code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from copy import deepcopy class snake_case__: '''simple docstring''' def __init__( self , __lowercase = None , __lowercase = None ) -> None: if arr is None and size is not None: lowerCAmelCase_ : Optional[Any] = size lowerCAmelCase_ : List[Any] = [0] * size elif arr is not None: self.init(__lowercase ) else: raise ValueError('''Either arr or size must be specified''' ) def lowercase_ ( self , __lowercase ) -> None: lowerCAmelCase_ : List[Any] = len(__lowercase ) lowerCAmelCase_ : Optional[Any] = deepcopy(__lowercase ) for i in range(1 , self.size ): lowerCAmelCase_ : Any = self.next_(__lowercase ) if j < self.size: self.tree[j] += self.tree[i] def lowercase_ ( self ) -> list[int]: lowerCAmelCase_ : Union[str, Any] = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): lowerCAmelCase_ : List[Any] = self.next_(__lowercase ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def lowercase_ ( __lowercase ) -> int: return index + (index & (-index)) @staticmethod def lowercase_ ( __lowercase ) -> int: return index - (index & (-index)) def lowercase_ ( self , __lowercase , __lowercase ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value lowerCAmelCase_ : List[Any] = self.next_(__lowercase ) def lowercase_ ( self , __lowercase , __lowercase ) -> None: self.add(__lowercase , value - self.get(__lowercase ) ) def lowercase_ ( self , __lowercase ) -> int: if right == 0: return 0 lowerCAmelCase_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] lowerCAmelCase_ : str = self.prev(__lowercase ) return result def lowercase_ ( self , __lowercase , __lowercase ) -> int: return self.prefix(__lowercase ) - self.prefix(__lowercase ) def lowercase_ ( self , __lowercase ) -> int: return self.query(__lowercase , index + 1 ) def lowercase_ ( self , __lowercase ) -> int: value -= self.tree[0] if value < 0: return -1 lowerCAmelCase_ : Dict = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 lowerCAmelCase_ : str = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
262
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def lowerCAmelCase ( lowerCAmelCase_ )-> Union[str, Any]: return EnvironmentCommand() class snake_case__( UpperCAmelCase__ ): '''simple docstring''' @staticmethod def lowercase_ ( __lowercase ) -> List[Any]: lowerCAmelCase_ : List[str] = parser.add_parser('''env''' ) download_parser.set_defaults(func=__lowercase ) def lowercase_ ( self ) -> int: lowerCAmelCase_ : Optional[Any] = huggingface_hub.__version__ lowerCAmelCase_ : str = '''not installed''' lowerCAmelCase_ : str = '''NA''' if is_torch_available(): import torch lowerCAmelCase_ : Any = torch.__version__ lowerCAmelCase_ : str = torch.cuda.is_available() lowerCAmelCase_ : List[str] = '''not installed''' if is_transformers_available(): import transformers lowerCAmelCase_ : Any = transformers.__version__ lowerCAmelCase_ : Optional[Any] = '''not installed''' if is_accelerate_available(): import accelerate lowerCAmelCase_ : List[Any] = accelerate.__version__ lowerCAmelCase_ : List[str] = '''not installed''' if is_xformers_available(): import xformers lowerCAmelCase_ : Optional[Any] = xformers.__version__ lowerCAmelCase_ : int = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(__lowercase ) ) return info @staticmethod def lowercase_ ( __lowercase ) -> str: return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
262
1
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: lowercase__ : Any = image.size lowercase__ : Optional[int] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowercase__ : int = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) lowercase__ : Dict = np.array(_UpperCAmelCase ).astype(np.floataa ) / 2_55.0 lowercase__ : Tuple = image[None].transpose(0 , 3 , 1 , 2 ) lowercase__ : int = torch.from_numpy(_UpperCAmelCase ) return 2.0 * image - 1.0 class __A ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : VQModel ,_snake_case : UNetaDModel ,_snake_case : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] ,) -> List[str]: """simple docstring""" super().__init__() self.register_modules(vqvae=__a ,unet=__a ,scheduler=__a ) @torch.no_grad() def __call__( self : Tuple ,_snake_case : Union[torch.Tensor, PIL.Image.Image] = None ,_snake_case : Optional[int] = 1 ,_snake_case : Optional[int] = 100 ,_snake_case : Optional[float] = 0.0 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" if isinstance(__a ,PIL.Image.Image ): lowercase__ : Union[str, Any] = 1 elif isinstance(__a ,torch.Tensor ): lowercase__ : str = image.shape[0] else: raise ValueError(f"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__a )}""" ) if isinstance(__a ,PIL.Image.Image ): lowercase__ : Tuple = preprocess(__a ) lowercase__ : Any = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowercase__ : Dict = (batch_size, self.unet.config.in_channels // 2, height, width) lowercase__ : Optional[int] = next(self.unet.parameters() ).dtype lowercase__ : int = randn_tensor(__a ,generator=__a ,device=self.device ,dtype=__a ) lowercase__ : Union[str, Any] = image.to(device=self.device ,dtype=__a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(__a ,device=self.device ) lowercase__ : List[Any] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowercase__ : Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ : str = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ : str = {} if accepts_eta: lowercase__ : Optional[Any] = eta for t in self.progress_bar(__a ): # concat latents and low resolution image in the channel dimension. lowercase__ : int = torch.cat([latents, image] ,dim=1 ) lowercase__ : Optional[int] = self.scheduler.scale_model_input(__a ,__a ) # predict the noise residual lowercase__ : List[str] = self.unet(__a ,__a ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase__ : List[Any] = self.scheduler.step(__a ,__a ,__a ,**__a ).prev_sample # decode the image latents with the VQVAE lowercase__ : Any = self.vqvae.decode(__a ).sample lowercase__ : List[Any] = torch.clamp(__a ,-1.0 ,1.0 ) lowercase__ : Union[str, Any] = image / 2 + 0.5 lowercase__ : str = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase__ : str = self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a )
350
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ : str = import_module('''tasks''' ) try: lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) ) lowercase__ : Optional[int] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]: lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 ) lowercase__ , lowercase__ : Tuple = preds.shape lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCamelCase ) -> Dict: lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ), "precision": precision_score(__lowerCamelCase , __lowerCamelCase ), "recall": recall_score(__lowerCamelCase , __lowerCamelCase ), "f1": fa_score(__lowerCamelCase , __lowerCamelCase ), } # Data collator lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ : str = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCamelCase ) # Predict if training_args.do_predict: lowercase__ : Optional[int] = TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase ) lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
0
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A =get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class _SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): lowerCAmelCase__ = XLMProphetNetTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def SCREAMING_SNAKE_CASE_( self ) -> Any: super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = XLMProphetNetTokenizer(lowercase , keep_accents=lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = "[PAD]" lowerCamelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowercase ) , 1012 ) def SCREAMING_SNAKE_CASE_( self ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = XLMProphetNetTokenizer(lowercase , keep_accents=lowercase ) lowerCamelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual( lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def SCREAMING_SNAKE_CASE_( self ) -> Tuple: return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = "Hello World!" lowerCamelCase_ = [35389, 6672, 49, 2] self.assertListEqual(lowercase , self.big_tokenizer.encode(lowercase ) ) @slow def SCREAMING_SNAKE_CASE_( self ) -> str: # fmt: off lowerCamelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
19
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : int ) -> int: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=__UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions if self.add_downsample: SCREAMING_SNAKE_CASE__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=True ) -> Any: SCREAMING_SNAKE_CASE__ = () for resnet, attn in zip(self.resnets , self.attentions ): SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE__ = self.downsamplers_a(__UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=__UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets if self.add_downsample: SCREAMING_SNAKE_CASE__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any]=True ) -> List[Any]: SCREAMING_SNAKE_CASE__ = () for resnet in self.resnets: SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE__ = self.downsamplers_a(__UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE__ = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions if self.add_upsample: SCREAMING_SNAKE_CASE__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any=True ) -> Union[str, Any]: for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) if self.add_upsample: SCREAMING_SNAKE_CASE__ = self.upsamplers_a(__UpperCAmelCase ) return hidden_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE__ = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets if self.add_upsample: SCREAMING_SNAKE_CASE__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str]=True ) -> Dict: for resnet in self.resnets: # pop res hidden states SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) if self.add_upsample: SCREAMING_SNAKE_CASE__ = self.upsamplers_a(__UpperCAmelCase ) return hidden_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: # there is always at least one resnet SCREAMING_SNAKE_CASE__ = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] SCREAMING_SNAKE_CASE__ = [] for _ in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions def __call__( self : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : List[str]=True ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.resnets[0](__UpperCAmelCase , __UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): SCREAMING_SNAKE_CASE__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) return hidden_states
165
