code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class A ( unittest.TestCase ): def _A (self ): __lowercase= inspect.getfile(accelerate.test_utils ) __lowercase= os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __lowercase= test_metrics @require_cpu def _A (self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _A (self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def _A (self ): self.test_metrics.main() @require_multi_gpu def _A (self ): print(f'Found {torch.cuda.device_count()} devices.' ) __lowercase= ['torchrun', f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowercase , env=os.environ.copy() )
295
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class lowerCAmelCase ( A , A ): lowerCAmelCase_ = "bit" lowerCAmelCase_ = ["preactivation", "bottleneck"] lowerCAmelCase_ = ["SAME", "VALID"] def __init__( self : Union[str, Any] , __lowercase : Tuple=3 , __lowercase : Tuple=64 , __lowercase : List[str]=[256, 512, 1024, 2048] , __lowercase : int=[3, 4, 6, 3] , __lowercase : Optional[Any]="preactivation" , __lowercase : str="relu" , __lowercase : Tuple=None , __lowercase : int=32 , __lowercase : int=0.0 , __lowercase : Dict=False , __lowercase : List[Any]=32 , __lowercase : List[str]=1 , __lowercase : str=None , __lowercase : Any=None , **__lowercase : List[str] , ): """simple docstring""" super().__init__(**__lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __lowercase =global_padding.upper() else: raise ValueError(f'''Padding strategy {global_padding} not supported''' ) __lowercase =num_channels __lowercase =embedding_size __lowercase =hidden_sizes __lowercase =depths __lowercase =layer_type __lowercase =hidden_act __lowercase =global_padding __lowercase =num_groups __lowercase =drop_path_rate __lowercase =embedding_dynamic_padding __lowercase =output_stride __lowercase =width_factor __lowercase =['stem'] + [f'''stage{idx}''' for idx in range(1 , len(__lowercase ) + 1 )] __lowercase , __lowercase =get_aligned_output_features_output_indices( out_features=__lowercase , out_indices=__lowercase , stage_names=self.stage_names )
141
0
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers UpperCamelCase = float('''nan''') class __UpperCAmelCase : def __init__( self: Union[str, Any] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = sys.stdout _SCREAMING_SNAKE_CASE = open(lowerCamelCase__ , """a""" ) def __getattr__( self: Optional[int] , UpperCAmelCase_: List[str] ): '''simple docstring''' return getattr(self.stdout , lowerCamelCase__ ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Optional[int] ): '''simple docstring''' self.stdout.write(lowerCamelCase__ ) # strip tqdm codes self.file.write(re.sub(R"""^.*\r""" , """""" , lowerCamelCase__ , 0 , re.M ) ) def __lowerCamelCase ( snake_case__=80 ,snake_case__=False ): """simple docstring""" _SCREAMING_SNAKE_CASE = [] # deal with critical env vars _SCREAMING_SNAKE_CASE = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: _SCREAMING_SNAKE_CASE = os.environ.get(snake_case__ ,snake_case__ ) if val is not None: cmd.append(F'{key}={val}' ) # python executable (not always needed if the script is executable) _SCREAMING_SNAKE_CASE = sys.executable if full_python_path else sys.executable.split("""/""" )[-1] cmd.append(snake_case__ ) # now the normal args cmd += list(map(shlex.quote ,sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = '''''' while len(snake_case__ ) > 0: current_line += F'{cmd.pop(0 )} ' if len(snake_case__ ) == 0 or len(snake_case__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(snake_case__ ) _SCREAMING_SNAKE_CASE = '''''' return "\\\n".join(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = re.sub(r"""[\\\n]+""" ,""" """ ,args.base_cmd ) # remove --output_dir if any and set our own _SCREAMING_SNAKE_CASE = re.sub("""--output_dir\s+[^\s]+""" ,"""""" ,args.base_cmd ) args.base_cmd += F' --output_dir {output_dir}' # ensure we have --overwrite_output_dir _SCREAMING_SNAKE_CASE = re.sub("""--overwrite_output_dir\s+""" ,"""""" ,args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): """simple docstring""" if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 ,1_00 ) for k in metric_keys} ,**{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6_666, 222.22_222_222] )} ,) _SCREAMING_SNAKE_CASE = subprocess.run(snake_case__ ,capture_output=snake_case__ ,text=snake_case__ ) if verbose: print("""STDOUT""" ,result.stdout ) print("""STDERR""" ,result.stderr ) # save the streams _SCREAMING_SNAKE_CASE = variation.replace(""" """ ,"""-""" ) with open(Path(snake_case__ ) / F'log.{prefix}.stdout.txt' ,"""w""" ) as f: f.write(result.stdout ) with open(Path(snake_case__ ) / F'log.{prefix}.stderr.txt' ,"""w""" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("""failed""" ) return {target_metric_key: nan} with io.open(F'{output_dir}/all_results.json' ,"""r""" ,encoding="""utf-8""" ) as f: _SCREAMING_SNAKE_CASE = json.load(snake_case__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = F'{id}: {variation:<{longest_variation_len}}' _SCREAMING_SNAKE_CASE = F'{preamble}: ' _SCREAMING_SNAKE_CASE = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(snake_case__ ) ,desc=snake_case__ ,leave=snake_case__ ): _SCREAMING_SNAKE_CASE = process_run_single( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = single_run_metrics[target_metric_key] if not math.isnan(snake_case__ ): metrics.append(snake_case__ ) results.append(snake_case__ ) outcome += "✓" else: outcome += "✘" _SCREAMING_SNAKE_CASE = F'\33[2K\r{outcome}' if len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _SCREAMING_SNAKE_CASE = round(mean_metrics[target_metric_key] ,2 ) _SCREAMING_SNAKE_CASE = F'{outcome} {mean_target}' if len(snake_case__ ) > 1: results_str += F' {tuple(round(snake_case__ ,2 ) for x in results )}' print(snake_case__ ) _SCREAMING_SNAKE_CASE = variation return mean_metrics else: print(snake_case__ ) return {variation_key: variation, target_metric_key: nan} def __lowerCamelCase ( ): """simple docstring""" _SCREAMING_SNAKE_CASE = torch.cuda.get_device_properties(torch.device("""cuda""" ) ) return F'\nDatetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n' def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = pd.DataFrame(snake_case__ ) _SCREAMING_SNAKE_CASE = '''variation''' _SCREAMING_SNAKE_CASE = '''diff_%''' _SCREAMING_SNAKE_CASE = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _SCREAMING_SNAKE_CASE = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(snake_case__ ): # as a fallback, use the minimal value as the sentinel _SCREAMING_SNAKE_CASE = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(snake_case__ ): _SCREAMING_SNAKE_CASE = df.apply( lambda snake_case__ : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 ,axis="""columns""" ,) # re-order columns _SCREAMING_SNAKE_CASE = [variation_key, target_metric_key, diff_key, *report_metric_keys] _SCREAMING_SNAKE_CASE = df.reindex(snake_case__ ,axis="""columns""" ) # reorder cols # capitalize _SCREAMING_SNAKE_CASE = df.rename(str.capitalize ,axis="""columns""" ) # make the cols as narrow as possible _SCREAMING_SNAKE_CASE = df.rename(lambda snake_case__ : c.replace("""_""" ,"""<br>""" ) ,axis="""columns""" ) _SCREAMING_SNAKE_CASE = df.rename(lambda snake_case__ : c.replace("""_""" ,"""\n""" ) ,axis="""columns""" ) _SCREAMING_SNAKE_CASE = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=snake_case__ ,floatfmt=""".2f""" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=snake_case__ ,floatfmt=""".2f""" )] print("""\n\n""".join(snake_case__ ) ) def __lowerCamelCase ( ): """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """--base-cmd""" ,default=snake_case__ ,type=snake_case__ ,required=snake_case__ ,help="""Base cmd""" ,) parser.add_argument( """--variations""" ,default=snake_case__ ,type=snake_case__ ,nargs="""+""" ,required=snake_case__ ,help="""Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'""" ,) parser.add_argument( """--base-variation""" ,default=snake_case__ ,type=snake_case__ ,help="""Baseline variation to compare to. if None the minimal target value will be used to compare against""" ,) parser.add_argument( """--target-metric-key""" ,default=snake_case__ ,type=snake_case__ ,required=snake_case__ ,help="""Target metric key in output_dir/all_results.json, e.g., train_samples_per_second""" ,) parser.add_argument( """--report-metric-keys""" ,default="""""" ,type=snake_case__ ,help="""Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples""" ,) parser.add_argument( """--repeat-times""" ,default=1 ,type=snake_case__ ,help="""How many times to re-run each variation - an average will be reported""" ,) parser.add_argument( """--output_dir""" ,default="""output_benchmark""" ,type=snake_case__ ,help="""The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked""" ,) parser.add_argument( """--verbose""" ,default=snake_case__ ,action="""store_true""" ,help="""Whether to show the outputs of each run or just the benchmark progress""" ,) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.output_dir Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) _SCREAMING_SNAKE_CASE = get_base_command(snake_case__ ,snake_case__ ) # split each dimension into its --foo variations _SCREAMING_SNAKE_CASE = [list(map(str.strip ,re.split(r"""\|""" ,snake_case__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _SCREAMING_SNAKE_CASE = list(map(str.strip ,map(""" """.join ,itertools.product(*snake_case__ ) ) ) ) _SCREAMING_SNAKE_CASE = max(len(snake_case__ ) for x in variations ) # split wanted keys _SCREAMING_SNAKE_CASE = args.report_metric_keys.split() # capture prints into a log file for convenience _SCREAMING_SNAKE_CASE = F'benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt' print(F'\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt' ) print(F'and this script\'s output is also piped into {report_fn}' ) _SCREAMING_SNAKE_CASE = Tee(snake_case__ ) print(F'\n*** Running {len(snake_case__ )} benchmarks:' ) print(F'Base command: {" ".join(snake_case__ )}' ) _SCREAMING_SNAKE_CASE = '''variation''' _SCREAMING_SNAKE_CASE = [] for id, variation in enumerate(tqdm(snake_case__ ,desc="""Total completion: """ ,leave=snake_case__ ) ): _SCREAMING_SNAKE_CASE = base_cmd + variation.split() results.append( process_run( id + 1 ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,args.target_metric_key ,snake_case__ ,args.repeat_times ,snake_case__ ,args.verbose ,) ) process_results(snake_case__ ,args.target_metric_key ,snake_case__ ,args.base_variation ,snake_case__ ) if __name__ == "__main__": main()
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { '''configuration_layoutlmv3''': [ '''LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv3Config''', '''LayoutLMv3OnnxConfig''', ], '''processing_layoutlmv3''': ['''LayoutLMv3Processor'''], '''tokenization_layoutlmv3''': ['''LayoutLMv3Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''LayoutLMv3TokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv3ForQuestionAnswering''', '''LayoutLMv3ForSequenceClassification''', '''LayoutLMv3ForTokenClassification''', '''LayoutLMv3Model''', '''LayoutLMv3PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLayoutLMv3ForQuestionAnswering''', '''TFLayoutLMv3ForSequenceClassification''', '''TFLayoutLMv3ForTokenClassification''', '''TFLayoutLMv3Model''', '''TFLayoutLMv3PreTrainedModel''', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''LayoutLMv3FeatureExtractor'''] UpperCamelCase = ['''LayoutLMv3ImageProcessor'''] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
125
0
def lowerCAmelCase_ ( A_): UpperCamelCase__: list[list[int]] = [[0 for _ in range(A_)] for _ in range(m + 1)] for i in range(m + 1): UpperCamelCase__: str = 1 for n in range(m + 1): for k in range(1 ,A_): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: A__: List[str] = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: A__: Dict = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
149
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _a : """simple docstring""" def __init__( self: str , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str=sys.maxsize ): '''simple docstring''' UpperCamelCase__: List[Any] = "bilinear" UpperCamelCase__: Optional[int] = max_size UpperCamelCase__: Optional[int] = short_edge_length def __call__( self: Optional[Any] , __lowerCamelCase: str ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = [] for img in imgs: UpperCamelCase__ , UpperCamelCase__: Any = img.shape[:2] # later: provide list and randomly choose index for resize UpperCamelCase__: Optional[int] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCamelCase__: Dict = size * 1.0 / min(__lowerCamelCase , __lowerCamelCase ) if h < w: UpperCamelCase__ , UpperCamelCase__: Optional[Any] = size, scale * w else: UpperCamelCase__ , UpperCamelCase__: Dict = scale * h, size if max(__lowerCamelCase , __lowerCamelCase ) > self.max_size: UpperCamelCase__: str = self.max_size * 1.0 / max(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase__: List[str] = newh * scale UpperCamelCase__: Any = neww * scale UpperCamelCase__: List[str] = int(neww + 0.5 ) UpperCamelCase__: List[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCamelCase__: Dict = Image.fromarray(__lowerCamelCase ) UpperCamelCase__: Any = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCamelCase__: str = np.asarray(__lowerCamelCase ) else: UpperCamelCase__: Dict = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCamelCase__: Optional[Any] = nn.functional.interpolate( __lowerCamelCase , (newh, neww) , mode=self.interp_method , align_corners=__lowerCamelCase ).squeeze(0 ) img_augs.append(__lowerCamelCase ) return img_augs class _a : """simple docstring""" def __init__( self: Dict , __lowerCamelCase: Optional[Any] ): '''simple docstring''' UpperCamelCase__: List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCamelCase__: Union[str, Any] = cfg.INPUT.FORMAT UpperCamelCase__: Union[str, Any] = cfg.SIZE_DIVISIBILITY UpperCamelCase__: Tuple = cfg.PAD_VALUE UpperCamelCase__: str = cfg.INPUT.MAX_SIZE_TEST UpperCamelCase__: int = cfg.MODEL.DEVICE UpperCamelCase__: str = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCamelCase__: int = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCamelCase__: List[Any] = lambda __lowerCamelCase : (x - self.pixel_mean) / self.pixel_std def UpperCAmelCase_ ( self: List[str] , __lowerCamelCase: List[Any] ): '''simple docstring''' UpperCamelCase__: Dict = tuple(max(__lowerCamelCase ) for s in zip(*[img.shape for img in images] ) ) UpperCamelCase__: Tuple = [im.shape[-2:] for im in images] UpperCamelCase__: Optional[int] = [ nn.functional.pad( __lowerCamelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(__lowerCamelCase , __lowerCamelCase ) ] return torch.stack(__lowerCamelCase ), torch.tensor(__lowerCamelCase ) def __call__( self: str , __lowerCamelCase: Dict , __lowerCamelCase: Any=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase__: int = [images] if single_image: assert len(__lowerCamelCase ) == 1 for i in range(len(__lowerCamelCase ) ): if isinstance(images[i] , torch.Tensor ): images.insert(__lowerCamelCase , images.pop(__lowerCamelCase ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( __lowerCamelCase , torch.as_tensor(img_tensorize(images.pop(__lowerCamelCase ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCamelCase__: int = torch.tensor([im.shape[:2] for im in images] ) UpperCamelCase__: int = self.aug(__lowerCamelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCamelCase__: Any = [self.normalizer(__lowerCamelCase ) for x in images] # now pad them to do the following operations UpperCamelCase__ , UpperCamelCase__: Any = self.pad(__lowerCamelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCamelCase__: Optional[int] = torch.true_divide(__lowerCamelCase , __lowerCamelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCAmelCase_ ( A_ ,A_): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCAmelCase_ ( A_ ,A_): assert torch.isfinite(A_).all(), "Box tensor contains infinite or NaN!" UpperCamelCase__ , UpperCamelCase__: int = box_size tensor[:, 0].clamp_(min=0 ,max=A_) tensor[:, 1].clamp_(min=0 ,max=A_) tensor[:, 2].clamp_(min=0 ,max=A_) tensor[:, 3].clamp_(min=0 ,max=A_)
149
1
from typing import List from .keymap import KEYMAP, get_character def UpperCAmelCase__ ( lowerCamelCase ): def decorator(lowerCamelCase ): lowercase :Dict = getattr(lowerCamelCase, "handle_key", [] ) handle += [key] setattr(lowerCamelCase, "handle_key", lowerCamelCase ) return func return decorator def UpperCAmelCase__ ( *lowerCamelCase ): def decorator(lowerCamelCase ): lowercase :List[Any] = getattr(lowerCamelCase, "handle_key", [] ) handle += keys setattr(lowerCamelCase, "handle_key", lowerCamelCase ) return func return decorator class __lowerCAmelCase ( lowerCAmelCase): def __new__( cls: str , _lowerCAmelCase: Tuple , _lowerCAmelCase: Dict , _lowerCAmelCase: List[str] ): lowercase :Optional[int] = super().__new__(cls , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not hasattr(_lowerCAmelCase , "key_handler" ): setattr(_lowerCAmelCase , "key_handler" , {} ) setattr(_lowerCAmelCase , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): lowercase :Optional[Any] = getattr(_lowerCAmelCase , "handle_key" , [] ) for key in handled_keys: lowercase :Union[str, Any] = value return new_cls @staticmethod def SCREAMING_SNAKE_CASE ( cls: Any ): lowercase :Any = get_character() if char != KEYMAP["undefined"]: lowercase :Optional[int] = ord(_lowerCAmelCase ) lowercase :Optional[Any] = cls.key_handler.get(_lowerCAmelCase ) if handler: lowercase :Optional[int] = char return handler(cls ) else: return None def UpperCAmelCase__ ( cls ): return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
158
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __lowerCAmelCase ( lowerCAmelCase): _a = 42 _a = None def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase=0.999, lowerCamelCase="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase :Optional[int] = [] for i in range(lowerCamelCase ): lowercase :Any = i / num_diffusion_timesteps lowercase :str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase ) / alpha_bar_fn(lowerCamelCase ), lowerCamelCase ) ) return torch.tensor(lowerCamelCase, dtype=torch.floataa ) class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase): _a = 1 @register_to_config def __init__( self: Any , _lowerCAmelCase: int = 10_00 , _lowerCAmelCase: float = 0.00_01 , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: str = "linear" , _lowerCAmelCase: Optional[Union[np.ndarray, List[float]]] = None , _lowerCAmelCase: bool = True , _lowerCAmelCase: bool = True , _lowerCAmelCase: int = 0 , _lowerCAmelCase: str = "epsilon" , _lowerCAmelCase: float = 1.0 , **_lowerCAmelCase: Union[str, Any] , ): if kwargs.get("set_alpha_to_one" , _lowerCAmelCase ) is not None: lowercase :Optional[int] = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) lowercase :str = kwargs["set_alpha_to_one"] if trained_betas is not None: lowercase :int = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase :List[Any] = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase :Tuple = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase :Any = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) lowercase :Dict = 1.0 - self.betas lowercase :Dict = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. lowercase :Any = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution lowercase :Union[str, Any] = 1.0 # setable values lowercase :str = None lowercase :List[Any] = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def SCREAMING_SNAKE_CASE ( self: Optional[Any] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: Optional[int] = None ): return sample def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, torch.device] = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" F" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" F" maximal {self.config.num_train_timesteps} timesteps." ) lowercase :List[Any] = num_inference_steps lowercase :Optional[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase :str = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) lowercase :str = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: int , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional[torch.FloatTensor] = None , _lowerCAmelCase: bool = True , ): # 1. get previous step value (=t+1) lowercase :int = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process lowercase :List[Any] = self.alphas_cumprod[timestep] lowercase :Dict = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) lowercase :Optional[Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": lowercase :int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 lowercase :Optional[Any] = model_output elif self.config.prediction_type == "sample": lowercase :Union[str, Any] = model_output lowercase :List[str] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": lowercase :Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output lowercase :str = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: lowercase :Optional[Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase :List[Any] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase :Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self: List[str] ): return self.config.num_train_timesteps
158
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = BlipImageProcessor() __UpperCamelCase = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) __UpperCamelCase = BlipaProcessor(lowercase , lowercase ) processor.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self , **lowercase ) -> List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase ).tokenizer def __lowerCamelCase ( self , **lowercase ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase ).image_processor def __lowerCamelCase ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __UpperCamelCase = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCamelCase = self.get_image_processor(do_normalize=lowercase , padding_value=1.0 ) __UpperCamelCase = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) def __lowerCamelCase ( self ) -> str: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = BlipaProcessor(tokenizer=lowercase , image_processor=lowercase ) __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = image_processor(lowercase , return_tensors="""np""" ) __UpperCamelCase = processor(images=lowercase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = BlipaProcessor(tokenizer=lowercase , image_processor=lowercase ) __UpperCamelCase = """lower newer""" __UpperCamelCase = processor(text=lowercase ) __UpperCamelCase = tokenizer(lowercase , return_token_type_ids=lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = BlipaProcessor(tokenizer=lowercase , image_processor=lowercase ) __UpperCamelCase = """lower newer""" __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def __lowerCamelCase ( self ) -> str: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = BlipaProcessor(tokenizer=lowercase , image_processor=lowercase ) __UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase = processor.batch_decode(lowercase ) __UpperCamelCase = tokenizer.batch_decode(lowercase ) self.assertListEqual(lowercase , lowercase ) def __lowerCamelCase ( self ) -> str: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = BlipaProcessor(tokenizer=lowercase , image_processor=lowercase ) __UpperCamelCase = """lower newer""" __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = processor(text=lowercase , images=lowercase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
349
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase__ : def __init__( self , lowercase , ) -> Union[str, Any]: __UpperCamelCase = parent __UpperCamelCase = 1_3 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 9_9 __UpperCamelCase = 3_2 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 3_7 __UpperCamelCase = """gelu""" __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 5_1_2 __UpperCamelCase = 1_6 __UpperCamelCase = 2 __UpperCamelCase = 0.02 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = None def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: __UpperCamelCase = TFDistilBertModel(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __UpperCamelCase = TFDistilBertForMaskedLM(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = TFDistilBertForQuestionAnswering(config=lowercase ) __UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForSequenceClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: __UpperCamelCase = self.num_choices __UpperCamelCase = TFDistilBertForMultipleChoice(lowercase ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForTokenClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = TFDistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase , dim=3_7 ) def __lowerCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase ) def __lowerCamelCase ( self ) -> int: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase ) def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase ) @slow def __lowerCamelCase ( self ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCamelCase = TFDistilBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_tf class UpperCAmelCase__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase = model(lowercase )[0] __UpperCamelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , lowercase ) __UpperCamelCase = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 )
349
1
from datetime import datetime as dt import os from github import Github lowerCAmelCase__ = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Optional[Any] = Github(os.environ["GITHUB_TOKEN"] ) lowercase__ : int = g.get_repo("huggingface/transformers" ) lowercase__ : Any = repo.get_issues(state="open" ) for issue in open_issues: lowercase__ : int = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCamelCase__ : i.created_at , reverse=lowerCamelCase__ ) lowercase__ : int = comments[0] if len(lowerCamelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
121
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class snake_case__(unittest.TestCase ): """simple docstring""" @property def snake_case ( self : Any ): torch.manual_seed(0 ) lowercase__ : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model @property def snake_case ( self : List[str] ): torch.manual_seed(0 ) lowercase__ : Optional[int] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , ) return model @property def snake_case ( self : Dict ): torch.manual_seed(0 ) lowercase__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(SCREAMING_SNAKE_CASE ) def snake_case ( self : str ): lowercase__ : Any = self.dummy_uncond_unet lowercase__ : Dict = DDIMScheduler() lowercase__ : Optional[Any] = self.dummy_vq_model lowercase__ : Union[str, Any] = LDMPipeline(unet=SCREAMING_SNAKE_CASE , vqvae=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) ldm.to(SCREAMING_SNAKE_CASE ) ldm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) lowercase__ : int = torch.manual_seed(0 ) lowercase__ : Optional[int] = ldm(generator=SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="numpy" ).images lowercase__ : str = torch.manual_seed(0 ) lowercase__ : List[Any] = ldm(generator=SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="numpy" , return_dict=SCREAMING_SNAKE_CASE )[0] lowercase__ : Any = image[0, -3:, -3:, -1] lowercase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ : List[Any] = np.array([0.8_512, 0.818, 0.6_411, 0.6_808, 0.4_465, 0.5_618, 0.46, 0.6_231, 0.5_172] ) lowercase__ : Optional[Any] = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : Optional[Any] ): lowercase__ : int = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(SCREAMING_SNAKE_CASE ) ldm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) lowercase__ : Dict = torch.manual_seed(0 ) lowercase__ : Tuple = ldm(generator=SCREAMING_SNAKE_CASE , num_inference_steps=5 , output_type="numpy" ).images lowercase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__ : Optional[Any] = np.array([0.4_399, 0.44_975, 0.46_825, 0.474, 0.4_359, 0.4_581, 0.45_095, 0.4_341, 0.4_447] ) lowercase__ : int = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
121
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :Optional[int] = logging.get_logger(__name__) __snake_case :Union[str, Any] = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class _A ( __UpperCAmelCase ): UpperCamelCase__ : Optional[int] = '''autoformer''' UpperCamelCase__ : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : str = "student_t" , __SCREAMING_SNAKE_CASE : str = "nll" , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : List[int] = [1, 2, 3, 4, 5, 6, 7] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : int = 64 , __SCREAMING_SNAKE_CASE : int = 2 , __SCREAMING_SNAKE_CASE : int = 2 , __SCREAMING_SNAKE_CASE : int = 2 , __SCREAMING_SNAKE_CASE : int = 2 , __SCREAMING_SNAKE_CASE : int = 32 , __SCREAMING_SNAKE_CASE : int = 32 , __SCREAMING_SNAKE_CASE : str = "gelu" , __SCREAMING_SNAKE_CASE : float = 0.1 , __SCREAMING_SNAKE_CASE : float = 0.1 , __SCREAMING_SNAKE_CASE : float = 0.1 , __SCREAMING_SNAKE_CASE : float = 0.1 , __SCREAMING_SNAKE_CASE : float = 0.1 , __SCREAMING_SNAKE_CASE : int = 100 , __SCREAMING_SNAKE_CASE : float = 0.02 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : int = 10 , __SCREAMING_SNAKE_CASE : int = 25 , __SCREAMING_SNAKE_CASE : int = 3 , **__SCREAMING_SNAKE_CASE : Tuple , ): '''simple docstring''' __a = prediction_length __a = context_length if context_length is not None else prediction_length __a = distribution_output __a = loss __a = input_size __a = num_time_features __a = lags_sequence __a = scaling __a = num_dynamic_real_features __a = num_static_real_features __a = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__SCREAMING_SNAKE_CASE) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''') __a = cardinality else: __a = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__SCREAMING_SNAKE_CASE) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''') __a = embedding_dimension else: __a = [min(50 , (cat + 1) // 2) for cat in self.cardinality] __a = num_parallel_samples # Transformer architecture configuration __a = input_size * len(self.lags_sequence) + self._number_of_features __a = d_model __a = encoder_attention_heads __a = decoder_attention_heads __a = encoder_ffn_dim __a = decoder_ffn_dim __a = encoder_layers __a = decoder_layers __a = dropout __a = attention_dropout __a = activation_dropout __a = encoder_layerdrop __a = decoder_layerdrop __a = activation_function __a = init_std __a = use_cache # Autoformer __a = label_length __a = moving_average __a = autocorrelation_factor super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) @property def _lowerCamelCase ( self : Dict): '''simple docstring''' return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
49
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = StableDiffusionDiffEditPipeline _lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} _lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} _lowerCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCamelCase = frozenset([] ) def lowercase ( self : Any ) -> Dict: torch.manual_seed(0 ) lowercase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase, ) lowercase : Tuple = DDIMScheduler( beta_start=0.0_0085, beta_end=0.012, beta_schedule='scaled_linear', clip_sample=lowerCAmelCase, set_alpha_to_one=lowerCAmelCase, ) lowercase : Any = DDIMInverseScheduler( beta_start=0.0_0085, beta_end=0.012, beta_schedule='scaled_linear', clip_sample=lowerCAmelCase, set_alpha_to_zero=lowerCAmelCase, ) torch.manual_seed(0 ) lowercase : int = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) lowercase : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='gelu', projection_dim=512, ) lowercase : str = CLIPTextModel(lowerCAmelCase ) lowercase : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase : Tuple = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase ( self : Tuple, lowerCAmelCase : List[str], lowerCAmelCase : Tuple=0 ) -> Union[str, Any]: lowercase : List[Any] = floats_tensor((1, 16, 16), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowercase : Union[str, Any] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if str(lowerCAmelCase ).startswith('mps' ): lowercase : Optional[Any] = torch.manual_seed(lowerCAmelCase ) else: lowercase : Optional[Any] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowercase : Tuple = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self : Union[str, Any], lowerCAmelCase : Tuple, lowerCAmelCase : Dict=0 ) -> Optional[Any]: lowercase : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowercase : List[str] = image.cpu().permute(0, 2, 3, 1 )[0] lowercase : Optional[int] = Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('RGB' ) if str(lowerCAmelCase ).startswith('mps' ): lowercase : Optional[int] = torch.manual_seed(lowerCAmelCase ) else: lowercase : Optional[Any] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowercase : List[Any] = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self : Optional[int], lowerCAmelCase : Any, lowerCAmelCase : List[str]=0 ) -> Union[str, Any]: lowercase : Optional[int] = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowercase : Tuple = image.cpu().permute(0, 2, 3, 1 )[0] lowercase : Tuple = Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('RGB' ) if str(lowerCAmelCase ).startswith('mps' ): lowercase : Optional[int] = torch.manual_seed(lowerCAmelCase ) else: lowercase : List[str] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowercase : Union[str, Any] = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def lowercase ( self : Optional[int] ) -> str: if not hasattr(self.pipeline_class, '_optional_components' ): return lowercase : Optional[int] = self.get_dummy_components() lowercase : int = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase : List[Any] = self.get_dummy_inputs(lowerCAmelCase ) lowercase : Any = pipe(**lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase ) lowercase : Any = self.pipeline_class.from_pretrained(lowerCAmelCase ) pipe_loaded.to(lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase, lowerCAmelCase ) is None, f'''`{optional_component}` did not stay set to None after loading.''', ) lowercase : Tuple = self.get_dummy_inputs(lowerCAmelCase ) lowercase : Optional[Any] = pipe_loaded(**lowerCAmelCase )[0] lowercase : List[Any] = np.abs(output - output_loaded ).max() self.assertLess(lowerCAmelCase, 1e-4 ) def lowercase ( self : Any ) -> str: lowercase : Union[str, Any] = 'cpu' lowercase : Optional[int] = self.get_dummy_components() lowercase : List[str] = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Any = self.get_dummy_mask_inputs(lowerCAmelCase ) lowercase : str = pipe.generate_mask(**lowerCAmelCase ) lowercase : str = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16) ) lowercase : List[str] = np.array([0] * 9 ) lowercase : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase, 1e-3 ) self.assertEqual(mask[0, -3, -4], 0 ) def lowercase ( self : int ) -> str: lowercase : int = 'cpu' lowercase : Dict = self.get_dummy_components() lowercase : Optional[int] = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Any = self.get_dummy_inversion_inputs(lowerCAmelCase ) lowercase : Tuple = pipe.invert(**lowerCAmelCase ).images lowercase : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) lowercase : List[Any] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799], ) lowercase : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase, 1e-3 ) def lowercase ( self : str ) -> int: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def lowercase ( self : List[str] ) -> Tuple: lowercase : Dict = 'cpu' lowercase : Any = self.get_dummy_components() lowercase : List[Any] = {'beta_start': 0.0_0085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} lowercase : List[str] = DPMSolverMultistepScheduler(**lowerCAmelCase ) lowercase : Dict = DPMSolverMultistepInverseScheduler(**lowerCAmelCase ) lowercase : str = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : List[Any] = self.get_dummy_inversion_inputs(lowerCAmelCase ) lowercase : int = pipe.invert(**lowerCAmelCase ).images lowercase : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) lowercase : Dict = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799], ) lowercase : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase, 1e-3 ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def lowercase ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowercase ( cls : Optional[int] ) -> Tuple: lowercase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) lowercase : Optional[Any] = raw_image.convert('RGB' ).resize((768, 768) ) lowercase : Any = raw_image def lowercase ( self : Optional[Any] ) -> List[Any]: lowercase : str = torch.manual_seed(0 ) lowercase : int = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=lowerCAmelCase, torch_dtype=torch.floataa ) lowercase : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase : List[Any] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : List[Any] = 'a bowl of fruit' lowercase : List[Any] = 'a bowl of pears' lowercase : int = pipe.generate_mask( image=self.raw_image, source_prompt=lowerCAmelCase, target_prompt=lowerCAmelCase, generator=lowerCAmelCase, ) lowercase : Tuple = pipe.invert( prompt=lowerCAmelCase, image=self.raw_image, inpaint_strength=0.7, generator=lowerCAmelCase ).latents lowercase : str = pipe( prompt=lowerCAmelCase, mask_image=lowerCAmelCase, image_latents=lowerCAmelCase, generator=lowerCAmelCase, negative_prompt=lowerCAmelCase, inpaint_strength=0.7, output_type='numpy', ).images[0] lowercase : Dict = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def lowercase ( self : Union[str, Any] ) -> List[Any]: lowercase : Dict = torch.manual_seed(0 ) lowercase : Union[str, Any] = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=lowerCAmelCase, torch_dtype=torch.floataa ) lowercase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase : Any = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Union[str, Any] = 'a bowl of fruit' lowercase : List[Any] = 'a bowl of pears' lowercase : List[Any] = pipe.generate_mask( image=self.raw_image, source_prompt=lowerCAmelCase, target_prompt=lowerCAmelCase, generator=lowerCAmelCase, ) lowercase : List[str] = pipe.invert( prompt=lowerCAmelCase, image=self.raw_image, inpaint_strength=0.7, generator=lowerCAmelCase, num_inference_steps=25, ).latents lowercase : int = pipe( prompt=lowerCAmelCase, mask_image=lowerCAmelCase, image_latents=lowerCAmelCase, generator=lowerCAmelCase, negative_prompt=lowerCAmelCase, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0] lowercase : Tuple = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
255
0
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar lowerCamelCase_ = TypeVar('''T''') lowerCamelCase_ = TypeVar('''U''') class __A( Generic[T, U] ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = key UpperCamelCase__ = val UpperCamelCase__ = None UpperCamelCase__ = None def __repr__(self ): return ( F"Node: key: {self.key}, val: {self.val}, " F"has next: {bool(self.next )}, has prev: {bool(self.prev )}" ) class __A( Generic[T, U] ): """simple docstring""" def __init__(self ): UpperCamelCase__ = DoubleLinkedListNode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DoubleLinkedListNode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ = self.rear, self.head def __repr__(self ): UpperCamelCase__ = ["""DoubleLinkedList"""] UpperCamelCase__ = self.head while node.next is not None: rep.append(str(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = node.next rep.append(str(self.rear ) ) return ",\n ".join(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None UpperCamelCase__ = node UpperCamelCase__ = previous UpperCamelCase__ = node UpperCamelCase__ = self.rear def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): if node.prev is None or node.next is None: return None UpperCamelCase__ = node.next UpperCamelCase__ = node.prev UpperCamelCase__ = None UpperCamelCase__ = None return node class __A( Generic[T, U] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = {} def __init__(self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = DoubleLinkedList() UpperCamelCase__ = capacity UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = {} def __repr__(self ): return ( F"CacheInfo(hits={self.hits}, misses={self.miss}, " F"capacity={self.capacity}, current size={self.num_keys})" ) def __contains__(self , SCREAMING_SNAKE_CASE_ ): return key in self.cache def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 UpperCamelCase__ = self.cache[key] UpperCamelCase__ = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(SCREAMING_SNAKE_CASE_ ) return node.val self.miss += 1 return None def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity UpperCamelCase__ = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(SCREAMING_SNAKE_CASE_ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 UpperCamelCase__ = DoubleLinkedListNode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value UpperCamelCase__ = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list UpperCamelCase__ = value self.list.add(SCREAMING_SNAKE_CASE_ ) @classmethod def UpperCAmelCase_ (cls , SCREAMING_SNAKE_CASE_ = 1_28 ): def cache_decorator_inner(SCREAMING_SNAKE_CASE_ ) -> Callable[..., U]: def cache_decorator_wrapper(*SCREAMING_SNAKE_CASE_ ) -> U: if func not in cls.decorator_function_to_instance_map: UpperCamelCase__ = LRUCache(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: UpperCamelCase__ = func(*SCREAMING_SNAKE_CASE_ ) cls.decorator_function_to_instance_map[func].put(args[0] , SCREAMING_SNAKE_CASE_ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(SCREAMING_SNAKE_CASE_ , """cache_info""" , SCREAMING_SNAKE_CASE_ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
178
from __future__ import annotations def __magic_name__ ( __a : list[list[int]] ): '''simple docstring''' for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(__a ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(__a ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
178
1
from ..utils import DummyObject, requires_backends class UpperCamelCase__ (metaclass=lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Tuple = ["""onnx"""] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: requires_backends(self , ["onnx"] ) @classmethod def _lowercase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: requires_backends(cls , ["onnx"] ) @classmethod def _lowercase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: requires_backends(cls , ["onnx"] )
48
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: UpperCAmelCase_ : List[Any] = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[Any] = flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[Any] = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } UpperCAmelCase_ : str = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key UpperCAmelCase_ : Dict = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): UpperCAmelCase_ : Any = new_key.replace(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): UpperCAmelCase_ : int = new_key.replace(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number UpperCAmelCase_ : Any = re.sub(R'''layers_(\d+)''', R'''layer.\1''', SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = new_key.replace('''encoder''', '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number UpperCAmelCase_ : str = re.sub(R'''layers_(\d+)''', R'''layer.\1''', SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Dict = flax_dict[key] UpperCAmelCase_ : List[str] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): UpperCAmelCase_ : Dict = torch.from_numpy(converted_dict[key].T ) else: UpperCAmelCase_ : List[Any] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : List[str]=False, SCREAMING_SNAKE_CASE__ : Dict=False ) -> int: UpperCAmelCase_ : Optional[Any] = get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: UpperCAmelCase_ : List[str] = PixaStructVisionConfig() UpperCAmelCase_ : List[str] = PixaStructTextConfig() else: UpperCAmelCase_ : Dict = PixaStructVisionConfig( hidden_size=1536, d_ff=3968, num_attention_heads=24, num_hidden_layers=18 ) UpperCAmelCase_ : Optional[int] = PixaStructTextConfig(hidden_size=1536, d_ff=3968, num_heads=24, num_layers=18 ) UpperCAmelCase_ : List[Any] = PixaStructConfig( vision_config=encoder_config.to_dict(), text_config=decoder_config.to_dict(), is_vqa=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[int] = PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) UpperCAmelCase_ : Tuple = PixaStructImageProcessor() UpperCAmelCase_ : Optional[int] = PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__, tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: UpperCAmelCase_ : Union[str, Any] = 4096 UpperCAmelCase_ : Union[str, Any] = True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__, exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('''Model saved in {}'''.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") snake_case_ : Optional[Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
125
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : Any = 1000 ) ->int: '''simple docstring''' a : int = 1, 1 a : Optional[Any] = 2 while True: a : List[Any] = 0 a : Optional[Any] = fa + fa a : Dict = fa, f index += 1 for _ in str(lowerCamelCase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
367
"""simple docstring""" a : Optional[int] = 8.31_4462 # Unit - J mol-1 K-1 def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : float , _lowercase : float ) ->float: '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : float , _lowercase : float ) ->float: '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
79
0
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , ) -> Dict: _lowerCAmelCase = size if size is not None else {"height": 18, "width": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize def _snake_case ( self ) -> Any: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): __lowerCamelCase : List[str] = ImageGPTImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = ImageGPTImageProcessingTester(self ) @property def _snake_case ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , "clusters" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "size" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "do_normalize" ) ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCAmelCase = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , obj[key] ) ) else: self.assertEqual(obj[key] , _lowerCAmelCase ) def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase = os.path.join(_lowerCAmelCase , "image_processor.json" ) image_processor_first.to_json_file(_lowerCAmelCase ) _lowerCAmelCase = self.image_processing_class.from_json_file(_lowerCAmelCase ).to_dict() _lowerCAmelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCAmelCase ) def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = self.image_processing_class.from_pretrained(_lowerCAmelCase ).to_dict() _lowerCAmelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCAmelCase ) @unittest.skip("ImageGPT requires clusters at initialization" ) def _snake_case ( self ) -> Tuple: pass def __a(): '''simple docstring''' _lowerCAmelCase = load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) _lowerCAmelCase = Image.open(dataset[4]["file"] ) _lowerCAmelCase = Image.open(dataset[5]["file"] ) _lowerCAmelCase = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def _snake_case ( self ) -> Any: _lowerCAmelCase = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) _lowerCAmelCase = prepare_images() # test non-batched _lowerCAmelCase = image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) _lowerCAmelCase = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , _lowerCAmelCase ) # test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) _lowerCAmelCase = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _lowerCAmelCase )
158
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def __a(SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' if num <= 0: raise ValueError("math domain error" ) return quad(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , args=(SCREAMING_SNAKE_CASE_) )[0] def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' return math.pow(SCREAMING_SNAKE_CASE_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
158
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase : int = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
353
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] , _UpperCAmelCase : str ): lowerCAmelCase = int(_UpperCAmelCase ) # Initialize Result lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_UpperCAmelCase ): # Find denominations while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ): total_value -= int(_UpperCAmelCase ) answer.append(_UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __UpperCamelCase : Any = [] __UpperCamelCase : List[Any] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __UpperCamelCase : Any = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) __UpperCamelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __UpperCamelCase : List[str] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] __UpperCamelCase : Any = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f'''Following is minimal change for {value}: ''') __UpperCamelCase : List[str] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
309
