAmelCase = 1 return Vector(A ) def lowerCamelCase__ ( A : float , A : Vector , A : Vector ): '''simple docstring''' assert ( isinstance(A , A ) and isinstance(A , A ) and (isinstance(A , (int, float) )) ) return x * scalar + y def lowerCamelCase__ ( A : int , A : int , A : int ): '''simple docstring''' random.seed(A ) UpperCAmelCase = [random.randint(A , A ) for _ in range(A )] return Vector(A ) class UpperCamelCase__: def __init__( self : Tuple , lowerCAmelCase : list[list[float]] , lowerCAmelCase : int , lowerCAmelCase : int )-> None: """simple docstring""" UpperCAmelCase = matrix UpperCAmelCase = w UpperCAmelCase = h def __str__( self : int )-> str: """simple docstring""" UpperCAmelCase = '''''' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Any , lowerCAmelCase : Matrix )-> Matrix: """simple docstring""" if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase = [] for i in range(self.__height ): UpperCAmelCase = [ self.__matrix[i][j] + other.component(lowerCAmelCase , lowerCAmelCase ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase ) return Matrix(lowerCAmelCase , self.__width , self.__height ) else: raise Exception('''matrix must have the same dimension!''' ) def __sub__( self : int , lowerCAmelCase : Matrix )-> Matrix: """simple docstring""" if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase = [] for i in range(self.__height ): UpperCAmelCase = [ self.__matrix[i][j] - other.component(lowerCAmelCase , lowerCAmelCase ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase ) return Matrix(lowerCAmelCase , self.__width , self.__height ) else: raise Exception('''matrices must have the same dimension!''' ) @overload def __mul__( self : Tuple , lowerCAmelCase : float )-> Matrix: """simple docstring""" ... @overload def __mul__( self : List[str] , lowerCAmelCase : Vector )-> Vector: """simple docstring""" ... def __mul__( self : List[str] , lowerCAmelCase : float | Vector )-> Vector | Matrix: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase ): # matrix-vector if len(lowerCAmelCase ) == self.__width: UpperCAmelCase = zero_vector(self.__height ) for i in range(self.__height ): UpperCAmelCase = [ self.__matrix[i][j] * other.component(lowerCAmelCase ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase , sum(lowerCAmelCase ) ) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''' ) elif isinstance(lowerCAmelCase , (int, float) ): # matrix-scalar UpperCAmelCase = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase , self.__width , self.__height ) return None def a__( self : Dict )-> int: """simple docstring""" return self.__height def a__( self : Optional[int] )-> int: """simple docstring""" return self.__width def a__( self : List[Any] , lowerCAmelCase : int , lowerCAmelCase : int )-> float: """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''' ) def a__( self : Any , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : float )-> None: """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: UpperCAmelCase = value else: raise Exception('''change_component: indices out of bounds''' ) def a__( self : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : int )-> float: """simple docstring""" if self.__height != self.__width: raise Exception('''Matrix is not square''' ) UpperCAmelCase = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase ) ): UpperCAmelCase = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase , self.__width - 1 , self.__height - 1 ).determinant() def a__( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : int )-> float: """simple docstring""" if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase , lowerCAmelCase ) else: raise Exception('''Indices out of bounds''' ) def a__( self : Optional[Any] )-> float: """simple docstring""" if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if self.__height < 1: raise Exception('''Matrix has no element''' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: UpperCAmelCase = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase ) for y in range(self.__width ) ] return sum(lowerCAmelCase ) def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = [[0] * n for _ in range(A )] return Matrix(A , A , A ) def lowerCamelCase__ ( A : int , A : int , A : int , A : int ): '''simple docstring''' random.seed(A ) UpperCAmelCase = [ [random.randint(A , A ) for _ in range(A )] for _ in range(A ) ] return Matrix(A , A , A )
356
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[Any] = ["image_processor", "tokenizer"] __magic_name__ : Tuple = "ViTImageProcessor" __magic_name__ : int = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : Tuple=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> Tuple: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : int , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : int=None , **lowerCAmelCase : Tuple )-> Optional[int]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict )-> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : List[Any] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : Any )-> Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : str )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
91
0
"""simple docstring""" from ...processing_utils import ProcessorMixin class snake_case_( a__ ): __UpperCamelCase = '''SpeechT5FeatureExtractor''' __UpperCamelCase = '''SpeechT5Tokenizer''' def __init__( self : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : str ): super().__init__(UpperCamelCase_ , UpperCamelCase_ ) def __call__( self : int , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Dict ): lowerCAmelCase : Optional[Any] = kwargs.pop('''audio''' , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = kwargs.pop('''text''' , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = kwargs.pop('''text_target''' , UpperCamelCase_ ) lowerCAmelCase : int = kwargs.pop('''audio_target''' , UpperCamelCase_ ) lowerCAmelCase : Any = kwargs.pop('''sampling_rate''' , UpperCamelCase_ ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: lowerCAmelCase : Optional[int] = self.feature_extractor(UpperCamelCase_ , *UpperCamelCase_ , sampling_rate=UpperCamelCase_ , **UpperCamelCase_ ) elif text is not None: lowerCAmelCase : str = self.tokenizer(UpperCamelCase_ , **UpperCamelCase_ ) else: lowerCAmelCase : List[str] = None if audio_target is not None: lowerCAmelCase : Optional[int] = self.feature_extractor(audio_target=UpperCamelCase_ , *UpperCamelCase_ , sampling_rate=UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : List[Any] = targets['''input_values'''] elif text_target is not None: lowerCAmelCase : int = self.tokenizer(UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : List[str] = targets['''input_ids'''] else: lowerCAmelCase : List[Any] = None if inputs is None: return targets if targets is not None: lowerCAmelCase : Any = labels lowerCAmelCase : List[Any] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowerCAmelCase : Dict = decoder_attention_mask return inputs def lowerCamelCase__ ( self : List[Any] , *UpperCamelCase_ : int , **UpperCamelCase_ : int ): lowerCAmelCase : Optional[Any] = kwargs.pop('''input_values''' , UpperCamelCase_ ) lowerCAmelCase : str = kwargs.pop('''input_ids''' , UpperCamelCase_ ) lowerCAmelCase : Any = kwargs.pop('''labels''' , UpperCamelCase_ ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: lowerCAmelCase : Optional[Any] = self.feature_extractor.pad(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) elif input_ids is not None: lowerCAmelCase : str = self.tokenizer.pad(UpperCamelCase_ , **UpperCamelCase_ ) else: lowerCAmelCase : Any = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCamelCase_ , UpperCamelCase_ ) and "input_ids" in labels[0]): lowerCAmelCase : str = self.tokenizer.pad(UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : List[Any] = targets['''input_ids'''] else: lowerCAmelCase : int = self.feature_extractor.feature_size lowerCAmelCase : Optional[Any] = self.feature_extractor.num_mel_bins lowerCAmelCase : int = self.feature_extractor.pad(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = feature_size_hack lowerCAmelCase : List[str] = targets['''input_values'''] else: lowerCAmelCase : Optional[int] = None if inputs is None: return targets if targets is not None: lowerCAmelCase : List[Any] = labels lowerCAmelCase : Any = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowerCAmelCase : Any = decoder_attention_mask return inputs def lowerCamelCase__ ( self : List[str] , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Optional[Any] ): return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , *UpperCamelCase_ : int , **UpperCamelCase_ : Optional[Any] ): return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ )
60
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer snake_case__ : List[Any] = '''bart''' snake_case__ : Union[str, Any] = True @st.cache(allow_output_mutation=_snake_case ) def _snake_case ( ): if LOAD_DENSE_INDEX: lowerCAmelCase : Dict = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) lowerCAmelCase : List[str] = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) lowerCAmelCase : Optional[int] = qar_model.eval() else: lowerCAmelCase, lowerCAmelCase : int = (None, None) if MODEL_TYPE == "bart": lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) lowerCAmelCase : Tuple = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) lowerCAmelCase : Optional[Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) lowerCAmelCase : Any = sas_model.eval() else: lowerCAmelCase, lowerCAmelCase : Any = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_snake_case ) def _snake_case ( ): if LOAD_DENSE_INDEX: lowerCAmelCase : List[str] = faiss.StandardGpuResources() lowerCAmelCase : Optional[Any] = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] lowerCAmelCase : List[Any] = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) lowerCAmelCase : Union[str, Any] = faiss.IndexFlatIP(128 ) lowerCAmelCase : int = faiss.index_cpu_to_gpu(_snake_case , 1 , _snake_case ) wikiaab_gpu_index_flat.add(_snake_case ) # TODO fix for larger GPU else: lowerCAmelCase, lowerCAmelCase : List[str] = (None, None) lowerCAmelCase : int = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_snake_case ) def _snake_case ( ): lowerCAmelCase : List[str] = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) lowerCAmelCase : Any = elia['''train_eli5'''] lowerCAmelCase : int = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) lowerCAmelCase : Tuple = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_snake_case ) return (elia_train, eli5_train_q_index) snake_case__ , snake_case__ , snake_case__ : Optional[Any] = load_indexes() snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = load_models() snake_case__ , snake_case__ : Union[str, Any] = load_train_data() def _snake_case ( _snake_case : int , _snake_case : Dict=10 ): lowerCAmelCase : Tuple = embed_questions_for_retrieval([question] , _snake_case , _snake_case ) lowerCAmelCase, lowerCAmelCase : Any = eli5_train_q_index.search(_snake_case , _snake_case ) lowerCAmelCase : str = [elia_train[int(_snake_case )] for i in I[0]] return nn_examples def _snake_case ( _snake_case : List[Any] , _snake_case : str="wiki40b" , _snake_case : List[str]="dense" , _snake_case : Union[str, Any]=10 ): if source == "none": lowerCAmelCase, lowerCAmelCase : List[str] = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": lowerCAmelCase, lowerCAmelCase : Tuple = query_qa_dense_index( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: lowerCAmelCase, lowerCAmelCase : List[str] = query_es_index( _snake_case , _snake_case , index_name='''english_wiki40b_snippets_100w''' , n_results=_snake_case , ) lowerCAmelCase : int = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] lowerCAmelCase : Any = '''question: {} context: {}'''.format(_snake_case , _snake_case ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _snake_case : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _snake_case : None), } ) def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : Dict , _snake_case : List[Any]=64 , _snake_case : int=256 , _snake_case : List[str]=False , _snake_case : Any=2 , _snake_case : List[Any]=0.95 , _snake_case : Tuple=0.8 ): with torch.no_grad(): lowerCAmelCase : Union[str, Any] = qa_sas_generate( _snake_case , _snake_case , _snake_case , num_answers=1 , num_beams=_snake_case , min_len=_snake_case , max_len=_snake_case , do_sample=_snake_case , temp=_snake_case , top_p=_snake_case , top_k=_snake_case , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar snake_case__ : Dict = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' snake_case__ : Tuple = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia snake_case__ : List[Any] = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) snake_case__ : str = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] snake_case__ : List[Any] = st.sidebar.checkbox('''Demo options''') if demo_options: snake_case__ : Tuple = st.sidebar.selectbox( '''''', action_list, index=3, ) snake_case__ : List[Any] = action_list.index(action_st) snake_case__ : List[str] = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) snake_case__ : List[Any] = show_type == '''Show full text of passages''' else: snake_case__ : Tuple = 3 snake_case__ : List[Any] = True snake_case__ : List[str] = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: snake_case__ : str = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) snake_case__ : Union[str, Any] = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) snake_case__ : Union[str, Any] = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: snake_case__ : List[Any] = '''wiki40b''' snake_case__ : Union[str, Any] = '''dense''' snake_case__ : int = '''beam''' snake_case__ : str = 2 snake_case__ : Dict = 64 snake_case__ : List[str] = 256 snake_case__ : Dict = None snake_case__ : List[str] = None snake_case__ : List[str] = st.sidebar.checkbox('''Generation options''') if generate_options: snake_case__ : List[Any] = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) snake_case__ : List[str] = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) snake_case__ : List[str] = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) snake_case__ : Optional[Any] = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": snake_case__ : Dict = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: snake_case__ : int = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) snake_case__ : int = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) snake_case__ : List[str] = None # start main text snake_case__ : str = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] snake_case__ : Union[str, Any] = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": snake_case__ : Optional[Any] = st.text_input('''Enter your question here:''', '''''') else: snake_case__ : int = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": snake_case__ , snake_case__ : str = make_support(question, source=wiki_source, method='''dense''', n_results=10) snake_case__ , snake_case__ : Tuple = make_support(question, source=wiki_source, method='''sparse''', n_results=10) snake_case__ : int = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] snake_case__ : List[str] = support_list[:10] snake_case__ : int = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: snake_case__ , snake_case__ : Union[str, Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: snake_case__ , snake_case__ : List[str] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): snake_case__ : int = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) snake_case__ : List[Any] = res[1].strip() if sec_titles == "": snake_case__ : Tuple = '''[{}]({})'''.format(res[0], wiki_url) else: snake_case__ : Optional[int] = sec_titles.split(''' & ''') snake_case__ : Optional[Any] = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: snake_case__ : int = find_nearest_training(question) snake_case__ : List[Any] = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) snake_case__ : Dict = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) snake_case__ : Any = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
60
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Optional[Any] = "xlnet" UpperCAmelCase__ : Optional[Any] = ["mems"] UpperCAmelCase__ : Dict = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, SCREAMING_SNAKE_CASE_=3_2000, SCREAMING_SNAKE_CASE_=1024, SCREAMING_SNAKE_CASE_=24, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=4096, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="bi", SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=-1, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_="last", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="tanh", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=2, **SCREAMING_SNAKE_CASE_, ) -> int: UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : List[str] = d_model UpperCamelCase : Union[str, Any] = n_layer UpperCamelCase : Optional[int] = n_head if d_model % n_head != 0: raise ValueError(F"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) UpperCamelCase : Tuple = d_model // n_head UpperCamelCase : Tuple = ff_activation UpperCamelCase : str = d_inner UpperCamelCase : List[str] = untie_r UpperCamelCase : Optional[Any] = attn_type UpperCamelCase : List[Any] = initializer_range UpperCamelCase : Union[str, Any] = layer_norm_eps UpperCamelCase : Any = dropout UpperCamelCase : Optional[int] = mem_len UpperCamelCase : Optional[int] = reuse_len UpperCamelCase : List[Any] = bi_data UpperCamelCase : List[str] = clamp_len UpperCamelCase : Tuple = same_length UpperCamelCase : List[str] = summary_type UpperCamelCase : List[Any] = summary_use_proj UpperCamelCase : List[str] = summary_activation UpperCamelCase : Any = summary_last_dropout UpperCamelCase : Any = start_n_top UpperCamelCase : List[str] = end_n_top UpperCamelCase : str = bos_token_id UpperCamelCase : Optional[Any] = pad_token_id UpperCamelCase : Optional[int] = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.', SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Union[str, Any] = kwargs['use_cache'] UpperCamelCase : Tuple = use_mems_eval UpperCamelCase : int = use_mems_train super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_, bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) @property def snake_case_ ( self ) -> List[str]: logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
103
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __UpperCAmelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase__ : Dict = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase__ : List[str] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCAmelCase__ : Optional[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCAmelCase__ : Dict = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = pipeline( task='text-classification', model='hf-internal-testing/tiny-random-distilbert', framework='pt' ) UpperCamelCase : str = text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'LABEL_0', 'score': 0.5_04}] ) UpperCamelCase : Dict = text_classifier('This is great !', top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}] ) UpperCamelCase : List[Any] = text_classifier(['This is great !', 'This is bad'], top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [ [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], ], ) UpperCamelCase : List[Any] = text_classifier('This is great !', top_k=1 ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'LABEL_0', 'score': 0.5_04}] ) # Legacy behavior UpperCamelCase : str = text_classifier('This is great !', return_all_scores=SCREAMING_SNAKE_CASE_ ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'LABEL_0', 'score': 0.5_04}] ) UpperCamelCase : Tuple = text_classifier('This is great !', return_all_scores=SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [[{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}]] ) UpperCamelCase : List[Any] = text_classifier(['This is great !', 'Something else'], return_all_scores=SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [ [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], ], ) UpperCamelCase : Optional[int] = text_classifier(['This is great !', 'Something else'], return_all_scores=SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [ {'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_0', 'score': 0.5_04}, ], ) @require_torch def snake_case_ ( self ) -> Optional[Any]: import torch UpperCamelCase : str = pipeline( task='text-classification', model='hf-internal-testing/tiny-random-distilbert', framework='pt', device=torch.device('cpu' ), ) UpperCamelCase : List[Any] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'LABEL_0', 'score': 0.5_04}] ) @require_tf def snake_case_ ( self ) -> Dict: UpperCamelCase : List[Any] = pipeline( task='text-classification', model='hf-internal-testing/tiny-random-distilbert', framework='tf' ) UpperCamelCase : str = text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'LABEL_0', 'score': 0.5_04}] ) @slow @require_torch def snake_case_ ( self ) -> int: UpperCamelCase : str = pipeline('text-classification' ) UpperCamelCase : str = text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'POSITIVE', 'score': 1.0}] ) UpperCamelCase : List[str] = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'NEGATIVE', 'score': 1.0}] ) UpperCamelCase : int = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'POSITIVE', 'score': 0.9_88}] ) @slow @require_tf def snake_case_ ( self ) -> Tuple: UpperCamelCase : int = pipeline('text-classification', framework='tf' ) UpperCamelCase : Tuple = text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'POSITIVE', 'score': 1.0}] ) UpperCamelCase : Union[str, Any] = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'NEGATIVE', 'score': 1.0}] ) UpperCamelCase : int = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'POSITIVE', 'score': 0.9_88}] ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : str = TextClassificationPipeline(model=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_ ) return text_classifier, ["HuggingFace is in", "This is another test"] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: UpperCamelCase : List[str] = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 UpperCamelCase : List[str] = 'HuggingFace is in' UpperCamelCase : Tuple = text_classifier(SCREAMING_SNAKE_CASE_ ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': ANY(SCREAMING_SNAKE_CASE_ ), 'score': ANY(SCREAMING_SNAKE_CASE_ )}] ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) UpperCamelCase : List[Any] = ['HuggingFace is in ', 'Paris is in France'] UpperCamelCase : List[str] = text_classifier(SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': ANY(SCREAMING_SNAKE_CASE_ ), 'score': ANY(SCREAMING_SNAKE_CASE_ )}, {'label': ANY(SCREAMING_SNAKE_CASE_ ), 'score': ANY(SCREAMING_SNAKE_CASE_ )}], ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['label'] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format UpperCamelCase : Optional[int] = text_classifier(SCREAMING_SNAKE_CASE_, top_k=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [[{'label': ANY(SCREAMING_SNAKE_CASE_ ), 'score': ANY(SCREAMING_SNAKE_CASE_ )}] * N, [{'label': ANY(SCREAMING_SNAKE_CASE_ ), 'score': ANY(SCREAMING_SNAKE_CASE_ )}] * N], ) UpperCamelCase : str = {'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'} UpperCamelCase : Union[str, Any] = text_classifier(SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), {'label': ANY(SCREAMING_SNAKE_CASE_ ), 'score': ANY(SCREAMING_SNAKE_CASE_ )}, ) self.assertTrue(outputs['label'] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. UpperCamelCase : List[str] = [['HuggingFace is in ', 'Paris is in France']] with self.assertRaises(SCREAMING_SNAKE_CASE_ ): text_classifier(SCREAMING_SNAKE_CASE_ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility UpperCamelCase : List[str] = text_classifier([[['HuggingFace is in ', 'Paris is in France']]] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': ANY(SCREAMING_SNAKE_CASE_ ), 'score': ANY(SCREAMING_SNAKE_CASE_ )}], ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
103
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
43
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _SCREAMING_SNAKE_CASE ( _a ): def __init__( self : List[Any] , __lowerCamelCase : Callable , __lowerCamelCase : Optional[Features] = None , __lowerCamelCase : str = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[dict] = None , __lowerCamelCase : Optional[int] = None , **__lowerCamelCase : List[Any] , ): super().__init__( features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) UpperCamelCase :Union[str, Any] = Generator( cache_dir=__lowerCamelCase , features=__lowerCamelCase , generator=__lowerCamelCase , gen_kwargs=__lowerCamelCase , **__lowerCamelCase , ) def _A ( self : List[str] ): # Build iterable dataset if self.streaming: UpperCamelCase :Any = self.builder.as_streaming_dataset(split="""train""" ) # Build regular (map-style) dataset else: UpperCamelCase :Tuple = None UpperCamelCase :Dict = None UpperCamelCase :Dict = None UpperCamelCase :List[str] = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) UpperCamelCase :Tuple = self.builder.as_dataset( split="""train""" , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
38
0
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def SCREAMING_SNAKE_CASE__ ( *lowercase ) -> Optional[int]: if not isinstance(lowercase ,lowercase ): snake_case : str = list(lowercase ) for i in range(len(lowercase ) ): snake_case : Dict = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def SCREAMING_SNAKE_CASE__ ( lowercase ) -> bool: snake_case : str = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowercase ,lowercase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def SCREAMING_SNAKE_CASE__ ( lowercase = None ,lowercase = 128 ) -> int: if function is None: return functools.partial(lowercase ,starting_batch_size=lowercase ) snake_case : Optional[Any] = starting_batch_size def decorator(*lowercase ,**lowercase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case : List[str] = list(inspect.signature(lowercase ).parameters.keys() ) # Guard against user error if len(lowercase ) < (len(lowercase ) + 1): snake_case : str = """, """.join([f"""{arg}={value}""" for arg, value in zip(params[1:] ,args[1:] )] ) raise TypeError( f"""Batch size was passed into `{function.__name__}` as the first argument when called.""" f"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowercase ,*lowercase ,**lowercase ) except Exception as e: if should_reduce_batch_size(lowercase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