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Optional[int] = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys snake_case_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
236
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( unittest.TestCase ): def __init__( self : List[str] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Tuple=7 ,lowerCamelCase__ : Tuple=3 ,lowerCamelCase__ : Any=18 ,lowerCamelCase__ : Tuple=30 ,lowerCamelCase__ : Tuple=400 ,lowerCamelCase__ : int=True ,lowerCamelCase__ : int=None ,lowerCamelCase__ : str=True ,lowerCamelCase__ : str=None ,lowerCamelCase__ : Any=True ,): '''simple docstring''' _UpperCamelCase : Any = size if size is not None else {'shortest_edge': 20} _UpperCamelCase : int = crop_size if crop_size is not None else {'height': 18, 'width': 18} _UpperCamelCase : List[str] = parent _UpperCamelCase : List[Any] = batch_size _UpperCamelCase : int = num_channels _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : List[Any] = min_resolution _UpperCamelCase : List[str] = max_resolution _UpperCamelCase : int = do_resize _UpperCamelCase : Optional[int] = size _UpperCamelCase : str = do_center_crop _UpperCamelCase : List[Any] = crop_size _UpperCamelCase : Optional[Any] = do_flip_channel_order def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = MobileViTImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Tuple = MobileViTImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'size' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_flip_channel_order' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size ,{'height': 18, 'width': 18} ) _UpperCamelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' # Initialize image_processing _UpperCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,Image.Image ) # Test not batched input _UpperCamelCase : Optional[Any] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _UpperCamelCase : int = image_processing(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' # Initialize image_processing _UpperCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,np.ndarray ) # Test not batched input _UpperCamelCase : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _UpperCamelCase : List[str] = image_processing(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' # Initialize image_processing _UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,torch.Tensor ) # Test not batched input _UpperCamelCase : str = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _UpperCamelCase : Optional[int] = image_processing(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,)
236
1
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __lowerCAmelCase : Dict ="base_with_context" def UpperCamelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] ): A__ = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) A__ = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): A__ = weights[F"layers_{lyr_num}"] A__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) A__ = ly_weight["attention"] A__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def UpperCamelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] ): A__ = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) A__ = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): A__ = weights[F"layers_{lyr_num}"] A__ = ly_weight["attention"] A__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) A__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] ): A__ = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) A__ = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase ) A__ = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): A__ = weights[F"layers_{lyr_num}"] A__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) A__ = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) A__ = ly_weight["self_attention"] A__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) A__ = ly_weight["MultiHeadDotProductAttention_0"] A__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) A__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) A__ = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def UpperCamelCase ( _lowerCamelCase : Dict ): A__ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) A__ = jnp.tree_util.tree_map(onp.array , _lowerCamelCase ) A__ = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] A__ = os.path.join(args.checkpoint_path , ".." , "config.gin" ) A__ = inference.parse_training_gin_file(_lowerCamelCase , _lowerCamelCase ) A__ = inference.InferenceModel(args.checkpoint_path , _lowerCamelCase ) A__ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" ) A__ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) A__ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) A__ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) A__ = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , _lowerCamelCase ) A__ = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , _lowerCamelCase ) A__ = load_decoder(ta_checkpoint["target"]["decoder"] , _lowerCamelCase ) A__ = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) A__ = SpectrogramDiffusionPipeline( notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __lowerCAmelCase : Any =argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f"""{MODEL}/checkpoint_500000""", type=str, required=False, help="Path to the original jax model checkpoint.", ) __lowerCAmelCase : Union[str, Any] =parser.parse_args() main(args)
237
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=UpperCamelCase__ ): __lowercase = ["""note_seq"""] def __init__( self :Optional[Any] , *lowercase_ :List[Any] , **lowercase_ :List[str] )-> int: requires_backends(self , ["note_seq"] ) @classmethod def UpperCAmelCase_ ( cls :str , *lowercase_ :Union[str, Any] , **lowercase_ :Any )-> Optional[int]: requires_backends(cls , ["note_seq"] ) @classmethod def UpperCAmelCase_ ( cls :Dict , *lowercase_ :Tuple , **lowercase_ :List[Any] )-> Optional[Any]: requires_backends(cls , ["note_seq"] )
237
1
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP __snake_case = False try: __snake_case = _is_package_available('''google.colab''') except ModuleNotFoundError: pass @input.register class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = [] ) -> Any: _a = 0 _a = choices _a = prompt if sys.platform == "win32": _a = '''*''' else: _a = '''➔ ''' def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = "" ) -> List[str]: if sys.platform != "win32": writeColor(self.choices[index] , 32 , __UpperCAmelCase ) else: forceWrite(self.choices[index] , __UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(__UpperCAmelCase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = 1 ) -> Optional[int]: _a = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__UpperCAmelCase ) move_cursor(__UpperCAmelCase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def _UpperCAmelCase ( self ) -> int: self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def _UpperCAmelCase ( self ) -> str: self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def _UpperCAmelCase ( self ) -> List[str]: move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def _UpperCAmelCase ( self ) -> Tuple: move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__UpperCAmelCase )] for number in range(10 )] ) def _UpperCAmelCase ( self ) -> str: _a = int(chr(self.current_selection ) ) _a = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , __UpperCAmelCase ) else: return else: return def _UpperCAmelCase ( self , __UpperCAmelCase = 0 ) -> Any: if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) _a = default_choice for i in range(len(self.choices ) ): self.print_choice(__UpperCAmelCase ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: _a = int(builtins.input() ) except ValueError: _a = default_choice else: _a = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(__UpperCAmelCase , '''\n''' ) return choice
153
"""simple docstring""" import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __snake_case = 500000 __snake_case ,__snake_case = os.path.split(__file__) __snake_case = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def A_ ( _lowerCAmelCase : datasets.Dataset, **_lowerCAmelCase : Dict ): """simple docstring""" _a = dataset.map(**_lowerCAmelCase ) @get_duration def A_ ( _lowerCAmelCase : datasets.Dataset, **_lowerCAmelCase : Dict ): """simple docstring""" _a = dataset.filter(**_lowerCAmelCase ) def A_ ( ): """simple docstring""" _a = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _a = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) _a = generate_example_dataset( os.path.join(_lowerCAmelCase, '''dataset.arrow''' ), _lowerCAmelCase, num_examples=_lowerCAmelCase ) _a = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''', use_fast=_lowerCAmelCase ) def tokenize(_lowerCAmelCase : Union[str, Any] ): return tokenizer(examples['''text'''] ) _a = map(_lowerCAmelCase ) _a = map(_lowerCAmelCase, batched=_lowerCAmelCase ) _a = map(_lowerCAmelCase, function=lambda _lowerCAmelCase : None, batched=_lowerCAmelCase ) with dataset.formatted_as(type='''numpy''' ): _a = map(_lowerCAmelCase, function=lambda _lowerCAmelCase : None, batched=_lowerCAmelCase ) with dataset.formatted_as(type='''pandas''' ): _a = map(_lowerCAmelCase, function=lambda _lowerCAmelCase : None, batched=_lowerCAmelCase ) with dataset.formatted_as(type='''torch''', columns='''numbers''' ): _a = map(_lowerCAmelCase, function=lambda _lowerCAmelCase : None, batched=_lowerCAmelCase ) with dataset.formatted_as(type='''tensorflow''', columns='''numbers''' ): _a = map(_lowerCAmelCase, function=lambda _lowerCAmelCase : None, batched=_lowerCAmelCase ) _a = map(_lowerCAmelCase, function=_lowerCAmelCase, batched=_lowerCAmelCase ) _a = filter(_lowerCAmelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(_lowerCAmelCase, '''wb''' ) as f: f.write(json.dumps(_lowerCAmelCase ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
153
1
import argparse from collections import defaultdict import yaml lowercase = "docs/source/en/_toctree.yml" def __UpperCAmelCase ( a_): snake_case_ = defaultdict(a_) for doc in model_doc: counts[doc["local"]] += 1 snake_case_ = [key for key, value in counts.items() if value > 1] snake_case_ = [] for duplicate_key in duplicates: snake_case_ = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key}) if len(a_) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.') # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]}) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1]) # Sort return sorted(a_ , key=lambda a_: s["title"].lower()) def __UpperCAmelCase ( a_=False): with open(a_ , encoding='utf-8') as f: snake_case_ = yaml.safe_load(f.read()) # Get to the API doc snake_case_ = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case_ = content[api_idx]['sections'] # Then to the model doc snake_case_ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 snake_case_ = api_doc[model_idx]['sections'] snake_case_ = [(idx, section) for idx, section in enumerate(a_) if 'sections' in section] snake_case_ = False for idx, modality_doc in modalities_docs: snake_case_ = modality_doc['sections'] snake_case_ = clean_model_doc_toc(a_) if old_modality_doc != new_modality_doc: snake_case_ = True if overwrite: snake_case_ = new_modality_doc if diff: if overwrite: snake_case_ = model_doc snake_case_ = api_doc with open(a_ , 'w' , encoding='utf-8') as f: f.write(yaml.dump(a_ , allow_unicode=a_)) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.') if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowercase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