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple=1_0_0 , lowerCAmelCase_ : Tuple=1_3 , lowerCAmelCase_ : Tuple=3_0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[Any]=3_2 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Union[str, Any]=3_7 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Tuple=1_0 , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : int=[0, 1, 2, 3] , ): """simple docstring""" _A: str = parent _A: str = 1_0_0 _A: Optional[int] = batch_size _A: Optional[int] = image_size _A: Tuple = patch_size _A: Union[str, Any] = num_channels _A: int = is_training _A: Union[str, Any] = use_labels _A: List[str] = hidden_size _A: Optional[Any] = num_hidden_layers _A: Any = num_attention_heads _A: Dict = intermediate_size _A: Union[str, Any] = hidden_act _A: List[str] = hidden_dropout_prob _A: Tuple = attention_probs_dropout_prob _A: Union[str, Any] = type_sequence_label_size _A: int = initializer_range _A: Optional[int] = scope _A: Optional[Any] = out_indices _A: Optional[Any] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A: List[str] = (image_size // patch_size) ** 2 _A: Tuple = num_patches + 1 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Optional[Any] = None _A: int = None if self.use_labels: _A: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A: Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _A: List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Optional[Any] = BeitModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Dict = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str ): """simple docstring""" _A: str = BeitForMaskedImageModeling(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Dict = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str ): """simple docstring""" _A: Tuple = self.type_sequence_label_size _A: str = BeitForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: List[Any] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A: Optional[Any] = 1 _A: List[str] = BeitForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A: Optional[int] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" _A: List[str] = self.num_labels _A: str = BeitForSemanticSegmentation(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Tuple = model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _A: Tuple = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: str = self.prepare_config_and_inputs() _A , _A , _A , _A: Optional[Any] = config_and_inputs _A: Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : int = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCamelCase : List[str] = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase : str = False __UpperCamelCase : List[Any] = False __UpperCamelCase : List[str] = False def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Dict = BeitModelTester(self ) _A: Tuple = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def __magic_name__ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def __magic_name__ ( self : Any ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" pass def __magic_name__ ( self : str ): """simple docstring""" _A , _A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[int] = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A: Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[int] = model_class(lowerCAmelCase_ ) _A: Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: int = [*signature.parameters.keys()] _A: Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" if not self.model_tester.is_training: return _A , _A: Tuple = self.model_tester.prepare_config_and_inputs_for_common() _A: str = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(lowerCAmelCase_ ), BeitForMaskedImageModeling]: continue _A: str = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() _A: Tuple = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) _A: str = model(**lowerCAmelCase_ ).loss loss.backward() def __magic_name__ ( self : str ): """simple docstring""" _A , _A: Tuple = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _A: List[Any] = False _A: int = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(lowerCAmelCase_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _A: str = model_class(lowerCAmelCase_ ) model.gradient_checkpointing_enable() model.to(lowerCAmelCase_ ) model.train() _A: Optional[int] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) _A: Union[str, Any] = model(**lowerCAmelCase_ ).loss loss.backward() def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A: int = _config_zero_init(lowerCAmelCase_ ) for model_class in self.all_model_classes: _A: Any = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A: Optional[Any] = BeitModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowerCamelCase__ ( ) -> Optional[int]: _A: Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: int = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(lowerCAmelCase_ ) _A: Optional[Any] = self.default_image_processor _A: Optional[Any] = prepare_img() _A: str = image_processor(images=lowerCAmelCase_ , return_tensors='''pt''' ).pixel_values.to(lowerCAmelCase_ ) # prepare bool_masked_pos _A: List[str] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _A: Union[str, Any] = model(pixel_values=lowerCAmelCase_ , bool_masked_pos=lowerCAmelCase_ ) _A: Optional[Any] = outputs.logits # verify the logits _A: Any = torch.Size((1, 1_9_6, 8_1_9_2) ) self.assertEqual(logits.shape , lowerCAmelCase_ ) _A: str = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , lowerCAmelCase_ , atol=1e-2 ) ) @slow def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: List[str] = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(lowerCAmelCase_ ) _A: Dict = self.default_image_processor _A: Optional[Any] = prepare_img() _A: Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''pt''' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _A: List[Any] = model(**lowerCAmelCase_ ) _A: Dict = outputs.logits # verify the logits _A: List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(logits.shape , lowerCAmelCase_ ) _A: Optional[int] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) _A: Optional[Any] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase_ ) @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Any = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( lowerCAmelCase_ ) _A: List[Any] = self.default_image_processor _A: Tuple = prepare_img() _A: Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''pt''' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _A: Union[str, Any] = model(**lowerCAmelCase_ ) _A: List[str] = outputs.logits # verify the logits _A: Optional[int] = torch.Size((1, 2_1_8_4_1) ) self.assertEqual(logits.shape , lowerCAmelCase_ ) _A: Optional[int] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) _A: str = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: Any = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) _A: Tuple = model.to(lowerCAmelCase_ ) _A: List[str] = BeitImageProcessor(do_resize=lowerCAmelCase_ , size=6_4_0 , do_center_crop=lowerCAmelCase_ ) _A: Any = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) _A: str = Image.open(ds[0]['''file'''] ) _A: Optional[int] = image_processor(images=lowerCAmelCase_ , return_tensors='''pt''' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _A: Tuple = model(**lowerCAmelCase_ ) _A: Optional[Any] = outputs.logits # verify the logits _A: Any = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) ) self.assertEqual(logits.shape , lowerCAmelCase_ ) _A: Union[str, Any] = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: _A: List[Any] = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=lowerCAmelCase_ , ) else: _A: Tuple = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=lowerCAmelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: int = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) _A: str = model.to(lowerCAmelCase_ ) _A: List[str] = BeitImageProcessor(do_resize=lowerCAmelCase_ , size=6_4_0 , do_center_crop=lowerCAmelCase_ ) _A: List[str] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) _A: Tuple = Image.open(ds[0]['''file'''] ) _A: List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''pt''' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _A: Union[str, Any] = model(**lowerCAmelCase_ ) _A: int = outputs.logits.detach().cpu() _A: Optional[int] = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase_ , target_sizes=[(5_0_0, 3_0_0)] ) _A: List[Any] = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase_ ) _A: Any = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase_ ) _A: int = torch.Size((1_6_0, 1_6_0) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase_ )
121
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase__ ( a , a ) -> Dict: if "xprophetnet" in prophetnet_checkpoint_path: _A: List[Any] = XLMProphetNetForConditionalGenerationOld.from_pretrained(a ) _A , _A: Union[str, Any] = XLMProphetNetForConditionalGeneration.from_pretrained( a , output_loading_info=a ) else: _A: Dict = ProphetNetForConditionalGenerationOld.from_pretrained(a ) _A , _A: Tuple = ProphetNetForConditionalGeneration.from_pretrained( a , output_loading_info=a ) _A: Optional[int] = ['''key_proj''', '''value_proj''', '''query_proj'''] _A: List[Any] = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: _A: List[str] = key.split('''.''' ) if attributes[0] == "lm_head": _A: Optional[int] = prophet _A: Tuple = prophet_old else: _A: Tuple = prophet.prophetnet _A: Any = prophet_old.model _A: int = False for attribute in attributes: if attribute in mapping: _A: Optional[int] = mapping[attribute] if not hasattr(a , a ) and len(a ) > 0: _A: int = attribute elif hasattr(a , a ): _A: Tuple = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _A: Union[str, Any] = old_model.weight logger.info(f"""{attribute} is initialized.""" ) _A: Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _A: str = old_model.bias logger.info(f"""{attribute} is initialized""" ) _A: Dict = True break elif attribute in special_keys and hasattr(a , '''in_proj_weight''' ): _A: Optional[int] = old_model.in_proj_weight.shape[0] // 3 _A: Tuple = getattr(a , a ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _A: List[str] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _A: List[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _A: int = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _A: Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _A: List[Any] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _A: int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _A: Tuple = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _A: Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _A: List[Any] = True break if attribute.isdigit(): _A: Tuple = model[int(a )] _A: int = old_model[int(a )] else: _A: Union[str, Any] = getattr(a , a ) if old_attribute == "": _A: Union[str, Any] = old_model else: if not hasattr(a , a ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) _A: List[Any] = getattr(a , a ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase__ : Tuple = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
121
1
'''simple docstring''' def lowercase__( ): """simple docstring""" return 1 def lowercase__( __UpperCamelCase: int ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowercase__( __UpperCamelCase: int ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(snake_case__ ) def lowercase__( __UpperCamelCase: int ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(snake_case__ ) def lowercase__( __UpperCamelCase: int ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(snake_case__ ) def lowercase__( __UpperCamelCase: int ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(snake_case__ ) def lowercase__( __UpperCamelCase: int ): """simple docstring""" return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(snake_case__ ) def lowercase__( __UpperCamelCase: int ): """simple docstring""" return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(snake_case__ ) def lowercase__( __UpperCamelCase: int = 2_00 ): """simple docstring""" return two_pound(snake_case__ ) if __name__ == "__main__": print(solution(int(input().strip())))
365
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _a : '''simple docstring''' def __init__( self, A, A=2, A=3, A=4, A=2, A=7, A=True, A=True, A=True, A=True, A=99, A=36, A=3, A=4, A=37, A="gelu", A=0.1, A=0.1, A=512, A=16, A=2, A=0.02, A=6, A=6, A=3, A=4, A=None, A=1_000, ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : List[Any] = text_seq_length SCREAMING_SNAKE_CASE : Tuple = is_training SCREAMING_SNAKE_CASE : Tuple = use_input_mask SCREAMING_SNAKE_CASE : Optional[int] = use_token_type_ids SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : Optional[int] = vocab_size SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : Tuple = type_sequence_label_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : str = coordinate_size SCREAMING_SNAKE_CASE : Tuple = shape_size SCREAMING_SNAKE_CASE : Optional[Any] = num_labels SCREAMING_SNAKE_CASE : int = num_choices SCREAMING_SNAKE_CASE : str = scope SCREAMING_SNAKE_CASE : Optional[int] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE : Union[str, Any] = text_seq_length SCREAMING_SNAKE_CASE : List[str] = (image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE : int = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE : str = bbox[i, j, 3] SCREAMING_SNAKE_CASE : Optional[Any] = bbox[i, j, 1] SCREAMING_SNAKE_CASE : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE : Optional[Any] = bbox[i, j, 2] SCREAMING_SNAKE_CASE : Any = bbox[i, j, 0] SCREAMING_SNAKE_CASE : Tuple = t SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE : List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels ) SCREAMING_SNAKE_CASE : int = LayoutLMvaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self, A, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image SCREAMING_SNAKE_CASE : Optional[int] = model(A, pixel_values=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = model( A, bbox=A, pixel_values=A, attention_mask=A, token_type_ids=A ) SCREAMING_SNAKE_CASE : List[str] = model(A, bbox=A, pixel_values=A, token_type_ids=A ) SCREAMING_SNAKE_CASE : Optional[int] = model(A, bbox=A, pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE : List[Any] = model(A ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE : List[str] = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE : List[str] = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Dict = model( A, bbox=A, pixel_values=A, attention_mask=A, token_type_ids=A, labels=A, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.num_labels SCREAMING_SNAKE_CASE : str = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : str = model( A, bbox=A, pixel_values=A, attention_mask=A, token_type_ids=A, labels=A, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model( A, bbox=A, pixel_values=A, attention_mask=A, token_type_ids=A, start_positions=A, end_positions=A, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Any = config_and_inputs SCREAMING_SNAKE_CASE : Dict = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Optional[int] = False A : List[str] = False A : Union[str, Any] = False A : Optional[Any] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) A : List[Any] = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self, A, A, A, A, A ): '''simple docstring''' return True def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = LayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self, config_class=A, hidden_size=37 ) def UpperCamelCase_ ( self, A, A, A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(A ) if model_class in get_values(A ): SCREAMING_SNAKE_CASE : Optional[int] = { k: v.unsqueeze(1 ).expand(-1, self.model_tester.num_choices, -1 ).contiguous() if isinstance(A, torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=A ) elif model_class in get_values(A ): SCREAMING_SNAKE_CASE : Dict = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=A ) SCREAMING_SNAKE_CASE : Dict = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=A ) elif model_class in [ *get_values(A ), ]: SCREAMING_SNAKE_CASE : str = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=A ) elif model_class in [ *get_values(A ), ]: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=torch.long, device=A, ) return inputs_dict def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE : List[str] = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(A ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : Any = prepare_img() SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).pixel_values.to(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[1, 2]] ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass SCREAMING_SNAKE_CASE : Union[str, Any] = model( input_ids=input_ids.to(A ), bbox=bbox.to(A ), pixel_values=pixel_values.to(A ), ) # verify the logits SCREAMING_SNAKE_CASE : str = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape, A ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], A, atol=1E-4 ) )
246
0
from manim import * class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def _UpperCamelCase ( self ) -> Tuple: snake_case_ = Rectangle(height=0.5 , width=0.5 ) snake_case_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ = Rectangle(height=0.25 , width=0.25 ) snake_case_ = [mem.copy() for i in range(6 )] snake_case_ = [mem.copy() for i in range(6 )] snake_case_ = VGroup(*a ).arrange(a , buff=0 ) snake_case_ = VGroup(*a ).arrange(a , buff=0 ) snake_case_ = VGroup(a , a ).arrange(a , buff=0 ) snake_case_ = Text('CPU' , font_size=24 ) snake_case_ = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a ) snake_case_ = [mem.copy() for i in range(4 )] snake_case_ = VGroup(*a ).arrange(a , buff=0 ) snake_case_ = Text('GPU' , font_size=24 ) snake_case_ = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) gpu.move_to([-1, -1, 0] ) self.add(a ) snake_case_ = [mem.copy() for i in range(6 )] snake_case_ = VGroup(*a ).arrange(a , buff=0 ) snake_case_ = Text('Model' , font_size=24 ) snake_case_ = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) model.move_to([3, -1.0, 0] ) self.add(a ) snake_case_ = [] snake_case_ = [] for i, rect in enumerate(a ): snake_case_ = fill.copy().set_fill(a , opacity=0.8 ) target.move_to(a ) model_arr.append(a ) snake_case_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(a , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(a ) self.add(*a , *a ) snake_case_ = [meta_mem.copy() for i in range(6 )] snake_case_ = [meta_mem.copy() for i in range(6 )] snake_case_ = VGroup(*a ).arrange(a , buff=0 ) snake_case_ = VGroup(*a ).arrange(a , buff=0 ) snake_case_ = VGroup(a , a ).arrange(a , buff=0 ) snake_case_ = Text('Disk' , font_size=24 ) snake_case_ = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) disk.move_to([-4, -1.25, 0] ) self.add(a , a ) snake_case_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a , a ) snake_case_ = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a ) snake_case_ = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a ) ) snake_case_ = Square(0.3 ) input.set_fill(a , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , a , buff=0.5 ) self.play(Write(a ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=a , buff=0.02 ) self.play(MoveToTarget(a ) ) self.play(FadeOut(a ) ) snake_case_ = Arrow(start=a , end=a , color=a , buff=0.5 ) a.next_to(model_arr[0].get_left() , a , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) snake_case_ = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a , run_time=3 ) ) snake_case_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(a ) , Circumscribe(model_arr[0] , color=a , **a ) , Circumscribe(model_cpu_arr[0] , color=a , **a ) , Circumscribe(gpu_rect[0] , color=a , **a ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) snake_case_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , a , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) snake_case_ = AnimationGroup( FadeOut(a , run_time=0.5 ) , MoveToTarget(a , run_time=0.5 ) , FadeIn(a , run_time=0.5 ) , lag_ratio=0.2 ) self.play(a ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: snake_case_ = 0.7 self.play( Circumscribe(model_arr[i] , **a ) , Circumscribe(cpu_left_col_base[i] , **a ) , Circumscribe(cpu_left_col_base[i + 1] , color=a , **a ) , Circumscribe(gpu_rect[0] , color=a , **a ) , Circumscribe(model_arr[i + 1] , color=a , **a ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=a , **a ) , Circumscribe(cpu_left_col_base[-1] , color=a , **a ) , Circumscribe(gpu_rect[0] , color=a , **a ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) snake_case_ = a_c snake_case_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(a ) , FadeOut(a , run_time=0.5 ) , ) snake_case_ = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(a , run_time=3 ) , MoveToTarget(a ) ) self.wait()
178
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=32 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=16 , a=2 , a=0.02 , a=4 , ) -> int: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_attention_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_choices def _UpperCamelCase ( self ) -> List[str]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_attention_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def _UpperCamelCase ( self ) -> List[str]: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = True snake_case_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCamelCase_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase = True lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCamelCase ( self ) -> List[str]: snake_case_ = FlaxRobertaModelTester(self ) @slow def _UpperCamelCase ( self ) -> str: for model_class_name in self.all_model_classes: snake_case_ = model_class_name.from_pretrained('roberta-base' , from_pt=a ) snake_case_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(a )
178
1
def snake_case_(_UpperCamelCase ) -> int: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase ), F"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: _snake_case = F"""The input value of [n={number}] has to be > 0""" raise ValueError(_UpperCamelCase ) else: _snake_case = sylvester(number - 1 ) _snake_case = num - 1 _snake_case = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
361
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = (1 - _cos) / 2 _snake_case = 1 - _cos _snake_case = 1 + alpha _snake_case = -2 * _cos _snake_case = 1 - alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = (1 + _cos) / 2 _snake_case = -1 - _cos _snake_case = 1 + alpha _snake_case = -2 * _cos _snake_case = 1 - alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = _sin / 2 _snake_case = 0 _snake_case = -ba _snake_case = 1 + alpha _snake_case = -2 * _cos _snake_case = 1 - alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = 1 - alpha _snake_case = -2 * _cos _snake_case = 1 + alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = 10 ** (gain_db / 40) _snake_case = 1 + alpha * big_a _snake_case = -2 * _cos _snake_case = 1 - alpha * big_a _snake_case = 1 + alpha / big_a _snake_case = -2 * _cos _snake_case = 1 - alpha / big_a _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = 10 ** (gain_db / 40) _snake_case = (big_a + 1) - (big_a - 1) * _cos _snake_case = (big_a + 1) + (big_a - 1) * _cos _snake_case = (big_a - 1) - (big_a + 1) * _cos _snake_case = (big_a - 1) + (big_a + 1) * _cos _snake_case = 2 * sqrt(_UpperCamelCase ) * alpha _snake_case = big_a * (pmc + aaa) _snake_case = 2 * big_a * mpc _snake_case = big_a * (pmc - aaa) _snake_case = ppmc + aaa _snake_case = -2 * pmpc _snake_case = ppmc - aaa _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = 10 ** (gain_db / 40) _snake_case = (big_a + 1) - (big_a - 1) * _cos _snake_case = (big_a + 1) + (big_a - 1) * _cos _snake_case = (big_a - 1) - (big_a + 1) * _cos _snake_case = (big_a - 1) + (big_a + 1) * _cos _snake_case = 2 * sqrt(_UpperCamelCase ) * alpha _snake_case = big_a * (ppmc + aaa) _snake_case = -2 * big_a * pmpc _snake_case = big_a * (ppmc - aaa) _snake_case = pmc + aaa _snake_case = 2 * mpc _snake_case = pmc - aaa _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
278
0
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated A__ = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ A__ = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=snake_case )[0] @deprecated(snake_case , """Please use tf.data to implement this functionality.""" ) def _UpperCAmelCase ( snake_case ): """simple docstring""" print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=snake_case ) as bytestream: _lowerCAmelCase = _readaa(snake_case ) if magic != 20_51: raise ValueError( """Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) ) _lowerCAmelCase = _readaa(snake_case ) _lowerCAmelCase = _readaa(snake_case ) _lowerCAmelCase = _readaa(snake_case ) _lowerCAmelCase = bytestream.read(rows * cols * num_images ) _lowerCAmelCase = numpy.frombuffer(snake_case , dtype=numpy.uinta ) _lowerCAmelCase = data.reshape(snake_case , snake_case , snake_case , 1 ) return data @deprecated(snake_case , """Please use tf.one_hot on tensors.""" ) def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = labels_dense.shape[0] _lowerCAmelCase = numpy.arange(snake_case ) * num_classes _lowerCAmelCase = numpy.zeros((num_labels, num_classes) ) _lowerCAmelCase = 1 return labels_one_hot @deprecated(snake_case , """Please use tf.data to implement this functionality.""" ) def _UpperCAmelCase ( snake_case , snake_case=False , snake_case=10 ): """simple docstring""" print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=snake_case ) as bytestream: _lowerCAmelCase = _readaa(snake_case ) if magic != 20_49: raise ValueError( """Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) ) _lowerCAmelCase = _readaa(snake_case ) _lowerCAmelCase = bytestream.read(snake_case ) _lowerCAmelCase = numpy.frombuffer(snake_case , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(snake_case , snake_case ) return labels class __lowerCAmelCase : @deprecated( _snake_case , """Please use alternatives such as official/mnist/_DataSet.py""" """ from tensorflow/models.""" , ) def __init__( self , _snake_case , _snake_case , _snake_case=False , _snake_case=False , _snake_case=dtypes.floataa , _snake_case=True , _snake_case=None , ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = random_seed.get_seed(_snake_case ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) _lowerCAmelCase = dtypes.as_dtype(_snake_case ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype ) if fake_data: _lowerCAmelCase = 10000 _lowerCAmelCase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'images.shape: {images.shape} labels.shape: {labels.shape}' _lowerCAmelCase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 _lowerCAmelCase = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. _lowerCAmelCase = images.astype(numpy.floataa ) _lowerCAmelCase = numpy.multiply(_snake_case , 1.0 / 255.0 ) _lowerCAmelCase = images _lowerCAmelCase = labels _lowerCAmelCase = 0 _lowerCAmelCase = 0 @property def snake_case ( self ): """simple docstring""" return self._images @property def snake_case ( self ): """simple docstring""" return self._labels @property def snake_case ( self ): """simple docstring""" return self._num_examples @property def snake_case ( self ): """simple docstring""" return self._epochs_completed def snake_case ( self , _snake_case , _snake_case=False , _snake_case=True ): """simple docstring""" if fake_data: _lowerCAmelCase = [1] * 784 _lowerCAmelCase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_snake_case )], [fake_label for _ in range(_snake_case )], ) _lowerCAmelCase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: _lowerCAmelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(_snake_case ) _lowerCAmelCase = self.images[perma] _lowerCAmelCase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch _lowerCAmelCase = self._num_examples - start _lowerCAmelCase = self._images[start : self._num_examples] _lowerCAmelCase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: _lowerCAmelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(_snake_case ) _lowerCAmelCase = self.images[perm] _lowerCAmelCase = self.labels[perm] # Start next epoch _lowerCAmelCase = 0 _lowerCAmelCase = batch_size - rest_num_examples _lowerCAmelCase = self._index_in_epoch _lowerCAmelCase = self._images[start:end] _lowerCAmelCase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size _lowerCAmelCase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(snake_case , """Please write your own downloading logic.""" ) def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" if not gfile.Exists(snake_case ): gfile.MakeDirs(snake_case ) _lowerCAmelCase = os.path.join(snake_case , snake_case ) if not gfile.Exists(snake_case ): urllib.request.urlretrieve(snake_case , snake_case ) # noqa: S310 with gfile.GFile(snake_case ) as f: _lowerCAmelCase = f.size() print("""Successfully downloaded""" , snake_case , snake_case , """bytes.""" ) return filepath @deprecated( snake_case , """Please use alternatives such as:""" """ tensorflow_datasets.load('mnist')""" ) def _UpperCAmelCase ( snake_case , snake_case=False , snake_case=False , snake_case=dtypes.floataa , snake_case=True , snake_case=50_00 , snake_case=None , snake_case=DEFAULT_SOURCE_URL , ): """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=snake_case , one_hot=snake_case , dtype=snake_case , seed=snake_case ) _lowerCAmelCase = fake() _lowerCAmelCase = fake() _lowerCAmelCase = fake() return _Datasets(train=snake_case , validation=snake_case , test=snake_case ) if not source_url: # empty string check _lowerCAmelCase = DEFAULT_SOURCE_URL _lowerCAmelCase = """train-images-idx3-ubyte.gz""" _lowerCAmelCase = """train-labels-idx1-ubyte.gz""" _lowerCAmelCase = """t10k-images-idx3-ubyte.gz""" _lowerCAmelCase = """t10k-labels-idx1-ubyte.gz""" _lowerCAmelCase = _maybe_download( snake_case , snake_case , source_url + train_images_file ) with gfile.Open(snake_case , """rb""" ) as f: _lowerCAmelCase = _extract_images(snake_case ) _lowerCAmelCase = _maybe_download( snake_case , snake_case , source_url + train_labels_file ) with gfile.Open(snake_case , """rb""" ) as f: _lowerCAmelCase = _extract_labels(snake_case , one_hot=snake_case ) _lowerCAmelCase = _maybe_download( snake_case , snake_case , source_url + test_images_file ) with gfile.Open(snake_case , """rb""" ) as f: _lowerCAmelCase = _extract_images(snake_case ) _lowerCAmelCase = _maybe_download( snake_case , snake_case , source_url + test_labels_file ) with gfile.Open(snake_case , """rb""" ) as f: _lowerCAmelCase = _extract_labels(snake_case , one_hot=snake_case ) if not 0 <= validation_size <= len(snake_case ): _lowerCAmelCase = ( """Validation size should be between 0 and """ F'{len(snake_case )}. Received: {validation_size}.' ) raise ValueError(snake_case ) _lowerCAmelCase = train_images[:validation_size] _lowerCAmelCase = train_labels[:validation_size] _lowerCAmelCase = train_images[validation_size:] _lowerCAmelCase = train_labels[validation_size:] _lowerCAmelCase = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed} _lowerCAmelCase = _DataSet(snake_case , snake_case , **snake_case ) _lowerCAmelCase = _DataSet(snake_case , snake_case , **snake_case ) _lowerCAmelCase = _DataSet(snake_case , snake_case , **snake_case ) return _Datasets(train=snake_case , validation=snake_case , test=snake_case )
82
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''gpt_neox''' def __init__( self : List[Any] , __UpperCAmelCase : List[Any]=50432 , __UpperCAmelCase : Any=6144 , __UpperCAmelCase : List[str]=44 , __UpperCAmelCase : List[Any]=64 , __UpperCAmelCase : List[str]=24576 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Tuple=0.25 , __UpperCAmelCase : Optional[Any]=10000 , __UpperCAmelCase : int=0.0 , __UpperCAmelCase : str=0.0 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Tuple=2048 , __UpperCAmelCase : Optional[int]=0.02 , __UpperCAmelCase : Union[str, Any]=1E-5 , __UpperCAmelCase : str=True , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : str=True , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : Tuple , ): '''simple docstring''' super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) _A = vocab_size _A = max_position_embeddings _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = rotary_pct _A = rotary_emb_base _A = attention_dropout _A = hidden_dropout _A = classifier_dropout _A = initializer_range _A = layer_norm_eps _A = use_cache _A = tie_word_embeddings _A = use_parallel_residual _A = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f'''got {self.rope_scaling}''' ) _A = self.rope_scaling.get("type" , __UpperCAmelCase ) _A = self.rope_scaling.get("factor" , __UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
79
0
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int = 100 ): A__ = (n * (n + 1) // 2) ** 2 A__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
356
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ : Tuple = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : int = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys SCREAMING_SNAKE_CASE_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
69
0
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
61
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a_ (_a ): def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
309
0
from __future__ import annotations def lowerCAmelCase_ ( __UpperCAmelCase: list[int] ) -> int: if not nums: return 0 UpperCamelCase__ : Tuple = nums[0] UpperCamelCase__ : Dict = 0 for num in nums[1:]: UpperCamelCase__ ,UpperCamelCase__ : Any = ( max_excluding + num, max(__UpperCAmelCase , __UpperCAmelCase ), ) return max(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
247
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) UpperCAmelCase_ = logging.getLogger(__name__) def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> int: UpperCamelCase__ : Optional[Any] = git.Repo(search_parent_directories=__UpperCAmelCase ) UpperCamelCase__ : Optional[int] = { '''repo_id''': str(__UpperCAmelCase ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(__UpperCAmelCase , '''git_log.json''' ) , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=4 ) def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] ) -> Dict: if params.n_gpu <= 0: UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Union[str, Any] = -1 UpperCamelCase__ : str = True UpperCamelCase__ : Dict = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 UpperCamelCase__ : Optional[int] = int(os.environ['''WORLD_SIZE'''] ) UpperCamelCase__ : Any = int(os.environ['''N_GPU_NODE'''] ) UpperCamelCase__ : Optional[Any] = int(os.environ['''RANK'''] ) # number of nodes / node ID UpperCamelCase__ : Optional[int] = params.world_size // params.n_gpu_per_node UpperCamelCase__ : int = params.global_rank // params.n_gpu_per_node UpperCamelCase__ : Any = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : Dict = 1 UpperCamelCase__ : int = 1 UpperCamelCase__ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode UpperCamelCase__ : Any = params.node_id == 0 and params.local_rank == 0 UpperCamelCase__ : Optional[int] = params.n_nodes > 1 # summary UpperCamelCase__ : List[Any] = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] ) -> Tuple: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
247
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def a_ ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =os.path.join(args.tf_model_dir , '''parameters.json''' ) lowerCamelCase_ =json.loads(open(__snake_case ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('''.pt''' ): lowerCamelCase_ =args.output + '''.pt''' lowerCamelCase_ =OrderedDict() with tf.device('''/CPU:0''' ): lowerCamelCase_ =tf.train.load_checkpoint(args.tf_model_dir ) lowerCamelCase_ =reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowerCamelCase_ =reader.get_tensor(__snake_case ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowerCamelCase_ =int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowerCamelCase_ =8 lowerCamelCase_ ='''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowerCamelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ =torch.tensor(__snake_case ) elif key_name.startswith('''model/moe''' ): lowerCamelCase_ =int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowerCamelCase_ ='''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowerCamelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ =torch.tensor(__snake_case ) elif key_name.endswith('''/softmlp/kernel''' ): lowerCamelCase_ ='''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowerCamelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ =torch.tensor(__snake_case ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowerCamelCase_ =key_name[-9:-7] for i in range(16 ): lowerCamelCase_ ='''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowerCamelCase_ =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowerCamelCase_ =torch.tensor(__snake_case ) elif key_name.startswith('''model/mlp''' ): lowerCamelCase_ =int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowerCamelCase_ ='''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowerCamelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ =torch.tensor(__snake_case ) elif key_name.endswith('''/p1/bias''' ): lowerCamelCase_ ='''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowerCamelCase_ =vnp.copy() # same because it is one dimensional lowerCamelCase_ =torch.tensor(__snake_case ) elif key_name.endswith('''/p2/kernel''' ): lowerCamelCase_ ='''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowerCamelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ =torch.tensor(__snake_case ) elif key_name.endswith('''/p2/bias''' ): lowerCamelCase_ ='''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowerCamelCase_ =vnp.copy() # same because it is one dimensional lowerCamelCase_ =torch.tensor(__snake_case ) elif key_name.startswith('''model/ln''' ): lowerCamelCase_ =int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowerCamelCase_ ='''model.blocks.%d.feed_forward.norm.bias''' % player lowerCamelCase_ =vnp.copy() # same because it is one dimensional lowerCamelCase_ =torch.tensor(__snake_case ) elif key_name.endswith('''/g''' ): lowerCamelCase_ ='''model.blocks.%d.feed_forward.norm.weight''' % player lowerCamelCase_ =vnp.copy() # same because it is one dimensional lowerCamelCase_ =torch.tensor(__snake_case ) elif key_name.startswith('''model/att''' ): lowerCamelCase_ =int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowerCamelCase_ =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowerCamelCase_ =state[:, 0, :, :] lowerCamelCase_ =state[:, 1, :, :] lowerCamelCase_ =state[:, 2, :, :] lowerCamelCase_ =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ ='''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowerCamelCase_ =torch.tensor(__snake_case ) lowerCamelCase_ ='''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowerCamelCase_ =torch.tensor(__snake_case ) lowerCamelCase_ ='''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowerCamelCase_ =torch.tensor(__snake_case ) elif key_name.endswith('''/o/kernel''' ): lowerCamelCase_ ='''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowerCamelCase_ =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ =torch.tensor(__snake_case ) elif key_name.startswith('''model/an''' ): lowerCamelCase_ =int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowerCamelCase_ ='''model.blocks.%d.self_attn.norm.bias''' % player lowerCamelCase_ =vnp.copy() # same because it is one dimensional lowerCamelCase_ =torch.tensor(__snake_case ) elif key_name.endswith('''/g''' ): lowerCamelCase_ ='''model.blocks.%d.self_attn.norm.weight''' % player lowerCamelCase_ =vnp.copy() # same because it is one dimensional lowerCamelCase_ =torch.tensor(__snake_case ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowerCamelCase_ ={'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowerCamelCase_ ='''model.%s.weight''' % nlayer lowerCamelCase_ =vnp.copy() # same in embedded lowerCamelCase_ =torch.tensor(__snake_case ) if key_name.startswith('''model/wte''' ): lowerCamelCase_ ='''lm_head.weight''' lowerCamelCase_ =vnp.copy() # same in embedded lowerCamelCase_ =torch.tensor(__snake_case ) elif key_name.startswith('''model/wob''' ): lowerCamelCase_ ='''final_logits_bias''' lowerCamelCase_ =vnp.copy() # same in embedded lowerCamelCase_ =state.reshape((1, -1) ) lowerCamelCase_ =torch.tensor(__snake_case ) elif key_name == "model/dense/kernel": lowerCamelCase_ ='''model.last_project.weight''' lowerCamelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ =torch.tensor(__snake_case ) elif key_name == "model/dense_1/bias": lowerCamelCase_ ='''model.last_project.bias''' lowerCamelCase_ =vnp.copy() # same because it is one dimensional lowerCamelCase_ =torch.tensor(__snake_case ) torch.save(__snake_case , args.output ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") a_ : List[str] = parser.parse_args() convert_tf_gptsan_to_pt(args)
75
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : int ) -> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : List[str] = 1 while repunit: _UpperCAmelCase : Tuple = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCamelCase ( _lowerCAmelCase : int = 1000000 ) -> int: _UpperCAmelCase : Any = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_lowerCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'''{solution() = }''')
246
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : List[str] = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys a__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
352
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar a__ : int = TypeVar('T') class UpperCAmelCase__ ( Generic[T]): def __init__( self , lowercase = True ) -> None: __UpperCamelCase = {} # dictionary of lists __UpperCamelCase = directed def __lowerCamelCase ( self , lowercase , lowercase ) -> GraphAdjacencyList[T]: if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) self.adj_list[destination_vertex].append(lowercase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) __UpperCamelCase = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowercase ) __UpperCamelCase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: __UpperCamelCase = [destination_vertex] __UpperCamelCase = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) __UpperCamelCase = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: __UpperCamelCase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: __UpperCamelCase = [destination_vertex] __UpperCamelCase = [] return self def __repr__( self ) -> str: return pformat(self.adj_list )
243
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} UpperCamelCase__ = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } UpperCamelCase__ = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _a ( ): __lowerCAmelCase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowerCAmelCase = bs[:] __lowerCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(SCREAMING_SNAKE_CASE_ ) cs.append(2**8 + n ) n += 1 __lowerCAmelCase = [chr(SCREAMING_SNAKE_CASE_ ) for n in cs] return dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ): __lowerCAmelCase = set() __lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCAmelCase = char return pairs class a__ ( snake_case__ ): _a : str = VOCAB_FILES_NAMES _a : List[str] = PRETRAINED_VOCAB_FILES_MAP _a : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , _A , _A , _A="replace" , _A="<s>" , _A="</s>" , _A="</s>" , _A="<s>" , _A="<unk>" , _A="<pad>" , _A="<mask>" , _A=False , **_A , ): """simple docstring""" __lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else bos_token __lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else eos_token __lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else sep_token __lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else cls_token __lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else unk_token __lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token super().__init__( errors=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , add_prefix_space=_A , **_A , ) with open(_A , encoding="utf-8" ) as vocab_handle: __lowerCAmelCase = json.load(_A ) __lowerCAmelCase = {v: k for k, v in self.encoder.items()} __lowerCAmelCase = errors # how to handle errors in decoding __lowerCAmelCase = bytes_to_unicode() __lowerCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(_A , encoding="utf-8" ) as merges_handle: __lowerCAmelCase = merges_handle.read().split("\n" )[1:-1] __lowerCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] __lowerCAmelCase = dict(zip(_A , range(len(_A ) ) ) ) __lowerCAmelCase = {} __lowerCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowerCAmelCase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return len(self.encoder ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" if token in self.cache: return self.cache[token] __lowerCAmelCase = tuple(_A ) __lowerCAmelCase = get_pairs(_A ) if not pairs: return token while True: __lowerCAmelCase = min(_A , key=lambda _A : self.bpe_ranks.get(_A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowerCAmelCase , __lowerCAmelCase = bigram __lowerCAmelCase = [] __lowerCAmelCase = 0 while i < len(_A ): try: __lowerCAmelCase = word.index(_A , _A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCAmelCase = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCAmelCase = tuple(_A ) __lowerCAmelCase = new_word if len(_A ) == 1: break else: __lowerCAmelCase = get_pairs(_A ) __lowerCAmelCase = " ".join(_A ) __lowerCAmelCase = word return word def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = [] for token in re.findall(self.pat , _A ): __lowerCAmelCase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(" " ) ) return bpe_tokens def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return self.decoder.get(_A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = "".join(_A ) __lowerCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( _A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowerCAmelCase = os.path.join( _A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_A , ensure_ascii=_A ) + "\n" ) __lowerCAmelCase = 0 with open(_A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowerCAmelCase = token_index writer.write(" ".join(_A ) + "\n" ) index += 1 return vocab_file, merge_file def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __SCREAMING_SNAKE_CASE( self , _A , _A = None , _A = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __SCREAMING_SNAKE_CASE( self , _A , _A=False , **_A ): """simple docstring""" __lowerCAmelCase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): __lowerCAmelCase = " " + text return (text, kwargs)
92
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
278
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( __lowercase ): a__ : str = ["""image_processor""", """tokenizer"""] a__ : List[Any] = """AutoImageProcessor""" a__ : Optional[Any] = """AutoTokenizer""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> str: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.image_processor def __call__( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , **SCREAMING_SNAKE_CASE__ : int ) -> str: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __lowerCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if images is not None: __lowerCamelCase = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if text is not None and images is not None: __lowerCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE__ ) , tensor_type=SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __A ( self : str ) -> Any: return ["input_ids", "attention_mask", "pixel_values"]
356
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): @property def __A ( self : List[Any] ) -> Optional[Any]: torch.manual_seed(0 ) __lowerCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __A ( self : Optional[int] ) -> Optional[Any]: __lowerCamelCase = self.dummy_uncond_unet __lowerCamelCase = ScoreSdeVeScheduler() __lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )[ 0 ] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Tuple ) -> str: __lowerCamelCase = '''google/ncsnpp-church-256''' __lowerCamelCase = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __lowerCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
339
0
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration SCREAMING_SNAKE_CASE__ : Dict = 50000 SCREAMING_SNAKE_CASE__ : int = 5000 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = os.path.split(__file__) SCREAMING_SNAKE_CASE__ : int = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> str: for i in range(_SCREAMING_SNAKE_CASE ): lowerCamelCase : List[str] = dataset[i] @get_duration def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: for i in range(0 ,len(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ): lowerCamelCase : Optional[Any] = dataset[i : i + batch_size] @get_duration def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: with dataset.formatted_as(type=_SCREAMING_SNAKE_CASE ): for i in range(_SCREAMING_SNAKE_CASE ): lowerCamelCase : Any = dataset[i] @get_duration def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: with dataset.formatted_as(type=_SCREAMING_SNAKE_CASE ): for i in range(0 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): lowerCamelCase : List[str] = dataset[i : i + batch_size] def A ( ) -> Optional[Any]: lowerCamelCase : Optional[Any] = {"num examples": SPEED_TEST_N_EXAMPLES} lowerCamelCase : Dict = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] lowerCamelCase : Optional[int] = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) lowerCamelCase : Tuple = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) lowerCamelCase : List[Any] = generate_example_dataset( os.path.join(_SCREAMING_SNAKE_CASE ,"dataset.arrow" ) ,_SCREAMING_SNAKE_CASE ,num_examples=_SCREAMING_SNAKE_CASE ,seq_shapes={"list": (100,)} ,) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ ,str(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase : str = func(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) print("shuffling dataset" ) lowerCamelCase : Optional[Any] = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " ,func.__name__ ,str(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase : int = func( _SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE ,"wb" ) as f: f.write(json.dumps(_SCREAMING_SNAKE_CASE ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
48
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase ) -> None: create_state_space_tree(UpperCAmelCase , [] , 0 , [0 for i in range(len(UpperCAmelCase ) )] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> None: if index == len(UpperCAmelCase ): print(UpperCAmelCase ) return for i in range(len(UpperCAmelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case_ = True create_state_space_tree(UpperCAmelCase , UpperCAmelCase , index + 1 , UpperCAmelCase ) current_sequence.pop() snake_case_ = False __UpperCamelCase = [3, 1, 2, 4] generate_all_permutations(sequence) __UpperCamelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
69
0
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets UpperCAmelCase ="\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" UpperCAmelCase ="\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" UpperCAmelCase ="\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] ,) def UpperCamelCase__ ( self ) -> str: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_=None ,lowerCamelCase_="uniform_average" ,lowerCamelCase_=True ) -> List[Any]: A = mean_squared_error( _A ,_A ,sample_weight=_A ,multioutput=_A ,squared=_A ) return {"mse": mse}
363