176
def SCREAMING_SNAKE_CASE__ ( lowercase = 1000 ) -> int: snake_case : Optional[int] = 3 snake_case : List[Any] = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
176
1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Any = 0 lowerCAmelCase : List[Any] = number while duplicate > 0: lowerCAmelCase : Dict = divmod(_UpperCAmelCase, 10 ) fact_sum += factorial(_UpperCAmelCase ) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') __A : Optional[Any] = int(input('''Enter number: ''').strip()) print( F'{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.' )
138
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( unittest.TestCase): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , ) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] =size if size is not None else {"shortest_edge": 2_0} a__ : List[str] =crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} a__ : Tuple =parent a__ : Union[str, Any] =batch_size a__ : List[str] =num_channels a__ : List[Any] =image_size a__ : str =min_resolution a__ : Optional[int] =max_resolution a__ : Tuple =do_resize a__ : Union[str, Any] =size a__ : List[Any] =do_center_crop a__ : List[str] =crop_size a__ : Optional[int] =do_flip_channel_order def _lowercase ( self ) -> Optional[int]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : int = MobileViTImageProcessor if is_vision_available() else None def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : Tuple =MobileViTImageProcessingTester(self ) @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : str =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_flip_channel_order" ) ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : List[Any] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 2_0} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) a__ : Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' pass def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : List[str] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input a__ : Tuple =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : List[Any] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ : List[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input a__ : Tuple =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : int =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : int =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input a__ : List[str] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : List[str] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
95
0
import torch from transformers import AutoModel class A__ ( torch.nn.Module ): """simple docstring""" def __init__( self , lowercase="sayef/fsner-bert-base-uncased") -> Optional[int]: '''simple docstring''' super(lowercase , self).__init__() a__ : Union[str, Any] = AutoModel.from_pretrained(lowercase , return_dict=lowercase) a__ : int = torch.nn.CosineSimilarity(3 , 1e-08) a__ : int = torch.nn.Softmax(dim=1) def __lowercase ( self , **lowercase) -> Dict: '''simple docstring''' return self.bert(**lowercase).last_hidden_state def __lowercase ( self , lowercase) -> str: '''simple docstring''' return token_embeddings.sum(2 , keepdim=lowercase) def __lowercase ( self , lowercase , lowercase , lowercase=1) -> Any: '''simple docstring''' return self.softmax(T * self.cos(lowercase , lowercase)) def __lowercase ( self , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' a__ : List[str] = W_supports['sizes'].tolist() a__ : Any = W_supports['start_token_id'].item() a__ : str = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] a__ : List[Any] = self.BERT(**lowercase) a__ : int = self.BERT(**lowercase) a__ : Dict = None a__ : Dict = None a__ : Tuple = W_supports['input_ids'] == start_token_id a__ : Optional[Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowercase): if i == 0: a__ : Tuple = 0 else: a__ : List[str] = support_sizes[i - 1] a__ : Union[str, Any] = S[s : s + size][start_token_masks[s : s + size]] a__ : Dict = S[s : s + size][end_token_masks[s : s + size]] a__ : Tuple = torch.matmul(q[i] , s_start.T).sum(1).softmax(0) a__ : List[str] = torch.matmul(q[i] , s_end.T).sum(1).softmax(0) if p_starts is not None: a__ : Tuple = torch.vstack((p_starts, p_start)) a__ : str = torch.vstack((p_ends, p_end)) else: a__ : Any = p_start a__ : Any = p_end return p_starts, p_ends
225
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase : Union[str, Any] = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" __A : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A : Optional[str] = field( default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __A : bool = field(default=__UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class A__ : """simple docstring""" __A : str = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , ) __A : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A : bool = field( default=__UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def A_ ( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a__ , a__ , a__ : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a__ , a__ , a__ : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) a__ : Optional[Any] = import_module('tasks' ) try: a__ : List[Any] = getattr(A__ , model_args.task_type ) a__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , A__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task a__ : Tuple = token_classification_task.get_labels(data_args.labels ) a__ : Dict[int, str] = dict(enumerate(A__ ) ) a__ : Union[str, Any] = len(A__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A__ , idalabel=A__ , labelaid={label: i for i, label in enumerate(A__ )} , cache_dir=model_args.cache_dir , ) a__ : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) a__ : List[Any] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , ) # Get datasets a__ : int = ( TokenClassificationDataset( token_classification_task=A__ , data_dir=data_args.data_dir , tokenizer=A__ , labels=A__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) a__ : Optional[int] = ( TokenClassificationDataset( token_classification_task=A__ , data_dir=data_args.data_dir , tokenizer=A__ , labels=A__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(A__ , A__ ) -> Tuple[List[int], List[int]]: a__ : Union[str, Any] = np.argmax(A__ , axis=2 ) a__ , a__ : Dict = preds.shape a__ : Union[str, Any] = [[] for _ in range(A__ )] a__ : Optional[int] = [[] for _ in range(A__ )] for i in range(A__ ): for j in range(A__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(A__ ) -> Dict: a__ , a__ : Union[str, Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(A__ , A__ ), "precision": precision_score(A__ , A__ ), "recall": recall_score(A__ , A__ ), "f1": fa_score(A__ , A__ ), } # Data collator a__ : Union[str, Any] = DataCollatorWithPadding(A__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer a__ : List[str] = Trainer( model=A__ , args=A__ , train_dataset=A__ , eval_dataset=A__ , compute_metrics=A__ , data_collator=A__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a__ : Any = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) a__ : Optional[Any] = trainer.evaluate() a__ : List[Any] = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(A__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , A__ , A__ ) writer.write('%s = %s\n' % (key, value) ) results.update(A__ ) # Predict if training_args.do_predict: a__ : Optional[Any] = TokenClassificationDataset( token_classification_task=A__ , data_dir=data_args.data_dir , tokenizer=A__ , labels=A__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) a__ , a__ , a__ : Any = trainer.predict(A__ ) a__ , a__ : Union[str, Any] = align_predictions(A__ , A__ ) a__ : Optional[int] = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(A__ , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , A__ , A__ ) writer.write('%s = %s\n' % (key, value) ) # Save predictions a__ : Tuple = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(A__ , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(A__ , A__ , A__ ) return results def A_ ( A__ ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
225
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case__(UpperCAmelCase__ ): """simple docstring""" lowercase_ = ["""image_processor""", """tokenizer"""] lowercase_ = """Pix2StructImageProcessor""" lowercase_ = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str ): lowercase__ : Tuple = False super().__init__(lowercase_ , lowercase_ ) def __call__( self : Dict , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE : Union[bool, str, TruncationStrategy] = None , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[int] = 2_048 , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[bool] = None , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , **SCREAMING_SNAKE_CASE : List[str] , ): if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: lowercase__ : Dict = self.tokenizer lowercase__ : List[Any] = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowercase__ : Any = self.image_processor( lowercase_ , return_tensors=lowercase_ , max_patches=lowercase_ , **lowercase_ ) else: # add pixel_values and bbox lowercase__ : List[Any] = self.image_processor( lowercase_ , return_tensors=lowercase_ , max_patches=lowercase_ , header_text=lowercase_ , **lowercase_ ) if text is not None and not self.image_processor.is_vqa: lowercase__ : Dict = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) if "attention_mask" in text_encoding: lowercase__ : List[Any] = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: lowercase__ : Dict = text_encoding.pop("input_ids" ) else: lowercase__ : str = None if text_encoding is not None: encoding_image_processor.update(lowercase_ ) return encoding_image_processor def snake_case ( self : Optional[Any] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : List[str] ): return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def snake_case ( self : List[str] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Any ): return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def snake_case ( self : str ): lowercase__ : int = self.tokenizer.model_input_names lowercase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
130
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets UpperCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__) UpperCAmelCase_ : List[str] = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ UpperCAmelCase_ : Tuple = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ UpperCAmelCase_ : Union[str, Any] = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def _A (__a , __a , __a=False , __a=False , __a=True , __a=False , __a="dummy_doc" ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = {doc: key_lines} SCREAMING_SNAKE_CASE_ : List[str] = {doc: sys_lines} SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : List[str] = 0 SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List[str] = 0 SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = reader.get_doc_mentions(__a , key_doc_lines[doc] , __a ) key_singletons_num += singletons_num if NP_only or min_span: SCREAMING_SNAKE_CASE_ : Optional[Any] = reader.set_annotated_parse_trees(__a , key_doc_lines[doc] , __a , __a ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = reader.get_doc_mentions(__a , sys_doc_lines[doc] , __a ) sys_singletons_num += singletons_num if NP_only or min_span: SCREAMING_SNAKE_CASE_ : Union[str, Any] = reader.set_annotated_parse_trees(__a , key_doc_lines[doc] , __a , __a ) if remove_nested: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = reader.remove_nested_coref_mentions(__a , __a ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = reader.remove_nested_coref_mentions(__a , __a ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters SCREAMING_SNAKE_CASE_ : Optional[Any] = reader.get_mention_assignments(__a , __a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = reader.get_mention_assignments(__a , __a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( '''Number of resulting singleton clusters in the key ''' f'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( f'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' '''files, respectively''' ) return doc_coref_infos def _A (__a , __a , __a , __a , __a , __a , __a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = get_coref_infos(__a , __a , __a , __a , __a , __a ) SCREAMING_SNAKE_CASE_ : str = {} SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE_ : str = 0 for name, metric in metrics: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = evaluator.evaluate_documents(__a , __a , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f'{name}/recall': recall, f'{name}/precision': precision, f'{name}/f1': fa} ) logger.info( name.ljust(10 ) , f'Recall: {recall * 1_00:.2f}' , f' Precision: {precision * 1_00:.2f}' , f' F1: {fa * 1_00:.2f}' , ) if conll_subparts_num == 3: SCREAMING_SNAKE_CASE_ : Tuple = (conll / 3) * 1_00 logger.info(f'CoNLL score: {conll:.2f}' ) output_scores.update({'''conll_score''': conll} ) return output_scores def _A (__a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: SCREAMING_SNAKE_CASE_ : Any = line.split()[5] if not parse_col == "-": SCREAMING_SNAKE_CASE_ : Any = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''')), '''references''': datasets.Sequence(datasets.Value('''string''')), }) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Dict=True , lowercase_ : Optional[Any]=False , lowercase_ : Optional[Any]=False , lowercase_ : Dict=False): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: SCREAMING_SNAKE_CASE_ : Union[str, Any] = util.check_gold_parse_annotation(lowercase_) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''') # util.parse_key_file(key_file) # key_file = key_file + ".parsed" SCREAMING_SNAKE_CASE_ : Optional[Any] = evaluate( key_lines=lowercase_ , sys_lines=lowercase_ , metrics=lowercase_ , NP_only=lowercase_ , remove_nested=lowercase_ , keep_singletons=lowercase_ , min_span=lowercase_ , ) return score
91
0
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : Optional[Any] ) -> List[Any]: '''simple docstring''' __magic_name__ : List[str] = Mock() __magic_name__ : Tuple = conn, Mock() __magic_name__ : List[str] = iter([1, None] ) __magic_name__ : Tuple = lambda _snake_case : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
366
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers snake_case : Any = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
41
0
from typing import Any import numpy as np def UpperCamelCase( __UpperCamelCase : np.ndarray ): return np.array_equal(__UpperCamelCase ,matrix.conjugate().T ) def UpperCamelCase( __UpperCamelCase : np.ndarray ,__UpperCamelCase : np.ndarray ): lowerCAmelCase_ : Dict = v.conjugate().T lowerCAmelCase_ : Dict = v_star.dot(__UpperCamelCase ) assert isinstance(__UpperCamelCase ,np.ndarray ) return (v_star_dot.dot(__UpperCamelCase )) / (v_star.dot(__UpperCamelCase )) def UpperCamelCase( ): lowerCAmelCase_ : Union[str, Any] = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowerCAmelCase_ : str = np.array([[1], [2], [3]] ) assert is_hermitian(__UpperCamelCase ), f"""{a} is not hermitian.""" print(rayleigh_quotient(__UpperCamelCase ,__UpperCamelCase ) ) lowerCAmelCase_ : List[Any] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__UpperCamelCase ), f"""{a} is not hermitian.""" assert rayleigh_quotient(__UpperCamelCase ,__UpperCamelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
103
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : int = logging.get_logger(__name__) A__ : Optional[int] = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class __snake_case ( UpperCamelCase_ ): _a = '''data2vec-vision''' def __init__( self : Tuple , A_ : List[Any]=7_6_8 , A_ : Union[str, Any]=1_2 , A_ : Dict=1_2 , A_ : List[Any]=3_0_7_2 , A_ : Dict="gelu" , A_ : Tuple=0.0 , A_ : Dict=0.0 , A_ : List[str]=0.02 , A_ : List[str]=1e-12 , A_ : Tuple=2_2_4 , A_ : Dict=1_6 , A_ : Optional[int]=3 , A_ : Optional[int]=False , A_ : Any=False , A_ : Tuple=False , A_ : Optional[int]=False , A_ : int=0.1 , A_ : Union[str, Any]=0.1 , A_ : List[Any]=True , A_ : List[Any]=[3, 5, 7, 1_1] , A_ : Union[str, Any]=[1, 2, 3, 6] , A_ : Optional[int]=True , A_ : Any=0.4 , A_ : str=2_5_6 , A_ : Optional[int]=1 , A_ : str=False , A_ : Optional[int]=2_5_5 , **A_ : Optional[int] , ): super().__init__(**A_) lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : List[str] = num_hidden_layers lowerCAmelCase_ : Optional[Any] = num_attention_heads lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : Tuple = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : Tuple = layer_norm_eps lowerCAmelCase_ : List[Any] = image_size lowerCAmelCase_ : List[Any] = patch_size lowerCAmelCase_ : Any = num_channels lowerCAmelCase_ : Any = use_mask_token lowerCAmelCase_ : Optional[int] = use_absolute_position_embeddings lowerCAmelCase_ : str = use_relative_position_bias lowerCAmelCase_ : Optional[Any] = use_shared_relative_position_bias lowerCAmelCase_ : Dict = layer_scale_init_value lowerCAmelCase_ : Tuple = drop_path_rate lowerCAmelCase_ : Optional[int] = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase_ : Any = out_indices lowerCAmelCase_ : int = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase_ : Dict = use_auxiliary_head lowerCAmelCase_ : str = auxiliary_loss_weight lowerCAmelCase_ : Optional[Any] = auxiliary_channels lowerCAmelCase_ : str = auxiliary_num_convs lowerCAmelCase_ : str = auxiliary_concat_input lowerCAmelCase_ : str = semantic_loss_ignore_index class __snake_case ( UpperCamelCase_ ): _a = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self : Tuple): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def UpperCAmelCase__ ( self : Dict): return 1e-4
103
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "Salesforce/blip-image-captioning-base" snake_case_ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) snake_case_ = "image_captioner" snake_case_ = AutoModelForVisionaSeq snake_case_ = ["image"] snake_case_ = ["text"] def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]: requires_backends(self , ["""vision"""] ) super().__init__(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int: return self.pre_processor(images=__snake_case , return_tensors="""pt""" ) def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]: return self.model.generate(**__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict: return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
3
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCamelCase ( __lowerCAmelCase : dict ) -> tuple: return (data["data"], data["target"]) def __lowerCamelCase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> XGBClassifier: snake_case = XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def __lowerCamelCase ( ) -> None: snake_case = load_iris() snake_case , snake_case = data_handling(__lowerCAmelCase ) snake_case , snake_case , snake_case , snake_case = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 ) snake_case = iris["""target_names"""] # Create an XGBoost Classifier from the training data snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
3
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def _lowercase ( UpperCamelCase_ , UpperCamelCase_=False ) -> int: '''simple docstring''' try: SCREAMING_SNAKE_CASE__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. SCREAMING_SNAKE_CASE__ = default else: # KEY is set, convert it to True or False. try: SCREAMING_SNAKE_CASE__ = strtobool(UpperCamelCase_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'If set, {key} must be yes or no.' ) return _value __snake_case = parse_flag_from_env("""RUN_SLOW""", default=False) __snake_case = parse_flag_from_env("""RUN_REMOTE""", default=False) __snake_case = parse_flag_from_env("""RUN_LOCAL""", default=True) __snake_case = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression __snake_case = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") __snake_case = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") __snake_case = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio __snake_case = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam __snake_case = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility __snake_case = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows __snake_case = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def _lowercase ( UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' try: import faiss # noqa except ImportError: SCREAMING_SNAKE_CASE__ = unittest.skip('test requires faiss' )(UpperCamelCase_ ) return test_case def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' try: import regex # noqa except ImportError: SCREAMING_SNAKE_CASE__ = unittest.skip('test requires regex' )(UpperCamelCase_ ) return test_case def _lowercase ( UpperCamelCase_ ) -> List[str]: '''simple docstring''' try: import elasticsearch # noqa except ImportError: SCREAMING_SNAKE_CASE__ = unittest.skip('test requires elasticsearch' )(UpperCamelCase_ ) return test_case def _lowercase ( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' try: import sqlalchemy # noqa except ImportError: SCREAMING_SNAKE_CASE__ = unittest.skip('test requires sqlalchemy' )(UpperCamelCase_ ) return test_case def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' if not config.TORCH_AVAILABLE: SCREAMING_SNAKE_CASE__ = unittest.skip('test requires PyTorch' )(UpperCamelCase_ ) return test_case def _lowercase ( UpperCamelCase_ ) -> int: '''simple docstring''' if not config.TF_AVAILABLE: SCREAMING_SNAKE_CASE__ = unittest.skip('test requires TensorFlow' )(UpperCamelCase_ ) return test_case def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' if not config.JAX_AVAILABLE: SCREAMING_SNAKE_CASE__ = unittest.skip('test requires JAX' )(UpperCamelCase_ ) return test_case def _lowercase ( UpperCamelCase_ ) -> Tuple: '''simple docstring''' if not config.PIL_AVAILABLE: SCREAMING_SNAKE_CASE__ = unittest.skip('test requires Pillow' )(UpperCamelCase_ ) return test_case def _lowercase ( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(UpperCamelCase_ ) else: return test_case def _lowercase ( UpperCamelCase_ ) -> List[str]: '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(UpperCamelCase_ ) else: return test_case def _lowercase ( UpperCamelCase_ ) -> Dict: '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(UpperCamelCase_ ) else: return test_case def _lowercase ( UpperCamelCase_ ) -> Any: '''simple docstring''' def _require_spacy_model(UpperCamelCase_ ): try: import spacy # noqa F401 spacy.load(UpperCamelCase_ ) except ImportError: return unittest.skip('test requires spacy' )(UpperCamelCase_ ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(UpperCamelCase_ ) )(UpperCamelCase_ ) else: return test_case return _require_spacy_model def _lowercase ( UpperCamelCase_ ) -> Tuple: '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(UpperCamelCase_ ) else: return test_case def _lowercase ( UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(UpperCamelCase_ ) else: return test_case def _lowercase ( UpperCamelCase_ ) -> Any: '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: SCREAMING_SNAKE_CASE__ = unittest.skip('test is slow' )(UpperCamelCase_ ) return test_case def _lowercase ( UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: SCREAMING_SNAKE_CASE__ = unittest.skip('test is local' )(UpperCamelCase_ ) return test_case def _lowercase ( UpperCamelCase_ ) -> Dict: '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: SCREAMING_SNAKE_CASE__ = unittest.skip('test is packaged' )(UpperCamelCase_ ) return test_case def _lowercase ( UpperCamelCase_ ) -> Dict: '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: SCREAMING_SNAKE_CASE__ = unittest.skip('test requires remote' )(UpperCamelCase_ ) return test_case def _lowercase ( *UpperCamelCase_ ) -> Dict: '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(UpperCamelCase_ ) and name.startswith('test' ): for decorator in decorators: SCREAMING_SNAKE_CASE__ = decorator(UpperCamelCase_ ) setattr(cls , UpperCamelCase_ , UpperCamelCase_ ) return cls return decorate class lowercase__ ( _UpperCAmelCase ): pass class lowercase__ ( _UpperCAmelCase ): A__ : Union[str, Any] =0 A__ : int =1 A__ : Dict =2 @contextmanager def _lowercase ( UpperCamelCase_=OfflineSimulationMode.CONNECTION_FAILS , UpperCamelCase_=1e-16 ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ = requests.Session().request def timeout_request(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ): # Change the url to an invalid url so that the connection hangs SCREAMING_SNAKE_CASE__ = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) SCREAMING_SNAKE_CASE__ = timeout try: return online_request(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier SCREAMING_SNAKE_CASE__ = url SCREAMING_SNAKE_CASE__ = e.args[0] SCREAMING_SNAKE_CASE__ = (max_retry_error.args[0].replace('10.255.255.1' , F'OfflineMock[{url}]' ),) SCREAMING_SNAKE_CASE__ = (max_retry_error,) raise def raise_connection_error(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ): raise requests.ConnectionError('Offline mode is enabled.' , request=UpperCamelCase_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , UpperCamelCase_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , UpperCamelCase_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , UpperCamelCase_ ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def _lowercase ( *UpperCamelCase_ , **UpperCamelCase_ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ = str(Path().resolve() ) with tempfile.TemporaryDirectory(*UpperCamelCase_ , **UpperCamelCase_ ) as tmp_dir: try: os.chdir(UpperCamelCase_ ) yield finally: os.chdir(UpperCamelCase_ ) @contextmanager def _lowercase ( ) -> int: '''simple docstring''' import gc gc.collect() SCREAMING_SNAKE_CASE__ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _lowercase ( ) -> str: '''simple docstring''' import gc gc.collect() SCREAMING_SNAKE_CASE__ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' return deepcopy(UpperCamelCase_ ).integers(0 , 100 , 10 ).tolist() == deepcopy(UpperCamelCase_ ).integers(0 , 100 , 10 ).tolist() def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ): try: return func(*UpperCamelCase_ , **UpperCamelCase_ ) except HTTPError as err: if str(UpperCamelCase_ ).startswith('500' ) or str(UpperCamelCase_ ).startswith('502' ): pytest.xfail(str(UpperCamelCase_ ) ) raise err return decorator.decorator(_wrapper , UpperCamelCase_ ) class lowercase__ : def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE__ = returncode SCREAMING_SNAKE_CASE__ = stdout SCREAMING_SNAKE_CASE__ = stderr async def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ = await stream.readline() if line: callback(UpperCamelCase_ ) else: break async def _lowercase ( UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=False , UpperCamelCase_=False ) -> _RunOutput: '''simple docstring''' if echo: print('\nRunning: ' , ' '.join(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=UpperCamelCase_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=UpperCamelCase_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] def tee(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="" ): SCREAMING_SNAKE_CASE__ = line.decode('utf-8' ).rstrip() sink.append(UpperCamelCase_ ) if not quiet: print(UpperCamelCase_ , UpperCamelCase_ , file=UpperCamelCase_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda UpperCamelCase_ : tee(UpperCamelCase_ , UpperCamelCase_ , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda UpperCamelCase_ : tee(UpperCamelCase_ , UpperCamelCase_ , sys.stderr , label='stderr:' ) ), ] , timeout=UpperCamelCase_ , ) return _RunOutput(await p.wait() , UpperCamelCase_ , UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=180 , UpperCamelCase_=False , UpperCamelCase_=True ) -> _RunOutput: '''simple docstring''' SCREAMING_SNAKE_CASE__ = asyncio.get_event_loop() SCREAMING_SNAKE_CASE__ = loop.run_until_complete( _stream_subprocess(UpperCamelCase_ , env=UpperCamelCase_ , stdin=UpperCamelCase_ , timeout=UpperCamelCase_ , quiet=UpperCamelCase_ , echo=UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = ' '.join(UpperCamelCase_ ) if result.returncode > 0: SCREAMING_SNAKE_CASE__ = '\n'.join(result.stderr ) raise RuntimeError( F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' F'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'\'{cmd_str}\' produced no output.' ) return result def _lowercase ( ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) SCREAMING_SNAKE_CASE__ = re.sub(r'^gw' , '' , UpperCamelCase_ , 0 , re.M ) return int(UpperCamelCase_ ) def _lowercase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ = 29500 SCREAMING_SNAKE_CASE__ = pytest_xdist_worker_id() return port + uniq_delta