178
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowercase = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["GPTNeoXTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
178
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Dict = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """beit""" def __init__( self : str , UpperCAmelCase : Union[str, Any]=8192 , UpperCAmelCase : int=768 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : Tuple=12 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Optional[int]=0.0_2 , UpperCAmelCase : Union[str, Any]=1e-12 , UpperCAmelCase : List[str]=224 , UpperCAmelCase : Any=16 , UpperCAmelCase : Dict=3 , UpperCAmelCase : Tuple=False , UpperCAmelCase : Dict=False , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=[3, 5, 7, 11] , UpperCAmelCase : List[str]=[1, 2, 3, 6] , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : str=0.4 , UpperCAmelCase : Any=256 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Tuple=False , UpperCAmelCase : Any=255 , **UpperCAmelCase : Union[str, Any] , ) -> Optional[int]: super().__init__(**UpperCAmelCase ) lowerCamelCase__ : int = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : int = num_hidden_layers lowerCamelCase__ : Union[str, Any] = num_attention_heads lowerCamelCase__ : Tuple = intermediate_size lowerCamelCase__ : List[Any] = hidden_act lowerCamelCase__ : Optional[Any] = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : Optional[Any] = layer_norm_eps lowerCamelCase__ : Union[str, Any] = image_size lowerCamelCase__ : Optional[int] = patch_size lowerCamelCase__ : Any = num_channels lowerCamelCase__ : Any = use_mask_token lowerCamelCase__ : Any = use_absolute_position_embeddings lowerCamelCase__ : int = use_relative_position_bias lowerCamelCase__ : str = use_shared_relative_position_bias lowerCamelCase__ : Union[str, Any] = layer_scale_init_value lowerCamelCase__ : Any = drop_path_rate lowerCamelCase__ : Tuple = use_mean_pooling # decode head attributes (semantic segmentation) lowerCamelCase__ : Optional[int] = out_indices lowerCamelCase__ : Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) lowerCamelCase__ : List[Any] = use_auxiliary_head lowerCamelCase__ : Tuple = auxiliary_loss_weight lowerCamelCase__ : Tuple = auxiliary_channels lowerCamelCase__ : List[Any] = auxiliary_num_convs lowerCamelCase__ : Tuple = auxiliary_concat_input lowerCamelCase__ : Any = semantic_loss_ignore_index class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = version.parse("""1.11""" ) @property def A_ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A_ ( self : Optional[int] ) -> float: return 1e-4
45
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> float: return 10 - x * x def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(_UpperCAmelCase ) * equation(_UpperCAmelCase ) >= 0: raise ValueError('Wrong space!' ) lowerCamelCase__ : Tuple = a while (b - a) >= 0.01: # Find middle point lowerCamelCase__ : Optional[int] = (a + b) / 2 # Check if middle point is root if equation(_UpperCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_UpperCAmelCase ) * equation(_UpperCAmelCase ) < 0: lowerCamelCase__ : Tuple = c else: lowerCamelCase__ : Optional[int] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
45
1
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , __lowercase : List[Any] , __lowercase : int , __lowercase : int ): '''simple docstring''' if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) __a = img __a = img.shape[1] __a = img.shape[0] __a = dst_width __a = dst_height __a = self.src_w / self.dst_w __a = self.src_h / self.dst_h __a = __a = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for i in range(self.dst_h ): for j in range(self.dst_w ): __a = self.img[self.get_y(__lowercase )][self.get_x(__lowercase )] def UpperCamelCase_ ( self : str , __lowercase : int ): '''simple docstring''' return int(self.ratio_x * x ) def UpperCamelCase_ ( self : str , __lowercase : int ): '''simple docstring''' return int(self.ratio_y * y ) if __name__ == "__main__": lowerCamelCase__ , lowerCamelCase__ = 800, 600 lowerCamelCase__ = imread("""image_data/lena.jpg""", 1) lowerCamelCase__ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
302
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] =(IPNDMScheduler,) __lowerCamelCase : int =(('num_inference_steps', 50),) def UpperCamelCase_ ( self : str , **__lowercase : Dict ): '''simple docstring''' __a = {"""num_train_timesteps""": 1000} config.update(**__lowercase ) return config def UpperCamelCase_ ( self : Any , __lowercase : Tuple=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : str ): '''simple docstring''' pass def UpperCamelCase_ ( self : str , __lowercase : int=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals (must be after setting timesteps) __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residual (must be after setting timesteps) __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : List[str] , **__lowercase : Dict ): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) __a = 10 __a = self.dummy_model() __a = self.dummy_sample_deter scheduler.set_timesteps(__lowercase ) for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample return sample def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) __a = self.dummy_sample __a = 0.1 * sample if num_inference_steps is not None and hasattr(__lowercase , """set_timesteps""" ): scheduler.set_timesteps(__lowercase ) elif num_inference_steps is not None and not hasattr(__lowercase , """set_timesteps""" ): __a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __a = dummy_past_residuals[:] __a = scheduler.timesteps[5] __a = scheduler.timesteps[6] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.full_loop() __a = torch.mean(torch.abs(__lowercase ) ) assert abs(result_mean.item() - 2540529 ) < 10
302
1
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed SCREAMING_SNAKE_CASE__ = "true" def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=8_2 , _UpperCamelCase : int=1_6 ) -> str: """simple docstring""" set_seed(4_2 ) snake_case = RegressionModel() snake_case = deepcopy(_UpperCamelCase ) snake_case = RegressionDataset(length=_UpperCamelCase ) snake_case = DataLoader(_UpperCamelCase , batch_size=_UpperCamelCase ) model.to(accelerator.device ) snake_case ,snake_case = accelerator.prepare(_UpperCamelCase , _UpperCamelCase ) return model, ddp_model, dataloader def lowerCAmelCase__ ( _UpperCamelCase : Accelerator , _UpperCamelCase : Optional[Any]=False ) -> List[str]: """simple docstring""" snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) snake_case = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(_UpperCamelCase : Optional[Any] ): snake_case = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_UpperCamelCase , max_length=_UpperCamelCase ) return outputs with accelerator.main_process_first(): snake_case = dataset.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) snake_case = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_UpperCamelCase : Optional[Any] ): if use_longest: return tokenizer.pad(_UpperCamelCase , padding='longest' , return_tensors='pt' ) return tokenizer.pad(_UpperCamelCase , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return DataLoader(_UpperCamelCase , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=1_6 ) def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : Any ) -> List[Any]: """simple docstring""" snake_case = Accelerator(dispatch_batches=_UpperCamelCase , split_batches=_UpperCamelCase ) snake_case = get_dataloader(_UpperCamelCase , not dispatch_batches ) snake_case = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=_UpperCamelCase ) snake_case ,snake_case = accelerator.prepare(_UpperCamelCase , _UpperCamelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCAmelCase__ ( _UpperCamelCase : int , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] ) -> Dict: """simple docstring""" snake_case = [] for batch in dataloader: snake_case ,snake_case = batch.values() with torch.no_grad(): snake_case = model(_UpperCamelCase ) snake_case ,snake_case = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) snake_case ,snake_case = [], [] for logit, targ in logits_and_targets: logits.append(_UpperCamelCase ) targs.append(_UpperCamelCase ) snake_case ,snake_case = torch.cat(_UpperCamelCase ), torch.cat(_UpperCamelCase ) return logits, targs def lowerCAmelCase__ ( _UpperCamelCase : Accelerator , _UpperCamelCase : Tuple=8_2 , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : int=False , _UpperCamelCase : List[str]=1_6 ) -> Optional[Any]: """simple docstring""" snake_case ,snake_case ,snake_case = get_basic_setup(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case ,snake_case = generate_predictions(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) assert ( len(_UpperCamelCase ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCamelCase )}""" def lowerCAmelCase__ ( _UpperCamelCase : bool = False , _UpperCamelCase : bool = False ) -> Tuple: """simple docstring""" snake_case = evaluate.load('glue' , 'mrpc' ) snake_case ,snake_case = get_mrpc_setup(_UpperCamelCase , _UpperCamelCase ) # First do baseline snake_case ,snake_case ,snake_case = setup['no'] model.to(_UpperCamelCase ) model.eval() for batch in dataloader: batch.to(_UpperCamelCase ) with torch.inference_mode(): snake_case = model(**_UpperCamelCase ) snake_case = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_UpperCamelCase , references=batch['labels'] ) snake_case = metric.compute() # Then do distributed snake_case ,snake_case ,snake_case = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): snake_case = model(**_UpperCamelCase ) snake_case = outputs.logits.argmax(dim=-1 ) snake_case = batch['labels'] snake_case ,snake_case = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_UpperCamelCase , references=_UpperCamelCase ) snake_case = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def lowerCAmelCase__ ( ) -> Tuple: """simple docstring""" snake_case = Accelerator(split_batches=_UpperCamelCase , dispatch_batches=_UpperCamelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(_UpperCamelCase , _UpperCamelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: snake_case = Accelerator(split_batches=_UpperCamelCase , dispatch_batches=_UpperCamelCase ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(_UpperCamelCase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) snake_case = Accelerator() test_torch_metrics(_UpperCamelCase , 5_1_2 ) accelerator.state._reset_state() def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> str: """simple docstring""" main() if __name__ == "__main__": main()