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = ['''image_processor''', '''tokenizer'''] _lowerCamelCase = '''OwlViTImageProcessor''' _lowerCamelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,**lowerCamelCase_ ) -> Tuple: A = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,lowerCamelCase_ ,) A = kwargs.pop("""feature_extractor""" ) A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase_ ,lowerCamelCase_ ) def __call__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_="max_length" ,lowerCamelCase_="np" ,**lowerCamelCase_ ) -> Optional[Any]: if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or (isinstance(lowerCamelCase_ ,lowerCamelCase_ ) and not isinstance(text[0] ,lowerCamelCase_ )): A = [self.tokenizer(lowerCamelCase_ ,padding=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ )] elif isinstance(lowerCamelCase_ ,lowerCamelCase_ ) and isinstance(text[0] ,lowerCamelCase_ ): A = [] # Maximum number of queries across batch A = max([len(lowerCamelCase_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCamelCase_ ) != max_num_queries: A = t + [""" """] * (max_num_queries - len(lowerCamelCase_ )) A = self.tokenizer(lowerCamelCase_ ,padding=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) encodings.append(lowerCamelCase_ ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": A = np.concatenate([encoding["""input_ids"""] for encoding in encodings] ,axis=0 ) A = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] ,axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] ,axis=0 ) A = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] ,axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A = torch.cat([encoding["""input_ids"""] for encoding in encodings] ,dim=0 ) A = torch.cat([encoding["""attention_mask"""] for encoding in encodings] ,dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A = tf.stack([encoding["""input_ids"""] for encoding in encodings] ,axis=0 ) A = tf.stack([encoding["""attention_mask"""] for encoding in encodings] ,axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) A = BatchEncoding() A = input_ids A = attention_mask if query_images is not None: A = BatchEncoding() A = self.image_processor( lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ).pixel_values A = query_pixel_values if images is not None: A = self.image_processor(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) if text is not None and images is not None: A = image_features.pixel_values return encoding elif query_images is not None and images is not None: A = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) ,tensor_type=lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> int: return self.image_processor.post_process(*lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[Any]: return self.image_processor.post_process_object_detection(*lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[Any]: return self.image_processor.post_process_image_guided_detection(*lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> List[str]: return self.tokenizer.batch_decode(*lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> List[str]: return self.tokenizer.decode(*lowerCamelCase_ ,**lowerCamelCase_ ) @property def UpperCamelCase__ ( self ) -> Union[str, Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,lowerCamelCase_ ,) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Union[str, Any]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,lowerCamelCase_ ,) return self.image_processor
77
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( A_ ): lowercase__ = ['''image_processor''', '''tokenizer'''] lowercase__ = '''ViltImageProcessor''' lowercase__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : str , snake_case_ : Optional[Any]=None , snake_case_ : Dict=None , **snake_case_ : Dict ) -> Union[str, Any]: '''simple docstring''' A__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , snake_case_ , ) A__ = kwargs.pop("feature_extractor" ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(snake_case_ , snake_case_ ) A__ = self.image_processor def __call__( self : Optional[int] , snake_case_ : Tuple , snake_case_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , snake_case_ : bool = True , snake_case_ : Union[bool, str, PaddingStrategy] = False , snake_case_ : Union[bool, str, TruncationStrategy] = None , snake_case_ : Optional[int] = None , snake_case_ : int = 0 , snake_case_ : Optional[int] = None , snake_case_ : Optional[bool] = None , snake_case_ : Optional[bool] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = True , snake_case_ : Optional[Union[str, TensorType]] = None , **snake_case_ : Optional[Any] , ) -> BatchEncoding: '''simple docstring''' A__ = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) # add pixel_values + pixel_mask A__ = self.image_processor(snake_case_ , return_tensors=snake_case_ ) encoding.update(snake_case_ ) return encoding def __magic_name__ ( self : str , *snake_case_ : List[Any] , **snake_case_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def __magic_name__ ( self : str , *snake_case_ : Optional[int] , **snake_case_ : Any ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def __magic_name__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A__ = self.tokenizer.model_input_names A__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __magic_name__ ( self : str ) -> Dict: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , snake_case_ , ) return self.image_processor_class @property def __magic_name__ ( self : Dict ) -> str: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , snake_case_ , ) return self.image_processor
247
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : lowercase__ = field( default=A_, metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(A_ )} ) lowercase__ = field( default=A_, metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) lowercase__ = field( default=1_28, metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) }, ) lowercase__ = field( default=1_28, metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''}, ) lowercase__ = field( default=64, metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) }, ) lowercase__ = field( default=30, metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) }, ) lowercase__ = field( default=A_, metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) lowercase__ = field( default=A_, metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) lowercase__ = field( default=0.0, metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) lowercase__ = field( default=20, metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) lowercase__ = field( default=0, metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) }, ) lowercase__ = field(default=1, metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( A_ ): lowercase__ = '''train''' lowercase__ = '''dev''' class UpperCAmelCase_ ( A_ ): lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 def __init__( self : List[Any] , snake_case_ : SquadDataTrainingArguments , snake_case_ : PreTrainedTokenizer , snake_case_ : Optional[int] = None , snake_case_ : Union[str, Split] = Split.train , snake_case_ : Optional[bool] = False , snake_case_ : Optional[str] = None , snake_case_ : Optional[str] = "pt" , ) -> Union[str, Any]: '''simple docstring''' A__ = args A__ = is_language_sensitive A__ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(snake_case_ , snake_case_ ): try: A__ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) A__ = mode # Load data features from cache or dataset file A__ = "v2" if args.version_2_with_negative else "v1" A__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A__ = cached_features_file + ".lock" with FileLock(snake_case_ ): if os.path.exists(snake_case_ ) and not args.overwrite_cache: A__ = time.time() A__ = torch.load(snake_case_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. A__ = self.old_features["features"] A__ = self.old_features.get("dataset" , snake_case_ ) A__ = self.old_features.get("examples" , snake_case_ ) logger.info( F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" " future run" ) else: if mode == Split.dev: A__ = self.processor.get_dev_examples(args.data_dir ) else: A__ = self.processor.get_train_examples(args.data_dir ) A__, A__ = squad_convert_examples_to_features( examples=self.examples , tokenizer=snake_case_ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=snake_case_ , ) A__ = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , snake_case_ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : Dict ) -> Optional[Any]: '''simple docstring''' return len(self.features ) def __getitem__( self : Union[str, Any] , snake_case_ : Any ) -> Dict[str, torch.Tensor]: '''simple docstring''' A__ = self.features[i] A__ = torch.tensor(feature.input_ids , dtype=torch.long ) A__ = torch.tensor(feature.attention_mask , dtype=torch.long ) A__ = torch.tensor(feature.token_type_ids , dtype=torch.long ) A__ = torch.tensor(feature.cls_index , dtype=torch.long ) A__ = torch.tensor(feature.p_mask , dtype=torch.float ) A__ = torch.tensor(feature.is_impossible , dtype=torch.float ) A__ = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: A__ = torch.tensor(feature.start_position , dtype=torch.long ) A__ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
247
1
'''simple docstring''' from collections import deque def a__ ( lowercase : Optional[Any] ) -> Any: """simple docstring""" _UpperCamelCase = len(lowercase ) _UpperCamelCase = deque() _UpperCamelCase = [False for _ in range(lowercase )] _UpperCamelCase = [-1 for _ in range(lowercase )] _UpperCamelCase = index_of[:] def strong_connect(lowercase : int, lowercase : Any, lowercase : Union[str, Any] ): _UpperCamelCase = index # the number when this node is seen _UpperCamelCase = index # lowest rank node reachable from here index += 1 stack.append(lowercase ) _UpperCamelCase = True for w in g[v]: if index_of[w] == -1: _UpperCamelCase = strong_connect(lowercase, lowercase, lowercase ) _UpperCamelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: _UpperCamelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: _UpperCamelCase = [] _UpperCamelCase = stack.pop() _UpperCamelCase = False component.append(lowercase ) while w != v: _UpperCamelCase = stack.pop() _UpperCamelCase = False component.append(lowercase ) components.append(lowercase ) return index _UpperCamelCase = [] for v in range(lowercase ): if index_of[v] == -1: strong_connect(lowercase, 0, lowercase ) return components def a__ ( lowercase : List[Any], lowercase : Optional[Any] ) -> Any: """simple docstring""" _UpperCamelCase = [[] for _ in range(lowercase )] for u, v in edges: g[u].append(lowercase ) return g if __name__ == "__main__": # Test lowercase__ : Optional[int] = 7 lowercase__ : Optional[int] = [0, 0, 1, 2, 3, 3, 4, 4, 6] lowercase__ : int = [1, 3, 2, 0, 1, 4, 5, 6, 5] lowercase__ : Tuple = [(u, v) for u, v in zip(source, target)] lowercase__ : List[Any] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
360
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor lowercase__ : Optional[Any] = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : List[Any] , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : List[str] ) -> None: '''simple docstring''' warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
287
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __lowerCamelCase : Union[str, Any] = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def _snake_case ( lowerCAmelCase : Any=True ): """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=A__ ) ) class a__ ( A__ ): A = None A = None def __UpperCamelCase ( self : Optional[int],_A : List[Any],_A : List[str] ): """simple docstring""" with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : Optional[int] = dataset_module_factory(_A,cache_dir=_A ) SCREAMING_SNAKE_CASE_ : List[Any] = import_main_class(dataset_module.module_path,dataset=_A ) SCREAMING_SNAKE_CASE_ : DatasetBuilder = builder_cls( cache_dir=_A,config_name=_A,hash=dataset_module.hash,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_A ).replace(os.sep,"/" ), config.DATASET_INFO_FILENAME, ] ) SCREAMING_SNAKE_CASE_ : Optional[int] = cached_path(_A,cache_dir=_A ) self.assertTrue(os.path.exists(_A ) ) @pytest.mark.integration def _snake_case ( lowerCAmelCase : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = tmp_path_factory.mktemp("test_hf_gcp" ) / "test_wikipedia_simple" SCREAMING_SNAKE_CASE_ : List[str] = dataset_module_factory("wikipedia" , cache_dir=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = import_main_class(dataset_module.module_path ) SCREAMING_SNAKE_CASE_ : DatasetBuilder = builder_cls( cache_dir=lowerCAmelCase , config_name="20220301.frr" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam SCREAMING_SNAKE_CASE_ : Optional[int] = None builder_instance.download_and_prepare() SCREAMING_SNAKE_CASE_ : Optional[Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = dataset_module_factory("wikipedia" , cache_dir=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : DatasetBuilder = builder_cls( cache_dir=lowerCAmelCase , config_name="20220301.frr" , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE_ : List[Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert "train" in ds assert isinstance(ds["train"] , lowerCAmelCase ) assert next(iter(ds["train"] ) )
18
"""simple docstring""" from __future__ import annotations class snake_case : def __init__( self , __UpperCAmelCase) ->Any: a_ = TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float.") if len(__UpperCAmelCase) != 0: a_ = len(rows[0]) if cols == 0: raise error for row in rows: if len(__UpperCAmelCase) != cols: raise error for value in row: if not isinstance(__UpperCAmelCase , (int, float)): raise error a_ = rows else: a_ = [] def UpperCAmelCase__ ( self) ->list[list[int]]: return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def UpperCAmelCase__ ( self) ->int: return len(self.rows) @property def UpperCAmelCase__ ( self) ->int: return len(self.rows[0]) @property def UpperCAmelCase__ ( self) ->tuple[int, int]: return (self.num_rows, self.num_columns) @property def UpperCAmelCase__ ( self) ->bool: return self.order[0] == self.order[1] def UpperCAmelCase__ ( self) ->Matrix: a_ = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(__UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def UpperCAmelCase__ ( self) ->bool: return bool(self.determinant()) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->int: a_ = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(__UpperCAmelCase).determinant() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->int: if (row + column) % 2 == 0: return self.get_minor(__UpperCAmelCase , __UpperCAmelCase) return -1 * self.get_minor(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Matrix: return Matrix( [ [self.get_minor(__UpperCAmelCase , __UpperCAmelCase) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def UpperCAmelCase__ ( self) ->Matrix: return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def UpperCAmelCase__ ( self) ->Matrix: a_ = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Matrix: a_ = self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse") return self.adjugate() * (1 / determinant) def __repr__( self) ->str: return str(self.rows) def __str__( self) ->str: if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(__UpperCAmelCase) for value in row]) + ".]" for row in self.rows ]) + "]" ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->None: a_ = TypeError("Row must be a list containing all ints and/or floats") if not isinstance(__UpperCAmelCase , __UpperCAmelCase): raise type_error for value in row: if not isinstance(__UpperCAmelCase , (int, float)): raise type_error if len(__UpperCAmelCase) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix") if position is None: self.rows.append(__UpperCAmelCase) else: a_ = self.rows[0:position] + [row] + self.rows[position:] def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->None: a_ = TypeError( "Column must be a list containing all ints and/or floats") if not isinstance(__UpperCAmelCase , __UpperCAmelCase): raise type_error for value in column: if not isinstance(__UpperCAmelCase , (int, float)): raise type_error if len(__UpperCAmelCase) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix") if position is None: a_ = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: a_ = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self , __UpperCAmelCase) ->bool: if not isinstance(__UpperCAmelCase , __UpperCAmelCase): return NotImplemented return self.rows == other.rows def __ne__( self , __UpperCAmelCase) ->bool: return not self == other def __neg__( self) ->Matrix: return self * -1 def __add__( self , __UpperCAmelCase) ->Matrix: if self.order != other.order: raise ValueError("Addition requires matrices of the same order") return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self , __UpperCAmelCase) ->Matrix: if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order") return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self , __UpperCAmelCase) ->Matrix: if isinstance(__UpperCAmelCase , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(__UpperCAmelCase , __UpperCAmelCase): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second") return Matrix( [ [Matrix.dot_product(__UpperCAmelCase , __UpperCAmelCase) for column in other.columns()] for row in self.rows ]) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix") def __pow__( self , __UpperCAmelCase) ->Matrix: if not isinstance(__UpperCAmelCase , __UpperCAmelCase): raise TypeError("A Matrix can only be raised to the power of an int") if not self.is_square: raise ValueError("Only square matrices can be raised to a power") if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power") a_ = self for _ in range(other - 1): result *= self return result @classmethod def UpperCAmelCase__ ( cls , __UpperCAmelCase , __UpperCAmelCase) ->int: return sum(row[i] * column[i] for i in range(len(__UpperCAmelCase))) if __name__ == "__main__": import doctest doctest.testmod()
243
0
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> str: """simple docstring""" lowerCAmelCase_ : str = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ).convert("RGB" ) lowerCAmelCase_ : List[str] = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowerCAmelCase_ : str = transform(__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) return image def __lowerCamelCase ( __UpperCamelCase ) -> List[Any]: """simple docstring""" if "visual_encoder" in key: lowerCAmelCase_ : Optional[int] = re.sub("visual_encoder*" , "vision_model.encoder" , __UpperCamelCase ) if "blocks" in key: lowerCAmelCase_ : Optional[int] = re.sub(r"blocks" , "layers" , __UpperCamelCase ) if "attn" in key: lowerCAmelCase_ : str = re.sub(r"attn" , "self_attn" , __UpperCamelCase ) if "norm1" in key: lowerCAmelCase_ : str = re.sub(r"norm1" , "layer_norm1" , __UpperCamelCase ) if "norm2" in key: lowerCAmelCase_ : int = re.sub(r"norm2" , "layer_norm2" , __UpperCamelCase ) if "encoder.norm" in key: lowerCAmelCase_ : Tuple = re.sub(r"encoder.norm" , "post_layernorm" , __UpperCamelCase ) if "encoder.patch_embed.proj" in key: lowerCAmelCase_ : str = re.sub(r"encoder.patch_embed.proj" , "embeddings.patch_embedding" , __UpperCamelCase ) if "encoder.pos_embed" in key: lowerCAmelCase_ : List[str] = re.sub(r"encoder.pos_embed" , "embeddings.position_embedding" , __UpperCamelCase ) if "encoder.cls_token" in key: lowerCAmelCase_ : str = re.sub(r"encoder.cls_token" , "embeddings.class_embedding" , __UpperCamelCase ) if "self_attn" in key: lowerCAmelCase_ : Union[str, Any] = re.sub(r"self_attn.proj" , "self_attn.projection" , __UpperCamelCase ) return key @torch.no_grad() def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=None ) -> str: """simple docstring""" if config_path is not None: lowerCAmelCase_ : Tuple = BlipConfig.from_pretrained(__UpperCamelCase ) else: lowerCAmelCase_ : List[Any] = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowerCAmelCase_ : Any = BlipForConditionalGeneration(__UpperCamelCase ).eval() lowerCAmelCase_ : Any = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth""" lowerCAmelCase_ : Dict = blip_decoder(pretrained=__UpperCamelCase , image_size=384 , vit="base" ) lowerCAmelCase_ : List[str] = pt_model.eval() lowerCAmelCase_ : str = pt_model.state_dict() for key in modified_state_dict.copy(): lowerCAmelCase_ : Optional[int] = modified_state_dict.pop(__UpperCamelCase ) lowerCAmelCase_ : List[Any] = rename_key(__UpperCamelCase ) lowerCAmelCase_ : Any = value hf_model.load_state_dict(__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = 384 lowerCAmelCase_ : Union[str, Any] = load_demo_image(image_size=__UpperCamelCase , device="cpu" ) lowerCAmelCase_ : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) lowerCAmelCase_ : Optional[int] = tokenizer(["a picture of"] ).input_ids lowerCAmelCase_ : List[str] = hf_model.generate(__UpperCamelCase , __UpperCamelCase ) assert out[0].tolist() == [30522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowerCAmelCase_ : Tuple = hf_model.generate(__UpperCamelCase ) assert out[0].tolist() == [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__UpperCamelCase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowerCAmelCase_ : List[str] = ( """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth""" ) lowerCAmelCase_ : List[str] = blip_vqa(pretrained=__UpperCamelCase , image_size=__UpperCamelCase , vit="base" ) vqa_model.eval() lowerCAmelCase_ : Union[str, Any] = vqa_model.state_dict() for key in modified_state_dict.copy(): lowerCAmelCase_ : Tuple = modified_state_dict.pop(__UpperCamelCase ) lowerCAmelCase_ : Dict = rename_key(__UpperCamelCase ) lowerCAmelCase_ : List[str] = value lowerCAmelCase_ : Optional[int] = BlipForQuestionAnswering(__UpperCamelCase ) hf_vqa_model.load_state_dict(__UpperCamelCase ) lowerCAmelCase_ : str = ["""How many dogs are in this image?"""] lowerCAmelCase_ : Optional[Any] = tokenizer(__UpperCamelCase , return_tensors="pt" ).input_ids lowerCAmelCase_ : List[str] = hf_vqa_model.generate(__UpperCamelCase , __UpperCamelCase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa" ) lowerCAmelCase_ : int = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth""" lowerCAmelCase_ : str = blip_itm(pretrained=__UpperCamelCase , image_size=__UpperCamelCase , vit="base" ) itm_model.eval() lowerCAmelCase_ : Union[str, Any] = itm_model.state_dict() for key in modified_state_dict.copy(): lowerCAmelCase_ : str = modified_state_dict.pop(__UpperCamelCase ) lowerCAmelCase_ : int = rename_key(__UpperCamelCase ) lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Union[str, Any] = BlipForImageTextRetrieval(__UpperCamelCase ) lowerCAmelCase_ : Tuple = ["""A picture of a woman with a dog sitting in a beach"""] lowerCAmelCase_ : Optional[Any] = tokenizer( __UpperCamelCase , return_tensors="pt" , padding="max_length" , truncation=__UpperCamelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__UpperCamelCase ) hf_itm_model.eval() lowerCAmelCase_ : List[str] = hf_itm_model(__UpperCamelCase , __UpperCamelCase , use_itm_head=__UpperCamelCase ) lowerCAmelCase_ : Tuple = hf_itm_model(__UpperCamelCase , __UpperCamelCase , use_itm_head=__UpperCamelCase ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm" ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowercase__ = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
360
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __lowerCamelCase : '''simple docstring''' def __init__( self : List[str] , a_ : Any , a_ : Any=None , a_ : int=None , a_ : str=None , a_ : Optional[int]="resnet50" , a_ : str=3 , a_ : str=32 , a_ : Union[str, Any]=3 , a_ : Tuple=True , a_ : List[str]=True , ): lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : Dict = out_indices if out_indices is not None else [4] lowerCAmelCase_ : int = stage_names lowerCAmelCase_ : Optional[Any] = out_features lowerCAmelCase_ : Tuple = backbone lowerCAmelCase_ : List[str] = batch_size lowerCAmelCase_ : Tuple = image_size lowerCAmelCase_ : List[Any] = num_channels lowerCAmelCase_ : Optional[int] = use_pretrained_backbone lowerCAmelCase_ : List[Any] = is_training def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = self.get_config() return config, pixel_values def lowerCamelCase ( self : Dict ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCamelCase ( self : Union[str, Any] , a_ : str , a_ : Optional[int] ): lowerCAmelCase_ : Union[str, Any] = TimmBackbone(config=a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase_ : int = model(a_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = config_and_inputs lowerCAmelCase_ : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class __lowerCamelCase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () a_ : int = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ : Union[str, Any] = False a_ : str = False a_ : List[Any] = False a_ : Dict = False def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Union[str, Any] = TimmBackboneModelTester(self ) lowerCAmelCase_ : List[str] = ConfigTester(self , config_class=a_ , has_text_modality=a_ ) def lowerCamelCase ( self : Dict ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = "resnet18" lowerCAmelCase_ : List[Any] = "microsoft/resnet-18" lowerCAmelCase_ : Tuple = AutoBackbone.from_pretrained(a_ , use_timm_backbone=a_ ) lowerCAmelCase_ : str = AutoBackbone.from_pretrained(a_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase_ : Dict = AutoBackbone.from_pretrained(a_ , use_timm_backbone=a_ , out_indices=[1, 2, 3] ) lowerCAmelCase_ : Any = AutoBackbone.from_pretrained(a_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowerCamelCase ( self : Optional[int] ): pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowerCamelCase ( self : Dict ): pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowerCamelCase ( self : List[Any] ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowerCamelCase ( self : Dict ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowerCamelCase ( self : Any ): pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowerCamelCase ( self : Tuple ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCamelCase ( self : str ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowerCamelCase ( self : Any ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowerCamelCase ( self : List[str] ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCamelCase ( self : Tuple ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCamelCase ( self : Optional[int] ): pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowerCamelCase ( self : Dict ): pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowerCamelCase ( self : int ): pass @unittest.skip("Safetensors is not supported by timm." ) def lowerCamelCase ( self : Union[str, Any] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCamelCase ( self : Union[str, Any] ): pass def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(a_ ) lowerCAmelCase_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : str = [*signature.parameters.keys()] lowerCAmelCase_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Optional[int] = True lowerCAmelCase_ : List[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase_ : int = self.all_model_classes[0] lowerCAmelCase_ : Optional[int] = model_class(a_ ) model.to(a_ ) lowerCAmelCase_ : Union[str, Any] = self._prepare_for_class(a_ , a_ ) lowerCAmelCase_ : str = model(**a_ ) lowerCAmelCase_ : Any = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase_ : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase_ : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCamelCase ( self : str ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Dict = model_class(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Tuple = model(**a_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase_ : Optional[int] = copy.deepcopy(a_ ) lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : Any = model_class(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : int = model(**a_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase_ : str = copy.deepcopy(a_ ) lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Optional[int] = model_class(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Optional[Any] = model(**a_ )
161
0
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ : Optional[int] = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' lowerCAmelCase_ : int = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' lowerCAmelCase_ : Union[str, Any] = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : Any ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def UpperCamelCase__ ( self : List[Any] ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def UpperCamelCase__ ( self : str , __a : Optional[int] , __a : List[str] , __a : str=None , __a : List[str]="uniform_average" , __a : Tuple=True ): _a = mean_squared_error( __a , __a , sample_weight=__a , multioutput=__a , squared=__a ) return {"mse": mse}
63
from __future__ import annotations def A ( _UpperCAmelCase : list[int] ) -> bool: '''simple docstring''' return len(set(_UpperCAmelCase ) ) == len(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
339
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES __lowerCAmelCase = '''tiny-wmt19-en-ru''' # Build # borrowed from a test __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __lowerCAmelCase = dict(zip(vocab, range(len(vocab)))) __lowerCAmelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = Path(tmpdirname) __lowerCAmelCase = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] __lowerCAmelCase = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] __lowerCAmelCase = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) __lowerCAmelCase = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) __lowerCAmelCase = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=10_00, tgt_vocab_size=10_00, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) __lowerCAmelCase = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test __lowerCAmelCase = tokenizer(['''Making tiny model'''], return_tensors='''pt''') __lowerCAmelCase = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
288
from __future__ import annotations def snake_case_ ( snake_case , snake_case ) -> list[str]: if nth_term == "": return [""] lowercase__: Tuple = int(snake_case ) lowercase__: int = int(snake_case ) lowercase__: list[str] = [] for temp in range(int(snake_case ) ): series.append(f'1 / {pow(temp + 1 , int(snake_case ) )}' if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase = int(input('''Enter the last number (nth term) of the P-Series''')) __lowerCAmelCase = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
288
1
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __magic_name__ = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __magic_name__ = concatenate_datasets __magic_name__ = DownloadConfig __magic_name__ = DownloadManager __magic_name__ = DownloadMode __magic_name__ = DownloadConfig __magic_name__ = DownloadMode __magic_name__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
100
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_a) class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) lowerCamelCase__ : ClassVar[Features] = Features({"text": Value("string")}) lowerCamelCase__ : ClassVar[Features] = Features({}) lowerCamelCase__ : str = "text" @property def _UpperCAmelCase ( self ) -> Dict[str, str]: return {self.text_column: "text"}
77
0
import math import tensorflow as tf from packaging import version def UpperCamelCase ( _a ) -> int: '''simple docstring''' lowercase_ :Dict = tf.convert_to_tensor(_a ) lowercase_ :Union[str, Any] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def UpperCamelCase ( _a ) -> List[str]: '''simple docstring''' lowercase_ :Dict = tf.convert_to_tensor(_a ) lowercase_ :List[str] = tf.cast(math.pi , x.dtype ) lowercase_ :Optional[int] = tf.cast(0.044_715 , x.dtype ) lowercase_ :Union[str, Any] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(_a , 3 )) )) return x * cdf def UpperCamelCase ( _a ) -> Any: '''simple docstring''' lowercase_ :List[str] = tf.convert_to_tensor(_a ) return x * tf.tanh(tf.math.softplus(_a ) ) def UpperCamelCase ( _a ) -> List[Any]: '''simple docstring''' lowercase_ :Dict = tf.convert_to_tensor(_a ) lowercase_ :Optional[Any] = tf.cast(0.044_715 , x.dtype ) lowercase_ :str = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def UpperCamelCase ( _a ) -> Union[str, Any]: '''simple docstring''' lowercase_ :Union[str, Any] = tf.convert_to_tensor(_a ) lowercase_ :Union[str, Any] = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def UpperCamelCase ( _a ) -> List[str]: '''simple docstring''' return tf.clip_by_value(_gelu(_a ) , -1_0 , 1_0 ) def UpperCamelCase ( _a , _a=-1 ) -> Dict: '''simple docstring''' lowercase_ , lowercase_ :Any = tf.split(_a , 2 , axis=_a ) return a * tf.math.sigmoid(_a ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def UpperCamelCase ( _a ) -> Dict: '''simple docstring''' return tf.keras.activations.gelu(_a , approximate=_a ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.keras.activations.gelu SCREAMING_SNAKE_CASE : Optional[int] = approximate_gelu_wrap else: SCREAMING_SNAKE_CASE : int = _gelu SCREAMING_SNAKE_CASE : Union[str, Any] = _gelu_new SCREAMING_SNAKE_CASE : Union[str, Any] = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def UpperCamelCase ( _a ) -> int: '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
252
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase : '''simple docstring''' lowercase : Dict =MBartConfig lowercase : Union[str, Any] ={} lowercase : Optional[int] ="""gelu""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=20 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_=0 , ): lowercase_ :int = parent lowercase_ :Any = batch_size lowercase_ :Any = seq_length lowercase_ :Union[str, Any] = is_training lowercase_ :Optional[Any] = use_labels lowercase_ :List[str] = vocab_size lowercase_ :Union[str, Any] = hidden_size lowercase_ :Optional[Any] = num_hidden_layers lowercase_ :Optional[int] = num_attention_heads lowercase_ :Any = intermediate_size lowercase_ :str = hidden_dropout_prob lowercase_ :List[Any] = attention_probs_dropout_prob lowercase_ :Union[str, Any] = max_position_embeddings lowercase_ :str = eos_token_id lowercase_ :List[Any] = pad_token_id lowercase_ :List[str] = bos_token_id def UpperCamelCase ( self ): lowercase_ :Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase_ :Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase_ :Optional[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase_ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ :List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ :Optional[Any] = prepare_mbart_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Tuple = TFMBartModel(config=UpperCamelCase_ ).get_decoder() lowercase_ :Any = inputs_dict['''input_ids'''] lowercase_ :List[Any] = input_ids[:1, :] lowercase_ :List[Any] = inputs_dict['''attention_mask'''][:1, :] lowercase_ :str = inputs_dict['''head_mask'''] lowercase_ :List[str] = 1 # first forward pass lowercase_ :Any = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ ) lowercase_ , lowercase_ :int = outputs.to_tuple() lowercase_ :List[Any] = past_key_values[1] def UpperCamelCase ( _a , _a , _a , _a=None , _a=None , _a=None , _a=None , _a=None , ) -> int: '''simple docstring''' if attention_mask is None: lowercase_ :Dict = tf.cast(tf.math.not_equal(_a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase_ :Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase_ :Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase_ :Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase_ :Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' lowercase : Optional[Any] =(TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase : Optional[Any] =(TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase : Optional[Any] =( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase : Optional[Any] =True lowercase : Optional[Any] =False lowercase : List[str] =False def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def UpperCamelCase ( self ): lowercase_ :Optional[int] = TFMBartModelTester(self ) lowercase_ :str = ConfigTester(self , config_class=UpperCamelCase_ ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() def UpperCamelCase ( self ): lowercase_ :str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowercase : List[str] =[ """ UN Chief Says There Is No Military Solution in Syria""", ] lowercase : Optional[int] =[ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] lowercase : Any ="""facebook/mbart-large-en-ro""" @cached_property def UpperCamelCase ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase ( self ): lowercase_ :Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCamelCase ( self , **UpperCamelCase_ ): lowercase_ :Any = self.translate_src_text(**UpperCamelCase_ ) self.assertListEqual(self.expected_text , UpperCamelCase_ ) def UpperCamelCase ( self , **UpperCamelCase_ ): lowercase_ :Optional[Any] = self.tokenizer(self.src_text , **UpperCamelCase_ , return_tensors='''tf''' ) lowercase_ :Union[str, Any] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) lowercase_ :Any = self.tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) return generated_words @slow def UpperCamelCase ( self ): self._assert_generated_batch_equal_expected()
252
1
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def lowerCamelCase__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] ): """simple docstring""" lowerCAmelCase_ = OmegaConf.load(__lowerCAmelCase ) lowerCAmelCase_ = torch.load(__lowerCAmelCase , map_location="cpu" )["""model"""] lowerCAmelCase_ = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase_ = {} lowerCAmelCase_ = """first_stage_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCAmelCase_ = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase_ = {} lowerCAmelCase_ = """model.diffusion_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCAmelCase_ = state_dict[key] lowerCAmelCase_ = config.model.params.first_stage_config.params lowerCAmelCase_ = config.model.params.unet_config.params lowerCAmelCase_ = VQModel(**__lowerCAmelCase ).eval() vqvae.load_state_dict(__lowerCAmelCase ) lowerCAmelCase_ = UNetLDMModel(**__lowerCAmelCase ).eval() unet.load_state_dict(__lowerCAmelCase ) lowerCAmelCase_ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__lowerCAmelCase , ) lowerCAmelCase_ = LDMPipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipeline.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", type=str, required=True) parser.add_argument("--config_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) _A = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
231
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ """BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""", """BridgeTower/bridgetower-base-itm-mlm""": ( """https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json""" ), } class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Dict = """bridgetower_vision_model""" def __init__( self , __magic_name__=7_6_8 , __magic_name__=1_2 , __magic_name__=3 , __magic_name__=1_6 , __magic_name__=2_8_8 , __magic_name__=1 , __magic_name__=1e-05 , __magic_name__=False , __magic_name__=True , __magic_name__=False , **__magic_name__ , ): super().__init__(**__magic_name__ ) lowerCamelCase : Dict = hidden_size lowerCamelCase : str = num_hidden_layers lowerCamelCase : Optional[int] = num_channels lowerCamelCase : List[str] = patch_size lowerCamelCase : Tuple = image_size lowerCamelCase : Any = initializer_factor lowerCamelCase : Tuple = layer_norm_eps lowerCamelCase : Tuple = stop_gradient lowerCamelCase : Optional[int] = share_layernorm lowerCamelCase : str = remove_last_layer @classmethod def UpperCamelCase__ ( cls , __magic_name__ , **__magic_name__ ): lowerCamelCase , lowerCamelCase : int = cls.get_config_dict(__magic_name__ , **__magic_name__ ) if config_dict.get("""model_type""" ) == "bridgetower": lowerCamelCase : str = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Union[str, Any] = """bridgetower_text_model""" def __init__( self , __magic_name__=5_0_2_6_5 , __magic_name__=7_6_8 , __magic_name__=1_2 , __magic_name__=1_2 , __magic_name__=1 , __magic_name__=3_0_7_2 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=5_1_4 , __magic_name__=1 , __magic_name__=1e-05 , __magic_name__=1 , __magic_name__=0 , __magic_name__=2 , __magic_name__="absolute" , __magic_name__=True , **__magic_name__ , ): super().__init__(**__magic_name__ ) lowerCamelCase : int = vocab_size lowerCamelCase : int = hidden_size lowerCamelCase : Any = num_hidden_layers lowerCamelCase : Union[str, Any] = num_attention_heads lowerCamelCase : Tuple = hidden_act lowerCamelCase : Optional[int] = initializer_factor lowerCamelCase : Any = intermediate_size lowerCamelCase : List[str] = hidden_dropout_prob lowerCamelCase : Dict = attention_probs_dropout_prob lowerCamelCase : str = max_position_embeddings lowerCamelCase : Union[str, Any] = type_vocab_size lowerCamelCase : Optional[int] = layer_norm_eps lowerCamelCase : Optional[int] = position_embedding_type lowerCamelCase : List[str] = use_cache lowerCamelCase : List[str] = pad_token_id lowerCamelCase : List[str] = bos_token_id lowerCamelCase : Optional[int] = eos_token_id @classmethod def UpperCamelCase__ ( cls , __magic_name__ , **__magic_name__ ): lowerCamelCase , lowerCamelCase : int = cls.get_config_dict(__magic_name__ , **__magic_name__ ) if config_dict.get("""model_type""" ) == "bridgetower": lowerCamelCase : Optional[int] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Dict = """bridgetower""" def __init__( self , __magic_name__=True , __magic_name__="gelu" , __magic_name__=7_6_8 , __magic_name__=1 , __magic_name__=1e-05 , __magic_name__=False , __magic_name__="add" , __magic_name__=1_2 , __magic_name__=6 , __magic_name__=False , __magic_name__=False , __magic_name__=None , __magic_name__=None , **__magic_name__ , ): # TODO: remove this once the Hub files are updated. lowerCamelCase : int = kwargs.pop("""text_config_dict""" , __magic_name__ ) lowerCamelCase : str = kwargs.pop("""vision_config_dict""" , __magic_name__ ) super().__init__(**__magic_name__ ) lowerCamelCase : str = share_cross_modal_transformer_layers lowerCamelCase : Union[str, Any] = hidden_act lowerCamelCase : str = hidden_size lowerCamelCase : Tuple = initializer_factor lowerCamelCase : List[str] = layer_norm_eps lowerCamelCase : int = share_link_tower_layers lowerCamelCase : List[Any] = link_tower_type lowerCamelCase : Tuple = num_attention_heads lowerCamelCase : int = num_hidden_layers lowerCamelCase : Union[str, Any] = tie_word_embeddings lowerCamelCase : Tuple = init_layernorm_from_vision_encoder if text_config is None: lowerCamelCase : Any = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: lowerCamelCase : int = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) lowerCamelCase : Any = BridgeTowerTextConfig(**__magic_name__ ) lowerCamelCase : Optional[Any] = BridgeTowerVisionConfig(**__magic_name__ ) @classmethod def UpperCamelCase__ ( cls , __magic_name__ , __magic_name__ , **__magic_name__ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : str = copy.deepcopy(self.__dict__ ) lowerCamelCase : int = self.text_config.to_dict() lowerCamelCase : Dict = self.vision_config.to_dict() lowerCamelCase : List[str] = self.__class__.model_type return output
287
0
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase (__UpperCamelCase : str , __UpperCamelCase : str ): """simple docstring""" __UpperCamelCase =list(__UpperCamelCase ) __UpperCamelCase =list(__UpperCamelCase ) __UpperCamelCase =0 for i in range(len(__UpperCamelCase ) ): if lista[i] != lista[i]: count += 1 __UpperCamelCase ='''_''' if count > 1: return False else: return "".join(__UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : list[str] ): """simple docstring""" __UpperCamelCase =[] while True: __UpperCamelCase =['''$'''] * len(__UpperCamelCase ) __UpperCamelCase =[] for i in range(len(__UpperCamelCase ) ): for j in range(i + 1 , len(__UpperCamelCase ) ): __UpperCamelCase =compare_string(binary[i] , binary[j] ) if k is False: __UpperCamelCase ='''*''' __UpperCamelCase ='''*''' temp.append('''X''' ) for i in range(len(__UpperCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__UpperCamelCase ) == 0: return pi __UpperCamelCase =list(set(__UpperCamelCase ) ) def lowerCAmelCase (__UpperCamelCase : int , __UpperCamelCase : Sequence[float] ): """simple docstring""" __UpperCamelCase =[] for minterm in minterms: __UpperCamelCase ='''''' for _ in range(__UpperCamelCase ): __UpperCamelCase =str(minterm % 2 ) + string minterm //= 2 temp.append(__UpperCamelCase ) return temp def lowerCAmelCase (__UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : int ): """simple docstring""" __UpperCamelCase =list(__UpperCamelCase ) __UpperCamelCase =list(__UpperCamelCase ) __UpperCamelCase =0 for i in range(len(__UpperCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase (__UpperCamelCase : list[list[int]] , __UpperCamelCase : list[str] ): """simple docstring""" __UpperCamelCase =[] __UpperCamelCase =[0] * len(__UpperCamelCase ) for i in range(len(chart[0] ) ): __UpperCamelCase =0 __UpperCamelCase =-1 for j in range(len(__UpperCamelCase ) ): if chart[j][i] == 1: count += 1 __UpperCamelCase =j if count == 1: __UpperCamelCase =1 for i in range(len(__UpperCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__UpperCamelCase ) ): __UpperCamelCase =0 temp.append(prime_implicants[i] ) while True: __UpperCamelCase =0 __UpperCamelCase =-1 __UpperCamelCase =0 for i in range(len(__UpperCamelCase ) ): __UpperCamelCase =chart[i].count(1 ) if count_n > max_n: __UpperCamelCase =count_n __UpperCamelCase =i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__UpperCamelCase ) ): __UpperCamelCase =0 def lowerCAmelCase (__UpperCamelCase : list[str] , __UpperCamelCase : list[str] ): """simple docstring""" __UpperCamelCase =[[0 for x in range(len(__UpperCamelCase ) )] for x in range(len(__UpperCamelCase ) )] for i in range(len(__UpperCamelCase ) ): __UpperCamelCase =prime_implicants[i].count('''_''' ) for j in range(len(__UpperCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , __UpperCamelCase ): __UpperCamelCase =1 return chart def lowerCAmelCase (): """simple docstring""" __UpperCamelCase =int(input('''Enter the no. of variables\n''' ) ) __UpperCamelCase =[ float(__UpperCamelCase ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] __UpperCamelCase =decimal_to_binary(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase =check(__UpperCamelCase ) print('''Prime Implicants are:''' ) print(__UpperCamelCase ) __UpperCamelCase =prime_implicant_chart(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase =selection(__UpperCamelCase , __UpperCamelCase ) print('''Essential Prime Implicants are:''' ) print(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
361
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __lowercase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class _lowercase ( __a ): """simple docstring""" lowercase__ = '''albert''' def __init__( self : List[Any] , UpperCamelCase__ : List[Any]=30000 , UpperCamelCase__ : int=128 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Optional[Any]=12 , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : Union[str, Any]=64 , UpperCamelCase__ : Any=16384 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Optional[int]="gelu_new" , UpperCamelCase__ : int=0 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : Dict=512 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : Tuple=1E-12 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Dict="absolute" , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Optional[Any]=3 , **UpperCamelCase__ : List[str] , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase =vocab_size __UpperCamelCase =embedding_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_hidden_groups __UpperCamelCase =num_attention_heads __UpperCamelCase =inner_group_num __UpperCamelCase =hidden_act __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =classifier_dropout_prob __UpperCamelCase =position_embedding_type class _lowercase ( __a ): """simple docstring""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCamelCase ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
85
0
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> int: while b: __lowerCamelCase , __lowerCamelCase : Any = b, a % b return a def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> int: return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b ) def SCREAMING_SNAKE_CASE__ ( ) -> str: print(F"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(F"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(F"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(F"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(F"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(F"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(F"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(F"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
73
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Union[str, Any] , _A :List[Any]=0.01 , _A :Optional[Any]=1_000 ) -> Tuple: '''simple docstring''' __A = p_stop __A = max_length def __iter__( self :List[Any] ) -> Optional[Any]: '''simple docstring''' __A = 0 __A = False while not stop and count < self.max_length: yield count count += 1 __A = random.random() < self.p_stop class UpperCamelCase__ ( unittest.TestCase): def lowercase_ ( self :List[Any] , _A :Tuple , _A :int , _A :Tuple=False , _A :str=True ) -> Optional[int]: '''simple docstring''' __A = [ BatchSamplerShard(_A , 2 , _A , split_batches=_A , even_batches=_A ) for i in range(2 ) ] __A = [list(_A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_A ) for shard in batch_sampler_shards] , [len(_A ) for e in expected] ) self.assertListEqual(_A , _A ) def lowercase_ ( self :Any ) -> int: '''simple docstring''' __A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is very small. __A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) __A = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) __A = [[], []] self.check_batch_sampler_shards(_A , _A ) def lowercase_ ( self :Union[str, Any] ) -> List[Any]: '''simple docstring''' __A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) __A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A , split_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size. __A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) __A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) __A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) # Check the shards when the dataset is very small. __A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) __A = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) __A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) __A = [[], []] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) def lowercase_ ( self :Tuple ) -> List[str]: '''simple docstring''' __A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is very small. __A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) __A = [[[0, 1]], []] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) __A = [[], []] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) def lowercase_ ( self :Optional[Any] ) -> Tuple: '''simple docstring''' __A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) __A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size. __A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) __A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) __A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) # Check the shards when the dataset is very small. __A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) __A = [[[0, 1]], []] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) __A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) __A = [[], []] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) def lowercase_ ( self :Tuple ) -> Dict: '''simple docstring''' __A = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __A = [BatchSamplerShard(_A , 2 , _A , even_batches=_A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowercase_ ( self :int , _A :Optional[Any] , _A :List[str] , _A :Dict , _A :Any=False , _A :str=2 , _A :Any=False ) -> Dict: '''simple docstring''' random.seed(_A ) __A = list(_A ) __A = [ IterableDatasetShard( _A , batch_size=_A , drop_last=_A , num_processes=_A , process_index=_A , split_batches=_A , ) for i in range(_A ) ] __A = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_A ) iterable_dataset_lists.append(list(_A ) ) __A = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __A = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_A ) , len(_A ) ) self.assertTrue(len(_A ) % shard_batch_size == 0 ) __A = [] for idx in range(0 , len(_A ) , _A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_A ) < len(_A ): reference += reference self.assertListEqual(_A , reference[: len(_A )] ) def lowercase_ ( self :Optional[Any] ) -> List[Any]: '''simple docstring''' __A = 42 __A = RandomIterableDataset() self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) # Edge case with a very small dataset __A = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) def lowercase_ ( self :Optional[Any] ) -> List[str]: '''simple docstring''' __A = BatchSampler(range(16 ) , batch_size=4 , drop_last=_A ) __A = SkipBatchSampler(_A , 2 ) self.assertListEqual(list(_A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self :List[str] ) -> Any: '''simple docstring''' __A = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self :Any ) -> Dict: '''simple docstring''' __A = DataLoader(list(range(16 ) ) , batch_size=4 ) __A = skip_first_batches(_A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self :Tuple ) -> Optional[Any]: '''simple docstring''' __A = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowercase_ ( self :Dict ) -> Any: '''simple docstring''' Accelerator() __A = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