176
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase__ ( nn.Module ): A__ : int A__ : int A__ : float =0.0 A__ : int =1 A__ : int =1 A__ : bool =True A__ : bool =False A__ : bool =False A__ : bool =False A__ : jnp.dtype =jnp.floataa def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=UpperCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions if self.add_downsample: SCREAMING_SNAKE_CASE__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int=True ): SCREAMING_SNAKE_CASE__ = () for resnet, attn in zip(self.resnets , self.attentions ): SCREAMING_SNAKE_CASE__ = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = attn(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE__ = self.downsamplers_a(UpperCAmelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class lowercase__ ( nn.Module ): A__ : int A__ : int A__ : float =0.0 A__ : int =1 A__ : bool =True A__ : jnp.dtype =jnp.floataa def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=UpperCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = resnets if self.add_downsample: SCREAMING_SNAKE_CASE__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any]=True ): SCREAMING_SNAKE_CASE__ = () for resnet in self.resnets: SCREAMING_SNAKE_CASE__ = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE__ = self.downsamplers_a(UpperCAmelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class lowercase__ ( nn.Module ): A__ : int A__ : int A__ : int A__ : float =0.0 A__ : int =1 A__ : int =1 A__ : bool =True A__ : bool =False A__ : bool =False A__ : bool =False A__ : jnp.dtype =jnp.floataa def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE__ = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions if self.add_upsample: SCREAMING_SNAKE_CASE__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) SCREAMING_SNAKE_CASE__ = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = attn(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) if self.add_upsample: SCREAMING_SNAKE_CASE__ = self.upsamplers_a(UpperCAmelCase_ ) return hidden_states class lowercase__ ( nn.Module ): A__ : int A__ : int A__ : int A__ : float =0.0 A__ : int =1 A__ : bool =True A__ : jnp.dtype =jnp.floataa def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE__ = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = resnets if self.add_upsample: SCREAMING_SNAKE_CASE__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict=True ): for resnet in self.resnets: # pop res hidden states SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) SCREAMING_SNAKE_CASE__ = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) if self.add_upsample: SCREAMING_SNAKE_CASE__ = self.upsamplers_a(UpperCAmelCase_ ) return hidden_states class lowercase__ ( nn.Module ): A__ : int A__ : float =0.0 A__ : int =1 A__ : int =1 A__ : bool =False A__ : bool =False A__ : jnp.dtype =jnp.floataa def A_ ( self : Optional[int] ): # there is always at least one resnet SCREAMING_SNAKE_CASE__ = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] SCREAMING_SNAKE_CASE__ = [] for _ in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions def __call__( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any=True ): SCREAMING_SNAKE_CASE__ = self.resnets[0](UpperCAmelCase_ , UpperCAmelCase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): SCREAMING_SNAKE_CASE__ = attn(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) return hidden_states
176
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = 42 class A( UpperCamelCase , UpperCamelCase ): '''simple docstring''' @register_to_config def __init__( self : Tuple , A_ : int = 32 , A_ : int = 64 , A_ : int = 20 , A_ : int = 768 , A_ : Optional[Any]=77 , A_ : Optional[int]=4 , A_ : float = 0.0 , A_ : str = "silu" , A_ : Optional[str] = None , A_ : Optional[str] = None , A_ : Optional[str] = "linear" , A_ : Optional[str] = "prd" , A_ : Optional[int] = None , A_ : Optional[int] = None , A_ : Optional[int] = None , ) -> List[Any]: """simple docstring""" super().__init__() lowerCamelCase_ = num_attention_heads lowerCamelCase_ = attention_head_dim lowerCamelCase_ = num_attention_heads * attention_head_dim lowerCamelCase_ = additional_embeddings lowerCamelCase_ = time_embed_dim or inner_dim lowerCamelCase_ = embedding_proj_dim or embedding_dim lowerCamelCase_ = clip_embed_dim or embedding_dim lowerCamelCase_ = Timesteps(A_ , A_ , 0 ) lowerCamelCase_ = TimestepEmbedding(A_ , A_ , out_dim=A_ , act_fn=A_ ) lowerCamelCase_ = nn.Linear(A_ , A_ ) if embedding_proj_norm_type is None: lowerCamelCase_ = None elif embedding_proj_norm_type == "layer": lowerCamelCase_ = nn.LayerNorm(A_ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) lowerCamelCase_ = nn.Linear(A_ , A_ ) if encoder_hid_proj_type is None: lowerCamelCase_ = None elif encoder_hid_proj_type == "linear": lowerCamelCase_ = nn.Linear(A_ , A_ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) lowerCamelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , A_ ) ) if added_emb_type == "prd": lowerCamelCase_ = nn.Parameter(torch.zeros(1 , 1 , A_ ) ) elif added_emb_type is None: lowerCamelCase_ = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) lowerCamelCase_ = nn.ModuleList( [ BasicTransformerBlock( A_ , A_ , A_ , dropout=A_ , activation_fn='gelu' , attention_bias=A_ , ) for d in range(A_ ) ] ) if norm_in_type == "layer": lowerCamelCase_ = nn.LayerNorm(A_ ) elif norm_in_type is None: lowerCamelCase_ = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) lowerCamelCase_ = nn.LayerNorm(A_ ) lowerCamelCase_ = nn.Linear(A_ , A_ ) lowerCamelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) lowerCamelCase_ = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , A_ , persistent=A_ ) lowerCamelCase_ = nn.Parameter(torch.zeros(1 , A_ ) ) lowerCamelCase_ = nn.Parameter(torch.zeros(1 , A_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self : str ) -> Dict[str, AttentionProcessor]: """simple docstring""" lowerCamelCase_ = {} def fn_recursive_add_processors(A_ : str , A_ : torch.nn.Module , A_ : Dict[str, AttentionProcessor] ): if hasattr(A_ , 'set_processor' ): lowerCamelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , A_ , A_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(A_ , A_ , A_ ) return processors def a__ ( self : List[Any] , A_ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Dict: """simple docstring""" lowerCamelCase_ = len(self.attn_processors.keys() ) if isinstance(A_ , A_ ) and len(A_ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(A_ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(A_ : str , A_ : torch.nn.Module , A_ : Union[str, Any] ): if hasattr(A_ , 'set_processor' ): if not isinstance(A_ , A_ ): module.set_processor(A_ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , A_ , A_ ) for name, module in self.named_children(): fn_recursive_attn_processor(A_ , A_ , A_ ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" self.set_attn_processor(AttnProcessor() ) def a__ ( self : Dict , A_ : List[Any] , A_ : Union[torch.Tensor, float, int] , A_ : torch.FloatTensor , A_ : Optional[torch.FloatTensor] = None , A_ : Optional[torch.BoolTensor] = None , A_ : bool = True , ) -> str: """simple docstring""" lowerCamelCase_ = hidden_states.shape[0] lowerCamelCase_ = timestep if not torch.is_tensor(A_ ): lowerCamelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: lowerCamelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCamelCase_ = timesteps * torch.ones(A_ , dtype=timesteps.dtype , device=timesteps.device ) lowerCamelCase_ = self.time_proj(A_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowerCamelCase_ = timesteps_projected.to(dtype=self.dtype ) lowerCamelCase_ = self.time_embedding(A_ ) if self.embedding_proj_norm is not None: lowerCamelCase_ = self.embedding_proj_norm(A_ ) lowerCamelCase_ = self.embedding_proj(A_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowerCamelCase_ = self.encoder_hidden_states_proj(A_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) lowerCamelCase_ = self.proj_in(A_ ) lowerCamelCase_ = self.positional_embedding.to(hidden_states.dtype ) lowerCamelCase_ = [] lowerCamelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(A_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowerCamelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowerCamelCase_ = hidden_states[:, None, :] lowerCamelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowerCamelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(A_ , -1 , -1 ) additional_embeds.append(A_ ) lowerCamelCase_ = torch.cat( A_ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowerCamelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowerCamelCase_ = F.pad( A_ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) lowerCamelCase_ = hidden_states + positional_embeddings if attention_mask is not None: lowerCamelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 lowerCamelCase_ = F.pad(A_ , (0, self.additional_embeddings) , value=0.0 ) lowerCamelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowerCamelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: lowerCamelCase_ = self.norm_in(A_ ) for block in self.transformer_blocks: lowerCamelCase_ = block(A_ , attention_mask=A_ ) lowerCamelCase_ = self.norm_out(A_ ) if self.prd_embedding is not None: lowerCamelCase_ = hidden_states[:, -1] else: lowerCamelCase_ = hidden_states[:, additional_embeddings_len:] lowerCamelCase_ = self.proj_to_clip_embeddings(A_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=A_ ) def a__ ( self : Tuple , A_ : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
208
def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Dict , lowercase : List[str] , lowercase : Dict , lowercase : Dict , lowercase : List[str] ): '''simple docstring''' if index == r: for j in range(lowercase ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowerCamelCase_ = arr[i] combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Any , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 ) if __name__ == "__main__": # Driver code to check the function above lowerCamelCase : int = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
208
1
from __future__ import annotations from math import pow, sqrt def UpperCAmelCase_ ( __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : float ) -> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(__UpperCAmelCase , 2 ) - pow(__UpperCAmelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__UpperCAmelCase , 2 ) - pow(__UpperCAmelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__UpperCAmelCase , 2 ) + pow(__UpperCAmelCase , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
225
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : Tuple = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } lowerCamelCase__ : int = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } lowerCamelCase__ : str = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = SqueezeBertTokenizer def __init__( self : Tuple , _lowerCAmelCase : Dict=None , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : str="[UNK]" , _lowerCAmelCase : Union[str, Any]="[SEP]" , _lowerCAmelCase : List[Any]="[PAD]" , _lowerCAmelCase : str="[CLS]" , _lowerCAmelCase : Dict="[MASK]" , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : str , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE_ = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = strip_accents SCREAMING_SNAKE_CASE_ = tokenize_chinese_chars SCREAMING_SNAKE_CASE_ = normalizer_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = do_lower_case def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int]=None ): SCREAMING_SNAKE_CASE_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): SCREAMING_SNAKE_CASE_ = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
225
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "yolos" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=[512, 864] , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=100 , snake_case__=True , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Tuple = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : List[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = layer_norm_eps _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : Union[str, Any] = qkv_bias _lowerCAmelCase : Union[str, Any] = num_detection_tokens _lowerCAmelCase : List[str] = use_mid_position_embeddings _lowerCAmelCase : Dict = auxiliary_loss # Hungarian matcher _lowerCAmelCase : int = class_cost _lowerCAmelCase : List[str] = bbox_cost _lowerCAmelCase : List[Any] = giou_cost # Loss coefficients _lowerCAmelCase : Union[str, Any] = bbox_loss_coefficient _lowerCAmelCase : Union[str, Any] = giou_loss_coefficient _lowerCAmelCase : Optional[int] = eos_coefficient class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = version.parse("1.11" ) @property def a ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def a ( self ): '''simple docstring''' return 1E-4 @property def a ( self ): '''simple docstring''' return 12
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mobilenet_v2" def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.02 , snake_case__=0.001 , snake_case__=255 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : List[Any] = depth_multiplier _lowerCAmelCase : List[Any] = depth_divisible_by _lowerCAmelCase : Optional[Any] = min_depth _lowerCAmelCase : str = expand_ratio _lowerCAmelCase : str = output_stride _lowerCAmelCase : Any = first_layer_is_expansion _lowerCAmelCase : int = finegrained_output _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[str] = tf_padding _lowerCAmelCase : Optional[int] = classifier_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : str = semantic_loss_ignore_index class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = version.parse("1.11" ) @property def a ( self ): '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' return 1E-4
25
0
from __future__ import annotations def UpperCAmelCase ( a_ ) -> float: """simple docstring""" if not nums: raise ValueError("List is empty" ) return sum(a_ ) / len(a_ ) if __name__ == "__main__": import doctest doctest.testmod()
15
'''simple docstring''' from heapq import heappop, heappush import numpy as np def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) -> tuple[float | int, list[tuple[int, int]]]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = grid.shape lowerCamelCase__ : List[str] = [-1, 1, 0, 0] lowerCamelCase__ : Dict = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowerCamelCase__ , lowerCamelCase__ : Any = [(0, source)], set() lowerCamelCase__ : Tuple = np.full((rows, cols) , np.inf ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Optional[int] = np.empty((rows, cols) , dtype=UpperCamelCase ) lowerCamelCase__ : str = None while queue: ((lowerCamelCase__) , (lowerCamelCase__)) : List[str] = heappop(UpperCamelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowerCamelCase__ : Optional[int] = [] while (x, y) != source: path.append((x, y) ) lowerCamelCase__ , lowerCamelCase__ : List[Any] = predecessors[x, y] path.append(UpperCamelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(UpperCamelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowerCamelCase__ : Any = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(UpperCamelCase , (dist + 1, (nx, ny)) ) lowerCamelCase__ : Union[str, Any] = dist + 1 lowerCamelCase__ : List[str] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
41
0
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=4 , ): __a : Union[str, Any] = parent __a : str = batch_size __a : str = seq_length __a : List[Any] = is_training __a : Union[str, Any] = use_attention_mask __a : int = use_token_type_ids __a : str = use_labels __a : Tuple = vocab_size __a : Union[str, Any] = hidden_size __a : int = num_hidden_layers __a : str = num_attention_heads __a : Union[str, Any] = intermediate_size __a : Optional[int] = hidden_act __a : Optional[Any] = hidden_dropout_prob __a : int = attention_probs_dropout_prob __a : List[Any] = max_position_embeddings __a : Optional[int] = type_vocab_size __a : List[Any] = type_sequence_label_size __a : Any = initializer_range __a : Optional[int] = num_choices def _lowerCamelCase ( self ): __a : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Any = None if self.use_attention_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Union[str, Any] = None if self.use_token_type_ids: __a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ): __a : Optional[Any] = self.prepare_config_and_inputs() __a , __a , __a , __a : Dict = config_and_inputs __a : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ): __a : Any = FlaxRoFormerModelTester(self ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __a : List[str] = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''' , from_pt=_UpperCAmelCase ) __a : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): __a : int = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) __a : Union[str, Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) __a : List[str] = model(_UpperCAmelCase )[0] __a : Tuple = 50000 __a : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _UpperCAmelCase ) __a : List[Any] = jnp.array( [[[-0.1_2_0_5, -1.0_2_6_5, 0.2_9_2_2], [-1.5_1_3_4, 0.1_9_7_4, 0.1_5_1_9], [-5.0_1_3_5, -3.9_0_0_3, -0.8_4_0_4]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
188
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _lowerCamelCase ( self , _UpperCAmelCase=0 ): __a : Tuple = floats_tensor((1, 3, 128, 128) , rng=random.Random(_UpperCAmelCase ) ) __a : Any = np.random.RandomState(_UpperCAmelCase ) __a : Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Dict = self.get_dummy_inputs() __a : Any = pipe(**_UpperCAmelCase ).images __a : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __a : List[Any] = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Tuple = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[int] = self.get_dummy_inputs() __a : Optional[Any] = pipe(**_UpperCAmelCase ).images __a : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[int] = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Any = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # warmup pass to apply optimizations __a : Any = pipe(**self.get_dummy_inputs() ) __a : List[str] = self.get_dummy_inputs() __a : Tuple = pipe(**_UpperCAmelCase ).images __a : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : int = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : List[Any] = self.get_dummy_inputs() __a : Any = pipe(**_UpperCAmelCase ).images __a : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[Any] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Union[str, Any] = self.get_dummy_inputs() __a : str = pipe(**_UpperCAmelCase ).images __a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[int] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[int] = self.get_dummy_inputs() __a : Optional[Any] = pipe(**_UpperCAmelCase ).images __a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[Any] = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' @property def _lowerCamelCase ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCamelCase ( self ): __a : Optional[Any] = ort.SessionOptions() __a : Any = False return options def _lowerCamelCase ( self ): __a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __a : Tuple = init_image.resize((768, 512) ) # using the PNDM scheduler by default __a : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Tuple = '''A fantasy landscape, trending on artstation''' __a : Tuple = np.random.RandomState(0 ) __a : int = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=_UpperCAmelCase , output_type='''np''' , ) __a : List[Any] = output.images __a : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __a : Any = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowerCamelCase ( self ): __a : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __a : Tuple = init_image.resize((768, 512) ) __a : str = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __a : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : List[str] = '''A fantasy landscape, trending on artstation''' __a : str = np.random.RandomState(0 ) __a : str = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=_UpperCAmelCase , output_type='''np''' , ) __a : Dict = output.images __a : List[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __a : Dict = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
188
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class A ( __snake_case ): __magic_name__ = '''Salesforce/blip-image-captioning-base''' __magic_name__ = ( '''This is a tool that generates a description of an image. It takes an input named `image` which should be the ''' '''image to caption, and returns a text that contains the description in English.''' ) __magic_name__ = '''image_captioner''' __magic_name__ = AutoModelForVisionaSeq __magic_name__ = ['''image'''] __magic_name__ = ['''text'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return self.pre_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return self.model.generate(**SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.pre_processor.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE )[0].strip()
3
'''simple docstring''' from scipy.stats import pearsonr import datasets lowercase : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' lowercase : Optional[Any] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' lowercase : str = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: """simple docstring""" if return_pvalue: A : Union[str, Any] = pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] )}
3
1
__A = [0, 2, 4, 6, 8] __A = [1, 3, 5, 7, 9] def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowerCAmelCase__ :Union[str, Any] = 0 for digit in range(10 ): lowerCAmelCase__ :str = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , __lowerCamelCase , __lowerCamelCase ) return result lowerCAmelCase__ :Optional[int] = 0 for digita in range(10 ): lowerCAmelCase__ :Union[str, Any] = digita if (remainder + digita) % 2 == 0: lowerCAmelCase__ :List[Any] = ODD_DIGITS else: lowerCAmelCase__ :int = EVEN_DIGITS for digita in other_parity_digits: lowerCAmelCase__ :int = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , __lowerCamelCase , __lowerCamelCase , ) return result def __A (_SCREAMING_SNAKE_CASE = 9 ) ->List[str]: """simple docstring""" lowerCAmelCase__ :Tuple = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__lowerCamelCase , 0 , [0] * length , __lowerCamelCase ) return result if __name__ == "__main__": print(F'''{solution() = }''')
351