149
"""simple docstring""" import requests from bsa import BeautifulSoup def lowerCAmelCase__ ( _UpperCamelCase : str = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" snake_case = BeautifulSoup(requests.get(_UpperCamelCase ).text , 'html.parser' ) snake_case = soup.findAll('h1' ) snake_case = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(_UpperCamelCase , _UpperCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
149
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase): _a = 1 @register_to_config def __init__( self: Tuple , _lowerCAmelCase: int = 10_00 , _lowerCAmelCase: Optional[Union[np.ndarray, List[float]]] = None ): # set `betas`, `alphas`, `timesteps` self.set_timesteps(_lowerCAmelCase ) # standard deviation of the initial noise distribution lowercase :List[str] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase :List[str] = 4 # running values lowercase :Optional[Any] = [] def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, torch.device] = None ): lowercase :Optional[int] = num_inference_steps lowercase :Tuple = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase :Union[str, Any] = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase :int = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase :Union[str, Any] = torch.sin(steps * math.pi / 2 ) ** 2 lowercase :Union[str, Any] = (1.0 - self.betas**2) ** 0.5 lowercase :Optional[Any] = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase :int = timesteps.to(_lowerCAmelCase ) lowercase :str = [] def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: int , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: bool = True , ): if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) lowercase :Optional[Any] = (self.timesteps == timestep).nonzero().item() lowercase :Any = timestep_index + 1 lowercase :List[str] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(_lowerCAmelCase ) if len(self.ets ) == 1: lowercase :int = self.ets[-1] elif len(self.ets ) == 2: lowercase :Optional[int] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase :Tuple = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase :Any = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase :Dict = self._get_prev_sample(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str , _lowerCAmelCase: torch.FloatTensor , *_lowerCAmelCase: int , **_lowerCAmelCase: Dict ): return sample def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ): lowercase :List[Any] = self.alphas[timestep_index] lowercase :int = self.betas[timestep_index] lowercase :List[Any] = self.alphas[prev_timestep_index] lowercase :str = self.betas[prev_timestep_index] lowercase :int = (sample - sigma * ets) / max(_lowerCAmelCase , 1e-8 ) lowercase :Optional[int] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self: int ): return self.config.num_train_timesteps
236
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = "▁" _UpperCAmelCase : int = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } _UpperCAmelCase : List[Any] = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } _UpperCAmelCase : str = { "facebook/s2t-small-librispeech-asr": 1024, } _UpperCAmelCase : List[str] = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] _UpperCAmelCase : Tuple = {"mustc": MUSTC_LANGS} class __lowerCAmelCase ( lowerCAmelCase): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = MAX_MODEL_INPUT_SIZES _a = ['''input_ids''', '''attention_mask'''] _a = [] def __init__( self: Dict , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any]="<s>" , _lowerCAmelCase: List[str]="</s>" , _lowerCAmelCase: Optional[int]="<pad>" , _lowerCAmelCase: List[str]="<unk>" , _lowerCAmelCase: Dict=False , _lowerCAmelCase: Optional[Any]=False , _lowerCAmelCase: Dict=None , _lowerCAmelCase: Dict=None , _lowerCAmelCase: Optional[Dict[str, Any]] = None , **_lowerCAmelCase: Tuple , ): lowercase :str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , do_upper_case=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , tgt_lang=_lowerCAmelCase , lang_codes=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase :List[str] = do_upper_case lowercase :List[str] = do_lower_case lowercase :str = load_json(_lowerCAmelCase ) lowercase :List[Any] = {v: k for k, v in self.encoder.items()} lowercase :str = spm_file lowercase :Any = load_spm(_lowerCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: lowercase :List[str] = lang_codes lowercase :Tuple = LANGUAGES[lang_codes] lowercase :Any = [F"<lang:{lang}>" for lang in self.langs] lowercase :Any = {lang: self.sp_model.PieceToId(F"<lang:{lang}>" ) for lang in self.langs} lowercase :Optional[Any] = self.lang_tokens lowercase :List[str] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: lowercase :Tuple = {} @property def SCREAMING_SNAKE_CASE ( self: Tuple ): return len(self.encoder ) @property def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): return self._tgt_lang @tgt_lang.setter def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: Optional[Any] ): lowercase :Any = new_tgt_lang self.set_tgt_lang_special_tokens(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: str ): lowercase :Any = self.lang_code_to_id[tgt_lang] lowercase :List[Any] = [lang_code_id] def SCREAMING_SNAKE_CASE ( self: Optional[Any] , _lowerCAmelCase: str ): return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: Tuple ): return self.encoder.get(_lowerCAmelCase , self.encoder[self.unk_token] ) def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: int ): return self.decoder.get(_lowerCAmelCase , self.unk_token ) def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: List[str] ): lowercase :int = [] lowercase :Any = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: lowercase :Dict = self.sp_model.decode(_lowerCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " lowercase :Any = [] else: current_sub_tokens.append(_lowerCAmelCase ) lowercase :Dict = self.sp_model.decode(_lowerCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: int , _lowerCAmelCase: str=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None , _lowerCAmelCase: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) lowercase :int = [1] * len(self.prefix_tokens ) lowercase :List[str] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase :int = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[Any] ): lowercase :Union[str, Any] = self.__dict__.copy() lowercase :Dict = None return state def __setstate__( self: Union[str, Any] , _lowerCAmelCase: Dict ): lowercase :List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase :List[Any] = {} lowercase :Union[str, Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: str , _lowerCAmelCase: Optional[str] = None ): lowercase :List[str] = Path(_lowerCAmelCase ) assert save_dir.is_dir(), F"{save_directory} should be a directory" lowercase :List[Any] = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) lowercase :Any = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , _lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCAmelCase , "wb" ) as fi: lowercase :int = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (str(_lowerCAmelCase ), str(_lowerCAmelCase )) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): lowercase :Tuple = sentencepiece.SentencePieceProcessor(**lowerCamelCase ) spm.Load(str(lowerCamelCase ) ) return spm def UpperCAmelCase__ ( lowerCamelCase ): with open(lowerCamelCase, "r" ) as f: return json.load(lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): with open(lowerCamelCase, "w" ) as f: json.dump(lowerCamelCase, lowerCamelCase, indent=2 )
236
1
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () _A : Optional[int] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). _A : Any = [0, 25, 50] _A : Dict = [25, 50, 75] _A : Any = fuzz.membership.trimf(X, abca) _A : List[Any] = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. _A : List[str] = np.ones(75) _A : Optional[int] = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) _A : Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) _A : Union[str, Any] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) _A : List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) _A : Tuple = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] _A : List[Any] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) _A : Optional[Any] = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] _A : Dict = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] _A : List[str] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
265