161
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Optional[int] ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Dict = 3 __UpperCAmelCase : Dict = (32, 32) __UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case ) return image @property def lowerCamelCase__ ( self : List[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) __UpperCAmelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def lowerCamelCase__ ( self : str ) -> int: torch.manual_seed(0 ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def lowerCamelCase__ ( self : Union[str, Any] ) -> int: torch.manual_seed(0 ) __UpperCAmelCase : Union[str, Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(snake_case ) @property def lowerCamelCase__ ( self : List[str] ) -> Optional[int]: def extract(*snake_case : Any , **snake_case : List[str] ): class a : """simple docstring""" def __init__( self : List[Any] ) -> str: __UpperCAmelCase : Dict = torch.ones([0] ) def lowerCamelCase__ ( self : Optional[int] , snake_case : int ) -> List[Any]: self.pixel_values.to(snake_case ) return self return Out() return extract def lowerCamelCase__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : List[Any] = self.dummy_cond_unet __UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=snake_case ) __UpperCAmelCase : Optional[int] = self.dummy_vae __UpperCAmelCase : Optional[Any] = self.dummy_text_encoder __UpperCAmelCase : str = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) __UpperCAmelCase : Dict = 77 __UpperCAmelCase : Optional[int] = self.dummy_image.to(snake_case ) __UpperCAmelCase : Any = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk __UpperCAmelCase : Optional[int] = AltDiffusionImgaImgPipeline( unet=snake_case , scheduler=snake_case , vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , safety_checker=snake_case , feature_extractor=self.dummy_extractor , ) __UpperCAmelCase : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=snake_case ) __UpperCAmelCase : Tuple = alt_pipe.to(snake_case ) alt_pipe.set_progress_bar_config(disable=snake_case ) __UpperCAmelCase : Dict = '''A painting of a squirrel eating a burger''' __UpperCAmelCase : Any = torch.Generator(device=snake_case ).manual_seed(0 ) __UpperCAmelCase : Any = alt_pipe( [prompt] , generator=snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=snake_case , ) __UpperCAmelCase : Optional[int] = output.images __UpperCAmelCase : Tuple = torch.Generator(device=snake_case ).manual_seed(0 ) __UpperCAmelCase : int = alt_pipe( [prompt] , generator=snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=snake_case , return_dict=snake_case , )[0] __UpperCAmelCase : int = image[0, -3:, -3:, -1] __UpperCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : Optional[int] = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Optional[int] = self.dummy_cond_unet __UpperCAmelCase : Optional[Any] = PNDMScheduler(skip_prk_steps=snake_case ) __UpperCAmelCase : Optional[Any] = self.dummy_vae __UpperCAmelCase : List[str] = self.dummy_text_encoder __UpperCAmelCase : Tuple = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) __UpperCAmelCase : Any = 77 __UpperCAmelCase : Optional[int] = self.dummy_image.to(snake_case ) # put models in fp16 __UpperCAmelCase : Dict = unet.half() __UpperCAmelCase : Dict = vae.half() __UpperCAmelCase : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk __UpperCAmelCase : Tuple = AltDiffusionImgaImgPipeline( unet=snake_case , scheduler=snake_case , vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , safety_checker=snake_case , feature_extractor=self.dummy_extractor , ) __UpperCAmelCase : Optional[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=snake_case ) __UpperCAmelCase : Optional[int] = alt_pipe.to(snake_case ) alt_pipe.set_progress_bar_config(disable=snake_case ) __UpperCAmelCase : Optional[int] = '''A painting of a squirrel eating a burger''' __UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) __UpperCAmelCase : str = alt_pipe( [prompt] , generator=snake_case , num_inference_steps=2 , output_type='''np''' , image=snake_case , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def lowerCamelCase__ ( self : Optional[int] ) -> Any: __UpperCAmelCase : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 __UpperCAmelCase : Any = init_image.resize((760, 504) ) __UpperCAmelCase : Union[str, Any] = '''BAAI/AltDiffusion''' __UpperCAmelCase : str = AltDiffusionImgaImgPipeline.from_pretrained( snake_case , safety_checker=snake_case , ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() __UpperCAmelCase : int = '''A fantasy landscape, trending on artstation''' __UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) __UpperCAmelCase : Any = pipe( prompt=snake_case , image=snake_case , strength=0.75 , guidance_scale=7.5 , generator=snake_case , output_type='''np''' , ) __UpperCAmelCase : Tuple = output.images[0] __UpperCAmelCase : int = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) __UpperCAmelCase : List[Any] = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Optional[int] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : int ) -> Optional[int]: __UpperCAmelCase : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __UpperCAmelCase : Union[str, Any] = init_image.resize((768, 512) ) __UpperCAmelCase : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) __UpperCAmelCase : Optional[Any] = '''BAAI/AltDiffusion''' __UpperCAmelCase : Union[str, Any] = AltDiffusionImgaImgPipeline.from_pretrained( snake_case , safety_checker=snake_case , ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() __UpperCAmelCase : List[Any] = '''A fantasy landscape, trending on artstation''' __UpperCAmelCase : Tuple = torch.manual_seed(0 ) __UpperCAmelCase : Dict = pipe( prompt=snake_case , image=snake_case , strength=0.75 , guidance_scale=7.5 , generator=snake_case , output_type='''np''' , ) __UpperCAmelCase : Any = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCAmelCase :Union[str, Any] = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Dict = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Dict = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __UpperCAmelCase :Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
240
0
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def _UpperCAmelCase ( __lowerCamelCase : Optional[int] ) -> Union[str, Any]: def wrapper(*__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ): _snake_case = timeit.default_timer() _snake_case = func(*__lowerCamelCase , **__lowerCamelCase ) _snake_case = timeit.default_timer() - starttime return delta _snake_case = func.__name__ return wrapper def _UpperCAmelCase ( __lowerCamelCase : dict , __lowerCamelCase : Tuple=1_00 , __lowerCamelCase : Dict=None ) -> Optional[Any]: _snake_case = [] _snake_case = seq_shapes or {} for i in range(__lowerCamelCase ): _snake_case = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__lowerCamelCase , _ArrayXD ): _snake_case = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__lowerCamelCase , datasets.Value ): if v.dtype == "string": _snake_case = '''The small grey turtle was surprisingly fast when challenged.''' else: _snake_case = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__lowerCamelCase , datasets.Sequence ): while isinstance(__lowerCamelCase , datasets.Sequence ): _snake_case = v.feature _snake_case = seq_shapes[k] _snake_case = np.random.rand(*__lowerCamelCase ).astype(v.dtype ) _snake_case = data dummy_data.append((i, example) ) return dummy_data def _UpperCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict=1_00 , __lowerCamelCase : Tuple=None ) -> str: _snake_case = generate_examples(__lowerCamelCase , num_examples=__lowerCamelCase , seq_shapes=__lowerCamelCase ) with ArrowWriter(features=__lowerCamelCase , path=__lowerCamelCase ) as writer: for key, record in dummy_data: _snake_case = features.encode_example(__lowerCamelCase ) writer.write(__lowerCamelCase ) _snake_case , _snake_case = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) _snake_case = datasets.Dataset.from_file(filename=__lowerCamelCase , info=datasets.DatasetInfo(features=__lowerCamelCase ) ) return dataset
288
"""simple docstring""" from math import sqrt def _UpperCAmelCase ( __lowerCamelCase : int = 1_00_00_00 ) -> int: _snake_case = 0 _snake_case = 0 _snake_case = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__lowerCamelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"{solution() = }")
288
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ ={ 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =[ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCamelCase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
325
from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ (__lowerCamelCase ): return DownloadCommand(args.model, args.cache_dir, args.force, args.trust_remote_code ) class lowerCAmelCase__( __lowercase ): '''simple docstring''' @staticmethod def UpperCamelCase_ ( __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=__lowerCamelCase , default=__lowerCamelCase , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=__lowerCamelCase , help="Name of the model to download" ) download_parser.set_defaults(func=__lowerCamelCase ) def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : Any = model _SCREAMING_SNAKE_CASE : Optional[int] = cache _SCREAMING_SNAKE_CASE : str = force _SCREAMING_SNAKE_CASE : str = trust_remote_code def UpperCamelCase_ ( self ) -> Optional[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
325
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : List[Any] = ["input_features"] def __init__( self , A=80 , A=1_60_00 , A=1_60 , A=30 , A=4_00 , A=0.0 , A=False , **A , ) -> Dict: '''simple docstring''' super().__init__( feature_size=A , sampling_rate=A , padding_value=A , return_attention_mask=A , **A , ) lowerCamelCase = n_fft lowerCamelCase = hop_length lowerCamelCase = chunk_length lowerCamelCase = chunk_length * sampling_rate lowerCamelCase = self.n_samples // hop_length lowerCamelCase = sampling_rate lowerCamelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=A , norm="""slaney""" , mel_scale="""slaney""" , ) def __A ( self , A ) -> np.ndarray: '''simple docstring''' lowerCamelCase = spectrogram( A , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) lowerCamelCase = log_spec[:, :-1] lowerCamelCase = np.maximum(A , log_spec.max() - 8.0 ) lowerCamelCase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __A ( A , A , A = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: lowerCamelCase = np.array(A , np.intaa ) lowerCamelCase = [] for vector, length in zip(A , attention_mask.sum(-1 ) ): lowerCamelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCamelCase = padding_value normed_input_values.append(A ) else: lowerCamelCase = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , A , A = True , A = None , A = None , A = None , A = "max_length" , A = None , A = None , A = None , **A , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCamelCase = isinstance(A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowerCamelCase = is_batched_numpy or ( isinstance(A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A , np.ndarray ): lowerCamelCase = np.asarray(A , dtype=np.floataa ) elif isinstance(A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase = [np.asarray([raw_speech] ).T] lowerCamelCase = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding lowerCamelCase = self.pad( A , padding=A , max_length=max_length if max_length else self.n_samples , truncation=A , pad_to_multiple_of=A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCamelCase = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) lowerCamelCase = np.stack(padded_inputs["""input_features"""] , axis=0 ) # make sure list is in array format lowerCamelCase = padded_inputs.get("""input_features""" ).transpose(2 , 0 , 1 ) lowerCamelCase = [self._np_extract_fbank_features(A ) for waveform in input_features[0]] if isinstance(input_features[0] , A ): lowerCamelCase = [np.asarray(A , dtype=np.floataa ) for feature in input_features] else: lowerCamelCase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCamelCase = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: lowerCamelCase = padded_inputs.convert_to_tensors(A ) return padded_inputs def __A ( self ) -> Dict[str, Any]: '''simple docstring''' lowerCamelCase = copy.deepcopy(self.__dict__ ) lowerCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
252
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : List[str] = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list ) -> float: """simple docstring""" if not nums: raise ValueError("""List is empty""" ) return sum(__UpperCamelCase ) / len(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
204
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __lowerCamelCase : List[Any] = get_tests_dir('''fixtures''') __lowerCamelCase : Optional[int] = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') __lowerCamelCase : Any = get_tests_dir('''fixtures/dummy-config.json''') class __snake_case ( unittest.TestCase ): def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 0 def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : Optional[int] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase ).to_dict() config_dict.pop("""feature_extractor_type""" ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor(**_lowercase ) # save in new folder model_config.save_pretrained(_lowercase ) config.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE__ = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( _lowercase , """bert-base is not a local folder and is not a valid model identifier""" ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def __a ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( _lowercase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase , revision="""aaaaaa""" ) def __a ( self : List[Any] ): """simple docstring""" with self.assertRaisesRegex( _lowercase , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __a ( self : str ): """simple docstring""" with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowercase ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowercase ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase , trust_remote_code=_lowercase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def __a ( self : Union[str, Any] ): """simple docstring""" try: AutoConfig.register("""custom""" , _lowercase ) AutoFeatureExtractor.register(_lowercase , _lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase ): AutoFeatureExtractor.register(_lowercase , _lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE__ = CustomFeatureExtractor.from_pretrained(_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __a ( self : Any ): """simple docstring""" class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = True try: AutoConfig.register("""custom""" , _lowercase ) AutoFeatureExtractor.register(_lowercase , _lowercase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowercase ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowercase ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(_lowercase , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
204
1
from heapq import heappop, heappush import numpy as np def UpperCamelCase ( __lowercase : np.ndarray ,__lowercase : tuple[int, int] ,__lowercase : tuple[int, int] ,__lowercase : bool ,): '''simple docstring''' A_ , A_ : Optional[int] = grid.shape A_ : Optional[int] = [-1, 1, 0, 0] A_ : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] A_ , A_ : Optional[Any] = [(0, source)], set() A_ : Dict = np.full((rows, cols) ,np.inf ) A_ : Union[str, Any] = 0 A_ : Dict = np.empty((rows, cols) ,dtype=__lowercase ) A_ : Dict = None while queue: ((A_) , (A_)) : Dict = heappop(__lowercase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: A_ : List[str] = [] while (x, y) != source: path.append((x, y) ) A_ , A_ : Optional[Any] = predecessors[x, y] path.append(__lowercase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__lowercase ) ): A_ , A_ : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: A_ : str = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__lowercase ,(dist + 1, (nx, ny)) ) A_ : Any = dist + 1 A_ : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
140
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE : Tuple = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = ["ConditionalDetrFeatureExtractor"] _SCREAMING_SNAKE_CASE : List[Any] = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
0
"""simple docstring""" import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap __snake_case : Tuple = 'Usage of script: script_name <size_of_canvas:int>' __snake_case : str = [0] * 100 + [1] * 10 random.shuffle(choice) def _lowercase ( __snake_case ) -> list[list[bool]]: __lowerCAmelCase : Any = [[False for i in range(__snake_case )] for j in range(__snake_case )] return canvas def _lowercase ( __snake_case ) -> None: for i, row in enumerate(__snake_case ): for j, _ in enumerate(__snake_case ): __lowerCAmelCase : List[Any] = bool(random.getrandbits(1 ) ) def _lowercase ( __snake_case ) -> list[list[bool]]: __lowerCAmelCase : int = np.array(__snake_case ) __lowerCAmelCase : int = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__snake_case ): for c, pt in enumerate(__snake_case ): __lowerCAmelCase : Union[str, Any] = __judge_point( __snake_case ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __lowerCAmelCase : int = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __lowerCAmelCase : list[list[bool]] = current_canvas.tolist() return return_canvas def _lowercase ( __snake_case ,__snake_case ) -> bool: __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : int = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __lowerCAmelCase : List[str] = pt if pt: if alive < 2: __lowerCAmelCase : Optional[Any] = False elif alive == 2 or alive == 3: __lowerCAmelCase : Any = True elif alive > 3: __lowerCAmelCase : int = False else: if alive == 3: __lowerCAmelCase : Tuple = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) __snake_case : Optional[int] = int(sys.argv[1]) # main working structure of this module. __snake_case : Dict = create_canvas(canvas_size) seed(c) __snake_case , __snake_case : int = plt.subplots() fig.show() __snake_case : int = ListedColormap(['w', 'k']) try: while True: __snake_case : Dict = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
58
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Optional[Any] = logging.get_logger(__name__) # TODO Update this __snake_case : Optional[int] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'esm' def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: str=None , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: int=768 , _SCREAMING_SNAKE_CASE: Any=12 , _SCREAMING_SNAKE_CASE: Optional[Any]=12 , _SCREAMING_SNAKE_CASE: Optional[int]=3072 , _SCREAMING_SNAKE_CASE: List[Any]=0.1 , _SCREAMING_SNAKE_CASE: Tuple=0.1 , _SCREAMING_SNAKE_CASE: Optional[Any]=1026 , _SCREAMING_SNAKE_CASE: List[Any]=0.02 , _SCREAMING_SNAKE_CASE: Optional[Any]=1e-12 , _SCREAMING_SNAKE_CASE: List[Any]="absolute" , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[Any]=False , _SCREAMING_SNAKE_CASE: List[Any]=False , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: Tuple=None , **_SCREAMING_SNAKE_CASE: str , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , mask_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = vocab_size __lowerCAmelCase : Any = hidden_size __lowerCAmelCase : Dict = num_hidden_layers __lowerCAmelCase : List[str] = num_attention_heads __lowerCAmelCase : List[Any] = intermediate_size __lowerCAmelCase : List[Any] = hidden_dropout_prob __lowerCAmelCase : int = attention_probs_dropout_prob __lowerCAmelCase : List[Any] = max_position_embeddings __lowerCAmelCase : int = initializer_range __lowerCAmelCase : List[Any] = layer_norm_eps __lowerCAmelCase : List[Any] = position_embedding_type __lowerCAmelCase : Optional[Any] = use_cache __lowerCAmelCase : List[str] = emb_layer_norm_before __lowerCAmelCase : Tuple = token_dropout __lowerCAmelCase : List[str] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values.") __lowerCAmelCase : str = EsmFoldConfig() elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : int = EsmFoldConfig(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!") __lowerCAmelCase : List[Any] = get_default_vocab_list() else: __lowerCAmelCase : Tuple = vocab_list else: __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : List[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , _SCREAMING_SNAKE_CASE): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!") def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Dict: """simple docstring""" __lowerCAmelCase : List[str] = super().to_dict() if isinstance(self.esmfold_config , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : List[str] = self.esmfold_config.to_dict() return output @dataclass class A__ : '''simple docstring''' SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = 1_2_8 SCREAMING_SNAKE_CASE = None def _SCREAMING_SNAKE_CASE ( self: Dict) -> Any: """simple docstring""" if self.trunk is None: __lowerCAmelCase : List[str] = TrunkConfig() elif isinstance(self.trunk , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : List[str] = TrunkConfig(**self.trunk) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = asdict(self) __lowerCAmelCase : Tuple = self.trunk.to_dict() return output @dataclass class A__ : '''simple docstring''' SCREAMING_SNAKE_CASE = 4_8 SCREAMING_SNAKE_CASE = 1_0_2_4 SCREAMING_SNAKE_CASE = 1_2_8 SCREAMING_SNAKE_CASE = 3_2 SCREAMING_SNAKE_CASE = 3_2 SCREAMING_SNAKE_CASE = 3_2 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 1_2_8 SCREAMING_SNAKE_CASE = None def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Optional[int]: """simple docstring""" if self.structure_module is None: __lowerCAmelCase : Optional[Any] = StructureModuleConfig() elif isinstance(self.structure_module , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : Any = StructureModuleConfig(**self.structure_module) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""") if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""") if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""") __lowerCAmelCase : int = self.sequence_state_dim // self.sequence_head_width __lowerCAmelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""") if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""") if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""") if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""") def _SCREAMING_SNAKE_CASE ( self: Dict) -> str: """simple docstring""" __lowerCAmelCase : int = asdict(self) __lowerCAmelCase : Union[str, Any] = self.structure_module.to_dict() return output @dataclass class A__ : '''simple docstring''' SCREAMING_SNAKE_CASE = 3_8_4 SCREAMING_SNAKE_CASE = 1_2_8 SCREAMING_SNAKE_CASE = 1_6 SCREAMING_SNAKE_CASE = 1_2_8 SCREAMING_SNAKE_CASE = 1_2 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 8 SCREAMING_SNAKE_CASE = 0.1 SCREAMING_SNAKE_CASE = 8 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 7 SCREAMING_SNAKE_CASE = 1_0 SCREAMING_SNAKE_CASE = 1e-8 SCREAMING_SNAKE_CASE = 1e5 def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Union[str, Any]: """simple docstring""" return asdict(self) def _lowercase ( ) -> List[Any]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
58
1
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets _A = datasets.logging.get_logger(__name__) _A = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' _A = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' _A = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def lowerCamelCase__ ( a__ : List[Any] , a__ : int , a__ : Dict=False , a__ : List[Any]=False , a__ : Optional[Any]=True , a__ : Dict=False , a__ : Any="dummy_doc" ) -> int: UpperCamelCase_ = {doc: key_lines} UpperCamelCase_ = {doc: sys_lines} UpperCamelCase_ = {} UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ , UpperCamelCase_ = reader.get_doc_mentions(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase ) key_singletons_num += singletons_num if NP_only or min_span: UpperCamelCase_ = reader.set_annotated_parse_trees(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = reader.get_doc_mentions(__lowerCAmelCase , sys_doc_lines[doc] , __lowerCAmelCase ) sys_singletons_num += singletons_num if NP_only or min_span: UpperCamelCase_ = reader.set_annotated_parse_trees(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase , __lowerCAmelCase ) if remove_nested: UpperCamelCase_ , UpperCamelCase_ = reader.remove_nested_coref_mentions(__lowerCAmelCase , __lowerCAmelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters UpperCamelCase_ , UpperCamelCase_ = reader.remove_nested_coref_mentions(__lowerCAmelCase , __lowerCAmelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters UpperCamelCase_ = reader.get_mention_assignments(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase_ = reader.get_mention_assignments(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ f'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( """Number of resulting singleton clusters in the key """ f'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( f'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' """files, respectively""" ) return doc_coref_infos def lowerCamelCase__ ( a__ : Any , a__ : Tuple , a__ : str , a__ : Dict , a__ : List[Any] , a__ : List[str] , a__ : Any ) -> Any: UpperCamelCase_ = get_coref_infos(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase_ = {} UpperCamelCase_ = 0 UpperCamelCase_ = 0 for name, metric in metrics: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = evaluator.evaluate_documents(__lowerCAmelCase , __lowerCAmelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f'''{name}/recall''': recall, f'''{name}/precision''': precision, f'''{name}/f1''': fa} ) logger.info( name.ljust(10 ) , f'''Recall: {recall * 100:.2f}''' , f''' Precision: {precision * 100:.2f}''' , f''' F1: {fa * 100:.2f}''' , ) if conll_subparts_num == 3: UpperCamelCase_ = (conll / 3) * 100 logger.info(f'''CoNLL score: {conll:.2f}''' ) output_scores.update({"""conll_score""": conll} ) return output_scores def lowerCamelCase__ ( a__ : str ) -> List[Any]: UpperCamelCase_ = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: UpperCamelCase_ = line.split()[5] if not parse_col == "-": UpperCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): def lowerCamelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=False ): """simple docstring""" UpperCamelCase_ = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: UpperCamelCase_ = util.check_gold_parse_annotation(__snake_case ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use \'min_span\'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" UpperCamelCase_ = evaluate( key_lines=__snake_case , sys_lines=__snake_case , metrics=__snake_case , NP_only=__snake_case , remove_nested=__snake_case , keep_singletons=__snake_case , min_span=__snake_case , ) return score
122
import argparse snake_case : int = '''docs/source/_static/js/custom.js''' def __lowercase ( __lowerCAmelCase : Optional[Any] ): with open(__lowerCAmelCase , encoding='utf-8' , newline='\n' ) as f: a__ = f.readlines() a__ = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 a__ = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(__lowerCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') snake_case : Optional[int] = parser.parse_args() update_custom_js(args.version)
240
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCamelCase__ = False class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): pass @nightly @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): UpperCamelCase__ = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCamelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pipe.dual_guided( prompt="""first prompt""" , image=__lowerCAmelCase , text_to_image_strength=0.75 , generator=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCAmelCase ) UpperCamelCase__ = VersatileDiffusionPipeline.from_pretrained(__lowerCAmelCase , torch_dtype=torch.floataa ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCamelCase__ = generator.manual_seed(0 ) UpperCamelCase__ = pipe.dual_guided( prompt="""first prompt""" , image=__lowerCAmelCase , text_to_image_strength=0.75 , generator=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _lowerCamelCase ( self ): UpperCamelCase__ = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCamelCase__ = """cyberpunk 2077""" UpperCamelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pipe.dual_guided( prompt=__lowerCAmelCase , image=__lowerCAmelCase , text_to_image_strength=0.75 , generator=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCamelCase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCamelCase__ = """A painting of a squirrel eating a burger """ UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pipe.text_to_image( prompt=__lowerCAmelCase , generator=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images UpperCamelCase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCamelCase__ = pipe.image_variation(__lowerCAmelCase , generator=__lowerCAmelCase , output_type="""numpy""" ).images UpperCamelCase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
360
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=64 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope UpperCamelCase__ = vocab_size - 1 def _lowerCamelCase ( self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = self.get_config() return config, input_ids, input_mask, token_labels def _lowerCamelCase ( self ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ = True return config, input_ids, input_mask, token_labels def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = GPTNeoXModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) UpperCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = True UpperCamelCase__ = GPTNeoXModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = GPTNeoXForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = GPTNeoXForQuestionAnswering(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = GPTNeoXForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = GPTNeoXForTokenClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = True UpperCamelCase__ = GPTNeoXForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # first forward pass UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , use_cache=__lowerCAmelCase ) UpperCamelCase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) UpperCamelCase__ = output_from_no_past["""hidden_states"""][0] UpperCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , )["""hidden_states"""][0] # select random slice UpperCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _a , _a , _a , unittest.TestCase ): snake_case : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) snake_case : Union[str, Any] = (GPTNeoXForCausalLM,) if is_torch_available() else () snake_case : Dict = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) snake_case : Tuple = False snake_case : Dict = False snake_case : Tuple = False snake_case : Any = False def _lowerCamelCase ( self ): UpperCamelCase__ = GPTNeoXModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=64 , num_attention_heads=8 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self ): # This regression test was failing with PyTorch < 1.3 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase__ = None self.model_tester.create_and_check_model_as_decoder(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def _lowerCamelCase ( self ): pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = ids_tensor([1, 10] , config.vocab_size ) UpperCamelCase__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase__ = GPTNeoXModel(__lowerCAmelCase ) original_model.to(__lowerCAmelCase ) original_model.eval() UpperCamelCase__ = original_model(__lowerCAmelCase ).last_hidden_state UpperCamelCase__ = original_model(__lowerCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase__ = {"""type""": scaling_type, """factor""": 10.0} UpperCamelCase__ = GPTNeoXModel(__lowerCAmelCase ) scaled_model.to(__lowerCAmelCase ) scaled_model.eval() UpperCamelCase__ = scaled_model(__lowerCAmelCase ).last_hidden_state UpperCamelCase__ = scaled_model(__lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): UpperCamelCase__ = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: UpperCamelCase__ = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(__lowerCAmelCase ) UpperCamelCase__ = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__lowerCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCamelCase__ = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" UpperCamelCase__ = model.generate(**__lowerCAmelCase , do_sample=__lowerCAmelCase , max_new_tokens=20 ) UpperCamelCase__ = tokenizer.batch_decode(__lowerCAmelCase )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
87
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
325
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class A__ : def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]: """simple docstring""" __lowercase = scheduler __lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers] __lowercase = split_batches __lowercase = step_with_optimizer __lowercase = GradientState() def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __lowercase = AcceleratorState().num_processes for _ in range(_UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self.scheduler.get_last_lr() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" return self.scheduler.state_dict() def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.scheduler.load_state_dict(_UpperCAmelCase ) def a__ ( self : Dict ) -> int: """simple docstring""" return self.scheduler.get_lr() def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any: """simple docstring""" return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
325
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu SCREAMING_SNAKE_CASE :Dict = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def UpperCAmelCase ( a_ , a_=None , a_=None , a_=None ) -> Tuple: """simple docstring""" __A = True while ask_again: __A = input(a_ ) try: if default is not None and len(a_ ) == 0: return default return convert_value(a_ ) if convert_value is not None else result except Exception: if error_message is not None: print(a_ ) def UpperCAmelCase ( a_ , a_=[] , a_=None , a_=0 ) -> List[str]: """simple docstring""" __A = BulletMenu(a_ , a_ ) __A = menu.run(default_choice=a_ ) return convert_value(a_ ) if convert_value is not None else result def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" __A = int(a_ ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" __A = int(a_ ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" __A = int(a_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" __A = int(a_ ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def UpperCAmelCase ( a_ ) -> str: """simple docstring""" __A = int(a_ ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def UpperCAmelCase ( a_ ) -> str: """simple docstring""" return {"yes": True, "no": False}[value.lower()] class UpperCAmelCase ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[int] ,A : Any ,A : Optional[int] ,A : List[str] ,A : str ): __A = super()._format_usage(A ,A ,A ,A ) __A = usage.replace("<command> [<args>] " ,"" ) return usage
124
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BertJapaneseTokenizer snake_case_ = False snake_case_ = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは", "世界", "##世界", "、", "##、", "。", "##。", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Union[str, Any] ,A : Optional[Any] ): __A = "こんにちは、世界。 \nこんばんは、世界。" __A = "こんにちは 、 世界 。 こんばんは 、 世界 。" return input_text, output_text def UpperCamelCase_ ( self : Any ,A : Optional[int] ): __A , __A = self.get_input_output_texts(A ) __A = tokenizer.encode(A ,add_special_tokens=A ) __A = tokenizer.decode(A ,clean_up_tokenization_spaces=A ) return text, ids def UpperCamelCase_ ( self : int ): pass # TODO add if relevant def UpperCamelCase_ ( self : int ): pass # TODO add if relevant def UpperCamelCase_ ( self : Optional[int] ): pass # TODO add if relevant def UpperCamelCase_ ( self : List[Any] ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。" ) self.assertListEqual(A ,["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) def UpperCamelCase_ ( self : int ): __A = self.tokenizer_class(self.vocab_file ,word_tokenizer_type="mecab" ) self.assertIsNotNone(A ) __A = "こんにちは、世界。\nこんばんは、世界。" __A = tokenizer.tokenize(A ) self.assertListEqual(A ,["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) __A = os.path.join(self.tmpdirname ,"tokenizer.bin" ) with open(A ,"wb" ) as handle: pickle.dump(A ,A ) with open(A ,"rb" ) as handle: __A = pickle.load(A ) __A = tokenizer_new.tokenize(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Any ): __A = MecabTokenizer(mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] ,) def UpperCamelCase_ ( self : List[str] ): try: __A = MecabTokenizer(mecab_dic="unidic_lite" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] ,) def UpperCamelCase_ ( self : Tuple ): try: __A = MecabTokenizer(mecab_dic="unidic" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] ,) def UpperCamelCase_ ( self : Tuple ): __A = MecabTokenizer(do_lower_case=A ,mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] ,) def UpperCamelCase_ ( self : Any ): try: __A = MecabTokenizer( do_lower_case=A ,normalize_text=A ,mecab_option="-d /usr/local/lib/mecab/dic/jumandic" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] ,) def UpperCamelCase_ ( self : int ): __A = MecabTokenizer(normalize_text=A ,mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] ,) @require_sudachi def UpperCamelCase_ ( self : int ): __A = self.tokenizer_class(self.vocab_file ,word_tokenizer_type="sudachi" ) self.assertIsNotNone(A ) __A = "こんにちは、世界。\nこんばんは、世界。" __A = tokenizer.tokenize(A ) self.assertListEqual(A ,["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) __A = os.path.join(self.tmpdirname ,"tokenizer.bin" ) with open(A ,"wb" ) as handle: pickle.dump(A ,A ) with open(A ,"rb" ) as handle: __A = pickle.load(A ) __A = tokenizer_new.tokenize(A ) self.assertListEqual(A ,A ) @require_sudachi def UpperCamelCase_ ( self : Optional[int] ): __A = SudachiTokenizer(sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,[" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] ,) @require_sudachi def UpperCamelCase_ ( self : List[Any] ): __A = SudachiTokenizer(sudachi_dict_type="core" ,sudachi_split_mode="A" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) ,["外国", "人", "参政", "権"] ) @require_sudachi def UpperCamelCase_ ( self : int ): __A = SudachiTokenizer(sudachi_dict_type="core" ,sudachi_split_mode="B" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) ,["外国人", "参政権"] ) @require_sudachi def UpperCamelCase_ ( self : Tuple ): __A = SudachiTokenizer(sudachi_dict_type="core" ,sudachi_split_mode="C" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) ,["外国人参政権"] ) @require_sudachi def UpperCamelCase_ ( self : int ): __A = SudachiTokenizer(do_lower_case=A ,sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,[" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] ,) @require_sudachi def UpperCamelCase_ ( self : List[str] ): __A = SudachiTokenizer(normalize_text=A ,sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,[" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] ,) @require_sudachi def UpperCamelCase_ ( self : str ): __A = SudachiTokenizer(trim_whitespace=A ,sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] ,) @require_jumanpp def UpperCamelCase_ ( self : Optional[Any] ): __A = self.tokenizer_class(self.vocab_file ,word_tokenizer_type="jumanpp" ) self.assertIsNotNone(A ) __A = "こんにちは、世界。\nこんばんは、世界。" __A = tokenizer.tokenize(A ) self.assertListEqual(A ,["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) __A = os.path.join(self.tmpdirname ,"tokenizer.bin" ) with open(A ,"wb" ) as handle: pickle.dump(A ,A ) with open(A ,"rb" ) as handle: __A = pickle.load(A ) __A = tokenizer_new.tokenize(A ) self.assertListEqual(A ,A ) @require_jumanpp def UpperCamelCase_ ( self : int ): __A = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] ,) @require_jumanpp def UpperCamelCase_ ( self : str ): __A = JumanppTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] ,) @require_jumanpp def UpperCamelCase_ ( self : Any ): __A = JumanppTokenizer(normalize_text=A ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] ,) @require_jumanpp def UpperCamelCase_ ( self : List[str] ): __A = JumanppTokenizer(trim_whitespace=A ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] ,) @require_jumanpp def UpperCamelCase_ ( self : Dict ): __A = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。" ) ,["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] ,) def UpperCamelCase_ ( self : str ): __A = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"] __A = {} for i, token in enumerate(A ): __A = i __A = WordpieceTokenizer(vocab=A ,unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) ,[] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) ,["こんにちは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは" ) ,["こん", "##ばんは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは" ) ,["こん", "##ばんは", "[UNK]", "こんにちは"] ) def UpperCamelCase_ ( self : Any ): __A = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp" ) __A = tokenizer.subword_tokenizer __A = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。" ) self.assertListEqual(A ,["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"] ) __A = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは" ) self.assertListEqual(A ,["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"] ) def UpperCamelCase_ ( self : int ): __A = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese" ) __A = tokenizer.encode("ありがとう。" ,add_special_tokens=A ) __A = tokenizer.encode("どういたしまして。" ,add_special_tokens=A ) __A = tokenizer.build_inputs_with_special_tokens(A ) __A = tokenizer.build_inputs_with_special_tokens(A ,A ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BertJapaneseTokenizer snake_case_ = False def UpperCamelCase_ ( self : Any ): super().setUp() __A = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : int ,**A : str ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname ,subword_tokenizer_type="character" ,**A ) def UpperCamelCase_ ( self : List[str] ,A : str ): __A = "こんにちは、世界。 \nこんばんは、世界。" __A = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。" return input_text, output_text def UpperCamelCase_ ( self : str ): pass # TODO add if relevant def UpperCamelCase_ ( self : Optional[Any] ): pass # TODO add if relevant def UpperCamelCase_ ( self : Any ): pass # TODO add if relevant def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ,subword_tokenizer_type="character" ) __A = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。" ) self.assertListEqual( A ,["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) ,[3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] __A = {} for i, token in enumerate(A ): __A = i __A = CharacterTokenizer(vocab=A ,unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) ,[] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) ,["こ", "ん", "に", "ち", "は"] ) self.assertListEqual(tokenizer.tokenize("こんにちほ" ) ,["こ", "ん", "に", "ち", "[UNK]"] ) def UpperCamelCase_ ( self : Tuple ): __A = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char" ) __A = tokenizer.encode("ありがとう。" ,add_special_tokens=A ) __A = tokenizer.encode("どういたしまして。" ,add_special_tokens=A ) __A = tokenizer.build_inputs_with_special_tokens(A ) __A = tokenizer.build_inputs_with_special_tokens(A ,A ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : int ): __A = "cl-tohoku/bert-base-japanese" __A = AutoTokenizer.from_pretrained(A ) self.assertIsInstance(A ,A ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): __A = "cl-tohoku/bert-base-japanese" with self.assertLogs("transformers" ,level="WARNING" ) as cm: BertTokenizer.from_pretrained(A ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) ) __A = "bert-base-cased" with self.assertLogs("transformers" ,level="WARNING" ) as cm: BertJapaneseTokenizer.from_pretrained(A ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) )
124
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Optional[int] = logging.getLogger() def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {} lowerCamelCase_ = os.path.join(lowercase , 'all_results.json' ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: lowerCamelCase_ = json.load(lowercase ) else: raise ValueError(f"""can't find {path}""" ) return results lowerCamelCase : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Tuple ) -> str: """simple docstring""" import xla_spawn lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): lowerCamelCase_ = time() xla_spawn.main() lowerCamelCase_ = time() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def a__ ( self : Any ) -> str: """simple docstring""" import xla_spawn lowerCamelCase_ = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(A_ , 'argv' , A_ ): xla_spawn.main()
204
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : List[Any] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, List[float]]] = None , A_ : Optional[Union[float, List[float]]] = None , A_ : bool = True , **A_ : Dict , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCamelCase_ = image_std if image_std is not None else OPENAI_CLIP_STD lowerCamelCase_ = do_convert_rgb def a__ ( self : Dict , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Union[str, Any] , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowerCamelCase_ = get_resize_output_image_size(A_ , size=size['shortest_edge'] , default_to_square=A_ ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Tuple , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Dict , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def a__ ( self : str , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Union[str, Any] , ) -> str: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : ImageInput , A_ : bool = None , A_ : Dict[str, int] = None , A_ : PILImageResampling = None , A_ : bool = None , A_ : int = None , A_ : bool = None , A_ : float = None , A_ : bool = None , A_ : Optional[Union[float, List[float]]] = None , A_ : Optional[Union[float, List[float]]] = None , A_ : bool = None , A_ : Optional[Union[str, TensorType]] = None , A_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **A_ : Dict , ) -> PIL.Image.Image: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ , param_name='size' , default_to_square=A_ ) lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' , default_to_square=A_ ) lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase_ = [convert_to_rgb(A_ ) for image in images] # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
204
1
"""simple docstring""" class __A: def __init__( self ) -> Any: '''simple docstring''' __a = {} def SCREAMING_SNAKE_CASE_ ( self ) -> None: '''simple docstring''' print(self.vertex ) for i in self.vertex: print(_snake_case , ''' -> ''' , ''' -> '''.join([str(_snake_case ) for j in self.vertex[i]] ) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> None: '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(_snake_case ) else: # else make a new vertex __a = [to_vertex] def SCREAMING_SNAKE_CASE_ ( self ) -> None: '''simple docstring''' __a = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> None: '''simple docstring''' __a = True print(_snake_case , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_snake_case , _snake_case ) if __name__ == "__main__": A : List[str] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A : str = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['PerceiverFeatureExtractor'] A : int = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger() @dataclass class a_ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = field(default_factory=snake_case_ ) UpperCamelCase = field(default_factory=snake_case_ ) def snake_case_( self , A , A , A ) -> Optional[int]: _SCREAMING_SNAKE_CASE = len(list(m.modules() ) ) == 1 or isinstance(A , nn.Convad ) or isinstance(A , nn.BatchNormad ) if has_not_submodules: self.traced.append(A ) def __call__( self , A ) -> str: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A ) [x.remove() for x in self.handles] return self @property def snake_case_( self ) -> str: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class a_ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 0 UpperCamelCase = field(default_factory=snake_case_ ) UpperCamelCase = field(default_factory=snake_case_ ) def __call__( self , A ) -> List[str]: _SCREAMING_SNAKE_CASE = Tracker(self.dest )(A ).parametrized _SCREAMING_SNAKE_CASE = Tracker(self.src )(A ).parametrized _SCREAMING_SNAKE_CASE = list(filter(lambda A : type(A ) not in self.src_skip , A ) ) _SCREAMING_SNAKE_CASE = list(filter(lambda A : type(A ) not in self.dest_skip , A ) ) if len(A ) != len(A ): raise Exception( f'Numbers of operations are different. Source module has {len(A )} operations while' f' destination module has {len(A )}.' ) for dest_m, src_m in zip(A , A ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : ResNetConfig , __lowerCamelCase : Path , __lowerCamelCase : bool = True ) ->int: print(F'Converting {name}...' ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase ).eval() _SCREAMING_SNAKE_CASE = ResNetForImageClassification(__lowerCamelCase ).eval() _SCREAMING_SNAKE_CASE = ModuleTransfer(src=__lowerCamelCase , dest=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.randn((1, 3, 224, 224) ) module_transfer(__lowerCamelCase ) assert torch.allclose(from_model(__lowerCamelCase ) , our_model(__lowerCamelCase ).logits ), "The model logits don't match the original one." _SCREAMING_SNAKE_CASE = F'resnet{"-".join(name.split("resnet" ) )}' print(__lowerCamelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=__lowerCamelCase , ) # we can use the convnext one _SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=__lowerCamelCase , ) print(F'Pushed {checkpoint_name}' ) def lowerCamelCase ( __lowerCamelCase : Path , __lowerCamelCase : str = None , __lowerCamelCase : bool = True ) ->Any: _SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" _SCREAMING_SNAKE_CASE = 1000 _SCREAMING_SNAKE_CASE = (1, num_labels) _SCREAMING_SNAKE_CASE = """huggingface/label-files""" _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _SCREAMING_SNAKE_CASE = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(__lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowercase_ = parser.parse_args() lowercase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