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) ->str: """simple docstring""" if attention_mask is None: lowerCAmelCase__ :List[str] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCAmelCase__ :Tuple = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCAmelCase__ :Union[str, Any] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) if decoder_head_mask is None: lowerCAmelCase__ :List[str] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) if cross_attn_head_mask is None: lowerCAmelCase__ :List[str] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=9_9 , __UpperCAmelCase=1_6 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=2_0 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , ): '''simple docstring''' lowerCAmelCase__ :List[Any] = parent lowerCAmelCase__ :Any = batch_size lowerCAmelCase__ :Optional[Any] = seq_length lowerCAmelCase__ :int = is_training lowerCAmelCase__ :Tuple = use_labels lowerCAmelCase__ :Union[str, Any] = vocab_size lowerCAmelCase__ :Tuple = hidden_size lowerCAmelCase__ :Tuple = num_hidden_layers lowerCAmelCase__ :Tuple = num_attention_heads lowerCAmelCase__ :Dict = intermediate_size lowerCAmelCase__ :Optional[int] = hidden_act lowerCAmelCase__ :Any = hidden_dropout_prob lowerCAmelCase__ :Dict = attention_probs_dropout_prob lowerCAmelCase__ :Tuple = encoder_layerdrop lowerCAmelCase__ :Tuple = decoder_layerdrop lowerCAmelCase__ :Tuple = max_position_embeddings lowerCAmelCase__ :Any = eos_token_id lowerCAmelCase__ :str = pad_token_id lowerCAmelCase__ :Tuple = bos_token_id def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ :Tuple = self.eos_token_id # Eos Token lowerCAmelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCAmelCase__ :List[Any] = input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ :Dict = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ :Optional[Any] = self.get_config() lowerCAmelCase__ :Any = prepare_mam_aaa_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def snake_case ( self ): '''simple docstring''' return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = MaMaaaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval() lowerCAmelCase__ :Optional[int] = inputs_dict['input_ids'] lowerCAmelCase__ :Any = inputs_dict['attention_mask'] lowerCAmelCase__ :Tuple = inputs_dict['head_mask'] # first forward pass lowerCAmelCase__ :int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ :Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ :int = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and lowerCAmelCase__ :Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ :Union[str, Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) lowerCAmelCase__ :Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )['last_hidden_state'] lowerCAmelCase__ :Optional[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[ 'last_hidden_state' ] # select random slice lowerCAmelCase__ :Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ :List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ :Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = MaMaaaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval() lowerCAmelCase__ :List[Any] = model(**__UpperCAmelCase ) lowerCAmelCase__ :int = outputs.encoder_last_hidden_state lowerCAmelCase__ :Any = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :Union[str, Any] = model.get_encoder() encoder.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Any = MaMaaaEncoder.from_pretrained(__UpperCAmelCase ).to(__UpperCAmelCase ) lowerCAmelCase__ :Any = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :Optional[int] = model.get_decoder() decoder.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Dict = MaMaaaDecoder.from_pretrained(__UpperCAmelCase ).to(__UpperCAmelCase ) lowerCAmelCase__ :int = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class _lowerCAmelCase ( a , a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Optional[int] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) __magic_name__ :str = (MaMaaaForConditionalGeneration,) if is_torch_available() else () __magic_name__ :str = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) __magic_name__ :Any = True __magic_name__ :Union[str, Any] = True __magic_name__ :Tuple = False __magic_name__ :List[str] = False def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = MaMaaaModelTester(self ) lowerCAmelCase__ :Tuple = ConfigTester(self , config_class=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = model_class.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertEqual(info['missing_keys'] , [] ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): lowerCAmelCase__ :Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[Any] = copy.deepcopy(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) if not self.is_encoder_decoder: lowerCAmelCase__ :List[str] = inputs['input_ids'] del inputs["input_ids"] else: lowerCAmelCase__ :int = inputs['input_ids'] lowerCAmelCase__ :str = inputs.get('decoder_input_ids' , __UpperCAmelCase ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = model.get_input_embeddings() if not self.is_encoder_decoder: lowerCAmelCase__ :Tuple = wte(__UpperCAmelCase ) else: lowerCAmelCase__ :List[Any] = wte(__UpperCAmelCase ) lowerCAmelCase__ :Dict = wte(__UpperCAmelCase ) with torch.no_grad(): model(**__UpperCAmelCase )[0] def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :int = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ :Any = input_dict['input_ids'] lowerCAmelCase__ :Optional[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = MaMaaaForConditionalGeneration(__UpperCAmelCase ).eval().to(__UpperCAmelCase ) if torch_device == "cuda": model.half() model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) model.generate(num_beams=4 , do_sample=__UpperCAmelCase , early_stopping=__UpperCAmelCase , num_return_sequences=3 ) def __A (_SCREAMING_SNAKE_CASE ) ->Dict: """simple docstring""" return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) __A = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(__UpperCAmelCase ) lowerCAmelCase__ :str = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) lowerCAmelCase__ :Optional[int] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) lowerCAmelCase__ :Union[str, Any] = prepare_mam_aaa_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :Any = model(**__UpperCAmelCase )[0] lowerCAmelCase__ :List[str] = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __UpperCAmelCase ) # change to expected output here lowerCAmelCase__ :int = torch.tensor( [[-0.77_80, -0.16_76, 0.10_38], [-6.75_56, -1.39_92, 0.05_67], [-7.53_83, -0.59_20, -0.27_79]] , device=__UpperCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__UpperCAmelCase ) # change to intended input lowerCAmelCase__ :str = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) lowerCAmelCase__ :Any = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) lowerCAmelCase__ :List[Any] = prepare_mam_aaa_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :List[Any] = model(**__UpperCAmelCase )[0] lowerCAmelCase__ :Any = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) # change to expected output here lowerCAmelCase__ :List[Any] = torch.tensor( [[-1.04_48, -1.04_11, 3.79_92], [-3.21_91, -3.23_86, -1.34_51], [-3.62_10, -3.59_93, 0.49_25]] , device=__UpperCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) lowerCAmelCase__ :Tuple = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams lowerCAmelCase__ :Union[str, Any] = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='pt' ) lowerCAmelCase__ :List[Any] = model.generate( input_ids=dct['input_ids'].to(__UpperCAmelCase ) , attention_mask=dct['attention_mask'].to(__UpperCAmelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) lowerCAmelCase__ :Optional[Any] = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] lowerCAmelCase__ :Any = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) assert generated == expected_en
254
0
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _UpperCamelCase = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') _UpperCamelCase = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode('utf-8').split() _UpperCamelCase = '|'.join(sys.argv[1:]) _UpperCamelCase = re.compile(Rf'''^({joined_dirs}).*?\.py$''') _UpperCamelCase = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
208
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def a_ ( _lowerCAmelCase ) -> str: __lowerCamelCase ,__lowerCamelCase : List[Any] = image.size __lowerCamelCase ,__lowerCamelCase : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __lowerCamelCase : Optional[Any] = image.resize((w, h) ,resample=PIL_INTERPOLATION['lanczos'] ) __lowerCamelCase : List[Any] = np.array(_lowerCAmelCase ).astype(np.floataa ) / 255.0 __lowerCamelCase : Optional[Any] = image[None].transpose(0 ,3 ,1 ,2 ) __lowerCamelCase : int = torch.from_numpy(_lowerCAmelCase ) return 2.0 * image - 1.0 class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : str , _a : VQModel , _a : UNetaDModel , _a : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> Optional[Any]: super().__init__() self.register_modules(vqvae=_a , unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self : List[Any] , _a : Union[torch.Tensor, PIL.Image.Image] = None , _a : Optional[int] = 1 , _a : Optional[int] = 100 , _a : Optional[float] = 0.0 , _a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _a : Optional[str] = "pil" , _a : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(_a , PIL.Image.Image ): __lowerCamelCase : Any = 1 elif isinstance(_a , torch.Tensor ): __lowerCamelCase : Any = image.shape[0] else: raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}' ) if isinstance(_a , PIL.Image.Image ): __lowerCamelCase : List[str] = preprocess(_a ) __lowerCamelCase ,__lowerCamelCase : List[str] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __lowerCamelCase : Union[str, Any] = (batch_size, self.unet.config.in_channels // 2, height, width) __lowerCamelCase : Tuple = next(self.unet.parameters() ).dtype __lowerCamelCase : Optional[int] = randn_tensor(_a , generator=_a , device=self.device , dtype=_a ) __lowerCamelCase : Optional[int] = image.to(device=self.device , dtype=_a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_a , device=self.device ) __lowerCamelCase : Union[str, Any] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __lowerCamelCase : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowerCamelCase : int = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowerCamelCase : List[str] = {} if accepts_eta: __lowerCamelCase : str = eta for t in self.progress_bar(_a ): # concat latents and low resolution image in the channel dimension. __lowerCamelCase : str = torch.cat([latents, image] , dim=1 ) __lowerCamelCase : Union[str, Any] = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual __lowerCamelCase : Optional[int] = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase : List[Any] = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # decode the image latents with the VQVAE __lowerCamelCase : Union[str, Any] = self.vqvae.decode(_a ).sample __lowerCamelCase : Union[str, Any] = torch.clamp(_a , -1.0 , 1.0 ) __lowerCamelCase : List[str] = image / 2 + 0.5 __lowerCamelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase : Tuple = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
208
1
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( A_ , unittest.TestCase ): __a = SpeechTaTokenizer __a = False __a = True def lowercase ( self : int ): super().setUp() # We have a SentencePiece fixture for testing _snake_case = SpeechTaTokenizer(_lowerCamelCase ) _snake_case = AddedToken('''<mask>''' , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) _snake_case = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self : str , _lowerCamelCase : Any ): _snake_case = '''this is a test''' _snake_case = '''this is a test''' return input_text, output_text def lowercase ( self : str , _lowerCamelCase : Dict , _lowerCamelCase : List[Any]=False , _lowerCamelCase : List[Any]=20 , _lowerCamelCase : List[Any]=5 ): _snake_case , _snake_case = self.get_input_output_texts(_lowerCamelCase ) _snake_case = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) _snake_case = tokenizer.decode(_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) return text, ids def lowercase ( self : Tuple ): _snake_case = '''<pad>''' _snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def lowercase ( self : Optional[int] ): _snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-4] , '''œ''' ) self.assertEqual(vocab_keys[-2] , '''<mask>''' ) self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''' ) self.assertEqual(len(_lowerCamelCase ) , 81 ) def lowercase ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowercase ( self : Dict ): _snake_case = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case = tokenizer.vocab_size _snake_case = len(_lowerCamelCase ) self.assertNotEqual(_lowerCamelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _snake_case = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] _snake_case = tokenizer.add_tokens(_lowerCamelCase ) _snake_case = tokenizer.vocab_size _snake_case = len(_lowerCamelCase ) self.assertNotEqual(_lowerCamelCase , 0 ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(_lowerCamelCase , len(_lowerCamelCase ) ) self.assertEqual(_lowerCamelCase , all_size + len(_lowerCamelCase ) ) _snake_case = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=_lowerCamelCase ) self.assertGreaterEqual(len(_lowerCamelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _snake_case = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} _snake_case = tokenizer.add_special_tokens(_lowerCamelCase ) _snake_case = tokenizer.vocab_size _snake_case = len(_lowerCamelCase ) self.assertNotEqual(_lowerCamelCase , 0 ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(_lowerCamelCase , len(_lowerCamelCase ) ) self.assertEqual(_lowerCamelCase , all_size_a + len(_lowerCamelCase ) ) _snake_case = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=_lowerCamelCase ) self.assertGreaterEqual(len(_lowerCamelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowercase ( self : int ): pass def lowercase ( self : List[Any] ): pass def lowercase ( self : Dict ): _snake_case = self.get_tokenizer() _snake_case = tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(_lowerCamelCase , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) _snake_case = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) _snake_case = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) # fmt: off self.assertListEqual(_lowerCamelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _snake_case = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def lowercase ( self : int ): # Use custom sequence because this tokenizer does not handle numbers. _snake_case = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off _snake_case = { '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=_lowerCamelCase , )
366
"""simple docstring""" import re from filelock import FileLock try: import nltk UpperCAmelCase__ = True except (ImportError, ModuleNotFoundError): UpperCAmelCase__ = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _UpperCAmelCase ( __lowerCamelCase : str ) -> str: re.sub('''<n>''' , '''''' , __lowerCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__lowerCamelCase ) )
40
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> Dict: _lowercase =tempfile.mkdtemp() _lowercase =BlipImageProcessor() _lowercase =BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' ) _lowercase =BlipProcessor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def __A (self , **UpperCAmelCase ) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).tokenizer def __A (self , **UpperCAmelCase ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def __A (self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __A (self ) -> List[str]: _lowercase =[np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _lowercase =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A (self ) -> str: _lowercase =BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowercase =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _lowercase =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) _lowercase =BlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def __A (self ) -> Optional[Any]: _lowercase =self.get_image_processor() _lowercase =self.get_tokenizer() _lowercase =BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) _lowercase =self.prepare_image_inputs() _lowercase =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) _lowercase =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A (self ) -> Union[str, Any]: _lowercase =self.get_image_processor() _lowercase =self.get_tokenizer() _lowercase =BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) _lowercase ="""lower newer""" _lowercase =processor(text=SCREAMING_SNAKE_CASE__ ) _lowercase =tokenizer(SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A (self ) -> Optional[int]: _lowercase =self.get_image_processor() _lowercase =self.get_tokenizer() _lowercase =BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) _lowercase ="""lower newer""" _lowercase =self.prepare_image_inputs() _lowercase =processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A (self ) -> int: _lowercase =self.get_image_processor() _lowercase =self.get_tokenizer() _lowercase =BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) _lowercase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase =processor.batch_decode(SCREAMING_SNAKE_CASE__ ) _lowercase =tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A (self ) -> Dict: _lowercase =self.get_image_processor() _lowercase =self.get_tokenizer() _lowercase =BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) _lowercase ="""lower newer""" _lowercase =self.prepare_image_inputs() _lowercase =processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
5
"""simple docstring""" import math import unittest def lowercase_ ( _snake_case ): assert isinstance(_snake_case ,_snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(_snake_case ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Dict: """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
25
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): lowerCamelCase = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: lowerCamelCase = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = (images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ = numpy_to_pil(lowerCAmelCase__ ) return images def a__ ( lowerCAmelCase__ ): if images.ndim == 3: UpperCAmelCase_ = images[None, ...] UpperCAmelCase_ = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ = [Image.fromarray(lowerCAmelCase__ ) for image in images] return pil_images
367
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowercase__ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase = namedtuple("""CoinsDistribResult""", """moves excess""") def a__ ( lowerCAmelCase__ ): if root is None: return 0 # Validation def count_nodes(lowerCAmelCase__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowerCAmelCase__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowerCAmelCase__ ) != count_coins(lowerCAmelCase__ ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(lowerCAmelCase__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCAmelCase_ , UpperCAmelCase_ = get_distrib(node.left ) UpperCAmelCase_ , UpperCAmelCase_ = get_distrib(node.right ) UpperCAmelCase_ = 1 - left_distrib_excess UpperCAmelCase_ = 1 - right_distrib_excess UpperCAmelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowerCAmelCase__ ) + abs(lowerCAmelCase__ ) ) UpperCAmelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowerCAmelCase__ , lowerCAmelCase__ ) return get_distrib(lowerCAmelCase__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
241
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
188
from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) def UpperCAmelCase__ ( *_A : Optional[Any] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Union[str, Any] , **_A : List[Any] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Union[str, Any] , **_A : Tuple ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : List[str] , **_A : List[str] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Dict , **_A : Dict ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : List[str] , **_A : str ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Optional[int] , **_A : Dict ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Any = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Any = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] )
188
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( a ,a ,a ,unittest.TestCase ): '''simple docstring''' a__ =StableDiffusionInstructPixaPixPipeline a__ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} a__ =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a__ =IMAGE_TO_IMAGE_IMAGE_PARAMS a__ =IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) _UpperCAmelCase : List[str] = PNDMScheduler(skip_prk_steps=A ) torch.manual_seed(0 ) _UpperCAmelCase : Any = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _UpperCAmelCase : List[str] = CLIPTextModel(A ) _UpperCAmelCase : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCAmelCase : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , A , A=0 ) -> Optional[int]: _UpperCAmelCase : Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(A ) ).to(A ) _UpperCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : Dict = Image.fromarray(np.uinta(A ) ).convert('''RGB''' ) if str(A ).startswith('''mps''' ): _UpperCAmelCase : Optional[int] = torch.manual_seed(A ) else: _UpperCAmelCase : str = torch.Generator(device=A ).manual_seed(A ) _UpperCAmelCase : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : str = self.get_dummy_components() _UpperCAmelCase : Tuple = StableDiffusionInstructPixaPixPipeline(**A ) _UpperCAmelCase : Any = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) _UpperCAmelCase : List[str] = self.get_dummy_inputs(A ) _UpperCAmelCase : Union[str, Any] = sd_pipe(**A ).images _UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _UpperCAmelCase : int = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Any = self.get_dummy_components() _UpperCAmelCase : Union[str, Any] = StableDiffusionInstructPixaPixPipeline(**A ) _UpperCAmelCase : str = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) _UpperCAmelCase : str = self.get_dummy_inputs(A ) _UpperCAmelCase : List[str] = '''french fries''' _UpperCAmelCase : Optional[Any] = sd_pipe(**A , negative_prompt=A ) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _UpperCAmelCase : str = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Optional[Any] = self.get_dummy_components() _UpperCAmelCase : Dict = StableDiffusionInstructPixaPixPipeline(**A ) _UpperCAmelCase : List[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) _UpperCAmelCase : List[str] = self.get_dummy_inputs(A ) _UpperCAmelCase : Dict = [inputs['''prompt''']] * 2 _UpperCAmelCase : Dict = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0 _UpperCAmelCase : Optional[Any] = torch.from_numpy(A ).unsqueeze(0 ).to(A ) _UpperCAmelCase : str = image / 2 + 0.5 _UpperCAmelCase : List[str] = image.permute(0 , 3 , 1 , 2 ) _UpperCAmelCase : str = image.repeat(2 , 1 , 1 , 1 ) _UpperCAmelCase : Any = sd_pipe(**A ).images _UpperCAmelCase : Optional[Any] = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) _UpperCAmelCase : Optional[Any] = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Any = self.get_dummy_components() _UpperCAmelCase : Tuple = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) _UpperCAmelCase : Union[str, Any] = StableDiffusionInstructPixaPixPipeline(**A ) _UpperCAmelCase : Optional[int] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) _UpperCAmelCase : Tuple = self.get_dummy_inputs(A ) _UpperCAmelCase : Tuple = sd_pipe(**A ).images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[Any] = [round(A , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(A ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) _UpperCAmelCase : Dict = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowerCAmelCase ( self ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Union[str, Any] = self.get_dummy_components() _UpperCAmelCase : int = StableDiffusionInstructPixaPixPipeline(**A ) _UpperCAmelCase : List[Any] = VaeImageProcessor(do_resize=A , do_normalize=A ) _UpperCAmelCase : str = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _UpperCAmelCase : int = pipe(**self.get_dummy_inputs_by_type(A , input_image_type='''pt''' ) )[0] _UpperCAmelCase : Dict = components['''vae'''] _UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs_by_type(A , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): _UpperCAmelCase : List[Any] = vae.encode(inputs[image_param] ).latent_dist.mode() _UpperCAmelCase : Dict = pipe(**A )[0] _UpperCAmelCase : List[str] = np.abs(out - out_latents_inputs ).max() self.assertLess(A , 1E-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self , A=0 ) -> List[Any]: _UpperCAmelCase : str = torch.manual_seed(A ) _UpperCAmelCase : List[str] = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) _UpperCAmelCase : List[str] = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() _UpperCAmelCase : Optional[int] = self.get_inputs() _UpperCAmelCase : Optional[int] = pipe(**A ).images _UpperCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : Optional[int] = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=A ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() _UpperCAmelCase : Optional[int] = self.get_inputs() _UpperCAmelCase : str = pipe(**A ).images _UpperCAmelCase : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : int = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=A ) _UpperCAmelCase : Tuple = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() _UpperCAmelCase : str = self.get_inputs() _UpperCAmelCase : Dict = pipe(**A ).images _UpperCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : List[str] = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : Dict = 0 def callback_fn(A , A , A ) -> None: _UpperCAmelCase : Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _UpperCAmelCase : Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) _UpperCAmelCase : List[Any] = latents[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: _UpperCAmelCase : List[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) _UpperCAmelCase : Tuple = latents[0, -3:, -3:, -1] _UpperCAmelCase : Union[str, Any] = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=A , torch_dtype=torch.floataa ) _UpperCAmelCase : Optional[int] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() _UpperCAmelCase : Dict = self.get_inputs() pipe(**A , callback=A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __lowerCAmelCase ( self ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=A , torch_dtype=torch.floataa ) _UpperCAmelCase : Optional[Any] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCAmelCase : int = self.get_inputs() _UpperCAmelCase : Dict = pipe(**A ) _UpperCAmelCase : Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : Tuple = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 _UpperCAmelCase : str = inputs['''image'''].resize((5_0_4, 5_0_4) ) _UpperCAmelCase : List[Any] = '''timbrooks/instruct-pix2pix''' _UpperCAmelCase : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() _UpperCAmelCase : int = pipe(**A ) _UpperCAmelCase : Optional[int] = output.images[0] _UpperCAmelCase : Union[str, Any] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) _UpperCAmelCase : Tuple = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