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging _A : List[str] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Any = ["audio_values", "audio_mask"] def __init__( self : Any , A : Union[str, Any]=2_0_4_8 , A : Any=1 , A : int=[1_6, 1_6] , A : Any=1_2_8 , A : List[Any]=4_4_1_0_0 , A : Dict=8_6 , A : Dict=2_0_4_8 , A : str=0.0 , **A : Union[str, Any] , ) ->List[Any]: super().__init__( feature_size=A , sampling_rate=A , padding_value=A , **A , ) lowerCamelCase__ : Dict = spectrogram_length lowerCamelCase__ : Optional[int] = num_channels lowerCamelCase__ : str = patch_size lowerCamelCase__ : Any = feature_size // self.patch_size[1] lowerCamelCase__ : Union[str, Any] = n_fft lowerCamelCase__ : Union[str, Any] = sampling_rate // hop_length_to_sampling_rate lowerCamelCase__ : Optional[Any] = sampling_rate lowerCamelCase__ : Optional[Any] = padding_value lowerCamelCase__ : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=A , norm='''slaney''' , mel_scale='''slaney''' , ).T def __lowerCamelCase ( self : List[Any] , A : np.array ) ->np.ndarray: lowerCamelCase__ : Any = spectrogram( A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) lowerCamelCase__ : Any = log_spec[:, :-1] lowerCamelCase__ : int = log_spec - 20.0 lowerCamelCase__ : int = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Union[str, Any] , A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , A : Optional[Union[str, TensorType]] = None , A : Optional[bool] = True , A : Optional[int] = None , A : bool = False , A : bool = False , **A : str , ) ->BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowerCamelCase__ : List[str] = isinstance(A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) lowerCamelCase__ : Any = is_batched_numpy or ( isinstance(A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ : Optional[int] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A , np.ndarray ): lowerCamelCase__ : Optional[int] = np.asarray(A , dtype=np.floataa ) elif isinstance(A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase__ : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ : int = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCamelCase__ : List[str] = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , A ): lowerCamelCase__ : Dict = [np.asarray(A , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCamelCase__ : Optional[Any] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCamelCase__ : List[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCamelCase__ : List[str] = np.array(A ).astype(np.floataa ) # convert into correct format for padding lowerCamelCase__ : str = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCamelCase__ : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCamelCase__ : Tuple = padded_audio_features * self.padding_value for i in range(len(A ) ): lowerCamelCase__ : int = audio_features[i] lowerCamelCase__ : Optional[int] = feature # return as BatchFeature if return_attention_mask: lowerCamelCase__ : Optional[int] = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: lowerCamelCase__ : Tuple = {'''audio_values''': padded_audio_features} lowerCamelCase__ : Union[str, Any] = BatchFeature(data=A , tensor_type=A ) return encoded_inputs
265
1
"""simple docstring""" from __future__ import annotations import math def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = u for i in range(1 , _SCREAMING_SNAKE_CASE ): UpperCamelCase = temp * (u - i) return temp def a__ ( ): """simple docstring""" UpperCamelCase = int(input("enter the numbers of values: " ) ) UpperCamelCase = [] for _ in range(_SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): y[i].append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = 0 print("enter the values of parameters in a list: " ) UpperCamelCase = list(map(_SCREAMING_SNAKE_CASE , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(_SCREAMING_SNAKE_CASE ): UpperCamelCase = float(input() ) UpperCamelCase = int(input("enter the value to interpolate: " ) ) UpperCamelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , _SCREAMING_SNAKE_CASE ): for j in range(n - i ): UpperCamelCase = y[j + 1][i - 1] - y[j][i - 1] UpperCamelCase = y[0][0] for i in range(1 , _SCREAMING_SNAKE_CASE ): summ += (ucal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(_SCREAMING_SNAKE_CASE ) print(F"the value at {value} is {summ}" ) if __name__ == "__main__": main()
153
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowerCAmelCase__ = datasets.load_iris() lowerCAmelCase__ = np.array(data['''data''']) lowerCAmelCase__ = np.array(data['''target''']) lowerCAmelCase__ = data['''target_names'''] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = train_test_split(X, y) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return np.linalg.norm(np.array(_SCREAMING_SNAKE_CASE ) - np.array(_SCREAMING_SNAKE_CASE ) ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=5 ): """simple docstring""" UpperCamelCase = zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # List of distances of all points from the point to be classified UpperCamelCase = [] for data_point in data: UpperCamelCase = euclidean_distance(data_point[0] , _SCREAMING_SNAKE_CASE ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. UpperCamelCase = [i[1] for i in sorted(_SCREAMING_SNAKE_CASE )[:k]] # Most commonly occurring class among them # is the class into which the point is classified UpperCamelCase = Counter(_SCREAMING_SNAKE_CASE ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
153
1
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __SCREAMING_SNAKE_CASE : Tuple = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __SCREAMING_SNAKE_CASE : Union[str, Any] = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' __SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): def UpperCamelCase ( self ): if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , ): _snake_case : str = len(references[0] ) if any(len(lowercase_ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) _snake_case : Union[str, Any] = [[refs[i] for refs in references] for i in range(lowercase_ )] _snake_case : int = TER( normalized=lowercase_ , no_punct=lowercase_ , asian_support=lowercase_ , case_sensitive=lowercase_ , ) _snake_case : str = sb_ter.corpus_score(lowercase_ , lowercase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
284
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) @dataclass class lowercase_ ( __snake_case ): _lowerCamelCase = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **lowercase_ ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _snake_case : List[str] = deprecated_arg[3:] _snake_case : Optional[int] = not kwargs.pop(lowercase_ ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) _snake_case : Tuple = kwargs.pop("tpu_name" , self.tpu_name ) _snake_case : Any = kwargs.pop("device_idx" , self.device_idx ) _snake_case : List[str] = kwargs.pop("eager_mode" , self.eager_mode ) _snake_case : List[str] = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**lowercase_ ) _lowerCamelCase = field( default=__snake_case , metadata={'help': 'Name of TPU'} , ) _lowerCamelCase = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) _lowerCamelCase = field(default=__snake_case , metadata={'help': 'Benchmark models in eager model.'} ) _lowerCamelCase = field( default=__snake_case , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) _snake_case : str = None if self.tpu: try: if self.tpu_name: _snake_case : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _snake_case : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _snake_case : Union[str, Any] = None return tpu @cached_property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _snake_case : List[str] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) _snake_case : Any = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU _snake_case : Any = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) return self._setup_strategy @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCamelCase ( self ): return self.n_gpu > 0
284
1
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowercase ( lowerCAmelCase__ : Tuple ) -> str: if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(lowerCAmelCase__ , '''_dynamo''' ): return False return isinstance(lowerCAmelCase__ , torch._dynamo.eval_frame.OptimizedModule ) def lowercase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : bool = True ) -> int: __a = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __a = is_compiled_module(lowerCAmelCase__ ) if is_compiled: __a = model __a = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = model.module if not keep_fpaa_wrapper: __a = getattr(lowerCAmelCase__ , '''forward''' ) __a = model.__dict__.pop('''_original_forward''' , lowerCAmelCase__ ) if original_forward is not None: while hasattr(lowerCAmelCase__ , '''__wrapped__''' ): __a = forward.__wrapped__ if forward == original_forward: break __a = forward if getattr(lowerCAmelCase__ , '''_converted_to_transformer_engine''' , lowerCAmelCase__ ): convert_model(lowerCAmelCase__ , to_transformer_engine=lowerCAmelCase__ ) if is_compiled: __a = model __a = compiled_model return model def lowercase ( ) -> Optional[int]: PartialState().wait_for_everyone() def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple ) -> int: if PartialState().distributed_type == DistributedType.TPU: xm.save(lowerCAmelCase__ , lowerCAmelCase__ ) elif PartialState().local_process_index == 0: torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) @contextmanager def lowercase ( **lowerCAmelCase__ : List[str] ) -> List[str]: for key, value in kwargs.items(): __a = str(lowerCAmelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowercase ( lowerCAmelCase__ : Any ) -> Optional[int]: if not hasattr(lowerCAmelCase__ , '''__qualname__''' ) and not hasattr(lowerCAmelCase__ , '''__name__''' ): __a = getattr(lowerCAmelCase__ , '''__class__''' , lowerCAmelCase__ ) if hasattr(lowerCAmelCase__ , '''__qualname__''' ): return obj.__qualname__ if hasattr(lowerCAmelCase__ , '''__name__''' ): return obj.__name__ return str(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] ) -> str: for key, value in source.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = destination.setdefault(lowerCAmelCase__ , {} ) merge_dicts(lowerCAmelCase__ , lowerCAmelCase__ ) else: __a = value return destination def lowercase ( lowerCAmelCase__ : int = None ) -> bool: if port is None: __a = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
45
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
45
1
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def a__ ( a__ ): """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) __SCREAMING_SNAKE_CASE = precision __SCREAMING_SNAKE_CASE = ceil(precision / 14 ) __SCREAMING_SNAKE_CASE = 42_68_80 * Decimal(1_00_05 ).sqrt() __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 13_59_14_09 __SCREAMING_SNAKE_CASE = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): __SCREAMING_SNAKE_CASE = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": UpperCAmelCase : str = 5_0 print(f"""The first {n} digits of pi is: {pi(n)}""")
356
'''simple docstring''' import os def a__ ( a__ = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(a__ ) , a__ ) ) as input_file: __SCREAMING_SNAKE_CASE = [ [int(a__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] __SCREAMING_SNAKE_CASE = len(a__ ) __SCREAMING_SNAKE_CASE = len(matrix[0] ) __SCREAMING_SNAKE_CASE = [[-1 for _ in range(a__ )] for _ in range(a__ )] for i in range(a__ ): __SCREAMING_SNAKE_CASE = matrix[i][0] for j in range(1 , a__ ): for i in range(a__ ): __SCREAMING_SNAKE_CASE = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , a__ ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
331