58
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def lowerCamelCase ( __lowerCamelCase : str ) ->str: if not sentence: return "" _SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , __lowerCamelCase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
58
1
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self: Optional[int] , a: int , a: List[Any] , a: Any ): self.assertEqual(len(a ) , len(a ) ) for a, b in zip(a , a ): self.assertAlmostEqual(a , a , delta=a ) def _snake_case ( self: Union[str, Any] ): __lowerCamelCase : Union[str, Any] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(a ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def _snake_case ( self: str ): __lowerCamelCase : Any = None ops.enable_eager_execution_internal() __lowerCamelCase : List[str] = tf.config.list_physical_devices('CPU' ) if len(a ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __lowerCamelCase : Dict = tf.config.list_logical_devices(device_type='CPU' ) __lowerCamelCase : List[Any] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __lowerCamelCase : Optional[Any] = GradientAccumulator() __lowerCamelCase : int = tf.Variable([4.0, 3.0] ) __lowerCamelCase , __lowerCamelCase : Any = create_optimizer(5e-5 , 10 , 5 ) __lowerCamelCase : Any = tf.Variable([0.0, 0.0] , trainable=a ) def accumulate_on_replica(a: str ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(a: List[Any] , a: List[str] ): with strategy.scope(): __lowerCamelCase : Optional[int] = strategy.experimental_local_results(a ) local_variables[0].assign(a ) local_variables[1].assign(a ) strategy.run(a , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(a ) def _check_local_values(a: str , a: Union[str, Any] ): __lowerCamelCase : Optional[Any] = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , a , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , a , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
194
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['ConvNextFeatureExtractor'] lowercase_ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
194
1
a__: Tuple = [ (1_000, 'M'), (900, 'CM'), (500, 'D'), (400, 'CD'), (100, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def UpperCamelCase__( UpperCamelCase__ : str )->Any: A__ = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 1_00, "D": 5_00, "M": 10_00} A__ = 0 A__ = 0 while place < len(_lowerCamelCase ): if (place + 1 < len(_lowerCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def UpperCamelCase__( UpperCamelCase__ : int )->List[Any]: A__ = [] for arabic, roman in ROMAN: (A__) = divmod(_lowerCamelCase , _lowerCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
193
def lowercase_ ( _lowerCamelCase : int): lowercase__ : Dict = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
87
0
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def _snake_case( SCREAMING_SNAKE_CASE__ : Dict ) -> Tuple: '''simple docstring''' A__ = list(s_dict.keys() ) for key in keys: A__ = R'.*/layers_(\d+)' A__ = key if re.match(a_ , a_ ): A__ = re.sub(R'layers_(\d+)' , R'block/\1/layer' , a_ ) A__ = R'(encoder|decoder)\/' if re.match(a_ , a_ ): A__ = re.match(a_ , a_ ).groups() if groups[0] == "encoder": A__ = re.sub(R'/mlp/' , R'/1/mlp/' , a_ ) A__ = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , a_ ) elif groups[0] == "decoder": A__ = re.sub(R'/mlp/' , R'/2/mlp/' , a_ ) A__ = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , a_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A__ = new_key.replace(a_ , a_ ) print(f'{key} -> {new_key}' ) A__ = s_dict.pop(a_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A__ = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A__ = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A__ = s_dict[key].shape[0] A__ = s_dict[key] for idx in range(a_ ): A__ = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(a_ ) return s_dict lowercase_ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: '''simple docstring''' import regex as re with open(a_ , 'r' ) as f: A__ = f.read() A__ = re.findall(R'(.*) = ([0-9.]*)' , a_ ) A__ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A__ = float(a_ ) if '.' in value else int(a_ ) A__ = re.findall(R'(.*activations) = \(\'(.*)\',\)' , a_ )[0] A__ = str(activation[1] ) A__ = num_experts A__ = SwitchTransformersConfig(**a_ ) return config def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Optional[int]="./" , SCREAMING_SNAKE_CASE__ : Optional[Any]=8 ) -> Tuple: '''simple docstring''' print(f'Loading flax weights from : {flax_checkpoint_path}' ) A__ = checkpoints.load_tax_checkpoint(a_ ) if gin_file is not None: A__ = convert_gin_to_config(a_ , a_ ) else: A__ = SwitchTransformersConfig.from_pretrained(a_ ) A__ = SwitchTransformersForConditionalGeneration(a_ ) A__ = flax_params['target'] A__ = flatten_dict(a_ , sep='/' ) A__ = rename_keys(a_ ) A__ = unflatten_dict(a_ , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(a_ , a_ ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(a_ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
364
from __future__ import annotations from scipy.special import comb # type: ignore class A : """simple docstring""" def __init__( self : Any,lowercase_ : list[tuple[float, float]] )-> Optional[int]: '''simple docstring''' A__ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. A__ = len(lowercase_ ) - 1 def snake_case__ ( self : List[Any],lowercase_ : float )-> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." A__ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,lowercase_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(lowercase_ ),5 ) == 1 return output_values def snake_case__ ( self : str,lowercase_ : float )-> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." A__ = self.basis_function(lowercase_ ) A__ = 0.0 A__ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def snake_case__ ( self : str,lowercase_ : float = 0.01 )-> str: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore A__ = [] # x coordinates of points to plot A__ = [] # y coordinates of points to plot A__ = 0.0 while t <= 1: A__ = self.bezier_curve_function(lowercase_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size A__ = [i[0] for i in self.list_of_points] A__ = [i[1] for i in self.list_of_points] plt.plot( lowercase_,lowercase_,color='blue',label='Curve of Degree ' + str(self.degree ),) plt.scatter(lowercase_,lowercase_,color='red',label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
282
0
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> float: if days_between_payments <= 0: raise ValueError("""days_between_payments must be > 0""" ) if daily_interest_rate < 0: raise ValueError("""daily_interest_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * daily_interest_rate * days_between_payments def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,) -> float: if number_of_compounding_periods <= 0: raise ValueError("""number_of_compounding_periods must be > 0""" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("""nominal_annual_interest_rate_percentage must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,) -> float: if number_of_years <= 0: raise ValueError("""number_of_years must be > 0""" ) if nominal_annual_percentage_rate < 0: raise ValueError("""nominal_annual_percentage_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return compound_interest( lowercase ,nominal_annual_percentage_rate / 365 ,number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
124
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() lowerCamelCase : Any = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Any: snake_case : Optional[int] = WavaVecaForSequenceClassification.from_pretrained(lowercase ,config=lowercase ) snake_case : List[str] = downstream_dict["""projector.weight"""] snake_case : Dict = downstream_dict["""projector.bias"""] snake_case : Dict = downstream_dict["""model.post_net.linear.weight"""] snake_case : List[Any] = downstream_dict["""model.post_net.linear.bias"""] return model def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[str]: snake_case : str = WavaVecaForAudioFrameClassification.from_pretrained(lowercase ,config=lowercase ) snake_case : List[Any] = downstream_dict["""model.linear.weight"""] snake_case : str = downstream_dict["""model.linear.bias"""] return model def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> str: snake_case : Any = WavaVecaForXVector.from_pretrained(lowercase ,config=lowercase ) snake_case : str = downstream_dict["""connector.weight"""] snake_case : Optional[Any] = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): snake_case : List[Any] = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] snake_case : Optional[int] = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] snake_case : List[str] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] snake_case : Union[str, Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] snake_case : Any = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] snake_case : int = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] snake_case : Any = downstream_dict["""objective.W"""] return model @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Union[str, Any]: snake_case : Tuple = torch.load(lowercase ,map_location="""cpu""" ) snake_case : Any = checkpoint["""Downstream"""] snake_case : List[str] = WavaVecaConfig.from_pretrained(lowercase ) snake_case : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( lowercase ,return_attention_mask=lowercase ,do_normalize=lowercase ) snake_case : str = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): snake_case : int = convert_classification(lowercase ,lowercase ,lowercase ) elif arch.endswith("""ForAudioFrameClassification""" ): snake_case : Dict = convert_diarization(lowercase ,lowercase ,lowercase ) elif arch.endswith("""ForXVector""" ): snake_case : Optional[Any] = convert_xvector(lowercase ,lowercase ,lowercase ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: snake_case : List[str] = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') lowerCamelCase : int = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
124
1
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __A ( unittest.TestCase ): def lowercase__ ( self : Dict ): lowerCAmelCase : List[Any] = logging.get_logger() # the current default level is logging.WARNING lowerCAmelCase : str = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(UpperCAmelCase_ ) def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = logging.get_verbosity() lowerCAmelCase : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) lowerCAmelCase : str = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(UpperCAmelCase_ ) as cl: logger.warning(UpperCAmelCase_ ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(UpperCAmelCase_ ) as cl: logger.warning(UpperCAmelCase_ ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(UpperCAmelCase_ ) as cl: logger.warning(UpperCAmelCase_ ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(UpperCAmelCase_ ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def lowercase__ ( self : Any ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var lowerCAmelCase : Tuple = logging.get_logger('transformers.models.bart.tokenization_bart' ) lowerCAmelCase : Any = os.getenv('TRANSFORMERS_VERBOSITY' , UpperCAmelCase_ ) lowerCAmelCase : Any = logging.log_levels[env_level_str] lowerCAmelCase : int = logging.get_verbosity() self.assertEqual( UpperCAmelCase_ , UpperCAmelCase_ , f"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}" , ) # restore to the original level lowerCAmelCase : Tuple = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def lowercase__ ( self : int ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() lowerCAmelCase : Dict = logging.logging.getLogger() with CaptureLogger(UpperCAmelCase_ ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def lowercase__ ( self : Optional[int] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() lowerCAmelCase : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) lowerCAmelCase : Tuple = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(UpperCAmelCase_ ) as cl: logger.warning_advice(UpperCAmelCase_ ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(UpperCAmelCase_ ) as cl: logger.warning_advice(UpperCAmelCase_ ) self.assertEqual(cl.out , msg + '\n' ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
323
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
1
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase_ (_A , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = CTRLTokenizer SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] __lowercase = dict(zip(lowercase__ ,range(len(lowercase__ ) ) ) ) __lowercase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] __lowercase = {'''unk_token''': '''<unk>'''} __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[Any] ): __lowercase = '''adapt react readapt apt''' __lowercase = '''adapt react readapt apt''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) __lowercase = '''adapt react readapt apt''' __lowercase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() __lowercase = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = tokens + [tokenizer.unk_token] __lowercase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) ,lowercase__ )
104
"""simple docstring""" def lowercase ( __snake_case : int = 1_0_0 ): lowercase_ : str = 0 lowercase_ : List[Any] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
33
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = sorted(numsa + numsa ) _A : Optional[int] = divmod(len(snake_case_ ),2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _snake_case = [float(x) for x in input("Enter the elements of first array: ").split()] _snake_case = [float(x) for x in input("Enter the elements of second array: ").split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
369
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): @register_to_config def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any: super().__init__() _A : int = num_attention_heads _A : Union[str, Any] = attention_head_dim _A : Tuple = num_attention_heads * attention_head_dim _A : Any = additional_embeddings _A : Any = time_embed_dim or inner_dim _A : List[str] = embedding_proj_dim or embedding_dim _A : Optional[int] = clip_embed_dim or embedding_dim _A : Union[str, Any] = Timesteps(_a , _a , 0 ) _A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a ) _A : Dict = nn.Linear(_a , _a ) if embedding_proj_norm_type is None: _A : int = None elif embedding_proj_norm_type == "layer": _A : Optional[Any] = nn.LayerNorm(_a ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) _A : Optional[Any] = nn.Linear(_a , _a ) if encoder_hid_proj_type is None: _A : Union[str, Any] = None elif encoder_hid_proj_type == "linear": _A : Tuple = nn.Linear(_a , _a ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) _A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) ) if added_emb_type == "prd": _A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) ) elif added_emb_type is None: _A : Union[str, Any] = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) _A : int = nn.ModuleList( [ BasicTransformerBlock( _a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , ) for d in range(_a ) ] ) if norm_in_type == "layer": _A : Union[str, Any] = nn.LayerNorm(_a ) elif norm_in_type is None: _A : Tuple = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) _A : int = nn.LayerNorm(_a ) _A : str = nn.Linear(_a , _a ) _A : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) _A : Optional[int] = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , _a , persistent=_a ) _A : Tuple = nn.Parameter(torch.zeros(1 , _a ) ) _A : Dict = nn.Parameter(torch.zeros(1 , _a ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self ) -> Dict[str, AttentionProcessor]: _A : List[str] = {} def fn_recursive_add_processors(_a , _a , _a ): if hasattr(_a , """set_processor""" ): _A : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_a , _a , _a ) return processors def a__ ( self , _a ) -> List[str]: _A : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_a , _a ) and len(_a ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_a , _a , _a ): if hasattr(_a , """set_processor""" ): if not isinstance(_a , _a ): module.set_processor(_a ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a ) for name, module in self.named_children(): fn_recursive_attn_processor(_a , _a , _a ) def a__ ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]: _A : Tuple = hidden_states.shape[0] _A : List[Any] = timestep if not torch.is_tensor(_a ): _A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0: _A : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device ) _A : Dict = self.time_proj(_a ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _A : Tuple = timesteps_projected.to(dtype=self.dtype ) _A : List[Any] = self.time_embedding(_a ) if self.embedding_proj_norm is not None: _A : Dict = self.embedding_proj_norm(_a ) _A : List[Any] = self.embedding_proj(_a ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _A : List[Any] = self.encoder_hidden_states_proj(_a ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) _A : Optional[int] = self.proj_in(_a ) _A : Optional[int] = self.positional_embedding.to(hidden_states.dtype ) _A : Union[str, Any] = [] _A : List[str] = 0 if encoder_hidden_states is not None: additional_embeds.append(_a ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _A : List[str] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _A : List[str] = hidden_states[:, None, :] _A : Dict = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 ) additional_embeds.append(_a ) _A : str = torch.cat( _a , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _A : Union[str, Any] = F.pad( _a , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _A : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 _A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 ) _A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _A : str = self.norm_in(_a ) for block in self.transformer_blocks: _A : List[Any] = block(_a , attention_mask=_a ) _A : Any = self.norm_out(_a ) if self.prd_embedding is not None: _A : int = hidden_states[:, -1] else: _A : Any = hidden_states[:, additional_embeddings_len:] _A : Union[str, Any] = self.proj_to_clip_embeddings(_a ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_a ) def a__ ( self , _a ) -> Tuple: _A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
343
0
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _a = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self , __a , __a , __a = None , __a = None) -> Optional[int]: '''simple docstring''' _UpperCamelCase = None _UpperCamelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''')) _UpperCamelCase = os.path.abspath('''examples''') for item in os.listdir(__a): if item not in EXCLUDE_EXAMPLES: _UpperCamelCase = os.path.join(__a , __a) if os.path.isfile(__a) and ".py" in item_path: with self.subTest( tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ): _UpperCamelCase = compare_against_test( os.path.join(__a , __a) , __a , __a , __a) _UpperCamelCase = '''\n'''.join(__a) if special_strings is not None: for string in special_strings: _UpperCamelCase = diff.replace(__a , '''''') self.assertEqual(__a , '''''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.one_complete_example('''complete_nlp_example.py''' , __a) self.one_complete_example('''complete_nlp_example.py''' , __a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''')) _UpperCamelCase = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a) self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = False @classmethod def UpperCAmelCase ( cls) -> List[Any]: '''simple docstring''' super().setUpClass() _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = os.path.join(cls._tmpdir , '''default_config.yml''') write_basic_config(save_location=cls.configPath) _UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def UpperCAmelCase ( cls) -> Dict: '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = F''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0'''))) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = F''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() _UpperCamelCase = run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2'''))) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = F''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0")} '''.split() _UpperCamelCase = run_command(self._launch_args + testargs , return_stdout=__a) self.assertNotIn('''epoch 0:''' , __a) self.assertIn('''epoch 1:''' , __a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = F''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2")} '''.split() _UpperCamelCase = run_command(self._launch_args + testargs , return_stdout=__a) if torch.cuda.is_available(): _UpperCamelCase = torch.cuda.device_count() else: _UpperCamelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __a) self.assertIn('''epoch 1:''' , __a) else: self.assertIn('''epoch 0:''' , __a) self.assertIn('''epoch 1:''' , __a) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''}): _UpperCamelCase = run_command(self._launch_args + testargs , return_stdout=__a) _UpperCamelCase = re.findall('''({.+})''' , __a) _UpperCamelCase = [r for r in results if '''accuracy''' in r][-1] _UpperCamelCase = ast.literal_eval(__a) self.assertGreaterEqual(results['''accuracy'''] , 0.75) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCAmelCase ( self) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: _UpperCamelCase = F''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(__a , '''tracking'''))) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs)
194
"""simple docstring""" from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' if isinstance(__a , __a): _UpperCamelCase = [label.strip() for label in labels.split(''',''') if label.strip()] return labels def __call__( self , __a , __a , __a) -> Optional[int]: '''simple docstring''' if len(__a) == 0 or len(__a) == 0: raise ValueError('''You must include at least one label and at least one sequence.''') if hypothesis_template.format(labels[0]) == hypothesis_template: raise ValueError( ( '''The provided hypothesis_template "{}" was not able to be formatted with the target labels. ''' '''Make sure the passed template includes formatting syntax such as {{}} where the label should go.''' ).format(__a)) if isinstance(__a , __a): _UpperCamelCase = [sequences] _UpperCamelCase = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__a)] for label in labels]) return sequence_pairs, sequences @add_end_docstrings(lowerCamelCase ) class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a=ZeroShotClassificationArgumentHandler() , *__a , **__a) -> List[str]: '''simple docstring''' _UpperCamelCase = args_parser super().__init__(*__a , **__a) if self.entailment_id == -1: logger.warning( '''Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ''' '''-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.''') @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('''entail'''): return ind return -1 def UpperCAmelCase ( self , __a , __a=True , __a=True , __a=TruncationStrategy.ONLY_FIRST , **__a) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( '''Tokenizer was not supporting padding necessary for zero-shot, attempting to use ''' ''' `pad_token=eos_token`''') _UpperCamelCase = self.tokenizer.eos_token try: _UpperCamelCase = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=__a , ) except Exception as e: if "too short" in str(__a): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCamelCase = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def UpperCAmelCase ( self , **__a) -> Any: '''simple docstring''' if kwargs.get('''multi_class''' , __a) is not None: _UpperCamelCase = kwargs['''multi_class'''] logger.warning( '''The `multi_class` argument has been deprecated and renamed to `multi_label`. ''' '''`multi_class` will be removed in a future version of Transformers.''') _UpperCamelCase = {} if "candidate_labels" in kwargs: _UpperCamelCase = self._args_parser._parse_labels(kwargs['''candidate_labels''']) if "hypothesis_template" in kwargs: _UpperCamelCase = kwargs['''hypothesis_template'''] _UpperCamelCase = {} if "multi_label" in kwargs: _UpperCamelCase = kwargs['''multi_label'''] return preprocess_params, {}, postprocess_params def __call__( self , __a , *__a , **__a , ) -> int: '''simple docstring''' if len(__a) == 0: pass elif len(__a) == 1 and "candidate_labels" not in kwargs: _UpperCamelCase = args[0] else: raise ValueError(F'''Unable to understand extra arguments {args}''') return super().__call__(__a , **__a) def UpperCAmelCase ( self , __a , __a=None , __a="This example is {}.") -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self._args_parser(__a , __a , __a) for i, (candidate_label, sequence_pair) in enumerate(zip(__a , __a)): _UpperCamelCase = self._parse_and_tokenize([sequence_pair]) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__a) - 1, **model_input, } def UpperCAmelCase ( self , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = inputs['''candidate_label'''] _UpperCamelCase = inputs['''sequence'''] _UpperCamelCase = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCamelCase = self.model(**__a) _UpperCamelCase = { '''candidate_label''': candidate_label, '''sequence''': sequence, '''is_last''': inputs['''is_last'''], **outputs, } return model_outputs def UpperCAmelCase ( self , __a , __a=False) -> Dict: '''simple docstring''' _UpperCamelCase = [outputs['''candidate_label'''] for outputs in model_outputs] _UpperCamelCase = [outputs['''sequence'''] for outputs in model_outputs] _UpperCamelCase = np.concatenate([output['''logits'''].numpy() for output in model_outputs]) _UpperCamelCase = logits.shape[0] _UpperCamelCase = len(__a) _UpperCamelCase = N // n _UpperCamelCase = logits.reshape((num_sequences, n, -1)) if multi_label or len(__a) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCamelCase = self.entailment_id _UpperCamelCase = -1 if entailment_id == 0 else 0 _UpperCamelCase = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCamelCase = np.exp(__a) / np.exp(__a).sum(-1 , keepdims=__a) _UpperCamelCase = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCamelCase = reshaped_outputs[..., self.entailment_id] _UpperCamelCase = np.exp(__a) / np.exp(__a).sum(-1 , keepdims=__a) _UpperCamelCase = list(reversed(scores[0].argsort())) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
194
1
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: def update_area_of_max_square(UpperCamelCase__ , UpperCamelCase__ ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowerCamelCase = update_area_of_max_square(UpperCamelCase__ , col + 1 ) __lowerCamelCase = update_area_of_max_square(row + 1 , col + 1 ) __lowerCamelCase = update_area_of_max_square(row + 1 , UpperCamelCase__ ) if mat[row][col]: __lowerCamelCase = 1 + min([right, diagonal, down] ) __lowerCamelCase = max(largest_square_area[0] , UpperCamelCase__ ) return sub_problem_sol else: return 0 __lowerCamelCase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: def update_area_of_max_square_using_dp_array( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowerCamelCase = update_area_of_max_square_using_dp_array(UpperCamelCase__ , col + 1 , UpperCamelCase__ ) __lowerCamelCase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , UpperCamelCase__ ) __lowerCamelCase = update_area_of_max_square_using_dp_array(row + 1 , UpperCamelCase__ , UpperCamelCase__ ) if mat[row][col]: __lowerCamelCase = 1 + min([right, diagonal, down] ) __lowerCamelCase = max(largest_square_area[0] , UpperCamelCase__ ) __lowerCamelCase = sub_problem_sol return sub_problem_sol else: return 0 __lowerCamelCase = [0] __lowerCamelCase = [[-1] * cols for _ in range(UpperCamelCase__ )] update_area_of_max_square_using_dp_array(0 , 0 , UpperCamelCase__ ) return largest_square_area[0] def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: __lowerCamelCase = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowerCamelCase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCamelCase = dp_array[row][col + 1] __lowerCamelCase = dp_array[row + 1][col + 1] __lowerCamelCase = dp_array[row + 1][col] if mat[row][col] == 1: __lowerCamelCase = 1 + min(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = max(dp_array[row][col] , UpperCamelCase__ ) else: __lowerCamelCase = 0 return largest_square_area def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: __lowerCamelCase = [0] * (cols + 1) __lowerCamelCase = [0] * (cols + 1) __lowerCamelCase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCamelCase = current_row[col + 1] __lowerCamelCase = next_row[col + 1] __lowerCamelCase = next_row[col] if mat[row][col] == 1: __lowerCamelCase = 1 + min(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = max(current_row[col] , UpperCamelCase__ ) else: __lowerCamelCase = 0 __lowerCamelCase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
237
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> str: return "".join(chr(ord(UpperCamelCase__ ) - 32 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
237
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } lowercase_ = { "allenai/led-base-16384": 16384, } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = LEDTokenizer lowerCamelCase = ['input_ids', 'attention_mask'] def __init__( self : List[Any],lowercase_ : Dict=None,lowercase_ : Optional[int]=None,lowercase_ : Any=None,lowercase_ : Optional[int]="replace",lowercase_ : List[Any]="<s>",lowercase_ : int="</s>",lowercase_ : List[str]="</s>",lowercase_ : str="<s>",lowercase_ : str="<unk>",lowercase_ : Dict="<pad>",lowercase_ : str="<mask>",lowercase_ : List[Any]=False,lowercase_ : Tuple=True,**lowercase_ : Optional[Any],)-> str: '''simple docstring''' super().__init__( lowercase_,lowercase_,tokenizer_file=lowercase_,errors=lowercase_,bos_token=lowercase_,eos_token=lowercase_,sep_token=lowercase_,cls_token=lowercase_,unk_token=lowercase_,pad_token=lowercase_,mask_token=lowercase_,add_prefix_space=lowercase_,trim_offsets=lowercase_,**lowercase_,) A__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space',lowercase_ ) != add_prefix_space: A__ = getattr(lowercase_,pre_tok_state.pop('type' ) ) A__ = add_prefix_space A__ = pre_tok_class(**lowercase_ ) A__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` A__ = 'post_processor' A__ = getattr(self.backend_tokenizer,lowercase_,lowercase_ ) if tokenizer_component_instance: A__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A__ = tuple(state['sep'] ) if "cls" in state: A__ = tuple(state['cls'] ) A__ = False if state.get('add_prefix_space',lowercase_ ) != add_prefix_space: A__ = add_prefix_space A__ = True if state.get('trim_offsets',lowercase_ ) != trim_offsets: A__ = trim_offsets A__ = True if changes_to_apply: A__ = getattr(lowercase_,state.pop('type' ) ) A__ = component_class(**lowercase_ ) setattr(self.backend_tokenizer,lowercase_,lowercase_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def snake_case__ ( self : Any )-> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def snake_case__ ( self : Tuple,lowercase_ : Tuple )-> Tuple: '''simple docstring''' A__ = AddedToken(lowercase_,lstrip=lowercase_,rstrip=lowercase_ ) if isinstance(lowercase_,lowercase_ ) else value A__ = value def snake_case__ ( self : Union[str, Any],*lowercase_ : Union[str, Any],**lowercase_ : List[Any] )-> BatchEncoding: '''simple docstring''' A__ = kwargs.get('is_split_into_words',lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_,**lowercase_ ) def snake_case__ ( self : List[Any],*lowercase_ : int,**lowercase_ : List[Any] )-> BatchEncoding: '''simple docstring''' A__ = kwargs.get('is_split_into_words',lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase_,**lowercase_ ) def snake_case__ ( self : Union[str, Any],lowercase_ : str,lowercase_ : Optional[str] = None )-> Tuple[str]: '''simple docstring''' A__ = self._tokenizer.model.save(lowercase_,name=lowercase_ ) return tuple(lowercase_ ) def snake_case__ ( self : List[str],lowercase_ : str,lowercase_ : Any=None )-> Union[str, Any]: '''simple docstring''' A__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case__ ( self : Optional[Any],lowercase_ : List[int],lowercase_ : Optional[List[int]] = None )-> List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case__ ( self : str,lowercase_ : Union[Dict[str, EncodedInput], BatchEncoding],lowercase_ : Optional[int] = None,lowercase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,lowercase_ : Optional[int] = None,lowercase_ : Optional[bool] = None,)-> dict: '''simple docstring''' A__ = super()._pad( encoded_inputs=lowercase_,max_length=lowercase_,padding_strategy=lowercase_,pad_to_multiple_of=lowercase_,return_attention_mask=lowercase_,) # Load from model defaults if return_attention_mask is None: A__ = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: A__ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. A__ = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ ) if needs_to_be_padded: A__ = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` A__ = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": A__ = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
7
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "longformer" def __init__( self : Optional[Any] , lowercase : Union[List[int], int] = 512 , lowercase : int = 2 , lowercase : int = 1 , lowercase : int = 0 , lowercase : int = 2 , lowercase : int = 30_522 , lowercase : int = 768 , lowercase : int = 12 , lowercase : int = 12 , lowercase : int = 3_072 , lowercase : str = "gelu" , lowercase : float = 0.1 , lowercase : float = 0.1 , lowercase : int = 512 , lowercase : int = 2 , lowercase : float = 0.02 , lowercase : float = 1E-12 , lowercase : bool = False , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , **lowercase ) _snake_case = attention_window _snake_case = sep_token_id _snake_case = bos_token_id _snake_case = eos_token_id _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = onnx_export class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : int , lowercase : "PretrainedConfig" , lowercase : str = "default" , lowercase : "List[PatchingSpec]" = None ): '''simple docstring''' super().__init__(lowercase , lowercase , lowercase ) _snake_case = True @property def A ( self : Union[str, Any] ): '''simple docstring''' if self.task == "multiple-choice": _snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def A ( self : int ): '''simple docstring''' _snake_case = super().outputs if self.task == "default": _snake_case = {0: 'batch'} return outputs @property def A ( self : List[Any] ): '''simple docstring''' return 1E-4 @property def A ( self : List[str] ): '''simple docstring''' return max(super().default_onnx_opset , 14 ) def A ( self : str , lowercase : "PreTrainedTokenizerBase" , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' _snake_case = super().generate_dummy_inputs( preprocessor=lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _snake_case = torch.zeros_like(inputs['input_ids'] ) # make every second token global _snake_case = 1 return inputs
282
0
from __future__ import annotations __lowerCamelCase : Optional[int] = """#""" class A__ : def __init__( self ): '''simple docstring''' UpperCamelCase : dict = {} def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = self._trie for char in text: if char not in trie: UpperCamelCase : Any = {} UpperCamelCase : int = trie[char] UpperCamelCase : Dict = True def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = self._trie for char in prefix: if char in trie: UpperCamelCase : List[Any] = trie[char] else: return [] return self._elements(A_ ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Any = [] for c, v in d.items(): UpperCamelCase : List[Any] = [" "] if c == END else [(c + s) for s in self._elements(A_ )] result.extend(A_ ) return tuple(A_ ) __lowerCamelCase : Dict = Trie() __lowerCamelCase : List[Any] = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def A_ ( _lowerCAmelCase ) -> tuple: UpperCamelCase : Optional[int] = trie.find_word(_lowerCAmelCase ) return tuple(string + word for word in suffixes ) def A_ ( ) -> None: print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
356
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class A__ ( __snake_case ): def __init__( self , A_ , A_=None , A_=None , A_=0 ): '''simple docstring''' UpperCamelCase : Union[str, Any] = 1.0 if scale is None else scale UpperCamelCase : Optional[int] = 0.0 if loc is None else loc super().__init__(A_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=A_ )] ) @property def __UpperCamelCase( self ): '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def __UpperCamelCase( self ): '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def __UpperCamelCase( self ): '''simple docstring''' return self.variance.sqrt() class A__ ( nn.Module ): def __init__( self , A_ , A_ , A_ , **A_ ): '''simple docstring''' super().__init__(**A_ ) UpperCamelCase : Union[str, Any] = args_dim UpperCamelCase : str = nn.ModuleList([nn.Linear(A_ , A_ ) for dim in args_dim.values()] ) UpperCamelCase : Union[str, Any] = domain_map def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = [proj(A_ ) for proj in self.proj] return self.domain_map(*A_ ) class A__ ( nn.Module ): def __init__( self , A_ ): '''simple docstring''' super().__init__() UpperCamelCase : str = function def __UpperCamelCase( self , A_ , *A_ ): '''simple docstring''' return self.function(A_ , *A_ ) class A__ : _UpperCAmelCase :type _UpperCAmelCase :int _UpperCAmelCase :Dict[str, int] def __init__( self , A_ = 1 ): '''simple docstring''' UpperCamelCase : Tuple = dim UpperCamelCase : Union[str, Any] = {k: dim * self.args_dim[k] for k in self.args_dim} def __UpperCamelCase( self , A_ ): '''simple docstring''' if self.dim == 1: return self.distribution_class(*A_ ) else: return Independent(self.distribution_class(*A_ ) , 1 ) def __UpperCamelCase( self , A_ , A_ = None , A_ = None , ): '''simple docstring''' UpperCamelCase : str = self._base_distribution(A_ ) if loc is None and scale is None: return distr else: return AffineTransformed(A_ , loc=A_ , scale=A_ , event_dim=self.event_dim ) @property def __UpperCamelCase( self ): '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def __UpperCamelCase( self ): '''simple docstring''' return len(self.event_shape ) @property def __UpperCamelCase( self ): '''simple docstring''' return 0.0 def __UpperCamelCase( self , A_ ): '''simple docstring''' return ParameterProjection( in_features=A_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __UpperCamelCase( self , *A_ ): '''simple docstring''' raise NotImplementedError() @staticmethod def __UpperCamelCase( A_ ): '''simple docstring''' return (x + torch.sqrt(torch.square(A_ ) + 4.0 )) / 2.0 class A__ ( __snake_case ): _UpperCAmelCase :Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} _UpperCAmelCase :type = StudentT @classmethod def __UpperCamelCase( cls , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCamelCase : int = 2.0 + cls.squareplus(A_ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( __snake_case ): _UpperCAmelCase :Dict[str, int] = {"loc": 1, "scale": 1} _UpperCAmelCase :type = Normal @classmethod def __UpperCamelCase( cls , A_ , A_ ): '''simple docstring''' UpperCamelCase : Dict = cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( __snake_case ): _UpperCAmelCase :Dict[str, int] = {"total_count": 1, "logits": 1} _UpperCAmelCase :type = NegativeBinomial @classmethod def __UpperCamelCase( cls , A_ , A_ ): '''simple docstring''' UpperCamelCase : List[str] = cls.squareplus(A_ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Optional[int] = distr_args if self.dim == 1: return self.distribution_class(total_count=A_ , logits=A_ ) else: return Independent(self.distribution_class(total_count=A_ , logits=A_ ) , 1 ) def __UpperCamelCase( self , A_ , A_ = None , A_ = None ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Any = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
140
0
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = logging.get_logger() # the current default level is logging.WARNING SCREAMING_SNAKE_CASE : Optional[int] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(lowerCamelCase_ ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = logging.get_verbosity() SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) SCREAMING_SNAKE_CASE : str = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(lowerCamelCase_ ) as cl: logger.warning(lowerCamelCase_ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(lowerCamelCase_ ) as cl: logger.warning(lowerCamelCase_ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(lowerCamelCase_ ) as cl: logger.warning(lowerCamelCase_ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(lowerCamelCase_ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() # this action activates the env var SCREAMING_SNAKE_CASE : int = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.getenv("""TRANSFORMERS_VERBOSITY""" , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = logging.log_levels[env_level_str] SCREAMING_SNAKE_CASE : Dict = logging.get_verbosity() self.assertEqual( lowerCamelCase_ , lowerCamelCase_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level SCREAMING_SNAKE_CASE : int = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE : List[Any] = logging.logging.getLogger() with CaptureLogger(lowerCamelCase_ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCamelCase_ ( self : str ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE : str = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) SCREAMING_SNAKE_CASE : Dict = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(lowerCamelCase_ ) as cl: logger.warning_advice(lowerCamelCase_ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(lowerCamelCase_ ) as cl: logger.warning_advice(lowerCamelCase_ ) self.assertEqual(cl.out , msg + """\n""" ) def __A ( ): """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
323
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[NestedDataStructureLike[PathLike]] = None , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = path_or_paths SCREAMING_SNAKE_CASE : List[Any] = split if split or isinstance(lowerCamelCase_ , lowerCamelCase_ ) else """train""" SCREAMING_SNAKE_CASE : List[Any] = features SCREAMING_SNAKE_CASE : Union[str, Any] = cache_dir SCREAMING_SNAKE_CASE : Dict = keep_in_memory SCREAMING_SNAKE_CASE : Union[str, Any] = streaming SCREAMING_SNAKE_CASE : Optional[int] = num_proc SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs @abstractmethod def lowerCamelCase_ ( self : Any ): '''simple docstring''' pass class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Tuple , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = features SCREAMING_SNAKE_CASE : int = cache_dir SCREAMING_SNAKE_CASE : Dict = keep_in_memory SCREAMING_SNAKE_CASE : Tuple = streaming SCREAMING_SNAKE_CASE : Union[str, Any] = num_proc SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs @abstractmethod def lowerCamelCase_ ( self : Dict ): '''simple docstring''' pass
323
1
'''simple docstring''' import re def __lowerCamelCase ( lowerCAmelCase_ ) -> List[Any]: _a : Union[str, Any] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(__UpperCamelCase , __UpperCamelCase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('''+918827897895'''))
369
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _a : Optional[int] = old_name if "patch_embed" in old_name: _a , _a , _a : int = old_name.split('.' ) if layer == "0": _a : Dict = old_name.replace('0' , 'convolution1' ) elif layer == "1": _a : List[str] = old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": _a : List[str] = old_name.replace('3' , 'convolution2' ) else: _a : Union[str, Any] = old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(r'\d\.\d' , lowerCAmelCase_ ): _a : Dict = r'\b\d{2}\b' if bool(re.search(lowerCAmelCase_ , lowerCAmelCase_ ) ): _a : Dict = re.search(r'\d\.\d\d.' , lowerCAmelCase_ ).group() else: _a : Optional[int] = re.search(r'\d\.\d.' , lowerCAmelCase_ ).group() if int(match[0] ) < 6: _a : int = old_name.replace(lowerCAmelCase_ , '' ) _a : Union[str, Any] = trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) _a : int = 'intermediate_stages.' + trimmed_name else: _a : Tuple = old_name.replace(lowerCAmelCase_ , '' ) if int(match[2] ) < num_meta4D_last_stage: _a : str = trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: _a : int = str(int(match[2] ) - num_meta4D_last_stage ) _a : List[str] = trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: _a : Union[str, Any] = trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: _a : List[Any] = trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: _a : Dict = trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: _a : List[Any] = trimmed_name.replace('fc2' , 'linear_out' ) _a : Dict = 'last_stage.' + trimmed_name elif "network" in old_name and re.search(r'.\d.' , lowerCAmelCase_ ): _a : List[str] = old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: _a : Optional[int] = new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): _a : Tuple = new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): _a : Union[str, Any] = new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: _a : Tuple = new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: _a : List[Any] = new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: _a : Dict = new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: _a : Tuple = 'efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": _a : int = new_name.replace('norm' , 'layernorm' ) _a : Any = 'efficientformer.' + new_name else: _a : Optional[int] = 'efficientformer.encoder.' + new_name return new_name def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: for key in checkpoint.copy().keys(): _a : List[str] = checkpoint.pop(lowerCAmelCase_ ) _a : List[str] = val return checkpoint def __lowerCamelCase ( ) -> Any: _a : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' _a : List[str] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return image def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _a : int = torch.load(lowerCAmelCase_ , map_location='cpu' )['model'] _a : Any = EfficientFormerConfig.from_json_file(lowerCAmelCase_ ) _a : Optional[int] = EfficientFormerForImageClassificationWithTeacher(lowerCAmelCase_ ) _a : List[Any] = '_'.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) _a : Dict = config.depths[-1] - config.num_metaad_blocks + 1 _a : int = convert_torch_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) model.eval() _a : Any = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image _a : Any = prepare_img() _a : Dict = 256 _a : Dict = 224 _a : int = EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) _a : Optional[int] = processor(images=lowerCAmelCase_ , return_tensors='pt' ).pixel_values # original processing pipeline _a : str = Compose( [ Resize(lowerCAmelCase_ , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(lowerCAmelCase_ ), ToTensor(), Normalize(lowerCAmelCase_ , lowerCAmelCase_ ), ] ) _a : Any = image_transforms(lowerCAmelCase_ ).unsqueeze(0 ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ ) _a : Tuple = model(lowerCAmelCase_ ) _a : Tuple = outputs.logits _a : List[Any] = (1, 1000) if "l1" in model_name: _a : Optional[Any] = torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :10] , lowerCAmelCase_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: _a : List[Any] = torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :10] , lowerCAmelCase_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: _a : Tuple = torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(lowerCAmelCase_ ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='Add model' , use_temp_dir=lowerCAmelCase_ , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='Add image processor' , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) __lowerCAmelCase = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
107
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 6_50, 'eval_accuracy': 0.6, 'eval_loss': 0.9}, }, { 'framework': 'tensorflow', 'script': 'run_tf.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 6_00, 'eval_accuracy': 0.3, 'eval_loss': 0.9}, }, ] ) class A ( unittest.TestCase ): def lowercase_ (self : int ) -> Optional[Any]: """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=__UpperCAmelCase , ) assert hasattr(self , "env" ) def lowercase_ (self : List[Any] , __UpperCAmelCase : Optional[int]=1 ) -> Dict: """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-single""" , instance_count=__UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=__UpperCAmelCase , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" TrainingJobAnalytics(__UpperCAmelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) def lowercase_ (self : Any ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.create_estimator() # run training estimator.fit() # result dataframe UpperCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) UpperCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __UpperCAmelCase )
65