352
"""simple docstring""" from ...processing_utils import ProcessorMixin class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''WhisperFeatureExtractor''' a__ ='''WhisperTokenizer''' def __init__( self , A , A ) -> Any: super().__init__(A , A ) _UpperCAmelCase : int = self.feature_extractor _UpperCAmelCase : List[str] = False def __lowerCAmelCase ( self , A=None , A=None , A=True ) -> Optional[int]: return self.tokenizer.get_decoder_prompt_ids(task=A , language=A , no_timestamps=A ) def __call__( self , *A , **A ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A , **A ) _UpperCAmelCase : str = kwargs.pop('''audio''' , A ) _UpperCAmelCase : Dict = kwargs.pop('''sampling_rate''' , A ) _UpperCAmelCase : Dict = kwargs.pop('''text''' , A ) if len(A ) > 0: _UpperCAmelCase : List[Any] = args[0] _UpperCAmelCase : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: _UpperCAmelCase : Optional[Any] = self.feature_extractor(A , *A , sampling_rate=A , **A ) if text is not None: _UpperCAmelCase : Any = self.tokenizer(A , **A ) if text is None: return inputs elif audio is None: return encodings else: _UpperCAmelCase : int = encodings['''input_ids'''] return inputs def __lowerCAmelCase ( self , *A , **A ) -> Optional[Any]: return self.tokenizer.batch_decode(*A , **A ) def __lowerCAmelCase ( self , *A , **A ) -> Any: return self.tokenizer.decode(*A , **A ) def __lowerCAmelCase ( self , A , A="np" ) -> Any: return self.tokenizer.get_prompt_ids(A , return_tensors=A )
68
0
"""simple docstring""" from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ["image_processor"] __UpperCAmelCase : Optional[Any] = "SamImageProcessor" def __init__( self : Any, UpperCAmelCase__ : Dict ): super().__init__(UpperCAmelCase__ ) __lowercase = self.image_processor __lowercase = -1_0 __lowercase = self.image_processor.size["longest_edge"] def __call__( self : Dict, UpperCAmelCase__ : int=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : Optional[Union[str, TensorType]] = None, **UpperCAmelCase__ : Tuple, ): __lowercase = self.image_processor( UpperCAmelCase__, return_tensors=UpperCAmelCase__, **UpperCAmelCase__, ) # pop arguments that are not used in the foward but used nevertheless __lowercase = encoding_image_processor["original_sizes"] if hasattr(UpperCAmelCase__, "numpy" ): # Checks if Torch or TF tensor __lowercase = original_sizes.numpy() __lowercase ,__lowercase ,__lowercase = self._check_and_preprocess_points( input_points=UpperCAmelCase__, input_labels=UpperCAmelCase__, input_boxes=UpperCAmelCase__, ) __lowercase = self._normalize_and_convert( UpperCAmelCase__, UpperCAmelCase__, input_points=UpperCAmelCase__, input_labels=UpperCAmelCase__, input_boxes=UpperCAmelCase__, return_tensors=UpperCAmelCase__, ) return encoding_image_processor def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any]=None, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : Optional[Any]=None, UpperCAmelCase__ : int="pt", ): if input_points is not None: if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): __lowercase = [ self._normalize_coordinates(self.target_size, UpperCAmelCase__, original_sizes[0] ) for point in input_points ] else: __lowercase = [ self._normalize_coordinates(self.target_size, UpperCAmelCase__, UpperCAmelCase__ ) for point, original_size in zip(UpperCAmelCase__, UpperCAmelCase__ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowercase ,__lowercase = self._pad_points_and_labels(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = np.array(UpperCAmelCase__ ) if input_labels is not None: __lowercase = np.array(UpperCAmelCase__ ) if input_boxes is not None: if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): __lowercase = [ self._normalize_coordinates(self.target_size, UpperCAmelCase__, original_sizes[0], is_bounding_box=UpperCAmelCase__ ) for box in input_boxes ] else: __lowercase = [ self._normalize_coordinates(self.target_size, UpperCAmelCase__, UpperCAmelCase__, is_bounding_box=UpperCAmelCase__ ) for box, original_size in zip(UpperCAmelCase__, UpperCAmelCase__ ) ] __lowercase = np.array(UpperCAmelCase__ ) if input_boxes is not None: if return_tensors == "pt": __lowercase = torch.from_numpy(UpperCAmelCase__ ) # boxes batch size of 1 by default __lowercase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowercase = tf.convert_to_tensor(UpperCAmelCase__ ) # boxes batch size of 1 by default __lowercase = tf.expand_dims(UpperCAmelCase__, 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowercase = torch.from_numpy(UpperCAmelCase__ ) # point batch size of 1 by default __lowercase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowercase = tf.convert_to_tensor(UpperCAmelCase__ ) # point batch size of 1 by default __lowercase = tf.expand_dims(UpperCAmelCase__, 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowercase = torch.from_numpy(UpperCAmelCase__ ) # point batch size of 1 by default __lowercase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowercase = tf.convert_to_tensor(UpperCAmelCase__ ) # point batch size of 1 by default __lowercase = tf.expand_dims(UpperCAmelCase__, 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def _lowercase ( self : Tuple, UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[Any] ): __lowercase = max([point.shape[0] for point in input_points] ) __lowercase = [] for i, point in enumerate(UpperCAmelCase__ ): if point.shape[0] != expected_nb_points: __lowercase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value], axis=0 ) __lowercase = np.append(input_labels[i], [self.point_pad_value] ) processed_input_points.append(UpperCAmelCase__ ) __lowercase = processed_input_points return input_points, input_labels def _lowercase ( self : List[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Any, UpperCAmelCase__ : Tuple=False ): __lowercase ,__lowercase = original_size __lowercase ,__lowercase = self.image_processor._get_preprocess_shape(UpperCAmelCase__, longest_edge=UpperCAmelCase__ ) __lowercase = deepcopy(UpperCAmelCase__ ).astype(UpperCAmelCase__ ) if is_bounding_box: __lowercase = coords.reshape(-1, 2, 2 ) __lowercase = coords[..., 0] * (new_w / old_w) __lowercase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowercase = coords.reshape(-1, 4 ) return coords def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any]=None, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : List[Any]=None, ): if input_points is not None: if hasattr(UpperCAmelCase__, "numpy" ): # Checks for TF or Torch tensor __lowercase = input_points.numpy().tolist() if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ) or not isinstance(input_points[0], UpperCAmelCase__ ): raise ValueError("Input points must be a list of list of floating points." ) __lowercase = [np.array(UpperCAmelCase__ ) for input_point in input_points] else: __lowercase = None if input_labels is not None: if hasattr(UpperCAmelCase__, "numpy" ): __lowercase = input_labels.numpy().tolist() if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ) or not isinstance(input_labels[0], UpperCAmelCase__ ): raise ValueError("Input labels must be a list of list integers." ) __lowercase = [np.array(UpperCAmelCase__ ) for label in input_labels] else: __lowercase = None if input_boxes is not None: if hasattr(UpperCAmelCase__, "numpy" ): __lowercase = input_boxes.numpy().tolist() if ( not isinstance(UpperCAmelCase__, UpperCAmelCase__ ) or not isinstance(input_boxes[0], UpperCAmelCase__ ) or not isinstance(input_boxes[0][0], UpperCAmelCase__ ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) __lowercase = [np.array(UpperCAmelCase__ ).astype(np.floataa ) for box in input_boxes] else: __lowercase = None return input_points, input_labels, input_boxes @property def _lowercase ( self : Optional[Any] ): __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(UpperCAmelCase__ ) ) def _lowercase ( self : Optional[int], *UpperCAmelCase__ : List[str], **UpperCAmelCase__ : Union[str, Any] ): return self.image_processor.post_process_masks(*UpperCAmelCase__, **UpperCAmelCase__ )
17
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _UpperCamelCase = '''pt''' elif is_tf_available(): _UpperCamelCase = '''tf''' else: _UpperCamelCase = '''jax''' class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = ByTaTokenizer _SCREAMING_SNAKE_CASE : List[Any] = False def __A ( self ) -> int: '''simple docstring''' super().setUp() __UpperCAmelCase : Tuple = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __A ( self ) -> Optional[int]: '''simple docstring''' return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def __A ( self , **__UpperCAmelCase ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=20 , __UpperCAmelCase=5 ) -> Tuple[str, list]: '''simple docstring''' # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __UpperCAmelCase : Optional[Any] = [] for i in range(len(__UpperCAmelCase ) ): try: __UpperCAmelCase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=__UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __UpperCAmelCase : List[Any] = list(filter(lambda __UpperCAmelCase : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , __UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = list(filter(lambda __UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__UpperCAmelCase ) , __UpperCAmelCase ) ) if max_length is not None and len(__UpperCAmelCase ) > max_length: __UpperCAmelCase : Dict = toks[:max_length] if min_length is not None and len(__UpperCAmelCase ) < min_length and len(__UpperCAmelCase ) > 0: while len(__UpperCAmelCase ) < min_length: __UpperCAmelCase : Dict = toks + toks # toks_str = [t[1] for t in toks] __UpperCAmelCase : Tuple = [t[0] for t in toks] # Ensure consistency __UpperCAmelCase : Union[str, Any] = tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) if " " not in output_txt and len(__UpperCAmelCase ) > 1: __UpperCAmelCase : Dict = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__UpperCAmelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__UpperCAmelCase ) ) if with_prefix_space: __UpperCAmelCase : List[Any] = """ """ + output_txt __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) return output_txt, output_ids def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = self.ta_base_tokenizer __UpperCAmelCase : Optional[int] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) __UpperCAmelCase : List[str] = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.ta_base_tokenizer __UpperCAmelCase : List[Any] = """Unicode €.""" __UpperCAmelCase : Dict = tokenizer(__UpperCAmelCase ) __UpperCAmelCase : Tuple = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""] , __UpperCAmelCase ) # decoding __UpperCAmelCase : List[Any] = tokenizer.decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , """Unicode €.</s>""" ) __UpperCAmelCase : Dict = tokenizer("""e è é ê ë""" ) __UpperCAmelCase : List[str] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""] , __UpperCAmelCase ) # decoding __UpperCAmelCase : Union[str, Any] = tokenizer.decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = self.ta_base_tokenizer __UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off __UpperCAmelCase : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __UpperCAmelCase : Any = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) if FRAMEWORK != "jax": __UpperCAmelCase : List[str] = list(batch.input_ids.numpy()[0] ) else: __UpperCAmelCase : Tuple = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.ta_base_tokenizer __UpperCAmelCase : Optional[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __UpperCAmelCase : Tuple = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , __UpperCAmelCase ) self.assertIn("""attention_mask""" , __UpperCAmelCase ) self.assertNotIn("""decoder_input_ids""" , __UpperCAmelCase ) self.assertNotIn("""decoder_attention_mask""" , __UpperCAmelCase ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.ta_base_tokenizer __UpperCAmelCase : Any = [ """Summary of the text.""", """Another summary.""", ] __UpperCAmelCase : List[str] = tokenizer( text_target=__UpperCAmelCase , max_length=32 , padding="""max_length""" , truncation=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.ta_base_tokenizer __UpperCAmelCase : Optional[int] = ["""A long paragraph for summarization. </s>"""] __UpperCAmelCase : Tuple = ["""Summary of the text. </s>"""] # fmt: off __UpperCAmelCase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __UpperCAmelCase : List[str] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __UpperCAmelCase : Optional[int] = tokenizer(__UpperCAmelCase , text_target=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , batch["""input_ids"""][0] ) self.assertEqual(__UpperCAmelCase , batch["""labels"""][0] ) def __A ( self ) -> List[str]: '''simple docstring''' # safety check on max_len default value so we are sure the test works __UpperCAmelCase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : Any = tempfile.mkdtemp() __UpperCAmelCase : Any = """ He is very happy, UNwant\u00E9d,running""" __UpperCAmelCase : Optional[Any] = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) tokenizer.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = after_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) shutil.rmtree(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : str = tempfile.mkdtemp() __UpperCAmelCase : Dict = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) __UpperCAmelCase : int = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __UpperCAmelCase : str = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) tokenizer.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Tuple = after_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase : Any = tokenizer.__class__.from_pretrained(__UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __UpperCAmelCase : Optional[Any] = json.load(__UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __UpperCAmelCase : Optional[int] = json.load(__UpperCAmelCase ) __UpperCAmelCase : Any = [f'<extra_id_{i}>' for i in range(125 )] __UpperCAmelCase : Optional[int] = added_tokens_extra_ids + [ """an_additional_special_token""" ] __UpperCAmelCase : Optional[Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(__UpperCAmelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__UpperCAmelCase , __UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase : int = tokenizer_class.from_pretrained( __UpperCAmelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase : int = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=__UpperCAmelCase )] __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained( __UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Any = tokenizer_class.from_pretrained(__UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass def __A ( self ) -> str: '''simple docstring''' pass def __A ( self ) -> List[str]: '''simple docstring''' pass def __A ( self ) -> str: '''simple docstring''' pass def __A ( self ) -> Any: '''simple docstring''' # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __UpperCAmelCase : Tuple = self.get_tokenizers(fast=__UpperCAmelCase , do_lower_case=__UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCAmelCase : Optional[int] = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] __UpperCAmelCase : List[str] = tokenizer.convert_tokens_to_string(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCAmelCase : List[str] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens( __UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) for attr in attributes_list: setattr(__UpperCAmelCase , attr + """_id""" , __UpperCAmelCase ) self.assertEqual(getattr(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(getattr(__UpperCAmelCase , attr + """_id""" ) , __UpperCAmelCase ) setattr(__UpperCAmelCase , attr + """_id""" , __UpperCAmelCase ) self.assertEqual(getattr(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(getattr(__UpperCAmelCase , attr + """_id""" ) , __UpperCAmelCase ) setattr(__UpperCAmelCase , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__UpperCAmelCase , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__UpperCAmelCase , """additional_special_tokens_ids""" ) , [] ) setattr(__UpperCAmelCase , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(__UpperCAmelCase , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(__UpperCAmelCase , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
254
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Any = logging.get_logger(__name__) __A : List[str] = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'canine' def __init__( self : int , lowerCamelCase : Union[str, Any]=7_68 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : List[Any]=12 , lowerCamelCase : Optional[Any]=30_72 , lowerCamelCase : str="gelu" , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Optional[Any]=1_63_84 , lowerCamelCase : str=16 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1E-12 , lowerCamelCase : Dict=0 , lowerCamelCase : Optional[Any]=0xE000 , lowerCamelCase : Dict=0xE001 , lowerCamelCase : Tuple=4 , lowerCamelCase : str=4 , lowerCamelCase : Tuple=8 , lowerCamelCase : List[str]=1_63_84 , lowerCamelCase : Dict=1_28 , **lowerCamelCase : Tuple , ) -> Dict: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Any = num_attention_heads lowerCAmelCase_ : Tuple = intermediate_size lowerCAmelCase_ : Optional[int] = hidden_act lowerCAmelCase_ : int = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = initializer_range lowerCAmelCase_ : Any = type_vocab_size lowerCAmelCase_ : List[Any] = layer_norm_eps # Character config: lowerCAmelCase_ : Any = downsampling_rate lowerCAmelCase_ : Optional[int] = upsampling_kernel_size lowerCAmelCase_ : List[Any] = num_hash_functions lowerCAmelCase_ : Tuple = num_hash_buckets lowerCAmelCase_ : Tuple = local_transformer_stride
369
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[str] = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
89
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } SCREAMING_SNAKE_CASE : List[str] = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(__UpperCAmelCase ) , __UpperCAmelCase ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__UpperCAmelCase ) , x.transpose() ) ) SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__UpperCAmelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def __UpperCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(__UpperCAmelCase ) self.assertTrue(np.allclose(transpose(__UpperCAmelCase ) , transpose(__UpperCAmelCase ).numpy() ) ) SCREAMING_SNAKE_CASE : Tuple = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(__UpperCAmelCase ) self.assertTrue(np.allclose(transpose(__UpperCAmelCase , axes=(1, 2, 0) ) , transpose(__UpperCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : int = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Optional[int] = tf.constant(__UpperCAmelCase ) self.assertTrue(np.allclose(transpose(__UpperCAmelCase ) , transpose(__UpperCAmelCase ).numpy() ) ) SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : List[str] = tf.constant(__UpperCAmelCase ) self.assertTrue(np.allclose(transpose(__UpperCAmelCase , axes=(1, 2, 0) ) , transpose(__UpperCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Dict = jnp.array(__UpperCAmelCase ) self.assertTrue(np.allclose(transpose(__UpperCAmelCase ) , np.asarray(transpose(__UpperCAmelCase ) ) ) ) SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : List[str] = jnp.array(__UpperCAmelCase ) self.assertTrue(np.allclose(transpose(__UpperCAmelCase , axes=(1, 2, 0) ) , np.asarray(transpose(__UpperCAmelCase , axes=(1, 2, 0) ) ) ) ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (4, 3) ) , np.reshape(__UpperCAmelCase , (4, 3) ) ) ) SCREAMING_SNAKE_CASE : Dict = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (12, 5) ) , np.reshape(__UpperCAmelCase , (12, 5) ) ) ) @require_torch def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor(__UpperCAmelCase ) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (4, 3) ) , reshape(__UpperCAmelCase , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(__UpperCAmelCase ) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (12, 5) ) , reshape(__UpperCAmelCase , (12, 5) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Dict = tf.constant(__UpperCAmelCase ) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (4, 3) ) , reshape(__UpperCAmelCase , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Union[str, Any] = tf.constant(__UpperCAmelCase ) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (12, 5) ) , reshape(__UpperCAmelCase , (12, 5) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Any = jnp.array(__UpperCAmelCase ) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (4, 3) ) , np.asarray(reshape(__UpperCAmelCase , (4, 3) ) ) ) ) SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.array(__UpperCAmelCase ) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (12, 5) ) , np.asarray(reshape(__UpperCAmelCase , (12, 5) ) ) ) ) def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase ) , np.squeeze(__UpperCAmelCase ) ) ) SCREAMING_SNAKE_CASE : List[str] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase , axis=2 ) , np.squeeze(__UpperCAmelCase , axis=2 ) ) ) @require_torch def __UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE : Any = torch.tensor(__UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase ) , squeeze(__UpperCAmelCase ).numpy() ) ) SCREAMING_SNAKE_CASE : Any = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE : str = torch.tensor(__UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase , axis=2 ) , squeeze(__UpperCAmelCase , axis=2 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE : List[str] = tf.constant(__UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase ) , squeeze(__UpperCAmelCase ).numpy() ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE : int = tf.constant(__UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase , axis=2 ) , squeeze(__UpperCAmelCase , axis=2 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE : List[Any] = jnp.array(__UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase ) , np.asarray(squeeze(__UpperCAmelCase ) ) ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE : Tuple = jnp.array(__UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase , axis=2 ) , np.asarray(squeeze(__UpperCAmelCase , axis=2 ) ) ) ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__UpperCAmelCase , axis=1 ) , np.expand_dims(__UpperCAmelCase , axis=1 ) ) ) @require_torch def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Any = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(__UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(__UpperCAmelCase , axis=1 ) , expand_dims(__UpperCAmelCase , axis=1 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : int = tf.constant(__UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(__UpperCAmelCase , axis=1 ) , expand_dims(__UpperCAmelCase , axis=1 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Any = jnp.array(__UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(__UpperCAmelCase , axis=1 ) , np.asarray(expand_dims(__UpperCAmelCase , axis=1 ) ) ) )
76
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
40
0
from __future__ import annotations lowerCamelCase_ = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class __lowerCamelCase : def __init__( self , lowerCamelCase , lowerCamelCase ) -> None: snake_case_ = graph # mapping node to its parent in resulting breadth first tree snake_case_ = {} snake_case_ = source_vertex def lowerCAmelCase_ ( self ) -> None: snake_case_ = {self.source_vertex} snake_case_ = None snake_case_ = [self.source_vertex] # first in first out queue while queue: snake_case_ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__a ) snake_case_ = vertex queue.append(__a ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> str: if target_vertex == self.source_vertex: return self.source_vertex snake_case_ = self.parent.get(__a ) if target_vertex_parent is None: snake_case_ = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(__a ) return self.shortest_path(__a ) + f'''->{target_vertex}''' if __name__ == "__main__": lowerCamelCase_ = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
350
def UpperCamelCase( lowercase_ , lowercase_ ) -> str: '''simple docstring''' return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
34
0