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = ["""image_processor""", """tokenizer"""] UpperCamelCase__ = """Pix2StructImageProcessor""" UpperCamelCase__ = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self: Dict , __lowerCamelCase: Any , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: Tuple = False super().__init__(__lowerCamelCase , __lowerCamelCase ) def __call__( self: Tuple , __lowerCamelCase: Any=None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[int] = 2048 , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: List[str] , ): '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: UpperCamelCase__: str = self.tokenizer UpperCamelCase__: Optional[int] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values UpperCamelCase__: Any = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , max_patches=__lowerCamelCase , **__lowerCamelCase ) else: # add pixel_values and bbox UpperCamelCase__: Tuple = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , max_patches=__lowerCamelCase , header_text=__lowerCamelCase , **__lowerCamelCase ) if text is not None and not self.image_processor.is_vqa: UpperCamelCase__: List[str] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) if "attention_mask" in text_encoding: UpperCamelCase__: Optional[int] = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: UpperCamelCase__: Dict = text_encoding.pop("input_ids" ) else: UpperCamelCase__: Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(__lowerCamelCase ) return encoding_image_processor def UpperCAmelCase_ ( self: List[str] , *__lowerCamelCase: Dict , **__lowerCamelCase: int ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase_ ( self: Dict , *__lowerCamelCase: Optional[Any] , **__lowerCamelCase: str ): '''simple docstring''' return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: Any = self.tokenizer.model_input_names UpperCamelCase__: Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
149
from collections import deque class _a : """simple docstring""" def __init__( self: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: Optional[Any] = process_name # process name UpperCamelCase__: Optional[Any] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCamelCase__: Tuple = arrival_time UpperCamelCase__: str = burst_time # remaining burst time UpperCamelCase__: int = 0 # total time of the process wait in ready queue UpperCamelCase__: List[Any] = 0 # time from arrival time to completion time class _a : """simple docstring""" def __init__( self: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: list[int] , __lowerCamelCase: deque[Process] , __lowerCamelCase: int , ): '''simple docstring''' UpperCamelCase__: List[str] = number_of_queues # time slice of queues that round robin algorithm applied UpperCamelCase__: Optional[Any] = time_slices # unfinished process is in this ready_queue UpperCamelCase__: Optional[int] = queue # current time UpperCamelCase__: Any = current_time # finished process is in this sequence queue UpperCamelCase__: deque[Process] = deque() def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: str = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def UpperCAmelCase_ ( self: Any , __lowerCamelCase: list[Process] ): '''simple docstring''' UpperCamelCase__: Dict = [] for i in range(len(__lowerCamelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def UpperCAmelCase_ ( self: int , __lowerCamelCase: list[Process] ): '''simple docstring''' UpperCamelCase__: int = [] for i in range(len(__lowerCamelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def UpperCAmelCase_ ( self: int , __lowerCamelCase: list[Process] ): '''simple docstring''' UpperCamelCase__: Optional[int] = [] for i in range(len(__lowerCamelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def UpperCAmelCase_ ( self: int , __lowerCamelCase: deque[Process] ): '''simple docstring''' return [q.burst_time for q in queue] def UpperCAmelCase_ ( self: Optional[int] , __lowerCamelCase: Process ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def UpperCAmelCase_ ( self: List[Any] , __lowerCamelCase: deque[Process] ): '''simple docstring''' UpperCamelCase__: deque[Process] = deque() # sequence deque of finished process while len(__lowerCamelCase ) != 0: UpperCamelCase__: int = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__lowerCamelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCamelCase__: Optional[int] = 0 # set the process's turnaround time because it is finished UpperCamelCase__: Optional[Any] = self.current_time - cp.arrival_time # set the completion time UpperCamelCase__: List[Any] = self.current_time # add the process to queue that has finished queue finished.append(__lowerCamelCase ) self.finish_queue.extend(__lowerCamelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def UpperCAmelCase_ ( self: Any , __lowerCamelCase: deque[Process] , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__lowerCamelCase ) ): UpperCamelCase__: str = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__lowerCamelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCamelCase__: Optional[int] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__lowerCamelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCamelCase__: Optional[int] = 0 # set the finish time UpperCamelCase__: Union[str, Any] = self.current_time # update the process' turnaround time because it is finished UpperCamelCase__: Dict = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__lowerCamelCase ) self.finish_queue.extend(__lowerCamelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): UpperCamelCase__ , UpperCamelCase__: Dict = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A__: Any = Process('''P1''', 0, 53) A__: Tuple = Process('''P2''', 0, 17) A__: Tuple = Process('''P3''', 0, 68) A__: Tuple = Process('''P4''', 0, 24) A__: Any = 3 A__: str = [17, 25] A__: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) A__: str = Process('''P1''', 0, 53) A__: Union[str, Any] = Process('''P2''', 0, 17) A__: Optional[Any] = Process('''P3''', 0, 68) A__: str = Process('''P4''', 0, 24) A__: Any = 3 A__: Optional[Any] = [17, 25] A__: Any = deque([Pa, Pa, Pa, Pa]) A__: Tuple = MLFQ(number_of_queues, time_slices, queue, 0) A__: str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( f"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( f"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
149
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a :List[Any] = logging.get_logger(__name__) a :str = { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json", "google/bigbird-roberta-large": "https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json", "google/bigbird-base-trivia-itc": "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Any = """big_bird""" def __init__( self , _a=50_358 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=4_096 , _a=2 , _a=0.02 , _a=1E-1_2 , _a=True , _a=0 , _a=1 , _a=2 , _a=66 , _a="block_sparse" , _a=True , _a=False , _a=64 , _a=3 , _a=None , **_a , ) -> Union[str, Any]: """simple docstring""" super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , sep_token_id=_a , **_a , ) SCREAMING_SNAKE_CASE__ : List[str] = vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Tuple = hidden_size SCREAMING_SNAKE_CASE__ : str = num_hidden_layers SCREAMING_SNAKE_CASE__ : Any = num_attention_heads SCREAMING_SNAKE_CASE__ : Dict = intermediate_size SCREAMING_SNAKE_CASE__ : List[str] = hidden_act SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Optional[int] = type_vocab_size SCREAMING_SNAKE_CASE__ : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE__ : Tuple = use_cache SCREAMING_SNAKE_CASE__ : Optional[int] = rescale_embeddings SCREAMING_SNAKE_CASE__ : Dict = attention_type SCREAMING_SNAKE_CASE__ : List[str] = use_bias SCREAMING_SNAKE_CASE__ : Union[str, Any] = block_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_random_blocks SCREAMING_SNAKE_CASE__ : str = classifier_dropout class __a (UpperCamelCase_): '''simple docstring''' @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE__ : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
56
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu a :List[Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: a :str = json.load(f) @require_torch class __a (unittest.TestCase): '''simple docstring''' def _a ( self , _a ) -> Optional[int]: """simple docstring""" return FSMTTokenizer.from_pretrained(_a ) def _a ( self , _a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(_a ).to(_a ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _a ( self , _a , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = f'''facebook/wmt19-{pair}''' SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer(_a ) SCREAMING_SNAKE_CASE__ : Any = self.get_model(_a ) SCREAMING_SNAKE_CASE__ : Tuple = bleu_data[pair]["""src"""] SCREAMING_SNAKE_CASE__ : Any = bleu_data[pair]["""tgt"""] SCREAMING_SNAKE_CASE__ : Any = tokenizer(_a , return_tensors="""pt""" , truncation=_a , padding="""longest""" ).to(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.batch_decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) SCREAMING_SNAKE_CASE__ : Dict = calculate_bleu(_a , _a ) print(_a ) self.assertGreaterEqual(scores["""bleu"""] , _a )
56
1
'''simple docstring''' from __future__ import annotations a : str = """#""" class UpperCamelCase_ : def __init__( self ) -> None: UpperCAmelCase : dict = {} def _lowercase( self , A ) -> None: UpperCAmelCase : Any = self._trie for char in text: if char not in trie: UpperCAmelCase : Union[str, Any] = {} UpperCAmelCase : Optional[Any] = trie[char] UpperCAmelCase : List[str] = True def _lowercase( self , A ) -> tuple | list: UpperCAmelCase : List[Any] = self._trie for char in prefix: if char in trie: UpperCAmelCase : Union[str, Any] = trie[char] else: return [] return self._elements(A ) def _lowercase( self , A ) -> tuple: UpperCAmelCase : str = [] for c, v in d.items(): UpperCAmelCase : List[str] = [""" """] if c == END else [(c + s) for s in self._elements(A )] result.extend(A ) return tuple(A ) a : Any = Trie() a : int = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def __lowerCamelCase ( _lowercase ) -> tuple: UpperCAmelCase : Union[str, Any] = trie.find_word(_lowercase ) return tuple(string + word for word in suffixes ) def __lowerCamelCase ( ) -> None: print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
265