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple: """simple docstring""" lowerCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ = "" else: lowerCAmelCase__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ = in_proj_bias[: config.hidden_size] lowerCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ = in_proj_bias[-config.hidden_size :] def _a ( UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = dct.pop(UpperCamelCase_ ) lowerCAmelCase__ = val def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ViTMSNConfig() lowerCAmelCase__ = 1_000 lowerCAmelCase__ = "datasets/huggingface/label-files" lowerCAmelCase__ = "imagenet-1k-id2label.json" lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase__ = 384 lowerCAmelCase__ = 1_536 lowerCAmelCase__ = 6 elif "l16" in checkpoint_url: lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase__ = 4 elif "l7" in checkpoint_url: lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ ) lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"] lowerCAmelCase__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCamelCase_ ) lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) lowerCAmelCase__ = ViTImageProcessor( size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ ) lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) lowerCAmelCase__ = model(**UpperCamelCase_ ) lowerCAmelCase__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
340
0
"""simple docstring""" import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = UniSpeechSatForSequenceClassification.from_pretrained(a__ , config=a__ ) a_ = downstream_dict["projector.weight"] a_ = downstream_dict["projector.bias"] a_ = downstream_dict["model.post_net.linear.weight"] a_ = downstream_dict["model.post_net.linear.bias"] return model def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" a_ = UniSpeechSatForAudioFrameClassification.from_pretrained(a__ , config=a__ ) a_ = downstream_dict["model.linear.weight"] a_ = downstream_dict["model.linear.bias"] return model def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = UniSpeechSatForXVector.from_pretrained(a__ , config=a__ ) a_ = downstream_dict["connector.weight"] a_ = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a_ = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] a_ = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] a_ = downstream_dict["objective.W"] return model @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = torch.load(a__ , map_location="cpu" ) a_ = checkpoint["Downstream"] a_ = UniSpeechSatConfig.from_pretrained(a__ ) a_ = WavaVecaFeatureExtractor.from_pretrained( a__ , return_attention_mask=a__ , do_normalize=a__ ) a_ = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): a_ = convert_classification(a__ , a__ , a__ ) elif arch.endswith("ForAudioFrameClassification" ): a_ = convert_diarization(a__ , a__ , a__ ) elif arch.endswith("ForXVector" ): a_ = convert_xvector(a__ , a__ , a__ ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: a_ = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(a__ ) hf_model.save_pretrained(a__ ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') UpperCamelCase_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
360
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: a_ = [3, 3, 3, 3] a_ = [5, 5, 5, 5] elif "fl4" in model_name: a_ = [4, 4, 4, 4] a_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: a_ = [3, 3, 3, 3] if "lrf" in model_name: a_ = [3, 3, 3, 3] else: a_ = [2, 2, 2, 2] if "tiny" in model_name: a_ = 96 elif "small" in model_name: a_ = 96 elif "base" in model_name: a_ = 128 elif "large" in model_name: a_ = 192 elif "xlarge" in model_name: a_ = 256 elif "huge" in model_name: a_ = 352 # set label information a_ = "huggingface/label-files" if "large" in model_name or "huge" in model_name: a_ = "imagenet-22k-id2label.json" else: a_ = "imagenet-1k-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = {v: k for k, v in idalabel.items()} a_ = FocalNetConfig( embed_dim=UpperCAmelCase , depths=UpperCAmelCase , focal_levels=UpperCAmelCase , focal_windows=UpperCAmelCase , use_conv_embed=UpperCAmelCase , idalabel=UpperCAmelCase , labelaid=UpperCAmelCase , use_post_layernorm=UpperCAmelCase , use_layerscale=UpperCAmelCase , ) return config def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" if "patch_embed.proj" in name: a_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a_ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: a_ = "encoder." + name if "encoder.layers" in name: a_ = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: a_ = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: a_ = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: a_ = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: a_ = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: a_ = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": a_ = "layernorm.weight" if name == "norm.bias": a_ = "layernorm.bias" if "head" in name: a_ = name.replace("head" , "classifier" ) else: a_ = "focalnet." + name return name def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->Dict: """simple docstring""" a_ = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on a_ = model_name_to_url[model_name] print("Checkpoint URL: " , UpperCAmelCase ) a_ = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): a_ = state_dict.pop(UpperCAmelCase ) a_ = val a_ = get_focalnet_config(UpperCAmelCase ) a_ = FocalNetForImageClassification(UpperCAmelCase ) model.eval() # load state dict model.load_state_dict(UpperCAmelCase ) # verify conversion a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = BitImageProcessor( do_resize=UpperCAmelCase , size={"shortest_edge": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase , crop_size=224 , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , ) a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) a_ = processor(images=UpperCAmelCase , return_tensors="pt" ) a_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a_ = image_transforms(UpperCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCAmelCase , atol=1E-4 ) a_ = model(**UpperCAmelCase ) a_ = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": a_ = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": a_ = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": a_ = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": a_ = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": a_ = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": a_ = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) UpperCamelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
0
'''simple docstring''' from __future__ import annotations class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , A : int ): _UpperCAmelCase : Optional[int] = data _UpperCAmelCase : Node | None = None _UpperCAmelCase : Node | None = None def UpperCamelCase_ ( _UpperCAmelCase : Tuple ) -> List[str]: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def UpperCamelCase_ ( _UpperCAmelCase : str ) -> Dict: """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def UpperCamelCase_ ( _UpperCAmelCase : List[str] ) -> Any: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def UpperCamelCase_ ( ) -> str: # Main function for testing. """simple docstring""" _UpperCAmelCase : Optional[Any] = Node(1 ) _UpperCAmelCase : Dict = Node(2 ) _UpperCAmelCase : Optional[int] = Node(3 ) _UpperCAmelCase : Dict = Node(4 ) _UpperCAmelCase : int = Node(5 ) _UpperCAmelCase : Union[str, Any] = Node(6 ) _UpperCAmelCase : Optional[int] = Node(7 ) _UpperCAmelCase : Union[str, Any] = Node(8 ) _UpperCAmelCase : List[Any] = Node(9 ) print(is_full_binary_tree(_UpperCAmelCase ) ) print(depth_of_tree(_UpperCAmelCase ) ) print("Tree is: " ) display(_UpperCAmelCase ) if __name__ == "__main__": main()
31
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): # Return True if there is node that has not iterated. lowercase :Union[str, Any] = [False] * len(lowerCamelCase ) lowercase :Union[str, Any] = [] queue.append(lowerCamelCase ) lowercase :Optional[Any] = True while queue: lowercase :Optional[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCamelCase ) lowercase :Dict = True lowercase :Dict = u return visited[t] def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): # This array is filled by BFS and to store path lowercase :Optional[int] = [-1] * (len(lowerCamelCase )) lowercase :int = 0 while bfs(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowercase :int = float("Inf" ) lowercase :Any = sink while s != source: # Find the minimum value in select path lowercase :Any = min(lowerCamelCase, graph[parent[s]][s] ) lowercase :Dict = parent[s] max_flow += path_flow lowercase :Union[str, Any] = sink while v != source: lowercase :List[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase :Any = parent[v] return max_flow _UpperCAmelCase : Optional[Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _UpperCAmelCase , _UpperCAmelCase : Any = 0, 5 print(ford_fulkerson(graph, source, sink))
236
0
import argparse from collections import defaultdict def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" _snake_case = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__lowerCAmelCase , '''r''' ) as f: _snake_case = f.readlines() _snake_case = F"""class {class_name}(""" _snake_case = F"""{4 * ' '}def {test_name}(""" _snake_case = F"""{8 * ' '}{correct_line.split()[0]}""" _snake_case = F"""{16 * ' '}{correct_line.split()[0]}""" _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = 0 _snake_case = 0 _snake_case = [] for line in lines: if line.startswith(__lowerCAmelCase ): _snake_case = True elif in_class and line.startswith(__lowerCAmelCase ): _snake_case = True elif in_class and in_func and (line.startswith(__lowerCAmelCase ) or line.startswith(__lowerCAmelCase )): _snake_case = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _snake_case = True if in_class and in_func and in_line: if ")" not in line: continue else: _snake_case = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * ' '}{correct_line}""" ) _snake_case = False else: new_lines.append(__lowerCAmelCase ) with open(__lowerCAmelCase , '''w''' ) as f: for line in new_lines: f.write(__lowerCAmelCase ) def snake_case_(_UpperCamelCase , _UpperCamelCase=None ) -> Dict: """simple docstring""" if fail is not None: with open(__lowerCAmelCase , '''r''' ) as f: _snake_case = {l.strip() for l in f.readlines()} else: _snake_case = None with open(__lowerCAmelCase , '''r''' ) as f: _snake_case = f.readlines() _snake_case = defaultdict(__lowerCAmelCase ) for line in correct_lines: _snake_case = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) __A = parser.parse_args() main(args.correct_filename, args.fail_filename)
350
__A = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def snake_case_(_UpperCamelCase ) -> bytes: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): _snake_case = F"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_UpperCamelCase ) _snake_case = ''''''.join(bin(_UpperCamelCase )[2:].zfill(8 ) for byte in data ) _snake_case = len(_UpperCamelCase ) % 6 != 0 if padding_needed: # The padding that will be added later _snake_case = b'''=''' * ((6 - len(_UpperCamelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_UpperCamelCase ) % 6) else: _snake_case = b'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_UpperCamelCase ) , 6 ) ).encode() + padding ) def snake_case_(_UpperCamelCase ) -> bytes: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ): _snake_case = ( '''argument should be a bytes-like object or ASCII string, ''' F"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_UpperCamelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_UpperCamelCase , _UpperCamelCase ): try: _snake_case = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) _snake_case = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _snake_case = encoded_data[:-padding] _snake_case = ''''''.join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _snake_case = ''''''.join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data ) _snake_case = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_UpperCamelCase ) , 8 ) ] return bytes(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
278
0
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __A =4 __A =3 class _SCREAMING_SNAKE_CASE ( __A ): pass def lowerCamelCase_ ( lowerCamelCase__ ): for shard in shards: for i in range(__lowercase ): yield {"i": i, "shard": shard} def lowerCamelCase_ ( ): lowerCamelCase_ = int(os.environ["RANK"] ) lowerCamelCase_ = int(os.environ["WORLD_SIZE"] ) lowerCamelCase_ = ArgumentParser() parser.add_argument("--streaming" , type=__lowercase ) parser.add_argument("--local_rank" , type=__lowercase ) parser.add_argument("--num_workers" , type=__lowercase , default=0 ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = args.streaming lowerCamelCase_ = args.num_workers lowerCamelCase_ = {'shards': [F'shard_{shard_idx}' for shard_idx in range(__lowercase )]} lowerCamelCase_ = IterableDataset.from_generator(__lowercase , gen_kwargs=__lowercase ) if not streaming: lowerCamelCase_ = Dataset.from_list(list(__lowercase ) ) lowerCamelCase_ = split_dataset_by_node(__lowercase , rank=__lowercase , world_size=__lowercase ) lowerCamelCase_ = torch.utils.data.DataLoader(__lowercase , num_workers=__lowercase ) lowerCamelCase_ = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowerCamelCase_ = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowerCamelCase_ = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
19
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Optional[Any] ,__lowercase : Optional[int]=8 ): '''simple docstring''' A_ : Optional[int] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 A_ : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase , scheduler=lowercase , movq=lowercase , ) A_ : Optional[int] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" if latents is None: A_ : List[str] = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) A_ : List[str] = latents.to(lowercase ) A_ : int = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self , lowercase=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) A_ : Dict = torch.device(F'''cuda:{gpu_id}''' ) A_ : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) def lowerCAmelCase_ ( self , lowercase=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) A_ : Tuple = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A_ : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: A_ , A_ : int = cpu_offload_with_hook(lowercase , lowercase , prev_module_hook=lowercase ) # We'll offload the last model manually. A_ : Optional[int] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase_ ( self ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase ) def __call__( self , lowercase , lowercase , lowercase , lowercase = 5_1_2 , lowercase = 5_1_2 , lowercase = 1_0_0 , lowercase = 4.0 , lowercase = 1 , lowercase = None , lowercase = None , lowercase = "pil" , lowercase = True , ): """simple docstring""" A_ : Dict = self._execution_device A_ : Dict = guidance_scale > 1.0 if isinstance(lowercase , lowercase ): A_ : Dict = torch.cat(lowercase , dim=0 ) if isinstance(lowercase , lowercase ): A_ : str = torch.cat(lowercase , dim=0 ) if isinstance(lowercase , lowercase ): A_ : Optional[Any] = torch.cat(lowercase , dim=0 ) A_ : str = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: A_ : str = image_embeds.repeat_interleave(lowercase , dim=0 ) A_ : Union[str, Any] = negative_image_embeds.repeat_interleave(lowercase , dim=0 ) A_ : Optional[Any] = hint.repeat_interleave(lowercase , dim=0 ) A_ : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase ) A_ : Optional[Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase ) self.scheduler.set_timesteps(lowercase , device=lowercase ) A_ : Any = self.scheduler.timesteps A_ : str = self.movq.config.latent_channels A_ , A_ : List[Any] = downscale_height_and_width(lowercase , lowercase , self.movq_scale_factor ) # create initial latent A_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase , lowercase , lowercase , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance A_ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Any = {'image_embeds': image_embeds, 'hint': hint} A_ : Dict = self.unet( sample=lowercase , timestep=lowercase , encoder_hidden_states=lowercase , added_cond_kwargs=lowercase , return_dict=lowercase , )[0] if do_classifier_free_guidance: A_ , A_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) A_ , A_ : List[str] = noise_pred.chunk(2 ) A_ , A_ : List[str] = variance_pred.chunk(2 ) A_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A_ , A_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A_ : Tuple = self.scheduler.step( lowercase , lowercase , lowercase , generator=lowercase , )[0] # post-processing A_ : Any = self.movq.decode(lowercase , force_not_quantize=lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: A_ : Optional[Any] = image * 0.5 + 0.5 A_ : int = image.clamp(0 , 1 ) A_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A_ : Optional[int] = self.numpy_to_pil(lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase )
140
0
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 1_00 * 2**20, 9_00 * 2**20] ) def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[str]: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , __lowerCAmelCase ) snake_case = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: snake_case = dataset_size < in_memory_max_size else: snake_case = False snake_case = is_small_dataset(__lowerCAmelCase ) assert result == expected
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]: if config_path is not None: snake_case = HubertConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = HubertConfig() if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = HubertForCTC(__lowerCAmelCase ) else: snake_case = HubertModel(__lowerCAmelCase ) if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
1
from __future__ import annotations def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" if len(snake_case ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(snake_case ) or left < -len(snake_case ) or right >= len(snake_case ) or right < -len(snake_case ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] _lowerCAmelCase = (left + right) >> 1 # the middle _lowerCAmelCase = find_max(snake_case , snake_case , snake_case ) # find max in range[left, mid] _lowerCAmelCase = find_max(snake_case , mid + 1 , snake_case ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
82
from __future__ import annotations def __magic_name__ ( A : list ): '''simple docstring''' if len(A ) == 0: return [] a , a = min(A ), max(A ) a = int(max_value - min_value ) + 1 a = [[] for _ in range(A )] for i in my_list: buckets[int(i - min_value )].append(A ) return [v for bucket in buckets for v in sorted(A )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
107
0
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed lowerCAmelCase__ : Optional[Any] = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) lowerCAmelCase__ : str = "sshleifer/student_marian_en_ro_6_1" lowerCAmelCase__ : Union[str, Any] = "sshleifer/tiny-mbart" @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Any=True , ): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.run_trainer( eval_steps=1 , max_len=12 , model_name=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , extra_args_str=UpperCAmelCase_ , predict_with_generate=UpperCAmelCase_ , do_train=UpperCAmelCase_ , do_eval=UpperCAmelCase_ , do_predict=UpperCAmelCase_ , ) __UpperCAmelCase : List[str] = TrainerState.load_from_json(os.path.join(UpperCAmelCase_ , "trainer_state.json" ) ).log_history if not do_eval: return __UpperCAmelCase : int = [log for log in logs if "eval_loss" in log.keys()] __UpperCAmelCase : Any = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats __UpperCAmelCase : List[str] = eval_metrics[-1] assert isinstance(last_step_stats["eval_bleu"] , UpperCAmelCase_ ) assert not math.isnan(float(last_step_stats["eval_loss"] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCamelCase_ ( self : Dict ): """simple docstring""" self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" self.run_seqaseq_quick(distributed=UpperCAmelCase_ ) @require_torch_multi_gpu def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" self.run_seqaseq_quick(distributed=UpperCAmelCase_ ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def lowerCamelCase_ ( self : int ): """simple docstring""" self.run_seqaseq_quick(distributed=UpperCAmelCase_ , extra_args_str="--sharded_ddp simple" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def lowerCamelCase_ ( self : Tuple ): """simple docstring""" self.run_seqaseq_quick(distributed=UpperCAmelCase_ , extra_args_str="--sharded_ddp simple --fp16" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.run_seqaseq_quick(distributed=UpperCAmelCase_ , extra_args_str="--sharded_ddp zero_dp_2" , predict_with_generate=UpperCAmelCase_ ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def lowerCamelCase_ ( self : List[str] ): """simple docstring""" self.run_seqaseq_quick( distributed=UpperCAmelCase_ , extra_args_str="--sharded_ddp zero_dp_2 --fp16" , predict_with_generate=UpperCAmelCase_ ) @require_apex @require_torch_gpu def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=UpperCAmelCase_ , extra_args_str="--fp16 --fp16_backend=apex" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=UpperCAmelCase_ , extra_args_str="--fp16 --fp16_backend=apex" ) @parameterized.expand(["base", "low", "high", "mixed"] ) @require_torch_multi_gpu def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] ): """simple docstring""" # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout __UpperCAmelCase : List[Any] = { # test with the default log_level - should be info and thus log info once "base": {"extra_args_str": "", "n_matches": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes "low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica "high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1}, # test with high log_level and log_level_replica - should be quiet on all processes "mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0}, } __UpperCAmelCase : Optional[Any] = experiments[experiment_id] __UpperCAmelCase : Optional[Any] = {"distributed": True, "predict_with_generate": False, "do_eval": False, "do_predict": False} __UpperCAmelCase : List[Any] = "Running training" with CaptureStderr() as cl: self.run_seqaseq_quick(**UpperCAmelCase_ , extra_args_str=data["extra_args_str"] ) __UpperCAmelCase : Tuple = len(re.findall(UpperCAmelCase_ , cl.err ) ) self.assertEqual(UpperCAmelCase_ , data["n_matches"] ) @slow def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : Any = self.run_trainer( eval_steps=2 , max_len=128 , model_name=UpperCAmelCase_ , learning_rate=3e-4 , num_train_epochs=10 , distributed=UpperCAmelCase_ , ) # Check metrics __UpperCAmelCase : Dict = TrainerState.load_from_json(os.path.join(UpperCAmelCase_ , "trainer_state.json" ) ).log_history __UpperCAmelCase : str = [log for log in logs if "eval_loss" in log.keys()] __UpperCAmelCase : Tuple = eval_metrics[0] __UpperCAmelCase : Optional[int] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["eval_bleu"] , UpperCAmelCase_ ) # test if do_predict saves generations and metrics __UpperCAmelCase : str = os.listdir(UpperCAmelCase_ ) __UpperCAmelCase : Optional[int] = {os.path.basename(UpperCAmelCase_ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" from transformers.training_args import OptimizerNames def train_and_return_metrics(UpperCAmelCase_ : str ) -> Tuple[int, float]: __UpperCAmelCase : Tuple = "--skip_memory_metrics 0" __UpperCAmelCase : Any = self.run_trainer( max_len=128 , model_name=UpperCAmelCase_ , learning_rate=3e-4 , num_train_epochs=1 , optim=UpperCAmelCase_ , distributed=UpperCAmelCase_ , extra_args_str=UpperCAmelCase_ , do_eval=UpperCAmelCase_ , do_predict=UpperCAmelCase_ , n_gpus_to_use=1 , ) # Check metrics __UpperCAmelCase : Optional[int] = TrainerState.load_from_json(Path(UpperCAmelCase_ , "trainer_state.json" ) ).log_history __UpperCAmelCase : Union[str, Any] = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**20 ) __UpperCAmelCase : Union[str, Any] = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**20 ) __UpperCAmelCase : str = logs[0]["train_loss"] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) __UpperCAmelCase : Any = gpu_alloc_mem_orig - gpu_alloc_mem_bnb __UpperCAmelCase : int = gpu_peak_mem_orig + gpu_alloc_mem_orig __UpperCAmelCase : Dict = gpu_peak_mem_bnb + gpu_alloc_mem_bnb __UpperCAmelCase : Tuple = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings __UpperCAmelCase : Dict = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( UpperCAmelCase_ , UpperCAmelCase_ , "should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got" f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( UpperCAmelCase_ , UpperCAmelCase_ , "should use ~150MB less total gpu memory with BNB, compared to without it for this model but got" f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( UpperCAmelCase_ , UpperCAmelCase_ , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}" ) def lowerCamelCase_ ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 3e-3 , UpperCAmelCase_ : str = "adafactor" , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : str = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : int = None , ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" __UpperCAmelCase : Tuple = self.get_auto_remove_tmp_dir() __UpperCAmelCase : Optional[Any] = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(UpperCAmelCase_ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(UpperCAmelCase_ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() __UpperCAmelCase : Dict = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(UpperCAmelCase_ )}\n ".split() __UpperCAmelCase : Any = "\n --do_predict\n ".split() __UpperCAmelCase : Union[str, Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: __UpperCAmelCase : List[str] = get_gpu_count() __UpperCAmelCase : Union[str, Any] = get_torch_dist_unique_port() __UpperCAmelCase : List[str] = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() __UpperCAmelCase : Optional[Any] = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() ) else: __UpperCAmelCase : List[str] = ["run_translation.py"] + args with patch.object(UpperCAmelCase_ , "argv" , UpperCAmelCase_ ): main() return output_dir
37
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCAmelCase__ : Optional[Any] = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def __UpperCamelCase ( _UpperCAmelCase ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model __UpperCAmelCase : List[str] = list(s_dict.keys() ) for key in keys: __UpperCAmelCase : int = R".*/layers_(\d+)" __UpperCAmelCase : List[str] = key if re.match(_UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : Optional[int] = re.sub(R"layers_(\d+)", R"block/\1/layer", _UpperCAmelCase ) __UpperCAmelCase : Any = R"(encoder|decoder)\/" if re.match(_UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : List[Any] = re.match(_UpperCAmelCase, _UpperCAmelCase ).groups() if groups[0] == "encoder": __UpperCAmelCase : Optional[Any] = re.sub(R"/mlp/", R"/1/mlp/", _UpperCAmelCase ) __UpperCAmelCase : List[Any] = re.sub(R"/pre_mlp_layer_norm/", R"/1/layer_norm/", _UpperCAmelCase ) elif groups[0] == "decoder": __UpperCAmelCase : List[Any] = re.sub(R"/mlp/", R"/2/mlp/", _UpperCAmelCase ) __UpperCAmelCase : Any = re.sub(R"/pre_mlp_layer_norm/", R"/2/layer_norm/", _UpperCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __UpperCAmelCase : List[str] = new_key.replace(_UpperCAmelCase, _UpperCAmelCase ) print(F"{key} -> {new_key}" ) __UpperCAmelCase : Any = s_dict.pop(_UpperCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __UpperCAmelCase : Tuple = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __UpperCAmelCase : Optional[Any] = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __UpperCAmelCase : Any = s_dict[key].shape[0] __UpperCAmelCase : str = s_dict[key] for idx in range(_UpperCAmelCase ): __UpperCAmelCase : Optional[Any] = expert_weihts[idx] print(F"{key} -> {key.replace('expert/', 'nested fstring' )}" ) s_dict.pop(_UpperCAmelCase ) return s_dict lowerCAmelCase__ : Optional[Any] = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): # Convert a google style config to the hugging face fromat import regex as re with open(_UpperCAmelCase, "r" ) as f: __UpperCAmelCase : List[Any] = f.read() __UpperCAmelCase : Union[str, Any] = re.findall(R"(.*) = ([0-9.]*)", _UpperCAmelCase ) __UpperCAmelCase : Dict = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __UpperCAmelCase : Tuple = float(_UpperCAmelCase ) if "." in value else int(_UpperCAmelCase ) __UpperCAmelCase : str = re.findall(R"(.*activations) = \(\'(.*)\',\)", _UpperCAmelCase )[0] __UpperCAmelCase : int = str(activation[1] ) __UpperCAmelCase : int = num_experts __UpperCAmelCase : List[str] = SwitchTransformersConfig(**_UpperCAmelCase ) return config def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase="./", _UpperCAmelCase=8 ): # Initialise PyTorch model print(F"Loading flax weights from : {flax_checkpoint_path}" ) __UpperCAmelCase : Dict = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) if gin_file is not None: __UpperCAmelCase : int = convert_gin_to_config(_UpperCAmelCase, _UpperCAmelCase ) else: __UpperCAmelCase : int = SwitchTransformersConfig.from_pretrained(_UpperCAmelCase ) __UpperCAmelCase : Any = SwitchTransformersForConditionalGeneration(_UpperCAmelCase ) __UpperCAmelCase : str = flax_params["target"] __UpperCAmelCase : Any = flatten_dict(_UpperCAmelCase, sep="/" ) __UpperCAmelCase : Optional[Any] = rename_keys(_UpperCAmelCase ) __UpperCAmelCase : Any = unflatten_dict(_UpperCAmelCase, sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_UpperCAmelCase, _UpperCAmelCase ) print(F"Save PyTorch model to {pytorch_dump_path}" ) pt_model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowerCAmelCase__ : int = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
37
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A__ ( A__ ): def __init__( self : str , _a : List[Any] , _a : Dict ) -> Union[str, Any]: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _SCREAMING_SNAKE_CASE =DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self : List[Any] , _a : int = 1 , _a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _a : float = 0.0 , _a : int = 50 , _a : Optional[bool] = None , _a : Optional[str] = "pil" , _a : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(self.unet.config.sample_size , _a ): _SCREAMING_SNAKE_CASE =( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _SCREAMING_SNAKE_CASE =(batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(_a , _a ) and len(_a ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_a )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) _SCREAMING_SNAKE_CASE =randn_tensor(_a , generator=_a , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_a ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _SCREAMING_SNAKE_CASE =self.unet(_a , _a ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _SCREAMING_SNAKE_CASE =self.scheduler.step( _a , _a , _a , eta=_a , use_clipped_model_output=_a , generator=_a ).prev_sample _SCREAMING_SNAKE_CASE =(image / 2 + 0.5).clamp(0 , 1 ) _SCREAMING_SNAKE_CASE =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE =self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
47
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowercase_ = numpy.array([0, 0]) lowercase_ = numpy.array([0.5, 0.866_0254]) lowercase_ = numpy.array([1, 0]) lowercase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = initial_vectors for _ in range(snake_case ): __SCREAMING_SNAKE_CASE : Dict = iteration_step(snake_case ) return vectors def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = [] for i, start_vector in enumerate(vectors[:-1] ): __SCREAMING_SNAKE_CASE : str = vectors[i + 1] new_vectors.append(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = numpy.radians(snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = numpy.cos(snake_case ), numpy.sin(snake_case ) __SCREAMING_SNAKE_CASE : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(snake_case , snake_case ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = zip(*snake_case ) plt.plot(snake_case , snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
303
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case__ : List[Any] = StableDiffusionLDMaDPipeline snake_case__ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS snake_case__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS snake_case__ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _A ( self : List[str] ): torch.manual_seed(0 ) UpperCamelCase :Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) UpperCamelCase :Any = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) torch.manual_seed(0 ) UpperCamelCase :Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase :Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCamelCase :Optional[int] = CLIPTextModel(__lowerCamelCase ) UpperCamelCase :Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCamelCase :str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _A ( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str]=0 ): if str(__lowerCamelCase ).startswith("""mps""" ): UpperCamelCase :List[str] = torch.manual_seed(__lowerCamelCase ) else: UpperCamelCase :Any = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _A ( self : Union[str, Any] ): UpperCamelCase :str = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase :Optional[int] = self.get_dummy_components() UpperCamelCase :List[Any] = StableDiffusionLDMaDPipeline(**__lowerCamelCase ) UpperCamelCase :Optional[Any] = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Tuple = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :Any = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :List[Any] = output.rgb, output.depth UpperCamelCase :int = rgb[0, -3:, -3:, -1] UpperCamelCase :int = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCamelCase :int = np.array( [0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] ) UpperCamelCase :Dict = np.array([103.46727, 85.812004, 87.849236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def _A ( self : str ): UpperCamelCase :Optional[int] = self.get_dummy_components() UpperCamelCase :int = StableDiffusionLDMaDPipeline(**__lowerCamelCase ) UpperCamelCase :Dict = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Tuple = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :int = 3 * [inputs["""prompt"""]] # forward UpperCamelCase :Dict = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :List[str] = output.rgb, output.depth UpperCamelCase :Tuple = rgb_slice_a[0, -3:, -3:, -1] UpperCamelCase :List[Any] = depth_slice_a[0, -3:, -1] UpperCamelCase :Optional[Any] = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :int = 3 * [inputs.pop("""prompt""" )] UpperCamelCase :List[Any] = ldmad_pipe.tokenizer( __lowerCamelCase , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__lowerCamelCase , return_tensors="""pt""" , ) UpperCamelCase :List[str] = text_inputs["""input_ids"""].to(__lowerCamelCase ) UpperCamelCase :List[Any] = ldmad_pipe.text_encoder(__lowerCamelCase )[0] UpperCamelCase :Dict = prompt_embeds # forward UpperCamelCase :str = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Optional[int] = output.rgb, output.depth UpperCamelCase :Union[str, Any] = rgb_slice_a[0, -3:, -3:, -1] UpperCamelCase :int = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def _A ( self : List[Any] ): UpperCamelCase :int = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase :Any = self.get_dummy_components() UpperCamelCase :Optional[int] = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) UpperCamelCase :Tuple = StableDiffusionLDMaDPipeline(**__lowerCamelCase ) UpperCamelCase :Optional[int] = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :int = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :str = """french fries""" UpperCamelCase :Optional[int] = ldmad_pipe(**__lowerCamelCase , negative_prompt=__lowerCamelCase ) UpperCamelCase , UpperCamelCase :List[Any] = output.rgb, output.depth UpperCamelCase :List[Any] = rgb[0, -3:, -3:, -1] UpperCamelCase :str = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCamelCase :Dict = np.array( [0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] ) UpperCamelCase :Any = np.array([107.84738, 84.62802, 89.962135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Tuple="cpu" , __lowerCamelCase : str=torch.floataa , __lowerCamelCase : Tuple=0 ): UpperCamelCase :str = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :str = np.random.RandomState(__lowerCamelCase ).standard_normal((1, 4, 64, 64) ) UpperCamelCase :Tuple = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ) UpperCamelCase :List[str] = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _A ( self : Optional[Any] ): UpperCamelCase :Optional[int] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ) UpperCamelCase :Any = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Optional[int] = self.get_inputs(__lowerCamelCase ) UpperCamelCase :Optional[Any] = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :List[str] = output.rgb, output.depth UpperCamelCase :int = rgb[0, -3:, -3:, -1].flatten() UpperCamelCase :Optional[Any] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) UpperCamelCase :Tuple = np.array( [0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] ) UpperCamelCase :Optional[Any] = np.array( [0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Dict="cpu" , __lowerCamelCase : int=torch.floataa , __lowerCamelCase : Union[str, Any]=0 ): UpperCamelCase :str = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :Any = np.random.RandomState(__lowerCamelCase ).standard_normal((1, 4, 64, 64) ) UpperCamelCase :Optional[Any] = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ) UpperCamelCase :List[str] = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _A ( self : str ): UpperCamelCase :List[Any] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :int = self.get_inputs(__lowerCamelCase ) UpperCamelCase :Dict = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Union[str, Any] = output.rgb, output.depth UpperCamelCase :Dict = 0.495586 UpperCamelCase :Dict = 0.33795515 UpperCamelCase :Union[str, Any] = 112.48518 UpperCamelCase :Any = 98.489746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def _A ( self : Union[str, Any] ): UpperCamelCase :List[str] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Optional[Any] = self.get_inputs(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :int = output.rgb, output.depth UpperCamelCase :Optional[int] = 0.4194127 UpperCamelCase :str = 0.35375586 UpperCamelCase :Union[str, Any] = 0.5638502 UpperCamelCase :Union[str, Any] = 0.34686103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
62
from __future__ import annotations from PIL import Image # Define glider example UpperCAmelCase_ : Optional[Any] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCAmelCase_ : List[Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] ) -> list[list[int]]: """simple docstring""" UpperCamelCase :List[str] = [] for i in range(len(__magic_name__ ) ): UpperCamelCase :Optional[int] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours UpperCamelCase :Tuple = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__magic_name__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__magic_name__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(__magic_name__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. UpperCamelCase :str = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__magic_name__ ) return next_generation def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] , __magic_name__ : int ) -> list[Image.Image]: """simple docstring""" UpperCamelCase :int = [] for _ in range(__magic_name__ ): # Create output image UpperCamelCase :int = Image.new("""RGB""" , (len(cells[0] ), len(__magic_name__ )) ) UpperCamelCase :Tuple = img.load() # Save cells to image for x in range(len(__magic_name__ ) ): for y in range(len(cells[0] ) ): UpperCamelCase :Union[str, Any] = 255 - cells[y][x] * 255 UpperCamelCase :int = (colour, colour, colour) # Save image images.append(__magic_name__ ) UpperCamelCase :Any = new_generation(__magic_name__ ) return images if __name__ == "__main__": UpperCAmelCase_ : Any = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
62
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) lowerCAmelCase__ : Optional[int] = hex_num[0] == """-""" if is_negative: lowerCAmelCase__ : Any = hex_num[1:] try: lowerCAmelCase__ : Optional[int] = int(UpperCamelCase , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) lowerCAmelCase__ : Optional[int] = """""" while int_num > 0: lowerCAmelCase__ : str = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
37
def __UpperCamelCase ( _A ): if not numbers: return 0 if not isinstance(_A , (list, tuple) ) or not all( isinstance(_A , _A ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) lowerCAmelCase_ = lowerCAmelCase_ = lowerCAmelCase_ = numbers[0] for i in range(1 , len(_A ) ): # update the maximum and minimum subarray products lowerCAmelCase_ = numbers[i] if number < 0: lowerCAmelCase_ , lowerCAmelCase_ = min_till_now, max_till_now lowerCAmelCase_ = max(_A , max_till_now * number ) lowerCAmelCase_ = min(_A , min_till_now * number ) # update the maximum product found till now lowerCAmelCase_ = max(_A , _A ) return max_prod
278
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : Optional[int] = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Tuple = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
1
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , snake_case__ ) A : Dict = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: A : Dict = dataset_size < in_memory_max_size else: A : Tuple = False A : int = is_small_dataset(snake_case__ ) assert result == expected
3
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : str = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class A ( __snake_case ): __magic_name__ = '''bert''' def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Optional[int] = vocab_size A : Optional[Any] = hidden_size A : List[Any] = num_hidden_layers A : List[str] = num_attention_heads A : Dict = hidden_act A : Optional[Any] = intermediate_size A : List[Any] = hidden_dropout_prob A : List[Any] = attention_probs_dropout_prob A : Optional[Any] = max_position_embeddings A : List[str] = type_vocab_size A : Dict = initializer_range A : str = layer_norm_eps A : int = position_embedding_type A : Dict = use_cache A : str = classifier_dropout class A ( __snake_case ): @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": A : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
3
1
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] = True , __lowerCamelCase : List[Any] = None , __lowerCamelCase : Tuple = 32 , __lowerCamelCase : Union[str, Any] = True , __lowerCamelCase : str = 1 / 255 , __lowerCamelCase : Any = True , __lowerCamelCase : int = True , __lowerCamelCase : Union[str, Any] = [0.48145466, 0.4578275, 0.40821073] , __lowerCamelCase : List[str] = [0.26862954, 0.26130258, 0.27577711] , __lowerCamelCase : List[Any] = True , __lowerCamelCase : List[Any]=7 , __lowerCamelCase : List[str]=30 , __lowerCamelCase : Optional[int]=400 , __lowerCamelCase : Any=3 , ): UpperCamelCase :Any = parent UpperCamelCase :Any = do_resize UpperCamelCase :int = size if size is not None else {"""shortest_edge""": 288} UpperCamelCase :str = size_divisor UpperCamelCase :Dict = do_rescale UpperCamelCase :Optional[Any] = rescale_factor UpperCamelCase :List[str] = do_normalize UpperCamelCase :List[str] = do_center_crop UpperCamelCase :Any = image_mean UpperCamelCase :Tuple = image_std UpperCamelCase :Optional[Any] = do_pad UpperCamelCase :Optional[int] = batch_size UpperCamelCase :Dict = num_channels UpperCamelCase :List[Any] = min_resolution UpperCamelCase :Dict = max_resolution def _A ( self : Optional[int] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _A ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : int=False ): if not batched: UpperCamelCase :List[Any] = self.size["""shortest_edge"""] UpperCamelCase :Union[str, Any] = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): UpperCamelCase , UpperCamelCase :Tuple = image.size else: UpperCamelCase , UpperCamelCase :str = image.shape[1], image.shape[2] UpperCamelCase :Optional[int] = size / min(__lowerCamelCase , __lowerCamelCase ) if h < w: UpperCamelCase , UpperCamelCase :List[str] = size, scale * w else: UpperCamelCase , UpperCamelCase :Union[str, Any] = scale * h, size UpperCamelCase :str = int((1_333 / 800) * size ) if max(__lowerCamelCase , __lowerCamelCase ) > max_size: UpperCamelCase :int = max_size / max(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Any = newh * scale UpperCamelCase :int = neww * scale UpperCamelCase , UpperCamelCase :int = int(newh + 0.5 ), int(neww + 0.5 ) UpperCamelCase , UpperCamelCase :str = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCamelCase :Union[str, Any] = [] for image in image_inputs: UpperCamelCase , UpperCamelCase :Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase :Optional[Any] = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] UpperCamelCase :List[Any] = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): snake_case__ : Optional[Any] = BridgeTowerImageProcessor if is_vision_available() else None def _A ( self : List[str] ): UpperCamelCase :Optional[int] = BridgeTowerImageProcessingTester(self ) @property def _A ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def _A ( self : List[str] ): UpperCamelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """size_divisor""" ) ) def _A ( self : Optional[Any] ): pass def _A ( self : List[str] ): UpperCamelCase :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase :str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input UpperCamelCase :List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :str = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :int = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A ( self : Optional[Any] ): UpperCamelCase :Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase :Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input UpperCamelCase :Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :str = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :Optional[Any] = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A ( self : List[Any] ): UpperCamelCase :Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase :Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :Optional[int] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :Optional[Any] = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
356
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( __magic_name__ : tuple[int, int] , __magic_name__ : int ) -> list[tuple[int, int]]: """simple docstring""" UpperCamelCase , UpperCamelCase :Union[str, Any] = position UpperCamelCase :int = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCamelCase :Tuple = [] for position in positions: UpperCamelCase , UpperCamelCase :int = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__magic_name__ ) return permissible_positions def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] ) -> bool: """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] , __magic_name__ : tuple[int, int] , __magic_name__ : int ) -> bool: """simple docstring""" if is_complete(__magic_name__ ): return True for position in get_valid_pos(__magic_name__ , len(__magic_name__ ) ): UpperCamelCase , UpperCamelCase :Any = position if board[y][x] == 0: UpperCamelCase :Optional[int] = curr + 1 if open_knight_tour_helper(__magic_name__ , __magic_name__ , curr + 1 ): return True UpperCamelCase :List[Any] = 0 return False def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> list[list[int]]: """simple docstring""" UpperCamelCase :Any = [[0 for i in range(__magic_name__ )] for j in range(__magic_name__ )] for i in range(__magic_name__ ): for j in range(__magic_name__ ): UpperCamelCase :int = 1 if open_knight_tour_helper(__magic_name__ , (i, j) , 1 ): return board UpperCamelCase :Optional[int] = 0 UpperCamelCase :Union[str, Any] = f"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
62
0