import string import numpy def A_ ( A__ , A__ ) -> int: return b if a == 0 else greatest_common_divisor(b % a , A__ ) class A__ : """simple docstring""" __A : Union[str, Any] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) __A : Tuple = numpy.vectorize(lambda __UpperCAmelCase : x % 3_6 ) __A : Optional[Any] = numpy.vectorize(__UpperCAmelCase ) def __init__( self , lowercase) -> None: '''simple docstring''' a__ : int = self.modulus(lowercase) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key a__ : List[str] = encrypt_key.shape[0] def __lowercase ( self , lowercase) -> int: '''simple docstring''' return self.key_string.index(lowercase) def __lowercase ( self , lowercase) -> str: '''simple docstring''' return self.key_string[round(lowercase)] def __lowercase ( self) -> None: '''simple docstring''' a__ : Tuple = round(numpy.linalg.det(self.encrypt_key)) if det < 0: a__ : List[Any] = det % len(self.key_string) a__ : str = len(self.key_string) if greatest_common_divisor(lowercase , len(self.key_string)) != 1: a__ : Any = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(lowercase) def __lowercase ( self , lowercase) -> str: '''simple docstring''' a__ : List[str] = [char for char in text.upper() if char in self.key_string] a__ : Tuple = chars[-1] while len(lowercase) % self.break_key != 0: chars.append(lowercase) return "".join(lowercase) def __lowercase ( self , lowercase) -> str: '''simple docstring''' a__ : Optional[int] = self.process_text(text.upper()) a__ : List[Any] = '' for i in range(0 , len(lowercase) - self.break_key + 1 , self.break_key): a__ : Tuple = text[i : i + self.break_key] a__ : Optional[Any] = [self.replace_letters(lowercase) for char in batch] a__ : int = numpy.array([vec]).T a__ : int = self.modulus(self.encrypt_key.dot(lowercase)).T.tolist()[ 0 ] a__ : Dict = ''.join( self.replace_digits(lowercase) for num in batch_encrypted) encrypted += encrypted_batch return encrypted def __lowercase ( self) -> numpy.ndarray: '''simple docstring''' a__ : Union[str, Any] = round(numpy.linalg.det(self.encrypt_key)) if det < 0: a__ : List[str] = det % len(self.key_string) a__ : Optional[Any] = None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: a__ : Optional[Any] = i break a__ : Any = ( det_inv * numpy.linalg.det(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key) ) return self.to_int(self.modulus(lowercase)) def __lowercase ( self , lowercase) -> str: '''simple docstring''' a__ : Optional[Any] = self.make_decrypt_key() a__ : Dict = self.process_text(text.upper()) a__ : List[Any] = '' for i in range(0 , len(lowercase) - self.break_key + 1 , self.break_key): a__ : List[str] = text[i : i + self.break_key] a__ : Optional[Any] = [self.replace_letters(lowercase) for char in batch] a__ : Dict = numpy.array([vec]).T a__ : Tuple = self.modulus(decrypt_key.dot(lowercase)).T.tolist()[0] a__ : List[Any] = ''.join( self.replace_digits(lowercase) for num in batch_decrypted) decrypted += decrypted_batch return decrypted def A_ ( ) -> None: a__ : Optional[int] = int(input('Enter the order of the encryption key: ' ) ) a__ : Optional[Any] = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(A__ ): a__ : Dict = [int(A__ ) for x in input().split()] hill_matrix.append(A__ ) a__ : List[str] = HillCipher(numpy.array(A__ ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) a__ : str = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": a__ : Any = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(A__ ) ) elif option == "2": a__ : str = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
99
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Optional[int] = tempfile.mkdtemp() lowerCAmelCase_ : Optional[int] = BlipImageProcessor() lowerCAmelCase_ : Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) lowerCAmelCase_ : str = BlipProcessor(a_ , a_ ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : Optional[Any] , **a_ : Union[str, Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **a_ ).tokenizer def lowerCamelCase ( self : int , **a_ : int ): return AutoProcessor.from_pretrained(self.tmpdirname , **a_ ).image_processor def lowerCamelCase ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCAmelCase_ : List[str] = [Image.fromarray(np.moveaxis(a_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : Dict = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ : Optional[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase_ : Dict = self.get_image_processor(do_normalize=a_ , padding_value=1.0 ) lowerCAmelCase_ : str = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=a_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , a_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a_ ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : List[str] = self.get_image_processor() lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : str = BlipProcessor(tokenizer=a_ , image_processor=a_ ) lowerCAmelCase_ : Any = self.prepare_image_inputs() lowerCAmelCase_ : Any = image_processor(a_ , return_tensors="np" ) lowerCAmelCase_ : List[Any] = processor(images=a_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase ( self : str ): lowerCAmelCase_ : Dict = self.get_image_processor() lowerCAmelCase_ : int = self.get_tokenizer() lowerCAmelCase_ : Tuple = BlipProcessor(tokenizer=a_ , image_processor=a_ ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : List[str] = processor(text=a_ ) lowerCAmelCase_ : int = tokenizer(a_ , return_token_type_ids=a_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ : str = self.get_image_processor() lowerCAmelCase_ : Dict = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = BlipProcessor(tokenizer=a_ , image_processor=a_ ) lowerCAmelCase_ : Any = "lower newer" lowerCAmelCase_ : str = self.prepare_image_inputs() lowerCAmelCase_ : Any = processor(text=a_ , images=a_ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : int = self.get_image_processor() lowerCAmelCase_ : List[Any] = self.get_tokenizer() lowerCAmelCase_ : str = BlipProcessor(tokenizer=a_ , image_processor=a_ ) lowerCAmelCase_ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ : List[str] = processor.batch_decode(a_ ) lowerCAmelCase_ : List[str] = tokenizer.batch_decode(a_ ) self.assertListEqual(a_ , a_ ) def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Optional[Any] = self.get_image_processor() lowerCAmelCase_ : List[str] = self.get_tokenizer() lowerCAmelCase_ : str = BlipProcessor(tokenizer=a_ , image_processor=a_ ) lowerCAmelCase_ : List[str] = "lower newer" lowerCAmelCase_ : Optional[int] = self.prepare_image_inputs() lowerCAmelCase_ : Optional[int] = processor(text=a_ , images=a_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
241
0
"""simple docstring""" import operator as op def __lowerCamelCase ( a_ : Dict ) -> str: __SCREAMING_SNAKE_CASE :Optional[Any] = [] __SCREAMING_SNAKE_CASE :str = lambda a_ , a_ : int(x / y ) # noqa: E731 integer division operation __SCREAMING_SNAKE_CASE :Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(a_ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a_ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(a_ ) , sep=''' | ''' ) else: __SCREAMING_SNAKE_CASE :Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(a_ ) , sep=''' | ''' ) __SCREAMING_SNAKE_CASE :Optional[int] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(a_ ) , sep=''' | ''' ) stack.append( str(opr[x](int(a_ ) , int(a_ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(a_ ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase_ = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", solve(Postfix))
239
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Optional[Any] = '''xlm-prophetnet''' SCREAMING_SNAKE_CASE_ : Any = ['''past_key_values'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = { '''num_attention_heads''': '''num_encoder_attention_heads''', } def __init__( self ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = "gelu" ,SCREAMING_SNAKE_CASE__ = 3_05_22 ,SCREAMING_SNAKE_CASE__ = 10_24 ,SCREAMING_SNAKE_CASE__ = 40_96 ,SCREAMING_SNAKE_CASE__ = 12 ,SCREAMING_SNAKE_CASE__ = 16 ,SCREAMING_SNAKE_CASE__ = 40_96 ,SCREAMING_SNAKE_CASE__ = 12 ,SCREAMING_SNAKE_CASE__ = 16 ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = 5_12 ,SCREAMING_SNAKE_CASE__ = 0.0_2 ,SCREAMING_SNAKE_CASE__ = True ,SCREAMING_SNAKE_CASE__ = True ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = 2 ,SCREAMING_SNAKE_CASE__ = 32 ,SCREAMING_SNAKE_CASE__ = 1_28 ,SCREAMING_SNAKE_CASE__ = False ,SCREAMING_SNAKE_CASE__ = 0.0 ,SCREAMING_SNAKE_CASE__ = True ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = 1 ,SCREAMING_SNAKE_CASE__ = 2 ,**SCREAMING_SNAKE_CASE__ ,) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :int = vocab_size __SCREAMING_SNAKE_CASE :Tuple = hidden_size __SCREAMING_SNAKE_CASE :Optional[int] = encoder_ffn_dim __SCREAMING_SNAKE_CASE :Optional[int] = num_encoder_layers __SCREAMING_SNAKE_CASE :Tuple = num_encoder_attention_heads __SCREAMING_SNAKE_CASE :List[Any] = decoder_ffn_dim __SCREAMING_SNAKE_CASE :Union[str, Any] = num_decoder_layers __SCREAMING_SNAKE_CASE :Optional[Any] = num_decoder_attention_heads __SCREAMING_SNAKE_CASE :List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE :Dict = init_std # Normal(0, this parameter) __SCREAMING_SNAKE_CASE :List[Any] = activation_function # parameters for xlmprophetnet __SCREAMING_SNAKE_CASE :Tuple = ngram __SCREAMING_SNAKE_CASE :int = num_buckets __SCREAMING_SNAKE_CASE :Optional[int] = relative_max_distance __SCREAMING_SNAKE_CASE :Union[str, Any] = disable_ngram_loss __SCREAMING_SNAKE_CASE :Dict = eps # 3 Types of Dropout __SCREAMING_SNAKE_CASE :List[str] = attention_dropout __SCREAMING_SNAKE_CASE :Dict = activation_dropout __SCREAMING_SNAKE_CASE :Union[str, Any] = dropout __SCREAMING_SNAKE_CASE :int = use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,is_encoder_decoder=SCREAMING_SNAKE_CASE__ ,add_cross_attention=SCREAMING_SNAKE_CASE__ ,decoder_start_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) @property def _UpperCamelCase ( self ) -> int: """simple docstring""" return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
239
1
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = [0] * len(SCREAMING_SNAKE_CASE_ ) for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): # use last results for better performance - dynamic programming _snake_case = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case = j return prefix_result def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): return max(prefix_function(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
341
def lowerCAmelCase__ ( ) -> Any: '''simple docstring''' for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple ) -> Any: '''simple docstring''' A__ = 1 A__ = 2 while i * i <= n: A__ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCAmelCase__ ( ) -> Dict: '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(SCREAMING_SNAKE_CASE_ ) > 5_0_0 ) if __name__ == "__main__": print(solution())
68
0
def UpperCamelCase ( ) ->int: """simple docstring""" return 1 def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(__lowerCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(__lowerCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(__lowerCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(__lowerCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(__lowerCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(__lowerCAmelCase ) def UpperCamelCase ( UpperCAmelCase = 200 ) ->int: """simple docstring""" return two_pound(__lowerCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
353
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Dict: a_ = inspect.getfile(accelerate.test_utils) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_script.py"]) a_ = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "test_distributed_data_loop.py"]) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_ops.py"]) @require_multi_gpu def UpperCAmelCase__ ( self) ->Any: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->str: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''') with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->Optional[int]: a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->List[Any]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1"): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) if __name__ == "__main__": UpperCamelCase_ = Accelerator() UpperCamelCase_ = (accelerator.state.process_index + 2, 10) UpperCamelCase_ = torch.randint(0, 10, shape).to(accelerator.device) UpperCamelCase_ = '' UpperCamelCase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCamelCase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCamelCase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
303
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _a = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['''ConvNextFeatureExtractor'''] _a = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _a = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
39
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str | Literal[False]: _a : Optional[int] = list(lowerCAmelCase_ ) _a : Optional[Any] = list(lowerCAmelCase_ ) _a : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count += 1 _a : Optional[int] = '_' if count > 1: return False else: return "".join(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ ) -> list[str]: _a : Optional[int] = [] while True: _a : Any = ['$'] * len(lowerCAmelCase_ ) _a : List[str] = [] for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): _a : Optional[int] = compare_string(binary[i] , binary[j] ) if k is False: _a : Optional[Any] = '*' _a : Optional[Any] = '*' temp.append('X' ) for i in range(len(lowerCAmelCase_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowerCAmelCase_ ) == 0: return pi _a : Any = list(set(lowerCAmelCase_ ) ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[str]: _a : int = [] for minterm in minterms: _a : Optional[int] = '' for _ in range(lowerCAmelCase_ ): _a : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(lowerCAmelCase_ ) return temp def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> bool: _a : int = list(lowerCAmelCase_ ) _a : Union[str, Any] = list(lowerCAmelCase_ ) _a : str = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[str]: _a : List[Any] = [] _a : Optional[Any] = [0] * len(lowerCAmelCase_ ) for i in range(len(chart[0] ) ): _a : Union[str, Any] = 0 _a : int = -1 for j in range(len(lowerCAmelCase_ ) ): if chart[j][i] == 1: count += 1 _a : int = j if count == 1: _a : List[Any] = 1 for i in range(len(lowerCAmelCase_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowerCAmelCase_ ) ): _a : Any = 0 temp.append(prime_implicants[i] ) while True: _a : Union[str, Any] = 0 _a : List[Any] = -1 _a : str = 0 for i in range(len(lowerCAmelCase_ ) ): _a : Union[str, Any] = chart[i].count(1 ) if count_n > max_n: _a : Any = count_n _a : int = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowerCAmelCase_ ) ): _a : List[str] = 0 def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[list[int]]: _a : int = [[0 for x in range(len(lowerCAmelCase_ ) )] for x in range(len(lowerCAmelCase_ ) )] for i in range(len(lowerCAmelCase_ ) ): _a : str = prime_implicants[i].count('_' ) for j in range(len(lowerCAmelCase_ ) ): if is_for_table(prime_implicants[i] , binary[j] , lowerCAmelCase_ ): _a : Optional[Any] = 1 return chart def __lowerCamelCase ( ) -> None: _a : Optional[int] = int(input('Enter the no. of variables\n' ) ) _a : List[Any] = [ float(lowerCAmelCase_ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _a : List[str] = decimal_to_binary(lowerCAmelCase_ , lowerCAmelCase_ ) _a : Dict = check(lowerCAmelCase_ ) print('Prime Implicants are:' ) print(lowerCAmelCase_ ) _a : List[Any] = prime_implicant_chart(lowerCAmelCase_ , lowerCAmelCase_ ) _a : int = selection(lowerCAmelCase_ , lowerCAmelCase_ ) print('Essential Prime Implicants are:' ) print(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
89
0
"""simple docstring""" from __future__ import annotations from typing import TypedDict class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" a : str a : int def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if not isinstance(__a , __a ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(__a ) )] def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' if not isinstance(__a , __a ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) lowerCAmelCase : Optional[Any] = all_rotations(__a ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation lowerCAmelCase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__a ), } return response def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if not isinstance(__a , __a ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: lowerCAmelCase : str = int(__a ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(__a ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) lowerCAmelCase : Union[str, Any] = [''] * len(__a ) for _ in range(len(__a ) ): for i in range(len(__a ) ): lowerCAmelCase : Dict = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCAmelCase__ = '''Provide a string that I will generate its BWT transform: ''' lowerCAmelCase__ = input(entry_msg).strip() lowerCAmelCase__ = bwt_transform(s) print( F"Burrows Wheeler transform for string \'{s}\' results " F"in \'{result['bwt_string']}\'" ) lowerCAmelCase__ = reverse_bwt(result['''bwt_string'''], result['''idx_original_string''']) print( F"Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' " F"we get original string \'{original_string}\'" )
350
"""simple docstring""" import re from filelock import FileLock try: import nltk lowerCAmelCase__ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' re.sub("<n>" , "" , SCREAMING_SNAKE_CASE ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE ) )
133
0
'''simple docstring''' def snake_case_ (_a : int ): if number < 0: raise ValueError('''number must not be negative''' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
34
'''simple docstring''' def snake_case_ (_a : str , _a : str ): UpperCAmelCase = len(_a ) + 1 UpperCAmelCase = len(_a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase = [[0 for i in range(_a )] for j in range(_a )] # since string of zero length match pattern of zero length UpperCAmelCase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _a ): UpperCAmelCase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _a ): UpperCAmelCase = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _a ): for j in range(1 , _a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase = dp[i - 1][j] else: UpperCAmelCase = 0 else: UpperCAmelCase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") A ='aab' A ='c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"""{input_string} matches the given pattern {pattern}""") else: print(f"""{input_string} does not match with the given pattern {pattern}""")
34
1
from __future__ import annotations def _lowerCamelCase( lowercase__ ) -> list[int]: # This function is recursive '''simple docstring''' __lowercase= len(lowercase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __lowercase= array[0] __lowercase= False __lowercase= 1 __lowercase= [] while not is_found and i < array_length: if array[i] < pivot: __lowercase= True __lowercase= [element for element in array[i:] if element >= array[i]] __lowercase= longest_subsequence(lowercase__ ) if len(lowercase__ ) > len(lowercase__ ): __lowercase= temp_array else: i += 1 __lowercase= [element for element in array[1:] if element >= pivot] __lowercase= [pivot, *longest_subsequence(lowercase__ )] if len(lowercase__ ) > len(lowercase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
304
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
304
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Optional[Any] = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
239
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class __magic_name__ : def __init__( self : str , lowercase_ : Dict ): if isinstance(lowercase_ , lowercase_ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowercase_ : List[Any] = deepcopy(lowercase_ ) elif os.path.exists(lowercase_ ): with io.open(lowercase_ , """r""" , encoding="""utf-8""" ) as f: lowercase_ : Union[str, Any] = json.load(lowercase_ ) else: try: lowercase_ : int = baseaa.urlsafe_baadecode(lowercase_ ).decode("""utf-8""" ) lowercase_ : str = json.loads(lowercase_ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) lowercase_ : Any = config self.set_stage_and_offload() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. lowercase_ : Tuple = self.get_value("""zero_optimization.stage""" , -1 ) # offload lowercase_ : str = False if self.is_zeroa() or self.is_zeroa(): lowercase_ : Dict = set(["""cpu""", """nvme"""] ) lowercase_ : List[Any] = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowercase_ : Tuple = True def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Any ): lowercase_ : Optional[Any] = self.config # find the config node of interest if it exists lowercase_ : Tuple = ds_key_long.split(""".""" ) lowercase_ : Union[str, Any] = nodes.pop() for node in nodes: lowercase_ : List[str] = config.get(lowercase_ ) if config is None: return None, ds_key return config, ds_key def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : List[str]=None ): lowercase_ , lowercase_ : List[Any] = self.find_config_node(lowercase_ ) if config is None: return default return config.get(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Optional[int] , lowercase_ : int=False ): lowercase_ : int = self.config # find the config node of interest if it exists lowercase_ : Dict = ds_key_long.split(""".""" ) for node in nodes: lowercase_ : List[Any] = config lowercase_ : Dict = config.get(lowercase_ ) if config is None: if must_exist: raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Tuple ): lowercase_ : str = self.get_value(lowercase_ ) return False if value is None else bool(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Union[str, Any] ): lowercase_ : Union[str, Any] = self.get_value(lowercase_ ) return False if value is None else not bool(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): return self._stage == 2 def SCREAMING_SNAKE_CASE_ ( self : Any ): return self._stage == 3 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return self._offload class __magic_name__ : def __init__( self : Any , lowercase_ : Union[str, Any] ): lowercase_ : Any = engine def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : int , **lowercase_ : str ): # runs backpropagation and handles mixed precision self.engine.backward(lowercase_ , **lowercase_ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class __magic_name__ ( _UpperCAmelCase): def __init__( self : Optional[Any] , lowercase_ : Tuple ): super().__init__(lowercase_ , device_placement=lowercase_ , scaler=lowercase_ ) lowercase_ : Any = hasattr(self.optimizer , """overflow""" ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Tuple=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def SCREAMING_SNAKE_CASE_ ( self : Tuple ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): if self.__has_overflow__: return self.optimizer.overflow return False class __magic_name__ ( _UpperCAmelCase): def __init__( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Tuple ): super().__init__(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class __magic_name__ : def __init__( self : Any , lowercase_ : Union[str, Any] , lowercase_ : List[str]=0.0_01 , lowercase_ : List[str]=0 , **lowercase_ : List[Any] ): lowercase_ : str = params lowercase_ : List[Any] = lr lowercase_ : int = weight_decay lowercase_ : Union[str, Any] = kwargs class __magic_name__ : def __init__( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : List[str]=None , lowercase_ : int=0 , **lowercase_ : int ): lowercase_ : Union[str, Any] = optimizer lowercase_ : List[str] = total_num_steps lowercase_ : Dict = warmup_num_steps lowercase_ : Dict = kwargs
239
1