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a : Any = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AlbertTokenizer lowercase = AlbertTokenizerFast lowercase = True lowercase = True lowercase = True def _lowercase( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : Optional[int] = AlbertTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase( self , A ) -> int: UpperCAmelCase : Optional[int] = """this is a test""" UpperCAmelCase : Dict = """this is a test""" return input_text, output_text def _lowercase( self ) -> int: UpperCAmelCase : Tuple = """<pad>""" UpperCAmelCase : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Any: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(A ) , 30000 ) def _lowercase( self ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _lowercase( self ) -> Union[str, Any]: if not self.test_rust_tokenizer: return UpperCAmelCase : int = self.get_tokenizer() UpperCAmelCase : List[str] = self.get_rust_tokenizer() UpperCAmelCase : Optional[Any] = """I was born in 92000, and this is falsé.""" UpperCAmelCase : str = tokenizer.tokenize(A ) UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) UpperCAmelCase : Any = tokenizer.encode(A , add_special_tokens=A ) UpperCAmelCase : Optional[int] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase : Union[str, Any] = tokenizer.encode(A ) UpperCAmelCase : Optional[int] = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = AlbertTokenizer(A , keep_accents=A ) UpperCAmelCase : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [48, 25, 21, 1289] ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = AlbertTokenizer(A ) UpperCAmelCase : Optional[int] = tokenizer.encode("""sequence builders""" ) UpperCAmelCase : Any = tokenizer.encode("""multi-sequence build""" ) UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A ) UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _lowercase( self ) -> Dict: # fmt: off UpperCAmelCase : Tuple = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
265
1
def __lowerCamelCase ( snake_case__ = 10_00 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = 2**power _SCREAMING_SNAKE_CASE = 0 while n: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
125
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = prime_factors(snake_case__ ) if is_square_free(snake_case__ ): return -1 if len(snake_case__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
125
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case : Dict = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
284
from __future__ import annotations import math def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : bool, lowerCAmelCase_ : list[int], lowerCAmelCase_ : float ): if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(lowerCAmelCase_ ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), ) return min( minimax(depth + 1, node_index * 2, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), ) def a_ ( ): __lowerCAmelCase = [90, 23, 6, 33, 21, 65, 123, 3_4423] __lowerCAmelCase = math.log(len(lowerCAmelCase_ ), 2 ) print('Optimal value : ', end='' ) print(minimax(0, 0, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
284
1
'''simple docstring''' from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar a__ : int = TypeVar('T') class UpperCAmelCase__ ( Generic[T]): def __init__( self , lowercase = True ) -> None: __UpperCamelCase = {} # dictionary of lists __UpperCamelCase = directed def __lowerCamelCase ( self , lowercase , lowercase ) -> GraphAdjacencyList[T]: if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) self.adj_list[destination_vertex].append(lowercase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) __UpperCamelCase = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowercase ) __UpperCamelCase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: __UpperCamelCase = [destination_vertex] __UpperCamelCase = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) __UpperCamelCase = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: __UpperCamelCase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: __UpperCamelCase = [destination_vertex] __UpperCamelCase = [] return self def __repr__( self ) -> str: return pformat(self.adj_list )
360
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = None # Automatically constructed __SCREAMING_SNAKE_CASE = "dict" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = field(default='''Translation''' , init=UpperCAmelCase_ , repr=UpperCAmelCase_) def __call__( self ) -> Optional[Any]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __lowerCamelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None # Automatically constructed __SCREAMING_SNAKE_CASE = "dict" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = field(default='''TranslationVariableLanguages''' , init=UpperCAmelCase_ , repr=UpperCAmelCase_) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = sorted(set(self.languages ) ) if self.languages else None __UpperCamelCase = len(self.languages ) if self.languages else None def __call__( self ) -> Any: return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __lowerCamelCase ( self , lowercase ) -> Any: __UpperCamelCase = set(self.languages ) if self.languages and set(lowercase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(lowercase ) - lang_set ) )}) are not in valid set ({', '.join(lowercase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCamelCase = [] for lang, text in translation_dict.items(): if isinstance(lowercase , lowercase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCamelCase , __UpperCamelCase = zip(*sorted(lowercase ) ) return {"language": languages, "translation": translations} def __lowerCamelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
243
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCamelCase : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
0
import os def __lowerCAmelCase ()-> List[Any]: """simple docstring""" snake_case_ = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE ) , '''num.txt''' ) with open(SCREAMING_SNAKE_CASE ) as file_hand: return str(sum(int(SCREAMING_SNAKE_CASE ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
267
# Function to print upper half of diamond (pyramid) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Dict: """simple docstring""" for i in range(0 , SCREAMING_SNAKE_CASE ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Dict: """simple docstring""" for i in range(SCREAMING_SNAKE_CASE , 0 , -1 ): for _ in range(SCREAMING_SNAKE_CASE , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(SCREAMING_SNAKE_CASE ) # upper half reverse_floyd(SCREAMING_SNAKE_CASE ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") UpperCAmelCase = 1 while K: UpperCAmelCase = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) UpperCAmelCase = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
267
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a : List[str] = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys a : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
56
'''simple docstring''' import math from collections.abc import Callable def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> float: '''simple docstring''' snake_case_ = xa snake_case_ = xa while True: if x_n == x_na or function(__UpperCAmelCase ) == function(__UpperCAmelCase ): raise ZeroDivisionError('''float division by zero, could not find root''' ) snake_case_ = x_na - ( function(__UpperCAmelCase ) / ((function(__UpperCAmelCase ) - function(__UpperCAmelCase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na snake_case_ = x_na snake_case_ = x_na def __magic_name__ ( __UpperCAmelCase ) -> float: '''simple docstring''' return math.pow(__UpperCAmelCase, 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
56
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
361
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : List[str]=None, _lowerCAmelCase : Optional[Any]=None, _lowerCAmelCase : Union[str, Any]=None ): """simple docstring""" _a = True while ask_again: _a = input(_lowerCAmelCase ) try: if default is not None and len(_lowerCAmelCase ) == 0: return default return convert_value(_lowerCAmelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : Optional[Any]=[], _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Dict=0 ): """simple docstring""" _a = BulletMenu(_lowerCAmelCase, _lowerCAmelCase ) _a = menu.run(default_choice=_lowerCAmelCase ) return convert_value(_lowerCAmelCase ) if convert_value is not None else result def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _a = int(_lowerCAmelCase ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _a = int(_lowerCAmelCase ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _a = int(_lowerCAmelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _a = int(_lowerCAmelCase ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _a = int(_lowerCAmelCase ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def A_ ( _lowerCAmelCase : Any ): """simple docstring""" return {"yes": True, "no": False}[value.lower()] class __lowerCamelCase ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: _a = super()._format_usage(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _a = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
153
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __a (lowerCamelCase , unittest.TestCase ): __a : str = KandinskyVaaInpaintPipeline __a : int = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __a : Union[str, Any] = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __a : int = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __a : Optional[Any] = False @property def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.time_input_dim @property def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" return 1_00 @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : Any = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase_ : Any = UNetaDConditionModel(**__magic_name__ ) return model @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : str = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" UpperCAmelCase_ : Any = self.dummy_unet UpperCAmelCase_ : str = self.dummy_movq UpperCAmelCase_ : List[str] = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__magic_name__ , ) UpperCAmelCase_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any]=0 ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) UpperCAmelCase_ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __magic_name__ ) # create init_image UpperCAmelCase_ : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) UpperCAmelCase_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Tuple = Image.fromarray(np.uinta(__magic_name__ ) ).convert('''RGB''' ).resize((2_56, 2_56) ) # create mask UpperCAmelCase_ : List[str] = np.ones((64, 64) , dtype=np.floataa ) UpperCAmelCase_ : List[Any] = 0 if str(__magic_name__ ).startswith('''mps''' ): UpperCAmelCase_ : Optional[Any] = torch.manual_seed(__magic_name__ ) else: UpperCAmelCase_ : int = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) UpperCAmelCase_ : Optional[int] = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Tuple = '''cpu''' UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : List[str] = self.pipeline_class(**__magic_name__ ) UpperCAmelCase_ : List[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) UpperCAmelCase_ : Optional[Any] = output.images UpperCAmelCase_ : Dict = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : str = np.array( [0.5_0_7_7_5_9_0_3, 0.4_9_5_2_7_1_9_5, 0.4_8_8_2_4_5_4_3, 0.5_0_1_9_2_2_3_7, 0.4_8_6_4_4_9_0_6, 0.4_9_3_7_3_8_1_4, 0.4_7_8_0_5_9_8, 0.4_7_2_3_4_8_2_7, 0.4_8_3_2_7_8_4_8] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Any ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) UpperCAmelCase_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCAmelCase_ : List[str] = np.ones((7_68, 7_68) , dtype=np.floataa ) UpperCAmelCase_ : str = 0 UpperCAmelCase_ : str = '''a hat''' UpperCAmelCase_ : Optional[int] = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) UpperCAmelCase_ : Optional[Any] = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) UpperCAmelCase_ : Tuple = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Tuple = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ : Any = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase_ : int = pipeline( image=__magic_name__ , mask_image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='''np''' , ) UpperCAmelCase_ : Optional[Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