'''simple docstring''' import collections import os import re from pathlib import Path _lowerCAmelCase = '''src/transformers''' # Matches is_xxx_available() _lowerCAmelCase = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} _lowerCAmelCase = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _lowerCAmelCase = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available _lowerCAmelCase = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") _lowerCAmelCase = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _lowerCAmelCase = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", _lowerCAmelCase = re.compile(R'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], _lowerCAmelCase = re.compile(R'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo _lowerCAmelCase = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: _lowerCAmelCase = re.compile(R'''^\s*try:''') # Catches a line with else: _lowerCAmelCase = re.compile(R'''^\s*else:''') def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if _re_test_backend.search(UpperCamelCase ) is None: return None lowerCAmelCase__ : Any = [b[0] for b in _re_backend.findall(UpperCamelCase )] backends.sort() return "_and_".join(UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" with open(UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCAmelCase__ : Union[str, Any] = f.readlines() lowerCAmelCase__ : str = 0 while line_index < len(UpperCamelCase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCamelCase ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase__ : int = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase__ : Optional[int] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCamelCase ): lowerCAmelCase__ : Any = _re_one_line_import_struct.search(UpperCamelCase ).groups()[0] lowerCAmelCase__ : List[Any] = re.findall(R"""\[([^\]]+)\]""" , UpperCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue lowerCAmelCase__ : Union[str, Any] = _re_import_struct_key_value.search(UpperCamelCase ) if single_line_import_search is not None: lowerCAmelCase__ : int = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(UpperCamelCase ) > 0] objects.extend(UpperCamelCase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase__ : Tuple = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase__ : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): lowerCAmelCase__ : Dict = lines[line_index] if _re_import_struct_add_one.search(UpperCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(UpperCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCamelCase ) is not None: lowerCAmelCase__ : int = _re_import_struct_add_many.search(UpperCamelCase ).groups()[0].split(""", """ ) lowerCAmelCase__ : Union[str, Any] = [obj[1:-1] for obj in imports if len(UpperCamelCase ) > 0] objects.extend(UpperCamelCase ) elif _re_between_brackets.search(UpperCamelCase ) is not None: lowerCAmelCase__ : List[Any] = _re_between_brackets.search(UpperCamelCase ).groups()[0].split(""", """ ) lowerCAmelCase__ : Dict = [obj[1:-1] for obj in imports if len(UpperCamelCase ) > 0] objects.extend(UpperCamelCase ) elif _re_quote_object.search(UpperCamelCase ) is not None: objects.append(_re_quote_object.search(UpperCamelCase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase__ : List[str] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase__ : Tuple = [] while ( line_index < len(UpperCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): lowerCAmelCase__ : int = lines[line_index] lowerCAmelCase__ : Dict = _re_import.search(UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase__ : Optional[Any] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(UpperCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase__ : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ : Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): lowerCAmelCase__ : Optional[Any] = lines[line_index] lowerCAmelCase__ : int = _re_import.search(UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase__ : Tuple = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" def find_duplicates(UpperCamelCase ): return [k for k, v in collections.Counter(UpperCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase__ : Any = [] for key in import_dict_objects.keys(): lowerCAmelCase__ : Dict = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) lowerCAmelCase__ : List[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase__ : int = """base imports""" if key == """none""" else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : List[str] = [] for root, _, files in os.walk(UpperCamelCase ): if "__init__.py" in files: lowerCAmelCase__ : List[str] = os.path.join(UpperCamelCase , """__init__.py""" ) lowerCAmelCase__ : List[Any] = parse_init(UpperCamelCase ) if objects is not None: lowerCAmelCase__ : Dict = analyze_results(*UpperCamelCase ) if len(UpperCamelCase ) > 0: lowerCAmelCase__ : List[str] = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("""\n""".join(UpperCamelCase ) ) if len(UpperCamelCase ) > 0: raise ValueError("""\n\n""".join(UpperCamelCase ) ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : int = [] for path, directories, files in os.walk(UpperCamelCase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(UpperCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCamelCase ) / folder).glob("""*.py""" ) ) ) == 0: continue lowerCAmelCase__ : List[Any] = str((Path(UpperCamelCase ) / folder).relative_to(UpperCamelCase ) ) lowerCAmelCase__ : str = short_path.replace(os.path.sep , """.""" ) submodules.append(UpperCamelCase ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase__ : str = str((Path(UpperCamelCase ) / fname).relative_to(UpperCamelCase ) ) lowerCAmelCase__ : int = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(UpperCamelCase ) return submodules _lowerCAmelCase = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" from transformers.utils import direct_transformers_import lowerCAmelCase__ : Dict = direct_transformers_import(UpperCamelCase ) lowerCAmelCase__ : Any = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(UpperCamelCase , """__init__.py""" ) , """r""" ) as f: lowerCAmelCase__ : int = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , UpperCamelCase ) ) ) lowerCAmelCase__ : Tuple = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(UpperCamelCase ) > 0: lowerCAmelCase__ : Optional[Any] = """\n""".join(f"""- {module}""" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" f"""{list_of_modules}\n""" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
37
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] _lowerCAmelCase = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks _lowerCAmelCase = F"""down_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 _lowerCAmelCase = F"""down_blocks.{i}.attentions.{j}.""" _lowerCAmelCase = F"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks _lowerCAmelCase = F"""up_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 _lowerCAmelCase = F"""up_blocks.{i}.attentions.{j}.""" _lowerCAmelCase = F"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 _lowerCAmelCase = F"""down_blocks.{i}.downsamplers.0.conv.""" _lowerCAmelCase = F"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 _lowerCAmelCase = F"""up_blocks.{i}.upsamplers.0.""" _lowerCAmelCase = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) _lowerCAmelCase = '''mid_block.attentions.0.''' _lowerCAmelCase = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): _lowerCAmelCase = F"""mid_block.resnets.{j}.""" _lowerCAmelCase = F"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Any = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowerCAmelCase__ : Optional[int] = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowerCAmelCase__ : Any = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowerCAmelCase__ : List[Any] = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = v lowerCAmelCase__ : Tuple = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): _lowerCAmelCase = F"""encoder.down_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: _lowerCAmelCase = F"""down_blocks.{i}.downsamplers.0.""" _lowerCAmelCase = F"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) _lowerCAmelCase = F"""up_blocks.{i}.upsamplers.0.""" _lowerCAmelCase = F"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): _lowerCAmelCase = F"""decoder.up_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): _lowerCAmelCase = F"""mid_block.resnets.{i}.""" _lowerCAmelCase = F"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowerCAmelCase__ : str = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowerCAmelCase__ : Dict = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = v lowerCAmelCase__ : Union[str, Any] = {v: vae_state_dict[k] for k, v in mapping.items()} lowerCAmelCase__ : Tuple = ["""q""", """k""", """v""", """proj_out"""] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"""mid.attn_1.{weight_name}.weight""" in k: print(f"""Reshaping {k} for SD format""" ) lowerCAmelCase__ : Optional[int] = reshape_weight_for_sd(UpperCamelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] _lowerCAmelCase = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} _lowerCAmelCase = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp _lowerCAmelCase = {'''q''': 0, '''k''': 1, '''v''': 2} def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = {} lowerCAmelCase__ : int = {} lowerCAmelCase__ : List[Any] = {} for k, v in text_enc_dict.items(): if ( k.endswith(""".self_attn.q_proj.weight""" ) or k.endswith(""".self_attn.k_proj.weight""" ) or k.endswith(""".self_attn.v_proj.weight""" ) ): lowerCAmelCase__ : Optional[int] = k[: -len(""".q_proj.weight""" )] lowerCAmelCase__ : Tuple = k[-len("""q_proj.weight""" )] if k_pre not in capture_qkv_weight: lowerCAmelCase__ : List[Any] = [None, None, None] lowerCAmelCase__ : Dict = v continue if ( k.endswith(""".self_attn.q_proj.bias""" ) or k.endswith(""".self_attn.k_proj.bias""" ) or k.endswith(""".self_attn.v_proj.bias""" ) ): lowerCAmelCase__ : str = k[: -len(""".q_proj.bias""" )] lowerCAmelCase__ : List[str] = k[-len("""q_proj.bias""" )] if k_pre not in capture_qkv_bias: lowerCAmelCase__ : Union[str, Any] = [None, None, None] lowerCAmelCase__ : Any = v continue lowerCAmelCase__ : Dict = textenc_pattern.sub(lambda UpperCamelCase : protected[re.escape(m.group(0 ) )] , UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) lowerCAmelCase__ : Any = textenc_pattern.sub(lambda UpperCamelCase : protected[re.escape(m.group(0 ) )] , UpperCamelCase ) lowerCAmelCase__ : Tuple = torch.cat(UpperCamelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) lowerCAmelCase__ : str = textenc_pattern.sub(lambda UpperCamelCase : protected[re.escape(m.group(0 ) )] , UpperCamelCase ) lowerCAmelCase__ : List[Any] = torch.cat(UpperCamelCase ) return new_state_dict def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return text_enc_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) _lowerCAmelCase = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors _lowerCAmelCase = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') _lowerCAmelCase = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') _lowerCAmelCase = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): _lowerCAmelCase = load_file(unet_path, device='''cpu''') else: _lowerCAmelCase = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') _lowerCAmelCase = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): _lowerCAmelCase = load_file(vae_path, device='''cpu''') else: _lowerCAmelCase = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') _lowerCAmelCase = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): _lowerCAmelCase = load_file(text_enc_path, device='''cpu''') else: _lowerCAmelCase = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') _lowerCAmelCase = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model _lowerCAmelCase = convert_unet_state_dict(unet_state_dict) _lowerCAmelCase = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model _lowerCAmelCase = convert_vae_state_dict(vae_state_dict) _lowerCAmelCase = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper _lowerCAmelCase = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm _lowerCAmelCase = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} _lowerCAmelCase = convert_text_enc_state_dict_vaa(text_enc_dict) _lowerCAmelCase = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: _lowerCAmelCase = convert_text_enc_state_dict(text_enc_dict) _lowerCAmelCase = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint _lowerCAmelCase = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: _lowerCAmelCase = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: _lowerCAmelCase = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
37
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCamelCase : List[str] = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] __UpperCamelCase : Dict = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } __UpperCamelCase : Optional[Any] = {f"funnel-transformer/{name}": 512 for name in _model_names} __UpperCamelCase : Any = {f"funnel-transformer/{name}": {"do_lower_case": True} for name in _model_names} class __magic_name__ ( __lowerCAmelCase): A: Optional[Any] = VOCAB_FILES_NAMES A: Optional[int] = PRETRAINED_VOCAB_FILES_MAP A: Tuple = PRETRAINED_INIT_CONFIGURATION A: Tuple = FunnelTokenizer A: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A: int = 2 def __init__( self : List[str] , lowerCamelCase__ : Dict=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : int=True , lowerCamelCase__ : List[Any]="<unk>" , lowerCamelCase__ : List[Any]="<sep>" , lowerCamelCase__ : int="<pad>" , lowerCamelCase__ : Any="<cls>" , lowerCamelCase__ : Optional[Any]="<mask>" , lowerCamelCase__ : int="<s>" , lowerCamelCase__ : Optional[int]="</s>" , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Optional[Any]="##" , **lowerCamelCase__ : int , ) -> List[Any]: '''simple docstring''' super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , clean_text=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , wordpieces_prefix=lowerCamelCase__ , **lowerCamelCase__ , ) UpperCamelCase__ : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase__ ) != tokenize_chinese_chars ): UpperCamelCase__ : Any = getattr(lowerCamelCase__ , normalizer_state.pop('''type''' ) ) UpperCamelCase__ : List[Any] = do_lower_case UpperCamelCase__ : str = strip_accents UpperCamelCase__ : List[str] = tokenize_chinese_chars UpperCamelCase__ : List[Any] = normalizer_class(**lowerCamelCase__ ) UpperCamelCase__ : List[Any] = do_lower_case def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=None ) -> Tuple: '''simple docstring''' UpperCamelCase__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCamelCase__ : List[str] = [self.sep_token_id] UpperCamelCase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
51
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __UpperCamelCase : Optional[int] = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") __UpperCamelCase : Optional[int] = parser.parse_args() __UpperCamelCase : Union[str, Any] = "cpu" __UpperCamelCase : Dict = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" __UpperCamelCase : int = "path-to-your-trained-model" __UpperCamelCase : List[str] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __UpperCamelCase : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __UpperCamelCase : Optional[Any] = pipe.to(device) # to channels last __UpperCamelCase : Tuple = pipe.unet.to(memory_format=torch.channels_last) __UpperCamelCase : Optional[int] = pipe.vae.to(memory_format=torch.channels_last) __UpperCamelCase : int = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __UpperCamelCase : Tuple = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __UpperCamelCase : Tuple = torch.randn(2, 4, 64, 64) __UpperCamelCase : Any = torch.rand(1) * 999 __UpperCamelCase : Any = torch.randn(2, 77, 768) __UpperCamelCase : List[Any] = (sample, timestep, encoder_hidden_status) try: __UpperCamelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __UpperCamelCase : str = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __UpperCamelCase : Tuple = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __UpperCamelCase : str = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __UpperCamelCase : List[Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __UpperCamelCase : Optional[Any] = 666 __UpperCamelCase : int = torch.Generator(device).manual_seed(seed) __UpperCamelCase : int = {"generator": generator} if args.steps is not None: __UpperCamelCase : str = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __UpperCamelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
51
1
from datetime import datetime import matplotlib.pyplot as plt import torch def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): for param in module.parameters(): __UpperCamelCase =False def _UpperCAmelCase ( ): __UpperCamelCase ='cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __UpperCamelCase ='mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =plt.imshow(SCREAMING_SNAKE_CASE__ ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE__ ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE__ ) plt.show() def _UpperCAmelCase ( ): __UpperCamelCase =datetime.now() __UpperCamelCase =current_time.strftime('%H:%M:%S' ) return timestamp
62
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _A = logging.getLogger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =np.argmax(SCREAMING_SNAKE_CASE__ , axis=1 ) return np.sum(outputs == labels ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): with open(SCREAMING_SNAKE_CASE__ , encoding='utf_8' ) as f: __UpperCamelCase =csv.reader(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] next(SCREAMING_SNAKE_CASE__ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE__ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =[] for dataset in encoded_datasets: __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __UpperCamelCase =np.zeros((n_batch, 2) , dtype=np.intaa ) __UpperCamelCase =np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) __UpperCamelCase =np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __UpperCamelCase =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __UpperCamelCase =with_conta __UpperCamelCase =with_conta __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) - 1 __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) - 1 __UpperCamelCase =with_conta __UpperCamelCase =with_conta __UpperCamelCase =mc_label __UpperCamelCase =(input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE__ ) for t in all_inputs ) ) return tensor_datasets def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE__ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE__ , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE__ , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE__ , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE__ , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=16 ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=SCREAMING_SNAKE_CASE__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE__ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE__ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=6.25E-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE__ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE__ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE__ , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE__ , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE__ , default=3_74 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE__ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE__ , default='' , help='Can be used for distant debugging.' ) __UpperCamelCase =parser.parse_args() print(SCREAMING_SNAKE_CASE__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __UpperCamelCase =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __UpperCamelCase =torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __UpperCamelCase =['_start_', '_delimiter_', '_classify_'] __UpperCamelCase =OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE__ ) ) model.to(SCREAMING_SNAKE_CASE__ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE__ : str ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE__ ) for o in obj] logger.info('Encoding dataset...' ) __UpperCamelCase =load_rocstories_dataset(args.train_dataset ) __UpperCamelCase =load_rocstories_dataset(args.eval_dataset ) __UpperCamelCase =(train_dataset, eval_dataset) __UpperCamelCase =tokenize_and_encode(SCREAMING_SNAKE_CASE__ ) # Compute the max input length for the Transformer __UpperCamelCase =model.config.n_positions // 2 - 2 __UpperCamelCase =max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __UpperCamelCase =min(SCREAMING_SNAKE_CASE__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __UpperCamelCase =pre_process_datasets(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase =tensor_datasets[0], tensor_datasets[1] __UpperCamelCase =TensorDataset(*SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =RandomSampler(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=args.train_batch_size ) __UpperCamelCase =TensorDataset(*SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =SequentialSampler(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __UpperCamelCase =args.max_steps __UpperCamelCase =args.max_steps // (len(SCREAMING_SNAKE_CASE__ ) // args.gradient_accumulation_steps) + 1 else: __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) // args.gradient_accumulation_steps * args.num_train_epochs __UpperCamelCase =list(model.named_parameters() ) __UpperCamelCase =['bias', 'LayerNorm.bias', 'LayerNorm.weight'] __UpperCamelCase =[ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] __UpperCamelCase =AdamW(SCREAMING_SNAKE_CASE__ , lr=args.learning_rate , eps=args.adam_epsilon ) __UpperCamelCase =get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE__ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE__ ) if args.do_train: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): __UpperCamelCase =0 __UpperCamelCase =0 __UpperCamelCase =tqdm(SCREAMING_SNAKE_CASE__ , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =tuple(t.to(SCREAMING_SNAKE_CASE__ ) for t in batch ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =batch __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ , mc_token_ids=SCREAMING_SNAKE_CASE__ , lm_labels=SCREAMING_SNAKE_CASE__ , mc_labels=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __UpperCamelCase =( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __UpperCamelCase ='Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __UpperCamelCase =model.module if hasattr(SCREAMING_SNAKE_CASE__ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __UpperCamelCase =os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE__ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __UpperCamelCase =OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __UpperCamelCase =OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE__ ) if args.do_eval: model.eval() __UpperCamelCase , __UpperCamelCase =0, 0 __UpperCamelCase , __UpperCamelCase =0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE__ , desc='Evaluating' ): __UpperCamelCase =tuple(t.to(SCREAMING_SNAKE_CASE__ ) for t in batch ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =batch with torch.no_grad(): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =model( SCREAMING_SNAKE_CASE__ , mc_token_ids=SCREAMING_SNAKE_CASE__ , lm_labels=SCREAMING_SNAKE_CASE__ , mc_labels=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =mc_logits.detach().cpu().numpy() __UpperCamelCase =mc_labels.to('cpu' ).numpy() __UpperCamelCase =accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __UpperCamelCase =eval_loss / nb_eval_steps __UpperCamelCase =eval_accuracy / nb_eval_examples __UpperCamelCase =tr_loss / nb_tr_steps if args.do_train else None __UpperCamelCase ={'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} __UpperCamelCase =os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE__ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
62
1
import random def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list , SCREAMING_SNAKE_CASE :Dict ) -> tuple: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[str] = [], [], [] for element in data: if element < pivot: less.append(SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(SCREAMING_SNAKE_CASE ) else: equal.append(SCREAMING_SNAKE_CASE ) return less, equal, greater def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list , SCREAMING_SNAKE_CASE :int ) -> Dict: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(SCREAMING_SNAKE_CASE ) or index < 0: return None __lowerCAmelCase : Union[str, Any] = items[random.randint(0 , len(SCREAMING_SNAKE_CASE ) - 1 )] __lowerCAmelCase : int = 0 __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Tuple = _partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = len(SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(SCREAMING_SNAKE_CASE , index - (m + count) )
232
from __future__ import annotations import time import numpy as np _UpperCAmelCase = [8, 5, 9, 7] _UpperCAmelCase = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _UpperCAmelCase = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class snake_case_ : def __init__( self : Union[str, Any] , _snake_case : list[int] , _snake_case : list[list[int]] , _snake_case : list[list[int]] , )->None: '''simple docstring''' __lowerCAmelCase : str = claim_vector __lowerCAmelCase : List[Any] = allocated_resources_table __lowerCAmelCase : str = maximum_claim_table def UpperCAmelCase__ ( self : Tuple )->list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCAmelCase__ ( self : int )->list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCAmelCase__ ( self : Optional[int] )->list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCAmelCase__ ( self : Union[str, Any] )->dict[int, list[int]]: '''simple docstring''' return {self.__need().index(_snake_case ): i for i in self.__need()} def UpperCAmelCase__ ( self : Dict , **_snake_case : Optional[Any] )->None: '''simple docstring''' __lowerCAmelCase : Optional[int] = self.__need() __lowerCAmelCase : Any = self.__allocated_resources_table __lowerCAmelCase : List[Any] = self.__available_resources() __lowerCAmelCase : Optional[Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: __lowerCAmelCase : Optional[Any] = False for each_need in need_list: __lowerCAmelCase : Optional[int] = True for index, need in enumerate(_snake_case ): if need > available_resources[index]: __lowerCAmelCase : int = False break if execution: __lowerCAmelCase : int = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __lowerCAmelCase : Any = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(_snake_case ) # update available/freed resources stack __lowerCAmelCase : int = np.array(_snake_case ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(_snake_case ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def UpperCAmelCase__ ( self : List[Any] )->int: '''simple docstring''' print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(_snake_case ) + 1}''' + """ """.join(F'''{it:>8}''' for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(_snake_case ) + 1}''' + """ """.join(F'''{it:>8}''' for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(_snake_case ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(_snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
232
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
345
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = [] for i in range(self.num_layers ): UpperCAmelCase_ : List[Any] = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : int = resnets UpperCAmelCase_ : Tuple = attentions if self.add_downsample: UpperCAmelCase_ : List[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: int=True ) -> int: UpperCAmelCase_ : List[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): UpperCAmelCase_ : str = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[Any] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> int: UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : Dict = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnets if self.add_downsample: UpperCAmelCase_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any]=True ) -> Any: UpperCAmelCase_ : Union[str, Any] = () for resnet in self.resnets: UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[str] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: str ) -> Any: UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : int = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Optional[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = resnets UpperCAmelCase_ : Dict = attentions if self.add_upsample: UpperCAmelCase_ : Optional[Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: str ,lowerCamelCase_: List[str]=True ) -> List[str]: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states UpperCAmelCase_ : List[str] = res_hidden_states_tuple[-1] UpperCAmelCase_ : Union[str, Any] = res_hidden_states_tuple[:-1] UpperCAmelCase_ : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Dict = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> Dict: UpperCAmelCase_ : Any = [] for i in range(self.num_layers ): UpperCAmelCase_ : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : str = resnets if self.add_upsample: UpperCAmelCase_ : Union[str, Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Dict ,lowerCamelCase_: Dict ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any=True ) -> List[str]: for resnet in self.resnets: # pop res hidden states UpperCAmelCase_ : Dict = res_hidden_states_tuple[-1] UpperCAmelCase_ : str = res_hidden_states_tuple[:-1] UpperCAmelCase_ : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : List[str] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Optional[Any] = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: # there is always at least one resnet UpperCAmelCase_ : List[Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] UpperCAmelCase_ : Any = [] for _ in range(self.num_layers ): UpperCAmelCase_ : Optional[Any] = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Dict = resnets UpperCAmelCase_ : Any = attentions def __call__( self: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any]=True ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.resnets[0](lowerCamelCase_ ,lowerCamelCase_ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): UpperCAmelCase_ : Optional[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) return hidden_states
345
1
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowerCAmelCase__ : """simple docstring""" def __init__( self : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple=14 , __SCREAMING_SNAKE_CASE : Union[str, Any]=7 , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : str=99 , __SCREAMING_SNAKE_CASE : int=32 , __SCREAMING_SNAKE_CASE : Dict=5 , __SCREAMING_SNAKE_CASE : Tuple=4 , __SCREAMING_SNAKE_CASE : Dict=37 , __SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : Any=512 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : List[str]=0.02 , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Optional[int]=4 , __SCREAMING_SNAKE_CASE : List[Any]=None , ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = use_mc_token_ids __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = self.vocab_size - 1 def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_mc_token_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , *__SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = CTRLModel(config=__A ) model.to(__A ) model.eval() model(__A , token_type_ids=__A , head_mask=__A ) model(__A , token_type_ids=__A ) __SCREAMING_SNAKE_CASE = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , *__SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = CTRLLMHeadModel(__A ) model.to(__A ) model.eval() __SCREAMING_SNAKE_CASE = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( __SCREAMING_SNAKE_CASE ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , *__SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = CTRLForSequenceClassification(__A ) model.to(__A ) model.eval() __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class lowerCAmelCase__ ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowerCAmelCase__ = (CTRLLMHeadModel,) if is_torch_available() else () lowerCAmelCase__ = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = CTRLModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__A , n_embd=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__A ) def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__A ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @slow def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = CTRLModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def UpperCAmelCase__ ( self : Dict ) -> Any: """simple docstring""" pass @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def UpperCAmelCase__ ( self : Any ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(__A ) __SCREAMING_SNAKE_CASE = torch.tensor( [[11_859, 0, 1_611, 8]] , dtype=torch.long , device=__A ) # Legal the president is __SCREAMING_SNAKE_CASE = [ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __SCREAMING_SNAKE_CASE = model.generate(__A , do_sample=__A ) self.assertListEqual(output_ids[0].tolist() , __A )
351
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
331
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : Any=3_0 , UpperCAmelCase__ : str=4_0_0 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[int]=1 / 2_5_5 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : List[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Optional[int]=True , ) -> Any: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_rescale lowerCAmelCase = rescale_factor lowerCAmelCase = do_normalize lowerCAmelCase = image_mean lowerCAmelCase = image_std lowerCAmelCase = do_pad def __UpperCAmelCase ( self : int ) -> Dict: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict=False ) -> str: if not batched: lowerCAmelCase = image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image ): lowerCAmelCase , lowerCAmelCase = image.size else: lowerCAmelCase , lowerCAmelCase = image.shape[1], image.shape[2] if w < h: lowerCAmelCase = int(self.size['shortest_edge'] * h / w ) lowerCAmelCase = self.size['shortest_edge'] elif w > h: lowerCAmelCase = self.size['shortest_edge'] lowerCAmelCase = int(self.size['shortest_edge'] * w / h ) else: lowerCAmelCase = self.size['shortest_edge'] lowerCAmelCase = self.size['shortest_edge'] else: lowerCAmelCase = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : item[0] )[0] lowerCAmelCase = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : List[str] = DetrImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self : Tuple ) -> List[Any]: lowerCAmelCase = DetrImageProcessingTester(self ) @property def __UpperCAmelCase ( self : Optional[int] ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : str ) -> str: lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'image_std' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_rescale' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'rescale_factor' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_pad' ) ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase__ ) lowerCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=UpperCAmelCase__ ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2, 'longest_edge': 8_4} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: pass def __UpperCAmelCase ( self : Dict ) -> str: # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase , lowerCAmelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) lowerCAmelCase = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCAmelCase ( self : int ) -> Tuple: # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase , lowerCAmelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values lowerCAmelCase , lowerCAmelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCAmelCase ( self : List[Any] ) -> Any: # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase , lowerCAmelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values lowerCAmelCase , lowerCAmelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __UpperCAmelCase ( self : Optional[Any] ) -> Any: # prepare image and target lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: lowerCAmelCase = json.loads(f.read() ) lowerCAmelCase = {'image_id': 3_9_7_6_9, 'annotations': target} # encode them lowerCAmelCase = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) lowerCAmelCase = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='pt' ) # verify pixel values lowerCAmelCase = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , UpperCAmelCase__ , atol=1E-4 ) ) # verify area lowerCAmelCase = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , UpperCAmelCase__ ) ) # verify boxes lowerCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , UpperCAmelCase__ , atol=1E-3 ) ) # verify image_id lowerCAmelCase = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , UpperCAmelCase__ ) ) # verify is_crowd lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , UpperCAmelCase__ ) ) # verify class_labels lowerCAmelCase = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , UpperCAmelCase__ ) ) # verify orig_size lowerCAmelCase = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , UpperCAmelCase__ ) ) # verify size lowerCAmelCase = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , UpperCAmelCase__ ) ) @slow def __UpperCAmelCase ( self : str ) -> str: # prepare image, target and masks_path lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: lowerCAmelCase = json.loads(f.read() ) lowerCAmelCase = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target} lowerCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowerCAmelCase = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) lowerCAmelCase = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='pt' ) # verify pixel values lowerCAmelCase = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , UpperCAmelCase__ , atol=1E-4 ) ) # verify area lowerCAmelCase = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , UpperCAmelCase__ ) ) # verify boxes lowerCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , UpperCAmelCase__ , atol=1E-3 ) ) # verify image_id lowerCAmelCase = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , UpperCAmelCase__ ) ) # verify is_crowd lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , UpperCAmelCase__ ) ) # verify class_labels lowerCAmelCase = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , UpperCAmelCase__ ) ) # verify masks lowerCAmelCase = 8_2_2_8_7_3 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , UpperCAmelCase__ ) # verify orig_size lowerCAmelCase = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , UpperCAmelCase__ ) ) # verify size lowerCAmelCase = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , UpperCAmelCase__ ) )
4
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCAmelCase__ ( A_ ): """simple docstring""" def _a ( self , A_ ) -> float: return 0.0 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __UpperCamelCase =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : FilterType , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =5_12 __UpperCamelCase =[1] + [0] * (size - 1) __UpperCamelCase =[filter_type.process(SCREAMING_SNAKE_CASE__ ) for item in inputs] __UpperCamelCase =[0] * (samplerate - size) # zero-padding outputs += filler __UpperCamelCase =np.abs(np.fft.fft(SCREAMING_SNAKE_CASE__ ) ) __UpperCamelCase =20 * np.logaa(SCREAMING_SNAKE_CASE__ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) # Display within reasonable bounds __UpperCamelCase =get_bounds(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('Gain (dB)' ) plt.plot(SCREAMING_SNAKE_CASE__ ) plt.show() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : FilterType , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =5_12 __UpperCamelCase =[1] + [0] * (size - 1) __UpperCamelCase =[filter_type.process(SCREAMING_SNAKE_CASE__ ) for item in inputs] __UpperCamelCase =[0] * (samplerate - size) # zero-padding outputs += filler __UpperCamelCase =np.angle(np.fft.fft(SCREAMING_SNAKE_CASE__ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('Phase shift (Radians)' ) plt.plot(np.unwrap(SCREAMING_SNAKE_CASE__ , -2 * pi ) ) plt.show()
62
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(a__ ) class lowerCAmelCase_ ( a__ ): def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: super().__init__(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) requires_backends(self, 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None ) -> Optional[int]: UpperCamelCase : Tuple = {} UpperCamelCase : Dict = {} if prompt is not None: UpperCamelCase : Tuple = prompt if generate_kwargs is not None: UpperCamelCase : Optional[int] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCamelCase : str = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) UpperCamelCase : int = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[Any]: return super().__call__(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> int: UpperCamelCase : List[str] = load_image(SCREAMING_SNAKE_CASE_ ) if prompt is not None: if not isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): raise ValueError( F"""Received an invalid text input, got - {type(SCREAMING_SNAKE_CASE_ )} - but expected a single string. """ 'Note also that one single text can be provided for conditional image to text generation.' ) UpperCamelCase : Dict = self.model.config.model_type if model_type == "git": UpperCamelCase : Optional[int] = self.image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors=self.framework ) UpperCamelCase : List[str] = self.tokenizer(text=SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_ ).input_ids UpperCamelCase : List[Any] = [self.tokenizer.cls_token_id] + input_ids UpperCamelCase : Optional[Any] = torch.tensor(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": UpperCamelCase : List[str] = self.image_processor(images=SCREAMING_SNAKE_CASE_, header_text=SCREAMING_SNAKE_CASE_, return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCamelCase : str = self.image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors=self.framework ) UpperCamelCase : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_, return_tensors=self.framework ) model_inputs.update(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: UpperCamelCase : Tuple = self.image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCamelCase : List[str] = None return model_inputs def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Optional[Any]: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'], SCREAMING_SNAKE_CASE_ ) and all(x is None for x in model_inputs['input_ids'] ) ): UpperCamelCase : Tuple = None if generate_kwargs is None: UpperCamelCase : Any = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCamelCase : List[str] = model_inputs.pop(self.model.main_input_name ) UpperCamelCase : Union[str, Any] = self.model.generate(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) return model_outputs def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : Optional[Any] = [] for output_ids in model_outputs: UpperCamelCase : List[Any] = { 'generated_text': self.tokenizer.decode( SCREAMING_SNAKE_CASE_, skip_special_tokens=SCREAMING_SNAKE_CASE_, ) } records.append(SCREAMING_SNAKE_CASE_ ) return records
103
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCAmelCase_ ( a__ ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = "arrow", **SCREAMING_SNAKE_CASE_, ) -> int: super().__init__( split=SCREAMING_SNAKE_CASE_, features=SCREAMING_SNAKE_CASE_, cache_dir=SCREAMING_SNAKE_CASE_, keep_in_memory=SCREAMING_SNAKE_CASE_, streaming=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Any = load_from_cache_file UpperCamelCase : Any = file_format UpperCamelCase : str = Spark( df=SCREAMING_SNAKE_CASE_, features=SCREAMING_SNAKE_CASE_, cache_dir=SCREAMING_SNAKE_CASE_, working_dir=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) def snake_case_ ( self ) -> Tuple: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) UpperCamelCase : Dict = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=SCREAMING_SNAKE_CASE_, file_format=self._file_format, ) return self.builder.as_dataset(split=self.split )
103
1
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __snake_case ( a ): def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(_snake_case , '''hidden_sizes''')) self.parent.assertTrue(hasattr(_snake_case , '''num_attention_heads''')) class __snake_case : def __init__( self : Dict , _snake_case : Union[str, Any] , _snake_case : str=13 , _snake_case : int=64 , _snake_case : List[Any]=3 , _snake_case : Optional[int]=3 , _snake_case : List[Any]=2 , _snake_case : Dict=1 , _snake_case : Union[str, Any]=16 , _snake_case : Any=[128, 256, 384] , _snake_case : Any=[4, 6, 8] , _snake_case : Optional[int]=[2, 3, 4] , _snake_case : List[Any]=[16, 16, 16] , _snake_case : Union[str, Any]=0 , _snake_case : Optional[int]=[2, 2, 2] , _snake_case : Any=[2, 2, 2] , _snake_case : List[Any]=0.0_2 , _snake_case : List[str]=True , _snake_case : List[Any]=True , _snake_case : Any=2 , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = kernel_size UpperCAmelCase_ = stride UpperCAmelCase_ = padding UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = depths UpperCAmelCase_ = key_dim UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = patch_size UpperCAmelCase_ = attention_ratio UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = initializer_range UpperCAmelCase_ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : List[str]): """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowerCamelCase ( self : str , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Any): """simple docstring""" UpperCAmelCase_ = LevitModel(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case) UpperCAmelCase_ = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ = image_size[0], image_size[1] for _ in range(4): UpperCAmelCase_ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1) UpperCAmelCase_ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4) * ceil(width / 4), self.hidden_sizes[-1]) , ) def lowerCamelCase ( self : Optional[Any] , _snake_case : Any , _snake_case : Optional[Any] , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = LevitForImageClassification(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) UpperCAmelCase__ : Optional[int] = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Any = False def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = LevitModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37) def lowerCamelCase ( self : Any): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : Tuple): """simple docstring""" return @unittest.skip(reason='''Levit does not use inputs_embeds''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass @unittest.skip(reason='''Levit does not support input and output embeddings''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass @unittest.skip(reason='''Levit does not output attentions''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" def check_hidden_states_output(_snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Optional[Any]): UpperCAmelCase_ = model_class(_snake_case) model.to(_snake_case) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = len(self.model_tester.depths) + 1 self.assertEqual(len(_snake_case) , _snake_case) UpperCAmelCase_ = (self.model_tester.image_size, self.model_tester.image_size) UpperCAmelCase_ , UpperCAmelCase_ = image_size[0], image_size[1] for _ in range(4): UpperCAmelCase_ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) UpperCAmelCase_ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Any , _snake_case : Optional[int] , _snake_case : str , _snake_case : int=False): """simple docstring""" UpperCAmelCase_ = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_snake_case) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue UpperCAmelCase_ = model_class(_snake_case) model.to(_snake_case) model.train() UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case) UpperCAmelCase_ = model(**_snake_case).loss loss.backward() def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase_ = False UpperCAmelCase_ = True for model_class in self.all_model_classes: if model_class in get_values(_snake_case) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue UpperCAmelCase_ = model_class(_snake_case) model.gradient_checkpointing_enable() model.to(_snake_case) model.train() UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case) UpperCAmelCase_ = model(**_snake_case).loss loss.backward() def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_snake_case), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type["title"]}"""): UpperCAmelCase_ = problem_type['''title'''] UpperCAmelCase_ = problem_type['''num_labels'''] UpperCAmelCase_ = model_class(_snake_case) model.to(_snake_case) model.train() UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case) if problem_type["num_labels"] > 1: UpperCAmelCase_ = inputs['''labels'''].unsqueeze(1).repeat(1 , problem_type['''num_labels''']) UpperCAmelCase_ = inputs['''labels'''].to(problem_type['''dtype''']) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_snake_case) as warning_list: UpperCAmelCase_ = model(**_snake_case).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""") loss.backward() @slow def lowerCamelCase ( self : List[str]): """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = LevitModel.from_pretrained(_snake_case) self.assertIsNotNone(_snake_case) def A () -> Any: """simple docstring""" UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( _snake_case) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''pt''').to(_snake_case) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7]).to(_snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
51
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml snake_case_ : Tuple = logging.get_logger(__name__) def A (__A : bool , __A : bool ) -> Optional[Any]: """simple docstring""" def run_func(__A : Optional[Any] ): @wraps(__A ) def run_in_eager_mode(*__A : Dict , **__A : List[Any] ): return func(*__A , **__A ) @wraps(__A ) @tf.function(experimental_compile=__A ) def run_in_graph_mode(*__A : Optional[Any] , **__A : Any ): return func(*__A , **__A ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def A (__A : int , __A : int , __A : int ) -> ["tf.Tensor"]: """simple docstring""" UpperCAmelCase_ = random.Random() UpperCAmelCase_ = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__A , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __snake_case ( a ): UpperCAmelCase__ : TensorFlowBenchmarkArguments UpperCAmelCase__ : PretrainedConfig UpperCAmelCase__ : str = "TensorFlow" @property def lowerCamelCase ( self : List[str]): """simple docstring""" return tf.__version__ def lowerCamelCase ( self : Dict , _snake_case : str , _snake_case : int , _snake_case : int): """simple docstring""" UpperCAmelCase_ = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''') UpperCAmelCase_ = self._prepare_inference_func(_snake_case , _snake_case , _snake_case) return self._measure_speed(_inference) def lowerCamelCase ( self : Any , _snake_case : str , _snake_case : int , _snake_case : int): """simple docstring""" UpperCAmelCase_ = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''') UpperCAmelCase_ = self._prepare_train_func(_snake_case , _snake_case , _snake_case) return self._measure_speed(_train) def lowerCamelCase ( self : Any , _snake_case : str , _snake_case : int , _snake_case : int): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _snake_case) UpperCAmelCase_ = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''') UpperCAmelCase_ = self._prepare_inference_func(_snake_case , _snake_case , _snake_case) return self._measure_memory(_inference) def lowerCamelCase ( self : Optional[Any] , _snake_case : str , _snake_case : int , _snake_case : int): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _snake_case) UpperCAmelCase_ = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''') UpperCAmelCase_ = self._prepare_train_func(_snake_case , _snake_case , _snake_case) return self._measure_memory(_train) def lowerCamelCase ( self : Optional[int] , _snake_case : str , _snake_case : int , _snake_case : int): """simple docstring""" UpperCAmelCase_ = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''') UpperCAmelCase_ = ( hasattr(_snake_case , '''architectures''') and isinstance(config.architectures , _snake_case) and len(config.architectures) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase_ = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase_ = __import__('''transformers''' , fromlist=[model_class]) UpperCAmelCase_ = getattr(_snake_case , _snake_case) UpperCAmelCase_ = model_cls(_snake_case) except ImportError: raise ImportError( F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''') else: UpperCAmelCase_ = TF_MODEL_MAPPING[config.__class__](_snake_case) # encoder-decoder has vocab size saved differently UpperCAmelCase_ = config.vocab_size if hasattr(_snake_case , '''vocab_size''') else config.encoder.vocab_size UpperCAmelCase_ = random_input_ids(_snake_case , _snake_case , _snake_case) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla) def encoder_decoder_forward(): return model(_snake_case , decoder_input_ids=_snake_case , training=_snake_case) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla) def encoder_forward(): return model(_snake_case , training=_snake_case) UpperCAmelCase_ = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCamelCase ( self : Optional[Any] , _snake_case : str , _snake_case : int , _snake_case : int): """simple docstring""" UpperCAmelCase_ = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''') if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''') UpperCAmelCase_ = ( hasattr(_snake_case , '''architectures''') and isinstance(config.architectures , _snake_case) and len(config.architectures) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase_ = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase_ = __import__('''transformers''' , fromlist=[model_class]) UpperCAmelCase_ = getattr(_snake_case , _snake_case) UpperCAmelCase_ = model_cls(_snake_case) except ImportError: raise ImportError( F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''') else: UpperCAmelCase_ = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_snake_case) # encoder-decoder has vocab size saved differently UpperCAmelCase_ = config.vocab_size if hasattr(_snake_case , '''vocab_size''') else config.encoder.vocab_size UpperCAmelCase_ = random_input_ids(_snake_case , _snake_case , _snake_case) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla) def encoder_decoder_train(): UpperCAmelCase_ = model(_snake_case , decoder_input_ids=_snake_case , labels=_snake_case , training=_snake_case)[0] UpperCAmelCase_ = tf.gradients(_snake_case , model.trainable_variables) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla) def encoder_train(): UpperCAmelCase_ = model(_snake_case , labels=_snake_case , training=_snake_case)[0] UpperCAmelCase_ = tf.gradients(_snake_case , model.trainable_variables) return gradients UpperCAmelCase_ = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCamelCase ( self : Any , _snake_case : Optional[Any]): """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''') timeit.repeat(_snake_case , repeat=1 , number=5) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCAmelCase_ = timeit.repeat( _snake_case , repeat=self.args.repeat , number=10 , ) return min(_snake_case) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(F"""Doesn't fit on GPU. {e}""") def lowerCamelCase ( self : Dict , _snake_case : Callable[[], None]): """simple docstring""" logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''') with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''') UpperCAmelCase_ = start_memory_tracing('''transformers''') if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''') elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''') UpperCAmelCase_ = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''') # init nvml nvml.nvmlInit() func() UpperCAmelCase_ = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx) UpperCAmelCase_ = nvml.nvmlDeviceGetMemoryInfo(_snake_case) UpperCAmelCase_ = meminfo.used UpperCAmelCase_ = Memory(_snake_case) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''') UpperCAmelCase_ = None else: UpperCAmelCase_ = measure_peak_memory_cpu(_snake_case) UpperCAmelCase_ = Memory(_snake_case) if isinstance(_snake_case , _snake_case) else memory_bytes if self.args.trace_memory_line_by_line: UpperCAmelCase_ = stop_memory_tracing(_snake_case) if memory is None: UpperCAmelCase_ = summary.total else: UpperCAmelCase_ = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"""Doesn't fit on GPU. {e}""") return "N/A", None