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''new-model''' if is_tf_available(): class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = NewModelConfig @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Any = "bert-base-cased" A_ : Tuple = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) A_ : Tuple = TFAutoModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Any = "bert-base-cased" A_ : Union[str, Any] = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) A_ : Optional[Any] = TFAutoModelForPreTraining.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : str = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) A_ : Any = TFAutoModelForCausalLM.from_pretrained(snake_case ) A_ , A_ : List[Any] = TFAutoModelForCausalLM.from_pretrained(snake_case , output_loading_info=snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[str] = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) A_ : Dict = TFAutoModelWithLMHead.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : str = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) A_ : Tuple = TFAutoModelForMaskedLM.from_pretrained(snake_case ) A_ , A_ : Optional[Any] = TFAutoModelForMaskedLM.from_pretrained(snake_case , output_loading_info=snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Union[str, Any] = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) A_ : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(snake_case ) A_ , A_ : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(snake_case , output_loading_info=snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: A_ : Optional[int] = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) A_ : Tuple = TFAutoModelForSequenceClassification.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' for model_name in ["bert-base-uncased"]: A_ : str = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) A_ : str = TFAutoModelForQuestionAnswering.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) @slow @require_tensorflow_probability def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: A_ : Any = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) A_ : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained(snake_case ) A_ , A_ : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( snake_case , output_loading_info=snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : int = TFAutoModelWithLMHead.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=snake_case ) , 14_410 ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[int] = TFAutoModelWithLMHead.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=snake_case ) , 14_410 ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Tuple = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(snake_case , snake_case ) A_ : Optional[int] = copy.deepcopy(model.config ) A_ : List[Any] = ["FunnelBaseModel"] A_ : List[str] = TFAutoModel.from_config(snake_case ) self.assertIsInstance(snake_case , snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case ) A_ : Optional[Any] = TFAutoModel.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' try: AutoConfig.register("new-model" , snake_case ) A_ : Optional[int] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(snake_case ): auto_class.register(snake_case , snake_case ) auto_class.register(snake_case , snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case ): auto_class.register(snake_case , snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API A_ : Optional[int] = BertModelTester(self ).get_config() A_ : List[Any] = NewModelConfig(**tiny_config.to_dict() ) A_ : List[Any] = auto_class.from_config(snake_case ) self.assertIsInstance(snake_case , snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case ) A_ : Optional[int] = auto_class.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' with self.assertRaisesRegex( snake_case , "bert-base is not a local folder and is not a valid model identifier" ): A_ : int = TFAutoModel.from_pretrained("bert-base" ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' with self.assertRaisesRegex( snake_case , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): A_ : Union[str, Any] = TFAutoModel.from_pretrained(snake_case , revision="aaaaaa" ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' with self.assertRaisesRegex( snake_case , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): A_ : int = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' with self.assertRaisesRegex(snake_case , "Use `from_pt=True` to load this model" ): A_ : Tuple = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Union[str, Any] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: A_ : List[str] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint A_ : Optional[int] = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: A_ : Any = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
70
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __snake_case ( ) -> tuple[list[int], int]: A_ : Dict = [randint(-1000 , 1000 ) for i in range(10 )] A_ : List[str] = randint(-5000 , 5000 ) return (arr, r) _lowerCAmelCase : List[Any] = make_dataset() def __snake_case ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ) -> tuple[int, ...]: for triplet in permutations(_lowerCAmelCase , 3 ): if sum(_lowerCAmelCase ) == target: return tuple(sorted(_lowerCAmelCase ) ) return (0, 0, 0) def __snake_case ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ) -> tuple[int, int, int]: arr.sort() A_ : Tuple = len(_lowerCAmelCase ) for i in range(n - 1 ): A_ , A_ : int = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __snake_case ( ) -> tuple[float, float]: A_ : Union[str, Any] = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" A_ : Tuple = "\ntriplet_sum1(*dataset)\n" A_ : Optional[Any] = "\ntriplet_sum2(*dataset)\n" A_ : List[str] = repeat(setup=_lowerCAmelCase , stmt=_lowerCAmelCase , repeat=5 , number=10000 ) A_ : Tuple = repeat(setup=_lowerCAmelCase , stmt=_lowerCAmelCase , repeat=5 , number=10000 ) return (min(_lowerCAmelCase ), min(_lowerCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCAmelCase : Optional[Any] = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
70
1
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger() def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case = True ): """simple docstring""" print(F'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": __SCREAMING_SNAKE_CASE : Optional[Any] = timm.create_model('''levit_128s''' , pretrained=snake_case ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = timm.create_model('''levit_128''' , pretrained=snake_case ) if hidden_sizes == 192: __SCREAMING_SNAKE_CASE : int = timm.create_model('''levit_192''' , pretrained=snake_case ) if hidden_sizes == 256: __SCREAMING_SNAKE_CASE : Optional[int] = timm.create_model('''levit_256''' , pretrained=snake_case ) if hidden_sizes == 384: __SCREAMING_SNAKE_CASE : str = timm.create_model('''levit_384''' , pretrained=snake_case ) from_model.eval() __SCREAMING_SNAKE_CASE : str = LevitForImageClassificationWithTeacher(snake_case ).eval() __SCREAMING_SNAKE_CASE : Union[str, Any] = OrderedDict() __SCREAMING_SNAKE_CASE : List[str] = from_model.state_dict() __SCREAMING_SNAKE_CASE : Tuple = list(from_model.state_dict().keys() ) __SCREAMING_SNAKE_CASE : Any = list(our_model.state_dict().keys() ) print(len(snake_case ) , len(snake_case ) ) for i in range(len(snake_case ) ): __SCREAMING_SNAKE_CASE : str = weights[og_keys[i]] our_model.load_state_dict(snake_case ) __SCREAMING_SNAKE_CASE : Dict = torch.randn((2, 3, 224, 224) ) __SCREAMING_SNAKE_CASE : Dict = from_model(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = our_model(snake_case ).logits assert torch.allclose(snake_case , snake_case ), "The model logits don't match the original one." __SCREAMING_SNAKE_CASE : List[str] = name print(snake_case ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __SCREAMING_SNAKE_CASE : List[str] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'''Pushed {checkpoint_name}''' ) def a__ ( snake_case , snake_case = None , snake_case = True ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = '''imagenet-1k-id2label.json''' __SCREAMING_SNAKE_CASE : List[Any] = 1_000 __SCREAMING_SNAKE_CASE : int = (1, num_labels) __SCREAMING_SNAKE_CASE : Optional[Any] = '''huggingface/label-files''' __SCREAMING_SNAKE_CASE : Optional[Any] = num_labels __SCREAMING_SNAKE_CASE : Optional[int] = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE : Optional[int] = {int(snake_case ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Optional[int] = idalabel __SCREAMING_SNAKE_CASE : Optional[int] = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Any = partial(snake_case , num_labels=snake_case , idalabel=snake_case , labelaid=snake_case ) __SCREAMING_SNAKE_CASE : Any = { '''levit-128S''': 128, '''levit-128''': 128, '''levit-192''': 192, '''levit-256''': 256, '''levit-384''': 384, } __SCREAMING_SNAKE_CASE : List[Any] = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , snake_case , names_to_config[model_name] , snake_case , snake_case ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , snake_case , snake_case , snake_case , snake_case ) return config, expected_shape if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help="""The name of the model you wish to convert, it must be one of the supported Levit* architecture,""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""levit-dump-folder/""", type=Path, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) lowercase_ = parser.parse_args() lowercase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
303
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = KandinskyVaaPriorPipeline lowerCAmelCase_ = ['''prompt'''] lowerCAmelCase_ = ['''prompt''', '''negative_prompt'''] lowerCAmelCase_ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] lowerCAmelCase_ = False @property def UpperCAmelCase__ ( self : int ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return self.time_input_dim @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return 100 @property def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCAmelCase__ ( self : str ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } __SCREAMING_SNAKE_CASE : Optional[Any] = PriorTransformer(**_A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __SCREAMING_SNAKE_CASE : str = CLIPVisionModelWithProjection(_A ) return model @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = CLIPImageProcessor( crop_size=224 , do_center_crop=_A , do_normalize=_A , do_resize=_A , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_prior __SCREAMING_SNAKE_CASE : str = self.dummy_image_encoder __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_tokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_image_processor __SCREAMING_SNAKE_CASE : str = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=10.0 , ) __SCREAMING_SNAKE_CASE : int = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def UpperCAmelCase__ ( self : Union[str, Any] , _A : int , _A : Dict=0 ): """simple docstring""" if str(_A ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(_A ) else: __SCREAMING_SNAKE_CASE : str = torch.Generator(device=_A ).manual_seed(_A ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = '''cpu''' __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Any = self.pipeline_class(**_A ) __SCREAMING_SNAKE_CASE : List[Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : int = pipe(**self.get_dummy_inputs(_A ) ) __SCREAMING_SNAKE_CASE : Tuple = output.image_embeds __SCREAMING_SNAKE_CASE : Optional[Any] = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __SCREAMING_SNAKE_CASE : Tuple = image[0, -10:] __SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -10:] assert image.shape == (1, 32) __SCREAMING_SNAKE_CASE : List[str] = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : int = False self._test_inference_batch_single_identical( test_max_difference=_A , relax_max_difference=_A , test_mean_pixel_difference=_A , ) @skip_mps def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : List[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=_A , test_mean_pixel_difference=_A , )
303
1
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): # load base model _UpperCamelCase : Optional[int] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors _UpperCamelCase : int = load_file(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: _UpperCamelCase : Any = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) _UpperCamelCase : Any = pipeline.text_encoder else: _UpperCamelCase : List[str] = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) _UpperCamelCase : Optional[int] = pipeline.unet # find the target layer _UpperCamelCase : str = layer_infos.pop(0 ) while len(UpperCAmelCase_ ) > -1: try: _UpperCamelCase : List[Any] = curr_layer.__getattr__(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: _UpperCamelCase : str = layer_infos.pop(0 ) elif len(UpperCAmelCase_ ) == 0: break except Exception: if len(UpperCAmelCase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: _UpperCamelCase : Any = layer_infos.pop(0 ) _UpperCamelCase : int = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(UpperCAmelCase_ ) else: pair_keys.append(UpperCAmelCase_ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: _UpperCamelCase : List[str] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) _UpperCamelCase : str = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase_ , UpperCAmelCase_ ).unsqueeze(2 ).unsqueeze(3 ) else: _UpperCamelCase : Any = state_dict[pair_keys[0]].to(torch.floataa ) _UpperCamelCase : Tuple = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase_ , UpperCAmelCase_ ) # update visited list for item in pair_keys: visited.append(UpperCAmelCase_ ) return pipeline if __name__ == "__main__": snake_case_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') snake_case_ : Any = parser.parse_args() snake_case_ : List[str] = args.base_model_path snake_case_ : Tuple = args.checkpoint_path snake_case_ : Tuple = args.dump_path snake_case_ : Dict = args.lora_prefix_unet snake_case_ : Dict = args.lora_prefix_text_encoder snake_case_ : Optional[int] = args.alpha snake_case_ : Dict = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) snake_case_ : Optional[Any] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
236
'''simple docstring''' from __future__ import annotations def A__ ( UpperCAmelCase_ ): if not nums: return 0 _UpperCamelCase : Any = nums[0] _UpperCamelCase : Optional[int] = 0 for num in nums[1:]: _UpperCamelCase , _UpperCamelCase : Optional[Any] = ( max_excluding + num, max(UpperCAmelCase_ , UpperCAmelCase_ ), ) return max(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
236
1
'''simple docstring''' def UpperCamelCase_( snake_case : int = 1_0_0_0 ): '''simple docstring''' snake_case_ = -1 snake_case_ = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c snake_case_ = (n * n - 2 * a * n) // (2 * n - 2 * a) snake_case_ = n - a - b if c * c == (a * a + b * b): snake_case_ = a * b * c if candidate >= product: snake_case_ = candidate return product if __name__ == "__main__": print(F"{solution() = }")
85
def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = len(snake_case_ ) for i in range(snake_case_ ): for j in range(i + 1 , snake_case_ ): if numbers[j] < numbers[i]: _UpperCAmelCase , _UpperCAmelCase = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowercase_ : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() lowercase_ : Dict = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
133
0
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : Any , lowercase_ : WhisperForConditionalGeneration , lowercase_ : WhisperProcessor , lowercase_ : AutoencoderKL , lowercase_ : CLIPTextModel , lowercase_ : CLIPTokenizer , lowercase_ : UNetaDConditionModel , lowercase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowercase_ : StableDiffusionSafetyChecker , lowercase_ : CLIPImageProcessor , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , ) def _snake_case ( self : List[Any] , lowercase_ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": snake_case_ : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_ ) def _snake_case ( self : Dict ): self.enable_attention_slicing(lowercase_ ) @torch.no_grad() def __call__( self : Tuple , lowercase_ : Optional[int] , lowercase_ : Any=16000 , lowercase_ : int = 512 , lowercase_ : int = 512 , lowercase_ : int = 50 , lowercase_ : float = 7.5 , lowercase_ : Optional[Union[str, List[str]]] = None , lowercase_ : Optional[int] = 1 , lowercase_ : float = 0.0 , lowercase_ : Optional[torch.Generator] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , lowercase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase_ : int = 1 , **lowercase_ : str , ): snake_case_ : str = self.speech_processor.feature_extractor( lowercase_ , return_tensors='''pt''' , sampling_rate=lowercase_ ).input_features.to(self.device ) snake_case_ : Any = self.speech_model.generate(lowercase_ , max_length=480000 ) snake_case_ : str = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_ )[ 0 ] if isinstance(lowercase_ , lowercase_ ): snake_case_ : str = 1 elif isinstance(lowercase_ , lowercase_ ): snake_case_ : Any = len(lowercase_ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(lowercase_ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(lowercase_ )}." ) # get prompt text embeddings snake_case_ : Dict = self.tokenizer( lowercase_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) snake_case_ : str = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case_ : Optional[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) snake_case_ : str = text_input_ids[:, : self.tokenizer.model_max_length] snake_case_ : List[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method snake_case_, snake_case_, snake_case_ : List[str] = text_embeddings.shape snake_case_ : Dict = text_embeddings.repeat(1 , lowercase_ , 1 ) snake_case_ : Optional[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. snake_case_ : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: snake_case_ : List[str] if negative_prompt is None: snake_case_ : Tuple = [''''''] * batch_size elif type(lowercase_ ) is not type(lowercase_ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_ )} !=" f" {type(lowercase_ )}." ) elif isinstance(lowercase_ , lowercase_ ): snake_case_ : Optional[int] = [negative_prompt] elif batch_size != len(lowercase_ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: snake_case_ : Optional[int] = negative_prompt snake_case_ : Union[str, Any] = text_input_ids.shape[-1] snake_case_ : Tuple = self.tokenizer( lowercase_ , padding='''max_length''' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='''pt''' , ) snake_case_ : List[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case_ : Dict = uncond_embeddings.shape[1] snake_case_ : Union[str, Any] = uncond_embeddings.repeat(1 , lowercase_ , 1 ) snake_case_ : int = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. snake_case_ : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) snake_case_ : str = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps snake_case_ : Dict = torch.randn(lowercase_ , generator=lowercase_ , device='''cpu''' , dtype=lowercase_ ).to( self.device ) else: snake_case_ : List[Any] = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) snake_case_ : List[Any] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowercase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand snake_case_ : Tuple = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler snake_case_ : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case_ : List[str] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case_ : Dict = {} if accepts_eta: snake_case_ : Any = eta for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance snake_case_ : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case_ : Tuple = self.scheduler.scale_model_input(lowercase_ , lowercase_ ) # predict the noise residual snake_case_ : Union[str, Any] = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_ ).sample # perform guidance if do_classifier_free_guidance: snake_case_, snake_case_ : Tuple = noise_pred.chunk(2 ) snake_case_ : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 snake_case_ : Tuple = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_ ) snake_case_ : Optional[int] = 1 / 0.1_82_15 * latents snake_case_ : Dict = self.vae.decode(lowercase_ ).sample snake_case_ : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case_ : List[str] = self.numpy_to_pil(lowercase_ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_ )
155
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase__ : str = get_logger(__name__) lowercase__ : List[str] = Path(__file__).parent / '''model_card_template.md''' lowercase__ : Union[str, Any] = uuida().hex lowercase__ : Tuple = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowercase__ : Optional[int] = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowercase__ : Optional[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __lowercase ( _a = None ): snake_case_ : List[str] = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"; torch/{_torch_version}" if is_flax_available(): ua += f"; jax/{_jax_version}" ua += f"; flax/{_flax_version}" if is_onnx_available(): ua += f"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_a , _a ): ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(_a , _a ): ua += "; " + user_agent return ua def __lowercase ( _a , _a = None , _a = None ): if token is None: snake_case_ : Union[str, Any] = HfFolder.get_token() if organization is None: snake_case_ : int = whoami(_a )['''name'''] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def __lowercase ( _a , _a ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(_a , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ : Union[str, Any] = args.hub_token if hasattr(_a , '''hub_token''' ) else None snake_case_ : Dict = get_full_repo_name(_a , token=_a ) snake_case_ : List[str] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_a , model_name=_a , repo_name=_a , dataset_name=args.dataset_name if hasattr(_a , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_a , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(_a , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(_a , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_a , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(_a , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(_a , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_a , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_a , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(_a , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(_a , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ : Tuple = os.path.join(args.output_dir , '''README.md''' ) model_card.save(_a ) def __lowercase ( _a , _a = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ : Tuple = str(Path(_a ).as_posix() ) snake_case_ : int = re.search(r'''snapshots/([^/]+)/''' , _a ) if search is None: return None snake_case_ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase__ : str = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowercase__ : List[Any] = os.path.join(hf_cache_home, '''diffusers''') def __lowercase ( _a = None , _a = None ): if new_cache_dir is None: snake_case_ : Tuple = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ : List[str] = old_diffusers_cache snake_case_ : Union[str, Any] = Path(_a ).expanduser() snake_case_ : str = Path(_a ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ : List[Any] = new_cache_dir / old_blob_path.relative_to(_a ) new_blob_path.parent.mkdir(parents=_a , exist_ok=_a ) os.replace(_a , _a ) try: os.symlink(_a , _a ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase__ : Optional[Any] = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowercase__ : Optional[int] = 0 else: with open(cache_version_file) as f: try: lowercase__ : Optional[Any] = int(f.read()) except ValueError: lowercase__ : Optional[Any] = 0 if cache_version < 1: lowercase__ : Tuple = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowercase__ : Optional[Any] = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __lowercase ( _a , _a = None ): if variant is not None: snake_case_ : str = weights_name.split('''.''' ) snake_case_ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] snake_case_ : List[Any] = '''.'''.join(_a ) return weights_name def __lowercase ( _a , *, _a , _a , _a , _a , _a , _a , _a , _a , _a , _a , _a=None , ): snake_case_ : Dict = str(_a ) if os.path.isfile(_a ): return pretrained_model_name_or_path elif os.path.isdir(_a ): if os.path.isfile(os.path.join(_a , _a ) ): # Load from a PyTorch checkpoint snake_case_ : Dict = os.path.join(_a , _a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_a , _a , _a ) ): snake_case_ : List[Any] = os.path.join(_a , _a , _a ) return model_file else: raise EnvironmentError( f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_a ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ : str = hf_hub_download( _a , filename=_add_variant(_a , _a ) , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , user_agent=_a , subfolder=_a , revision=revision or commit_hash , ) warnings.warn( f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , _a , ) return model_file except: # noqa: E722 warnings.warn( f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_a , _a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(_a , _a )}' so that the correct variant file can be added." , _a , ) try: # 2. Load model file as usual snake_case_ : Tuple = hf_hub_download( _a , filename=_a , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , user_agent=_a , subfolder=_a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " '''this model name. Check the model page at ''' f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a file named {weights_name} or" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a file named {weights_name}" )
155
1
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class snake_case__ ( UpperCamelCase): def __init__( self : Optional[int] , *_A : Tuple , _A : Optional[Any]=None , _A : Union[str, Any]=None , **_A : Dict ) -> int: super().__init__(*_A , **_A ) UpperCAmelCase_ : Optional[Any] = eval_examples UpperCAmelCase_ : Dict = post_process_function def A ( self : Optional[Any] , _A : str=None , _A : Optional[Any]=None , _A : List[str]=None , _A : str = "eval" ) -> List[str]: UpperCAmelCase_ : Any = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase_ : Optional[Any] = self.get_eval_dataloader(_A ) UpperCAmelCase_ : str = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase_ : Optional[int] = self.compute_metrics UpperCAmelCase_ : Any = None UpperCAmelCase_ : Dict = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase_ : Union[str, Any] = time.time() try: UpperCAmelCase_ : Optional[int] = eval_loop( _A , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , metric_key_prefix=_A , ) finally: UpperCAmelCase_ : Tuple = compute_metrics UpperCAmelCase_ : int = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( _A , _A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase_ : Optional[Any] = self.post_process_function(_A , _A , output.predictions ) UpperCAmelCase_ : Tuple = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): UpperCAmelCase_ : int = metrics.pop(_A ) metrics.update(output.metrics ) else: UpperCAmelCase_ : Dict = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_A ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase_ : Union[str, Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , _A ) return metrics def A ( self : List[str] , _A : Optional[Any] , _A : List[str] , _A : Tuple=None , _A : str = "test" ) -> str: UpperCAmelCase_ : Union[str, Any] = self.get_test_dataloader(_A ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase_ : Dict = self.compute_metrics UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase_ : Dict = time.time() try: UpperCAmelCase_ : Tuple = eval_loop( _A , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , metric_key_prefix=_A , ) finally: UpperCAmelCase_ : Any = compute_metrics UpperCAmelCase_ : List[str] = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( _A , _A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase_ : Optional[int] = self.post_process_function(_A , _A , output.predictions , '''predict''' ) UpperCAmelCase_ : Any = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): UpperCAmelCase_ : List[str] = metrics.pop(_A ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_A )
304
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) a_ = Features({"text": Value("string")}) a_ = Features({}) a_ = "text" @property def A ( self : List[str] ) -> Dict[str, str]: return {self.text_column: "text"}
304
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = [1] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0, 0, 0 _lowerCAmelCase = ugly_nums[ia] * 2 _lowerCAmelCase = ugly_nums[ia] * 3 _lowerCAmelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case_ ): _lowerCAmelCase = min(snake_case_ , snake_case_ , snake_case_ ) ugly_nums.append(snake_case_ ) if next_num == next_a: ia += 1 _lowerCAmelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 _lowerCAmelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 _lowerCAmelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F'{ugly_numbers(2_0_0) = }')
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations(snake_case_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( snake_case_ : int , snake_case_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case_ ) for item in array ) _lowerCAmelCase = answer return answer _lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = [0] * (target + 1) _lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(snake_case_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Any = 5 SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 5] print(combination_sum_iv(n, array, target))
317
1
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) A__ : List[Any] =_symbol_database.Default() A__ : Tuple =_descriptor_pool.Default().AddSerializedFile( b'''\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03''' ) A__ : Optional[Any] =globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, '''sentencepiece_model_pb2''', _globals) if _descriptor._USE_C_DESCRIPTORS is False: A__ : List[Any] =None A__ : Optional[Any] =b'''H\003''' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" A__ : Union[str, Any] =45 A__ : Any =15_81 A__ : Tuple =15_17 A__ : Optional[int] =15_70 A__ : Union[str, Any] =15_84 A__ : List[str] =17_93 A__ : Optional[int] =17_95 A__ : Dict =19_16 A__ : List[Any] =18_64 A__ : Dict =19_05 A__ : Optional[Any] =19_19 A__ : Tuple =24_29 A__ : Union[str, Any] =22_08 A__ : Optional[Any] =24_18 A__ : List[Any] =23_23 A__ : int =24_07 # @@protoc_insertion_point(module_scope)
70
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = len(lowerCAmelCase ) for i in range(length - 1 ): _lowerCAmelCase = i for k in range(i + 1 , lowerCAmelCase ): if collection[k] < collection[least]: _lowerCAmelCase = k if least != i: _lowerCAmelCase , _lowerCAmelCase = (collection[i], collection[least]) return collection if __name__ == "__main__": A__ : str =input('''Enter numbers separated by a comma:\n''').strip() A__ : Optional[int] =[int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
70
1
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class _a : '''simple docstring''' def __init__( self , A__ , A__=13 , A__=7 , A__=True , A__=True , A__=99 , A__=32 , A__=5 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=50 , A__=0.0_2 , A__=True , A__=None , ): A__ : Optional[int] = parent A__ : Optional[Any] = batch_size A__ : Any = seq_length A__ : Union[str, Any] = is_training A__ : int = use_input_mask A__ : Tuple = vocab_size A__ : Any = hidden_size A__ : List[Any] = num_hidden_layers A__ : List[str] = num_attention_heads A__ : Union[str, Any] = intermediate_size A__ : Tuple = hidden_act A__ : int = hidden_dropout_prob A__ : Dict = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : Any = initializer_range A__ : Tuple = use_labels A__ : Union[str, Any] = scope def __A ( self ): A__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Dict = None if self.use_input_mask: A__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: A__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __A ( self ): return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=A__ , initializer_range=self.initializer_range , ) def __A ( self ): ( A__ ) : Any = self.prepare_config_and_inputs() A__ : Dict = True A__ : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A__ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , A__ , A__ , A__ , A__ , **A__ , ): A__ : List[str] = BertGenerationEncoder(config=A__ ) model.to(A__ ) model.eval() A__ : int = model(A__ , attention_mask=A__ ) A__ : Optional[int] = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , **A__ , ): A__ : Any = True A__ : List[str] = BertGenerationEncoder(config=A__ ) model.to(A__ ) model.eval() A__ : Dict = model( A__ , attention_mask=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , ) A__ : int = model( A__ , attention_mask=A__ , encoder_hidden_states=A__ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , **A__ , ): A__ : Union[str, Any] = True A__ : List[Any] = True A__ : Union[str, Any] = BertGenerationDecoder(config=A__ ).to(A__ ).eval() # first forward pass A__ : Optional[int] = model( A__ , attention_mask=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , use_cache=A__ , ) A__ : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A__ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) A__ : str = model( A__ , attention_mask=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , output_hidden_states=A__ , )["""hidden_states"""][0] A__ : Optional[int] = model( A__ , attention_mask=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , past_key_values=A__ , output_hidden_states=A__ , )["""hidden_states"""][0] # select random slice A__ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() A__ : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A__ , A__ , atol=1e-3 ) ) def __A ( self , A__ , A__ , A__ , A__ , *A__ , ): A__ : str = BertGenerationDecoder(A__ ) model.to(A__ ) model.eval() A__ : List[Any] = model(A__ , attention_mask=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self ): A__ : List[str] = self.prepare_config_and_inputs() A__ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: List[str] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () UpperCAmelCase__: int = (BertGenerationDecoder,) if is_torch_available() else () UpperCAmelCase__: str = ( {'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder} if is_torch_available() else {} ) def __A ( self ): A__ : Any = BertGenerationEncoderTester(self ) A__ : List[Any] = ConfigTester(self , config_class=A__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def __A ( self ): A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() A__ : List[Any] = """bert""" self.model_tester.create_and_check_model(A__ , A__ , A__ , A__ ) def __A ( self ): A__ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A__ ) def __A ( self ): A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*A__ ) def __A ( self ): # This regression test was failing with PyTorch < 1.3 ( A__ ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() A__ : str = None self.model_tester.create_and_check_model_as_decoder( A__ , A__ , A__ , A__ , A__ , A__ , ) def __A ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*A__ ) @slow def __A ( self ): A__ : Dict = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) self.assertIsNotNone(A__ ) @require_torch class _a (unittest.TestCase ): '''simple docstring''' @slow def __A ( self ): A__ : List[str] = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) A__ : Optional[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): A__ : Union[str, Any] = model(A__ )[0] A__ : Dict = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , A__ ) A__ : str = torch.tensor( [[[0.1_7_7_5, 0.0_0_8_3, -0.0_3_2_1], [1.6_0_0_2, 0.1_2_8_7, 0.3_9_1_2], [2.1_4_7_3, 0.5_7_9_1, 0.6_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A__ , atol=1e-4 ) ) @require_torch class _a (unittest.TestCase ): '''simple docstring''' @slow def __A ( self ): A__ : int = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) A__ : Tuple = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): A__ : Optional[int] = model(A__ )[0] A__ : str = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape , A__ ) A__ : int = torch.tensor( [[[-0.5_7_8_8, -2.5_9_9_4, -3.7_0_5_4], [0.0_4_3_8, 4.7_9_9_7, 1.8_7_9_5], [1.5_8_6_2, 6.6_4_0_9, 4.4_6_3_8]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A__ , atol=1e-4 ) )
361
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class _a (unittest.TestCase ): '''simple docstring''' @slow def __A ( self ): A__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=A__ ).to(A__ ) A__ : str = AutoTokenizer.from_pretrained("""google/mt5-small""" ) A__ : int = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids A__ : List[Any] = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids A__ : Union[str, Any] = model(input_ids.to(A__ ) , labels=labels.to(A__ ) ).loss A__ : Union[str, Any] = -(labels.shape[-1] * loss.item()) A__ : Any = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
141
0
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): lowercase :Union[str, Any] = [0 for i in range(r + 1 )] # nc0 = 1 lowercase :Tuple = 1 for i in range(1, n + 1 ): # to compute current row from previous row. lowercase :Union[str, Any] = min(lowerCamelCase, lowerCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
236
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCAmelCase ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self: int ): torch.manual_seed(0 ) lowercase :str = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def SCREAMING_SNAKE_CASE ( self: Any ): torch.manual_seed(0 ) lowercase :Dict = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): torch.manual_seed(0 ) lowercase :List[str] = AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) lowercase :List[str] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase :Optional[int] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowercase :List[str] = DDPMScheduler() lowercase :Tuple = AudioDiffusionPipeline(vqvae=_lowerCAmelCase , unet=self.dummy_unet , mel=_lowerCAmelCase , scheduler=_lowerCAmelCase ) lowercase :Dict = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :Tuple = torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) lowercase :Optional[int] = pipe(generator=_lowerCAmelCase , steps=4 ) lowercase :List[str] = output.audios[0] lowercase :List[str] = output.images[0] lowercase :List[str] = torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) lowercase :Optional[int] = pipe(generator=_lowerCAmelCase , steps=4 , return_dict=_lowerCAmelCase ) lowercase :int = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase :Any = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase :Dict = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] lowercase :List[Any] = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase :Optional[Any] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowercase :List[str] = DDIMScheduler() lowercase :Tuple = self.dummy_vqvae_and_unet lowercase :str = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_lowerCAmelCase , scheduler=_lowerCAmelCase ) lowercase :Union[str, Any] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) np.random.seed(0 ) lowercase :Dict = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase :List[Any] = torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) lowercase :Dict = pipe(raw_audio=_lowerCAmelCase , generator=_lowerCAmelCase , start_step=5 , steps=10 ) lowercase :str = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase :Optional[Any] = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase :List[str] = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase :Optional[Any] = self.dummy_unet_condition lowercase :Optional[int] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_lowerCAmelCase , mel=_lowerCAmelCase , scheduler=_lowerCAmelCase ) lowercase :int = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) np.random.seed(0 ) lowercase :List[str] = torch.rand((1, 1, 10) ) lowercase :Union[str, Any] = pipe(generator=_lowerCAmelCase , encoding=_lowerCAmelCase ) lowercase :Tuple = output.images[0] lowercase :Optional[Any] = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase :Any = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self: Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Tuple = torch_device lowercase :List[Any] = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) lowercase :Dict = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :Any = torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) lowercase :Optional[int] = pipe(generator=_lowerCAmelCase ) lowercase :List[str] = output.audios[0] lowercase :Any = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase :Dict = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase :List[str] = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
236
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : str = ["""flax""", """transformers"""] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def snake_case ( cls , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def snake_case ( cls , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) class lowerCAmelCase_ ( metaclass=lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : Tuple = ["""flax""", """transformers"""] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def snake_case ( cls , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def snake_case ( cls , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) class lowerCAmelCase_ ( metaclass=lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : str = ["""flax""", """transformers"""] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def snake_case ( cls , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def snake_case ( cls , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) class lowerCAmelCase_ ( metaclass=lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : str = ["""flax""", """transformers"""] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def snake_case ( cls , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def snake_case ( cls , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] )
149
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset SCREAMING_SNAKE_CASE__ = random.Random() def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any]=1.0 , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Optional[int]=None ) -> Optional[int]: """simple docstring""" if rng is None: snake_case = global_rng snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=4_00 , lowerCAmelCase=20_00 , lowerCAmelCase=20_48 , lowerCAmelCase=1_28 , lowerCAmelCase=1 , lowerCAmelCase=5_12 , lowerCAmelCase=30 , lowerCAmelCase=4_41_00 , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = min_seq_length snake_case = max_seq_length snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case = spectrogram_length snake_case = feature_size snake_case = num_audio_channels snake_case = hop_length snake_case = chunk_length snake_case = sampling_rate def snake_case ( self ): """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def snake_case ( self , lowerCAmelCase=False , lowerCAmelCase=False ): """simple docstring""" def _flatten(lowerCAmelCase ): return list(itertools.chain(*lowerCAmelCase ) ) if equal_length: snake_case = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case = [np.asarray(lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase_ ( lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = TvltFeatureExtractor def snake_case ( self ): """simple docstring""" snake_case = TvltFeatureExtractionTester(self ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCAmelCase , 'spectrogram_length' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'feature_size' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'num_audio_channels' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'hop_length' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'chunk_length' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate' ) ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = feat_extract_first.save_pretrained(lowerCAmelCase )[0] check_json_file_has_correct_format(lowerCAmelCase ) snake_case = self.feature_extraction_class.from_pretrained(lowerCAmelCase ) snake_case = feat_extract_first.to_dict() snake_case = feat_extract_second.to_dict() snake_case = dict_first.pop('mel_filters' ) snake_case = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = os.path.join(lowerCAmelCase , 'feat_extract.json' ) feat_extract_first.to_json_file(lowerCAmelCase ) snake_case = self.feature_extraction_class.from_json_file(lowerCAmelCase ) snake_case = feat_extract_first.to_dict() snake_case = feat_extract_second.to_dict() snake_case = dict_first.pop('mel_filters' ) snake_case = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = [np.asarray(lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input snake_case = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched snake_case = feature_extractor(lowerCAmelCase , return_tensors='np' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking snake_case = feature_extractor( lowerCAmelCase , return_tensors='np' , sampling_rate=4_41_00 , mask_audio=lowerCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. snake_case = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] snake_case = np.asarray(lowerCAmelCase ) snake_case = feature_extractor(lowerCAmelCase , return_tensors='np' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech snake_case = ds.sort('id' ).select(range(lowerCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def snake_case ( self ): """simple docstring""" snake_case = self._load_datasamples(1 ) snake_case = TvltFeatureExtractor() snake_case = feature_extractor(lowerCAmelCase , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_92, 1_28) ) snake_case = torch.tensor([[-0.30_32, -0.27_08], [-0.44_34, -0.40_07]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , lowerCAmelCase , atol=1E-4 ) )
149
1
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowercase (snake_case__ : str , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict=1_024 ) -> List[str]: '''simple docstring''' lowerCAmelCase , lowerCAmelCase = [], [] lowerCAmelCase = list(zip(snake_case__ , snake_case__ ) ) lowerCAmelCase , lowerCAmelCase = sorted_examples[0] def is_too_big(snake_case__ : Optional[int] ): return tok(snake_case__ , return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): lowerCAmelCase = new_src + """ """ + src lowerCAmelCase = new_tgt + """ """ + tgt if is_too_big(snake_case__ ) or is_too_big(snake_case__ ): # cant fit, finalize example finished_src.append(snake_case__ ) finished_tgt.append(snake_case__ ) lowerCAmelCase , lowerCAmelCase = src, tgt else: # can fit, keep adding lowerCAmelCase , lowerCAmelCase = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(snake_case__ ) finished_tgt.append(snake_case__ ) return finished_src, finished_tgt def lowercase (snake_case__ : List[Any] , snake_case__ : Path , snake_case__ : int , snake_case__ : List[str] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = Path(snake_case__ ) save_path.mkdir(exist_ok=snake_case__ ) for split in ["train"]: lowerCAmelCase , lowerCAmelCase = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' lowerCAmelCase = [x.rstrip() for x in Path(snake_case__ ).open().readlines()] lowerCAmelCase = [x.rstrip() for x in Path(snake_case__ ).open().readlines()] lowerCAmelCase , lowerCAmelCase = pack_examples(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) print(f'''packed {split} split from {len(snake_case__ )} examples -> {len(snake_case__ )}.''' ) Path(save_path / f'''{split}.source''' ).open("""w""" ).write("""\n""".join(snake_case__ ) ) Path(save_path / f'''{split}.target''' ).open("""w""" ).write("""\n""".join(snake_case__ ) ) for split in ["val", "test"]: lowerCAmelCase , lowerCAmelCase = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' shutil.copyfile(snake_case__ , save_path / f'''{split}.source''' ) shutil.copyfile(snake_case__ , save_path / f'''{split}.target''' ) def lowercase () -> str: '''simple docstring''' lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=snake_case__ , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" , type=snake_case__ , default=128 ) parser.add_argument("""--data_dir""" , type=snake_case__ ) parser.add_argument("""--save_path""" , type=snake_case__ ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(snake_case__ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
155
"""simple docstring""" import argparse import json from tqdm import tqdm def lowercase () -> Dict: '''simple docstring''' lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""" , type=snake_case__ , default="""biencoder-nq-dev.json""" , help="""Path to raw DPR training data""" , ) parser.add_argument( """--evaluation_set""" , type=snake_case__ , help="""where to store parsed evaluation_set file""" , ) parser.add_argument( """--gold_data_path""" , type=snake_case__ , help="""where to store parsed gold_data_path file""" , ) lowerCAmelCase = parser.parse_args() with open(args.src_path , """r""" ) as src_file, open(args.evaluation_set , """w""" ) as eval_file, open( args.gold_data_path , """w""" ) as gold_file: lowerCAmelCase = json.load(snake_case__ ) for dpr_record in tqdm(snake_case__ ): lowerCAmelCase = dpr_record["""question"""] lowerCAmelCase = [context["""title"""] for context in dpr_record["""positive_ctxs"""]] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(snake_case__ ) + """\n""" ) if __name__ == "__main__": main()
155
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = tempfile.mkdtemp() _UpperCAmelCase : Union[str, Any] = BlipImageProcessor() _UpperCAmelCase : Any = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) _UpperCAmelCase : str = BlipaProcessor(a_ ,a_ ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self ,**a_ ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname ,**a_ ).tokenizer def _snake_case ( self ,**a_ ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname ,**a_ ).image_processor def _snake_case ( self ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] _UpperCAmelCase : Optional[Any] = [Image.fromarray(np.moveaxis(a_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Optional[Any] = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) _UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=a_ ,padding_value=1.0 ) _UpperCAmelCase : Optional[Any] = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=a_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,a_ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,a_ ) def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : List[Any] = self.get_image_processor() _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : str = BlipaProcessor(tokenizer=a_ ,image_processor=a_ ) _UpperCAmelCase : Dict = self.prepare_image_inputs() _UpperCAmelCase : Optional[Any] = image_processor(a_ ,return_tensors="""np""" ) _UpperCAmelCase : List[Any] = processor(images=a_ ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = self.get_image_processor() _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Tuple = BlipaProcessor(tokenizer=a_ ,image_processor=a_ ) _UpperCAmelCase : Dict = """lower newer""" _UpperCAmelCase : int = processor(text=a_ ) _UpperCAmelCase : Tuple = tokenizer(a_ ,return_token_type_ids=a_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Union[str, Any] = self.get_image_processor() _UpperCAmelCase : Dict = self.get_tokenizer() _UpperCAmelCase : Union[str, Any] = BlipaProcessor(tokenizer=a_ ,image_processor=a_ ) _UpperCAmelCase : Optional[Any] = """lower newer""" _UpperCAmelCase : Dict = self.prepare_image_inputs() _UpperCAmelCase : str = processor(text=a_ ,images=a_ ) self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def _snake_case ( self ) -> Dict: _UpperCAmelCase : List[Any] = self.get_image_processor() _UpperCAmelCase : List[Any] = self.get_tokenizer() _UpperCAmelCase : int = BlipaProcessor(tokenizer=a_ ,image_processor=a_ ) _UpperCAmelCase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase : str = processor.batch_decode(a_ ) _UpperCAmelCase : Dict = tokenizer.batch_decode(a_ ) self.assertListEqual(a_ ,a_ ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[Any] = self.get_image_processor() _UpperCAmelCase : Optional[Any] = self.get_tokenizer() _UpperCAmelCase : str = BlipaProcessor(tokenizer=a_ ,image_processor=a_ ) _UpperCAmelCase : Union[str, Any] = """lower newer""" _UpperCAmelCase : Optional[int] = self.prepare_image_inputs() _UpperCAmelCase : Dict = processor(text=a_ ,images=a_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
349
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
1
def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> int: _snake_case : Optional[int] = [1] _snake_case , _snake_case , _snake_case : Optional[Any] = 0, 0, 0 _snake_case : str = ugly_nums[ia] * 2 _snake_case : Dict = ugly_nums[ia] * 3 _snake_case : Dict = ugly_nums[ia] * 5 for _ in range(1 , SCREAMING_SNAKE_CASE__ ): _snake_case : int = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ugly_nums.append(SCREAMING_SNAKE_CASE__ ) if next_num == next_a: ia += 1 _snake_case : Any = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 _snake_case : Dict = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 _snake_case : Union[str, Any] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F'''{ugly_numbers(2_00) = }''')
317
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __SCREAMING_SNAKE_CASE = True for i in range(UpperCamelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __SCREAMING_SNAKE_CASE = True if a[i].islower(): __SCREAMING_SNAKE_CASE = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
255
0