51
1
'''simple docstring''' # Algorithm for the pigeonhole sorting def _a ( _lowercase : Dict ): '''simple docstring''' __UpperCAmelCase : List[str] = min(_lowercase ) # min() finds the minimum value __UpperCAmelCase : str = max(_lowercase ) # max() finds the maximum value __UpperCAmelCase : Optional[int] = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __UpperCAmelCase : List[str] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowercase , _lowercase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __UpperCAmelCase : Union[str, Any] = 0 for count in range(_lowercase ): while holes[count] > 0: holes[count] -= 1 __UpperCAmelCase : Dict = count + min_val i += 1 def _a ( ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowercase ) print('''Sorted order is:''' , ''' '''.join(_lowercase ) ) if __name__ == "__main__": main()
240
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase :Any = logging.get_logger(__name__) __UpperCAmelCase :Dict = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( _lowercase : Tuple ): '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __UpperCAmelCase : Any = k.replace(_lowercase , _lowercase ) if k.startswith('''encoder''' ): __UpperCAmelCase : str = k.replace('''.attn''' , '''.self_attn''' ) __UpperCAmelCase : Any = k.replace('''norm1''' , '''self_attn_layer_norm''' ) __UpperCAmelCase : List[str] = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): __UpperCAmelCase : int = k.replace('''norm1''' , '''self_attn_layer_norm''' ) __UpperCAmelCase : Union[str, Any] = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) __UpperCAmelCase : List[Any] = k.replace('''norm3''' , '''final_layer_norm''' ) return k def _a ( _lowercase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : int = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: __UpperCAmelCase : Any = sd.pop(_lowercase ) __UpperCAmelCase : Optional[int] = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd __UpperCAmelCase : List[str] = v __UpperCAmelCase :str = ["START"] @torch.no_grad() def _a ( _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : str ): '''simple docstring''' __UpperCAmelCase : Any = torch.load(_lowercase , map_location='''cpu''' ) __UpperCAmelCase : List[str] = model['''model'''] __UpperCAmelCase : Optional[Any] = BlenderbotConfig.from_json_file(_lowercase ) __UpperCAmelCase : Optional[Any] = BlenderbotForConditionalGeneration(_lowercase ) __UpperCAmelCase : Optional[Any] = m.model.state_dict().keys() __UpperCAmelCase : int = [] __UpperCAmelCase : List[str] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __UpperCAmelCase : int = rename_state_dict_key(_lowercase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __UpperCAmelCase : Union[str, Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowercase ) m.model.load_state_dict(_lowercase , strict=_lowercase ) m.half() m.save_pretrained(_lowercase ) if __name__ == "__main__": __UpperCAmelCase :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCAmelCase :Tuple = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
240
1
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any]) -> Union[str, Any]: '''simple docstring''' stooge(_lowerCamelCase , 0 , len(_lowerCamelCase) - 1) return arr def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] , _lowerCamelCase : str , _lowerCamelCase : List[str]) -> Dict: '''simple docstring''' if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: __UpperCamelCase , __UpperCamelCase : int = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: __UpperCamelCase : Union[str, Any] = (int)((h - i + 1) / 3) # Recursively sort first 2/3 elements stooge(_lowerCamelCase , _lowerCamelCase , (h - t)) # Recursively sort last 2/3 elements stooge(_lowerCamelCase , i + t , (_lowerCamelCase)) # Recursively sort first 2/3 elements stooge(_lowerCamelCase , _lowerCamelCase , (h - t)) if __name__ == "__main__": lowercase : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() lowercase : int = [int(item) for item in user_input.split(',')] print(stooge_sort(unsorted))
232
from PIL import Image def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image , _lowerCamelCase : int) -> Image: '''simple docstring''' __UpperCamelCase : str = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowerCamelCase : int) -> int: return int(128 + factor * (c - 128)) return img.point(_lowerCamelCase) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 lowercase : Tuple = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
232
1
from manim import * class snake_case_ ( __lowercase ): def UpperCAmelCase__ ( self : Dict )->Optional[int]: '''simple docstring''' __lowerCAmelCase : str = Rectangle(height=0.5 , width=0.5 ) __lowerCAmelCase : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __lowerCAmelCase : List[str] = [mem.copy() for i in range(6 )] __lowerCAmelCase : Dict = [mem.copy() for i in range(6 )] __lowerCAmelCase : List[Any] = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) __lowerCAmelCase : int = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) __lowerCAmelCase : List[str] = VGroup(_snake_case , _snake_case ).arrange(_snake_case , buff=0 ) __lowerCAmelCase : Optional[int] = Text("""CPU""" , font_size=24 ) __lowerCAmelCase : List[Any] = Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_snake_case ) __lowerCAmelCase : Tuple = [mem.copy() for i in range(4 )] __lowerCAmelCase : Union[str, Any] = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) __lowerCAmelCase : Optional[Any] = Text("""GPU""" , font_size=24 ) __lowerCAmelCase : Optional[int] = Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) gpu.move_to([-1, -1, 0] ) self.add(_snake_case ) __lowerCAmelCase : List[str] = [mem.copy() for i in range(6 )] __lowerCAmelCase : int = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) __lowerCAmelCase : List[str] = Text("""Model""" , font_size=24 ) __lowerCAmelCase : Optional[Any] = Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) model.move_to([3, -1.0, 0] ) self.add(_snake_case ) __lowerCAmelCase : int = [] for i, rect in enumerate(_snake_case ): rect.set_stroke(_snake_case ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) __lowerCAmelCase : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=_snake_case , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=_snake_case , buff=0.0 ) self.add(_snake_case ) cpu_targs.append(_snake_case ) __lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] __lowerCAmelCase : Optional[Any] = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) __lowerCAmelCase : str = Text("""Loaded Checkpoint""" , font_size=24 ) __lowerCAmelCase : str = Group(_snake_case , _snake_case ).arrange(_snake_case , aligned_edge=_snake_case , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) __lowerCAmelCase : int = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowerCAmelCase : Union[str, Any] = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_snake_case , _snake_case ) __lowerCAmelCase : int = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) __lowerCAmelCase : Tuple = MarkupText( F'''Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_snake_case ) , Write(_snake_case ) ) self.play(Write(_snake_case , run_time=1 ) , Create(_snake_case , run_time=1 ) ) __lowerCAmelCase : str = [] __lowerCAmelCase : Union[str, Any] = [] for i, rect in enumerate(_snake_case ): __lowerCAmelCase : Optional[int] = fill.copy().set_fill(_snake_case , opacity=0.7 ) target.move_to(_snake_case ) first_animations.append(GrowFromCenter(_snake_case , run_time=1 ) ) __lowerCAmelCase : Optional[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(_snake_case , run_time=1.5 ) ) self.play(*_snake_case ) self.play(*_snake_case ) self.wait()
232
import random def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list , SCREAMING_SNAKE_CASE :Dict ) -> tuple: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[str] = [], [], [] for element in data: if element < pivot: less.append(SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(SCREAMING_SNAKE_CASE ) else: equal.append(SCREAMING_SNAKE_CASE ) return less, equal, greater def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list , SCREAMING_SNAKE_CASE :int ) -> Dict: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(SCREAMING_SNAKE_CASE ) or index < 0: return None __lowerCAmelCase : Union[str, Any] = items[random.randint(0 , len(SCREAMING_SNAKE_CASE ) - 1 )] __lowerCAmelCase : int = 0 __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Tuple = _partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = len(SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(SCREAMING_SNAKE_CASE , index - (m + count) )
232
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 SCREAMING_SNAKE_CASE_: Union[str, Any] =get_tests_dir('fixtures') SCREAMING_SNAKE_CASE_: List[Any] =get_tests_dir('fixtures/dummy_feature_extractor_config.json') SCREAMING_SNAKE_CASE_: Union[str, Any] =get_tests_dir('fixtures/dummy-config.json') class __A ( unittest.TestCase ): def _lowercase (self : List[Any] ): UpperCAmelCase_ = 0 def _lowercase (self : Any ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(__a , __a ) def _lowercase (self : Any ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def _lowercase (self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a ).to_dict() config_dict.pop("feature_extractor_type" ) UpperCAmelCase_ = WavaVecaFeatureExtractor(**__a ) # save in new folder model_config.save_pretrained(__a ) config.save_pretrained(__a ) UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a ) # make sure private variable is not incorrectly saved UpperCAmelCase_ = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(__a , __a ) def _lowercase (self : Dict ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def _lowercase (self : Dict ): with self.assertRaisesRegex( __a , "bert-base is not a local folder and is not a valid model identifier" ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained("bert-base" ) def _lowercase (self : List[str] ): with self.assertRaisesRegex( __a , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a , revision="aaaaaa" ) def _lowercase (self : List[str] ): with self.assertRaisesRegex( __a , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" ) def _lowercase (self : int ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__a ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a , trust_remote_code=__a ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) def _lowercase (self : Union[str, Any] ): try: AutoConfig.register("custom" , __a ) AutoFeatureExtractor.register(__a , __a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoFeatureExtractor.register(__a , __a ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase_ = CustomFeatureExtractor.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def _lowercase (self : List[Any] ): class __A ( UpperCamelCase__ ): a__ : Optional[Any] = True try: AutoConfig.register("custom" , __a ) AutoFeatureExtractor.register(__a , __a ) # If remote code is not set, the default is to use local UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(not hasattr(__a , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
1
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase :Dict = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') lowerCAmelCase :str = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase :Any = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys()) lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class _lowerCamelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_A ) __magic_name__ : List[str] = 0 __magic_name__ : Union[str, Any] = Path(self.hparams.output_dir ) __magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __magic_name__ : Optional[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , ) else: __magic_name__ : PretrainedConfig = config __magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , _A , _A ): assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , _A , getattr(self.hparams , _A ) ) if tokenizer is None: __magic_name__ : List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , ) else: __magic_name__ : PreTrainedTokenizer = tokenizer __magic_name__ : Optional[int] = MODEL_MODES[mode] if model is None: __magic_name__ : Tuple = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , ) else: __magic_name__ : str = model def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple: __magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: __magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] __magic_name__ : str = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : Optional[Any] = self.model __magic_name__ : int = ['bias', 'LayerNorm.weight'] __magic_name__ : Dict = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __magic_name__ : str = Adafactor( _A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A ) else: __magic_name__ : Tuple = AdamW( _A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __magic_name__ : List[str] = optimizer __magic_name__ : int = self.get_lr_scheduler() return [optimizer], [scheduler] def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]: return self.validation_step(_A , _A ) def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any: return self.validation_end(_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: __magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str: if stage == "test": __magic_name__ : Any = len(self.test_dataloader().dataset ) else: __magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A ) __magic_name__ : int = len(self.train_dataloader().dataset ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]: raise NotImplementedError('You must implement this for your task' ) def __lowerCAmelCase ( self : int ) -> List[str]: return self.train_loader def __lowerCAmelCase ( self : Tuple ) -> int: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( _A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None: __magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' ) __magic_name__ : List[Any] = self.step_count self.model.save_pretrained(_A ) self.tokenizer.save_pretrained(_A ) @staticmethod def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple: parser.add_argument( '--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A ) parser.add_argument('--train_batch_size' , default=32 , type=_A ) parser.add_argument('--eval_batch_size' , default=32 , type=_A ) parser.add_argument('--adafactor' , action='store_true' ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_A ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]: __magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler'] __magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_A ) def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]: rank_zero_info('***** Validation results *****' ) __magic_name__ : str = trainer.callback_metrics # Log results for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]: rank_zero_info('***** Test results *****' ) __magic_name__ : Optional[int] = trainer.callback_metrics # Log and save results to file __magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(_A , 'w' ) as writer: for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __magic_name__ : Any = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: __magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase ) if logging_callback is None: __magic_name__ : Dict = LoggingCallback() __magic_name__ : List[str] = {} if args.fpaa: __magic_name__ : Dict = 16 if args.gpus > 1: __magic_name__ : Tuple = 'auto' __magic_name__ : int = 'ddp' __magic_name__ : str = args.accumulate_grad_batches __magic_name__ : str = None __magic_name__ : List[str] = 'auto' __magic_name__ : List[Any] = pl.Trainer.from_argparse_args( lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , ) if args.do_train: trainer.fit(lowerCAmelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
331
0
import string from math import logaa def lowercase_ ( A__ , A__ ) -> Optional[int]: """simple docstring""" snake_case = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) snake_case = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowercase_ ( A__ , A__ ) -> List[Any]: """simple docstring""" snake_case = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' snake_case = corpus_without_punctuation.split("\n" ) snake_case = term.lower() return (len([doc for doc in docs if term in doc] ), len(A_ )) def lowercase_ ( A__ , A__ , A__=False ) -> Union[str, Any]: """simple docstring""" if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def lowercase_ ( A__ , A__ ) -> Dict: """simple docstring""" return round(tf * idf , 3 )
358
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowerCamelCase ( A_ ): UpperCAmelCase__ : List[Any] = "segformer" def __init__(self : List[Any] , _A : int=3 , _A : List[Any]=4 , _A : Any=[2, 2, 2, 2] , _A : Dict=[8, 4, 2, 1] , _A : List[Any]=[3_2, 6_4, 1_6_0, 2_5_6] , _A : Tuple=[7, 3, 3, 3] , _A : Optional[int]=[4, 2, 2, 2] , _A : Dict=[1, 2, 5, 8] , _A : int=[4, 4, 4, 4] , _A : Dict="gelu" , _A : Tuple=0.0 , _A : Optional[Any]=0.0 , _A : List[Any]=0.1 , _A : Union[str, Any]=0.02 , _A : Dict=0.1 , _A : List[Any]=1E-6 , _A : List[str]=2_5_6 , _A : Optional[Any]=2_5_5 , **_A : str , ) -> Tuple: super().__init__(**_A ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , _A , ) snake_case = num_channels snake_case = num_encoder_blocks snake_case = depths snake_case = sr_ratios snake_case = hidden_sizes snake_case = patch_sizes snake_case = strides snake_case = mlp_ratios snake_case = num_attention_heads snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = classifier_dropout_prob snake_case = initializer_range snake_case = drop_path_rate snake_case = layer_norm_eps snake_case = decoder_hidden_size snake_case = kwargs.get("reshape_last_stage" , _A ) snake_case = semantic_loss_ignore_index class lowerCamelCase ( A_ ): UpperCAmelCase__ : Optional[Any] = version.parse("1.11" ) @property def UpperCAmelCase(self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase(self : Tuple ) -> float: return 1E-4 @property def UpperCAmelCase(self : List[str] ) -> int: return 1_2
137
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
103
from pathlib import Path import fire def UpperCamelCase( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : int ): lowerCAmelCase_ : List[str] = Path(__UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = Path(__UpperCamelCase ) dest_dir.mkdir(exist_ok=__UpperCamelCase ) for path in src_dir.iterdir(): lowerCAmelCase_ : Optional[Any] = [x.rstrip() for x in list(path.open().readlines() )][:n] lowerCAmelCase_ : List[str] = dest_dir.joinpath(path.name ) print(__UpperCamelCase ) dest_path.open('''w''' ).write('''\n'''.join(__UpperCamelCase ) ) if __name__ == "__main__": fire.Fire(minify)
103
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( a ): __A = ["""image_processor""", """tokenizer"""] __A = """LayoutLMv2ImageProcessor""" __A = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , **UpperCAmelCase_ ): if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCAmelCase_ , ) lowerCamelCase =kwargs.pop("""feature_extractor""" ) lowerCamelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = True , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = 0 , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = True , UpperCAmelCase_ = None , **UpperCAmelCase_ , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor lowerCamelCase =self.image_processor(images=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =[text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase =features["""words"""] lowerCamelCase =self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) # add pixel values lowerCamelCase =features.pop("""pixel_values""" ) if return_overflowing_tokens is True: lowerCamelCase =self.get_overflowing_images(UpperCAmelCase_ , encoded_inputs["""overflow_to_sample_mapping"""] ) lowerCamelCase =images return encoded_inputs def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image lowerCamelCase =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f""" {len(UpperCAmelCase_ )} and {len(UpperCAmelCase_ )}""" ) return images_with_overflow def _snake_case ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _snake_case ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _snake_case ( self ): return ["input_ids", "bbox", "attention_mask", "image"] @property def _snake_case ( self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCAmelCase_ , ) return self.image_processor_class @property def _snake_case ( self ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCAmelCase_ , ) return self.image_processor
262
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCAmelCase__ : Union[str, Any] =logging.getLogger(__name__) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> int: return (preds == labels).mean() @dataclass class __A : __A = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __A = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __A = field( default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __A = field( default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __A : __A = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) __A = field(metadata={"""help""": """Should contain the data files for the task."""} ) __A = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __A = field( default=a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _lowercase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase , lowerCamelCase , lowerCamelCase =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , _UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: lowerCamelCase =processors[data_args.task_name]() lowerCamelCase =processor.get_labels() lowerCamelCase =len(_UpperCAmelCase ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowerCamelCase =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCamelCase =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowerCamelCase =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCamelCase =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_UpperCAmelCase ) -> Dict: lowerCamelCase =np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_UpperCAmelCase , p.label_ids )} # Data collator lowerCamelCase =DataCollatorWithPadding(_UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCamelCase =Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , compute_metrics=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCamelCase ={} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCamelCase =trainer.evaluate() lowerCamelCase =os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(_UpperCAmelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , _UpperCAmelCase , _UpperCAmelCase ) writer.write("""%s = %s\n""" % (key, value) ) results.update(_UpperCAmelCase ) return results def _lowercase ( _UpperCAmelCase ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
262
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case : Tuple = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[str] = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[Any] = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys snake_case : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
240
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=lowerCamelCase_ ) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : str = field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCAmelCase__ : ClassVar[Features] = Features({'''audio''': Audio()} ) UpperCAmelCase__ : ClassVar[Features] = Features({'''labels''': ClassLabel} ) UpperCAmelCase__ : str = "audio" UpperCAmelCase__ : str = "labels" def lowerCamelCase__( self :Optional[int] ,__snake_case :int ) -> str: if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] ,__snake_case ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) a__ = copy.deepcopy(self ) a__ = self.label_schema.copy() a__ = features[self.label_column] a__ = label_schema return task_template @property def lowerCamelCase__( self :Dict ) -> Dict[str, str]: return { self.audio_column: "audio", self.label_column: "labels", }
240
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE_ : __lowerCAmelCase = 42 __lowerCAmelCase = None __lowerCAmelCase = None _SCREAMING_SNAKE_CASE = namedtuple("""CoinsDistribResult""", """moves excess""") def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(UpperCamelCase_ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(UpperCamelCase_ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__a ) != count_coins(__a ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(UpperCamelCase_ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCamelCase , UpperCamelCase = get_distrib(node.left ) UpperCamelCase , UpperCamelCase = get_distrib(node.right ) UpperCamelCase = 1 - left_distrib_excess UpperCamelCase = 1 - right_distrib_excess UpperCamelCase = ( left_distrib_moves + right_distrib_moves + abs(__a ) + abs(__a ) ) UpperCamelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__a , __a ) return get_distrib(__a )[0] if __name__ == "__main__": import doctest doctest.testmod()
350
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowercase( UpperCamelCase_ = True , *UpperCamelCase_ , **UpperCamelCase_ ) -> int: '''simple docstring''' if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) UpperCamelCase = False if main_process_only: UpperCamelCase = PartialState().local_process_index == 0 return _tqdm(*UpperCamelCase_ , **UpperCamelCase_ , disable=UpperCamelCase_ )
165
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 'new-model' if is_tf_available(): class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = NewModelConfig @require_tf class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @slow def _lowerCamelCase ( self :int ) -> Any: __UpperCamelCase : List[Any] = "bert-base-cased" __UpperCamelCase : Any = AutoConfig.from_pretrained(a ) self.assertIsNotNone(a ) self.assertIsInstance(a , a ) __UpperCamelCase : Any = TFAutoModel.from_pretrained(a ) self.assertIsNotNone(a ) self.assertIsInstance(a , a ) @slow def _lowerCamelCase ( self :str ) -> int: __UpperCamelCase : List[Any] = "bert-base-cased" __UpperCamelCase : List[str] = AutoConfig.from_pretrained(a ) self.assertIsNotNone(a ) self.assertIsInstance(a , a ) __UpperCamelCase : Union[str, Any] = TFAutoModelForPreTraining.from_pretrained(a ) self.assertIsNotNone(a ) self.assertIsInstance(a , a ) @slow def _lowerCamelCase ( self :int ) -> Optional[int]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained(a ) self.assertIsNotNone(a ) self.assertIsInstance(a , a ) __UpperCamelCase : Any = TFAutoModelForCausalLM.from_pretrained(a ) __UpperCamelCase , __UpperCamelCase : Dict = TFAutoModelForCausalLM.from_pretrained(a , output_loading_info=a ) self.assertIsNotNone(a ) self.assertIsInstance(a , a ) @slow def _lowerCamelCase ( self :Any ) -> Optional[int]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(a ) self.assertIsNotNone(a ) self.assertIsInstance(a , a ) __UpperCamelCase : List[str] = TFAutoModelWithLMHead.from_pretrained(a ) self.assertIsNotNone(a ) self.assertIsInstance(a , a ) @slow def _lowerCamelCase ( self :str ) -> Union[str, Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : int = AutoConfig.from_pretrained(a ) self.assertIsNotNone(a ) self.assertIsInstance(a , a ) __UpperCamelCase : List[str] = TFAutoModelForMaskedLM.from_pretrained(a ) __UpperCamelCase , __UpperCamelCase : Dict = TFAutoModelForMaskedLM.from_pretrained(a , output_loading_info=a ) self.assertIsNotNone(a ) self.assertIsInstance(a , a ) @slow def _lowerCamelCase ( self :Any ) -> str: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Optional[Any] = AutoConfig.from_pretrained(a ) self.assertIsNotNone(a ) self.assertIsInstance(a , a ) __UpperCamelCase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(a ) __UpperCamelCase , __UpperCamelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(a , output_loading_info=a ) self.assertIsNotNone(a ) self.assertIsInstance(a , a ) @slow def _lowerCamelCase ( self :Dict ) -> List[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __UpperCamelCase : Optional[Any] = AutoConfig.from_pretrained(a ) self.assertIsNotNone(a ) self.assertIsInstance(a , a ) __UpperCamelCase : Union[str, Any] = TFAutoModelForSequenceClassification.from_pretrained(a ) self.assertIsNotNone(a ) self.assertIsInstance(a , a ) @slow def _lowerCamelCase ( self :str ) -> Any: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __UpperCamelCase : Any = AutoConfig.from_pretrained(a ) self.assertIsNotNone(a ) self.assertIsInstance(a , a ) __UpperCamelCase : Union[str, Any] = TFAutoModelForQuestionAnswering.from_pretrained(a ) self.assertIsNotNone(a ) self.assertIsInstance(a , a ) @slow @require_tensorflow_probability def _lowerCamelCase ( self :Optional[Any] ) -> Optional[Any]: for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained(a ) self.assertIsNotNone(a ) self.assertIsInstance(a , a ) __UpperCamelCase : Optional[int] = TFAutoModelForTableQuestionAnswering.from_pretrained(a ) __UpperCamelCase , __UpperCamelCase : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained( a , output_loading_info=a ) self.assertIsNotNone(a ) self.assertIsInstance(a , a ) def _lowerCamelCase ( self :int ) -> Dict: __UpperCamelCase : Optional[int] = TFAutoModelWithLMHead.from_pretrained(a ) self.assertIsInstance(a , a ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=a ) , 1_4_4_1_0 ) def _lowerCamelCase ( self :Optional[int] ) -> Any: __UpperCamelCase : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(a ) self.assertIsInstance(a , a ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=a ) , 1_4_4_1_0 ) def _lowerCamelCase ( self :Dict ) -> List[str]: # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel __UpperCamelCase : str = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(a , a ) __UpperCamelCase : Dict = copy.deepcopy(model.config ) __UpperCamelCase : Dict = ["FunnelBaseModel"] __UpperCamelCase : Optional[Any] = TFAutoModel.from_config(a ) self.assertIsInstance(a , a ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a ) __UpperCamelCase : List[Any] = TFAutoModel.from_pretrained(a ) self.assertIsInstance(a , a ) def _lowerCamelCase ( self :List[str] ) -> str: try: AutoConfig.register("new-model" , a ) __UpperCamelCase : List[str] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(a ): auto_class.register(a , a ) auto_class.register(a , a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a ): auto_class.register(a , a ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCamelCase : Union[str, Any] = BertModelTester(self ).get_config() __UpperCamelCase : Optional[int] = NewModelConfig(**tiny_config.to_dict() ) __UpperCamelCase : Optional[int] = auto_class.from_config(a ) self.assertIsInstance(a , a ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a ) __UpperCamelCase : Optional[int] = auto_class.from_pretrained(a ) self.assertIsInstance(a , a ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def _lowerCamelCase ( self :Any ) -> int: with self.assertRaisesRegex( a , "bert-base is not a local folder and is not a valid model identifier" ): __UpperCamelCase : List[str] = TFAutoModel.from_pretrained("bert-base" ) def _lowerCamelCase ( self :int ) -> str: with self.assertRaisesRegex( a , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __UpperCamelCase : Tuple = TFAutoModel.from_pretrained(a , revision="aaaaaa" ) def _lowerCamelCase ( self :Optional[int] ) -> Dict: with self.assertRaisesRegex( a , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): __UpperCamelCase : Optional[Any] = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def _lowerCamelCase ( self :Dict ) -> List[str]: with self.assertRaisesRegex(a , "Use `from_pt=True` to load this model" ): __UpperCamelCase : Optional[Any] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def _lowerCamelCase ( self :int ) -> Dict: # Make sure we have cached the model. __UpperCamelCase : str = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: __UpperCamelCase : int = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __UpperCamelCase : Optional[Any] = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: __UpperCamelCase : int = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
232
import argparse import datetime def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> str: '''simple docstring''' __UpperCamelCase : str = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } __UpperCamelCase : List[str] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCamelCase) < 11: raise ValueError("Must be 10 characters long") # Get month __UpperCamelCase : int = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12") __UpperCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get day __UpperCamelCase : int = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31") # Get second separator __UpperCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get year __UpperCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( "Year out of range. There has to be some sort of limit...right?") # Get datetime obj for validation __UpperCamelCase : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase)) # Start math if m <= 2: __UpperCamelCase : Any = y - 1 __UpperCamelCase : Optional[Any] = m + 12 # maths var __UpperCamelCase : int = int(str(_lowerCamelCase)[:2]) __UpperCamelCase : int = int(str(_lowerCamelCase)[2:]) __UpperCamelCase : int = int(2.6 * m - 5.3_9) __UpperCamelCase : int = int(c / 4) __UpperCamelCase : int = int(k / 4) __UpperCamelCase : int = int(d + k) __UpperCamelCase : int = int(t + u + v + x) __UpperCamelCase : int = int(z - (2 * c)) __UpperCamelCase : int = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer.") # Response __UpperCamelCase : str = F'Your date {date_input}, is a {days[str(_lowerCamelCase)]}!' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase : Optional[int] = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) lowercase : Tuple = parser.parse_args() zeller(args.date_input)
232
1
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> list: if any(not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(UpperCamelCase__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(UpperCamelCase__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
237
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class a__ ( UpperCAmelCase__ ): lowerCamelCase : List[Any] ="unispeech-sat" def __init__( self : Dict , a : str=32 , a : Any=7_68 , a : Optional[Any]=12 , a : Optional[int]=12 , a : int=30_72 , a : int="gelu" , a : Dict=0.1 , a : Dict=0.1 , a : List[Any]=0.1 , a : Tuple=0.0 , a : Optional[Any]=0.0 , a : Tuple=0.1 , a : List[Any]=0.1 , a : str=0.02 , a : List[Any]=1e-5 , a : int="group" , a : Union[str, Any]="gelu" , a : Optional[int]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , a : List[Any]=(5, 2, 2, 2, 2, 2, 2) , a : int=(10, 3, 3, 3, 3, 2, 2) , a : Optional[Any]=False , a : Any=1_28 , a : Tuple=16 , a : str=False , a : Optional[Any]=True , a : Dict=0.05 , a : List[Any]=10 , a : Any=2 , a : Optional[Any]=0.0 , a : Optional[Any]=10 , a : Any=0 , a : Any=3_20 , a : str=2 , a : List[str]=0.1 , a : List[str]=1_00 , a : List[str]=2_56 , a : str=2_56 , a : Dict=0.1 , a : Optional[Any]="mean" , a : str=False , a : Tuple=False , a : Optional[Any]=2_56 , a : int=(5_12, 5_12, 5_12, 5_12, 15_00) , a : int=(5, 3, 3, 1, 1) , a : Any=(1, 2, 3, 1, 1) , a : Union[str, Any]=5_12 , a : Optional[int]=0 , a : Optional[int]=1 , a : Optional[int]=2 , a : int=5_04 , **a : Dict , ): """simple docstring""" super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(a ) __lowerCamelCase = list(a ) __lowerCamelCase = list(a ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layerdrop __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size __lowerCamelCase = num_clusters __lowerCamelCase = do_stable_layer_norm __lowerCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __lowerCamelCase = num_codevectors_per_group __lowerCamelCase = num_codevector_groups __lowerCamelCase = contrastive_logits_temperature __lowerCamelCase = feat_quantizer_dropout __lowerCamelCase = num_negatives __lowerCamelCase = codevector_dim __lowerCamelCase = proj_codevector_dim __lowerCamelCase = diversity_loss_weight # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = list(a ) __lowerCamelCase = list(a ) __lowerCamelCase = list(a ) __lowerCamelCase = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
237
1
import os def A ( ) -> List[Any]: with open(os.path.dirname(a_ ) + '/grid.txt' ) as f: __UpperCamelCase : str =[] # noqa: E741 for _ in range(20 ): l.append([int(a_ ) for x in f.readline().split()] ) __UpperCamelCase : List[Any] =0 # right for i in range(20 ): for j in range(17 ): __UpperCamelCase : Tuple =l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: __UpperCamelCase : Dict =temp # down for i in range(17 ): for j in range(20 ): __UpperCamelCase : Optional[int] =l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: __UpperCamelCase : int =temp # diagonal 1 for i in range(17 ): for j in range(17 ): __UpperCamelCase : Tuple =l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: __UpperCamelCase : int =temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): __UpperCamelCase : Optional[Any] =l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: __UpperCamelCase : Union[str, Any] =temp return maximum if __name__ == "__main__": print(solution())
71
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy a_ : List[Any] = logging.getLogger(__name__) a_ : Dict = 'pytorch_model.bin' @dataclasses.dataclass class _snake_case : _lowercase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) _lowercase : Optional[str] = dataclasses.field( default=A__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class _snake_case : _lowercase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) _lowercase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) _lowercase : Optional[str] = dataclasses.field( default=A__ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) _lowercase : Optional[str] = dataclasses.field( default=A__ , metadata={'''help''': '''The name of the task to train on.'''} , ) _lowercase : Optional[List[str]] = dataclasses.field( default=A__ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class _snake_case : _lowercase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) _lowercase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) _lowercase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) _lowercase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) _lowercase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) _lowercase : Optional[bool] = dataclasses.field( default=A__ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) _lowercase : Optional[bool] = dataclasses.field( default=A__ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) _lowercase : Optional[bool] = dataclasses.field( default=A__ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) _lowercase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) _lowercase : Optional[int] = dataclasses.field( default=1_00 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) _lowercase : Optional[int] = dataclasses.field( default=A__ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = datasets.concatenate_datasets([infer_input, infer_output] , axis=1) if args.do_filter_by_confidence: SCREAMING_SNAKE_CASE = dataset.filter(lambda _UpperCAmelCase: example["probability"] > args.confidence_threshold) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 SCREAMING_SNAKE_CASE = int(eval_result * len(_UpperCAmelCase)) print(_UpperCAmelCase) SCREAMING_SNAKE_CASE = dataset.sort('probability' , reverse=_UpperCAmelCase) SCREAMING_SNAKE_CASE = dataset.select(range(_UpperCAmelCase)) SCREAMING_SNAKE_CASE = dataset.remove_columns(['label', 'probability']) SCREAMING_SNAKE_CASE = dataset.rename_column('prediction' , 'label') SCREAMING_SNAKE_CASE = dataset.map(lambda _UpperCAmelCase: {"label": idalabel[example["label"]]}) SCREAMING_SNAKE_CASE = dataset.shuffle(seed=args.seed) SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , F'''train_pseudo.{args.data_file_extension}''') if args.data_file_extension == "csv": dataset.to_csv(_UpperCAmelCase , index=_UpperCAmelCase) else: dataset.to_json(_UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase): SCREAMING_SNAKE_CASE = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() SCREAMING_SNAKE_CASE = STModelArguments(model_name_or_path=_UpperCAmelCase) SCREAMING_SNAKE_CASE = STDataArguments(train_file=_UpperCAmelCase , infer_file=_UpperCAmelCase) SCREAMING_SNAKE_CASE = STTrainingArguments(output_dir=_UpperCAmelCase) SCREAMING_SNAKE_CASE = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_UpperCAmelCase).items(): setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) for key, value in kwargs.items(): if hasattr(_UpperCAmelCase , _UpperCAmelCase): setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # Sanity checks SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None SCREAMING_SNAKE_CASE = args.train_file SCREAMING_SNAKE_CASE = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None SCREAMING_SNAKE_CASE = args.eval_file for key in data_files: SCREAMING_SNAKE_CASE = data_files[key].split('.')[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: SCREAMING_SNAKE_CASE = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) logger.info('Creating the initial data directory for self-training...') SCREAMING_SNAKE_CASE = F'''{args.output_dir}/self-train_iter-{{}}'''.format SCREAMING_SNAKE_CASE = data_dir_format(0) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_UpperCAmelCase) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) accelerator.wait_for_everyone() SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = False # Show the progress bar SCREAMING_SNAKE_CASE = tqdm(range(args.max_selftrain_iterations) , disable=not accelerator.is_local_main_process) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations)): SCREAMING_SNAKE_CASE = data_dir_format(_UpperCAmelCase) assert os.path.exists(_UpperCAmelCase) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'stage-1') SCREAMING_SNAKE_CASE = { 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_UpperCAmelCase , _UpperCAmelCase): arguments_dict.update({key: value}) SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'best-checkpoint' , _UpperCAmelCase) if os.path.exists(_UpperCAmelCase): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _UpperCAmelCase , _UpperCAmelCase , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _UpperCAmelCase) finetune(**_UpperCAmelCase) accelerator.wait_for_everyone() assert os.path.exists(_UpperCAmelCase) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _UpperCAmelCase) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'best-checkpoint') SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'stage-2') # Update arguments_dict SCREAMING_SNAKE_CASE = model_path SCREAMING_SNAKE_CASE = data_files['train'] SCREAMING_SNAKE_CASE = current_output_dir SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'best-checkpoint' , _UpperCAmelCase) if os.path.exists(_UpperCAmelCase): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _UpperCAmelCase , _UpperCAmelCase , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _UpperCAmelCase) finetune(**_UpperCAmelCase) accelerator.wait_for_everyone() assert os.path.exists(_UpperCAmelCase) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _UpperCAmelCase) SCREAMING_SNAKE_CASE = iteration SCREAMING_SNAKE_CASE = data_dir_format(iteration + 1) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(os.path.join(_UpperCAmelCase , 'best-checkpoint')) SCREAMING_SNAKE_CASE = config.idalabel SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'eval_results_best-checkpoint.json') SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'test_results_best-checkpoint.json') assert os.path.exists(_UpperCAmelCase) with open(_UpperCAmelCase , 'r') as f: SCREAMING_SNAKE_CASE = float(json.load(_UpperCAmelCase)[args.eval_metric]) SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'infer_output_best-checkpoint.csv') assert os.path.exists(_UpperCAmelCase) # Loading the dataset from local csv or json files. SCREAMING_SNAKE_CASE = load_dataset(args.data_file_extension , data_files={'data': data_files['infer']})['data'] SCREAMING_SNAKE_CASE = load_dataset('csv' , data_files={'data': infer_output_file})['data'] if accelerator.is_main_process: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) shutil.copy(_UpperCAmelCase , os.path.join(_UpperCAmelCase , F'''eval_results_iter-{iteration}.json''')) if os.path.exists(_UpperCAmelCase): shutil.copy(_UpperCAmelCase , os.path.join(_UpperCAmelCase , F'''test_results_iter-{iteration}.json''')) create_pseudo_labeled_data(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) accelerator.wait_for_everyone() SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , F'''train_pseudo.{args.data_file_extension}''') if args.evaluation_strategy != IntervalStrategy.NO.value: SCREAMING_SNAKE_CASE = eval_result if best_iteration is None: SCREAMING_SNAKE_CASE = new_iteration SCREAMING_SNAKE_CASE = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: SCREAMING_SNAKE_CASE = new_iteration SCREAMING_SNAKE_CASE = new_eval_result SCREAMING_SNAKE_CASE = 0 else: if new_eval_result == best_eval_result: SCREAMING_SNAKE_CASE = new_iteration SCREAMING_SNAKE_CASE = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: SCREAMING_SNAKE_CASE = True progress_bar.update(1) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _UpperCAmelCase) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _UpperCAmelCase) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_UpperCAmelCase , F'''eval_results_iter-{iteration}.json''') , os.path.join(_UpperCAmelCase , 'eval_results_best-iteration.json') , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _UpperCAmelCase) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_UpperCAmelCase , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''') , os.path.join(_UpperCAmelCase , 'eval_results_best-iteration.json') , )
137
0
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __A( unittest.TestCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.02 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def UpperCAmelCase_ (self ): UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) return config, pixel_values def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (self.image_size, self.image_size) UpperCamelCase__ = (self.patch_size, self.patch_size) UpperCamelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __A( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase_ (self ): UpperCamelCase__ = FlaxViTModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCAmelCase_ (self ): self.config_tester.run_common_tests() def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with self.subTest("""JIT Enabled""" ): UpperCamelCase__ = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCamelCase__ = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase_ (self ): for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) UpperCamelCase__ = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
178
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCamelCase_ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase_ = importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowerCamelCase_ = spec.loader.load_module() lowerCamelCase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCamelCase_ = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') lowerCamelCase_ = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = [] for config_class in list(CONFIG_MAPPING.values() ): UpperCamelCase__ = False # source code of `config_class` UpperCamelCase__ = inspect.getsource(__a ) UpperCamelCase__ = _re_checkpoint.findall(__a ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` UpperCamelCase__ , UpperCamelCase__ = checkpoint # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase__ = f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: UpperCamelCase__ = True break UpperCamelCase__ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__a ) if len(__a ) > 0: UpperCamelCase__ = """\n""".join(sorted(__a ) ) raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
178
1