125
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer snake_case_ : List[str] = logging.get_logger(__name__) snake_case_ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} snake_case_ : Optional[int] = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } snake_case_ : Optional[Any] = { "yjernite/retribert-base-uncased": 5_12, } snake_case_ : Union[str, Any] = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class __a (lowerCamelCase ): __a : Optional[Any] = VOCAB_FILES_NAMES __a : Dict = PRETRAINED_VOCAB_FILES_MAP __a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : int = PRETRAINED_INIT_CONFIGURATION __a : Union[str, Any] = RetriBertTokenizer __a : Optional[int] = ["input_ids", "attention_mask"] def __init__( self : str , __magic_name__ : List[Any]=None , __magic_name__ : Optional[int]=None , __magic_name__ : Any=True , __magic_name__ : int="[UNK]" , __magic_name__ : List[Any]="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : Optional[int]="[CLS]" , __magic_name__ : Union[str, Any]="[MASK]" , __magic_name__ : int=True , __magic_name__ : Optional[Any]=None , **__magic_name__ : Any , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , tokenizer_file=__magic_name__ , do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , tokenize_chinese_chars=__magic_name__ , strip_accents=__magic_name__ , **__magic_name__ , ) UpperCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __magic_name__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , __magic_name__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __magic_name__ ) != tokenize_chinese_chars ): UpperCAmelCase_ : Dict = getattr(__magic_name__ , normalizer_state.pop('''type''' ) ) UpperCAmelCase_ : Optional[int] = do_lower_case UpperCAmelCase_ : Optional[int] = strip_accents UpperCAmelCase_ : Tuple = tokenize_chinese_chars UpperCAmelCase_ : Optional[int] = normalizer_class(**__magic_name__ ) UpperCAmelCase_ : List[str] = do_lower_case def UpperCAmelCase__ ( self : int , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCAmelCase_ : Dict = [self.sep_token_id] UpperCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase_ : int = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ )
125
1
from string import ascii_uppercase a__: List[Any] = {str(ord(c) - 55): c for c in ascii_uppercase} def UpperCamelCase__( UpperCamelCase__ : int , UpperCamelCase__ : int )->str: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('''int() can\'t convert non-string with explicit base''' ) if num < 0: raise ValueError('''parameter must be positive int''' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if base in (0, 1): raise ValueError('''base must be >= 2''' ) if base > 36: raise ValueError('''base must be <= 36''' ) A__ = '''''' A__ = 0 A__ = 0 while div != 1: A__ , A__ = divmod(UpperCamelCase__ , UpperCamelCase__ ) if base >= 11 and 9 < mod < 36: A__ = ALPHABET_VALUES[str(UpperCamelCase__ )] else: A__ = str(UpperCamelCase__ ) new_value += actual_value A__ = num // base A__ = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(UpperCamelCase__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
39
a__: dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } a__: dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : str , UpperCamelCase__ : str )->float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: A__ = ( f"Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n" f"Valid values are: {', '.join(UpperCamelCase__ )}" ) raise ValueError(UpperCamelCase__ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
39
1
'''simple docstring''' from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE_ ): """simple docstring""" __a ="""Salesforce/blip-image-captioning-base""" __a =( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) __a ="""image_captioner""" __a =AutoModelForVisionaSeq __a =["""image"""] __a =["""text"""] def __init__( self : Optional[int] , *__a : int , **__a : Any ): requires_backends(self , ["vision"] ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCamelCase__ ( self : int , __a : int ): return self.pre_processor(images=__UpperCAmelCase , return_tensors="pt" ) def UpperCamelCase__ ( self : Optional[Any] , __a : Union[str, Any] ): return self.model.generate(**__UpperCAmelCase ) def UpperCamelCase__ ( self : Dict , __a : List[str] ): return self.pre_processor.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )[0].strip()
63
"""simple docstring""" import baseaa def UpperCamelCase ( UpperCAmelCase ) ->bytes: """simple docstring""" return baseaa.baaencode(string.encode("utf-8" ) ) def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" return baseaa.baadecode(UpperCAmelCase ).decode("utf-8" ) if __name__ == "__main__": UpperCamelCase_ = 'Hello World!' UpperCamelCase_ = baseaa_encode(test) print(encoded) UpperCamelCase_ = baseaa_decode(encoded) print(decoded)
243
0
import cmath import math def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A : Optional[Any] = math.radians(_lowerCamelCase ) A : Dict = math.radians(_lowerCamelCase ) # Convert voltage and current to rectangular form A : Optional[int] = cmath.rect(_lowerCamelCase , _lowerCamelCase ) A : str = cmath.rect(_lowerCamelCase , _lowerCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
256
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A , A : Optional[Any] = len(_lowerCamelCase ), len(grid[0] ) if ( min(_lowerCamelCase , _lowerCamelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) A : Tuple = 0 count += depth_first_search(_lowerCamelCase , row + 1 , _lowerCamelCase , _lowerCamelCase ) count += depth_first_search(_lowerCamelCase , row - 1 , _lowerCamelCase , _lowerCamelCase ) count += depth_first_search(_lowerCamelCase , _lowerCamelCase , col + 1 , _lowerCamelCase ) count += depth_first_search(_lowerCamelCase , _lowerCamelCase , col - 1 , _lowerCamelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
256
1
'''simple docstring''' import pytest UpperCAmelCase : Tuple = '__dummy_dataset1__' UpperCAmelCase : int = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def a__ ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def a__ ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = dataset_loading_script_name __SCREAMING_SNAKE_CASE = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=a__ ) __SCREAMING_SNAKE_CASE = script_dir / F'{script_name}.py' with open(a__ , """w""" ) as f: f.write(a__ ) return str(a__ )
267
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Union[str, Any] = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys UpperCAmelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
267
1
"""simple docstring""" __A : Tuple = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Union[str, Any] = frozenset(["prompt", "negative_prompt"]) __A : str = frozenset([]) __A : List[str] = frozenset(["image"]) __A : Optional[Any] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Optional[int] = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"]) __A : str = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[str] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : List[Any] = frozenset(["image", "mask_image"]) __A : List[str] = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Tuple = frozenset(["example_image", "image", "mask_image"]) __A : Dict = frozenset(["class_labels"]) __A : str = frozenset(["class_labels"]) __A : str = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : str = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Any = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : List[str] = frozenset(["prompt", "negative_prompt"]) __A : Tuple = frozenset(["input_tokens"]) __A : Optional[int] = frozenset(["input_tokens"])
326
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Dict ) ->Dict: if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=_UpperCamelCase , ) assert hasattr(self , '''env''' ) def snake_case__( self : str , _UpperCamelCase : Tuple=1 ) ->List[str]: # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-single''' , instance_count=_UpperCamelCase , instance_type=self.instance_type , debugger_hook_config=_UpperCamelCase , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[int] ) ->int: TrainingJobAnalytics(_UpperCamelCase ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) def snake_case__( self : int ) ->List[str]: # create estimator snake_case_ = self.create_estimator() # run training estimator.fit() # result dataframe snake_case_ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis snake_case_ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) snake_case_ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping snake_case_ = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _UpperCamelCase )
8
"""simple docstring""" class _lowerCamelCase : def __init__(self , __a ) -> None: UpperCamelCase = len(__a ) UpperCamelCase = [0] * len_array if len_array > 0: UpperCamelCase = array[0] for i in range(1 , __a ): UpperCamelCase = self.prefix_sum[i - 1] + array[i] def snake_case_ (self , __a , __a ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def snake_case_ (self , __a ) -> bool: UpperCamelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__a ) return False if __name__ == "__main__": import doctest doctest.testmod()
153
0
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase : List[Any] = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=None ) -> int: require_version(deps[pkg] ,lowercase )
176
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def SCREAMING_SNAKE_CASE__ ( ) -> None: assert or_gate(0 ,0 ) == 0 assert or_gate(0 ,1 ) == 1 assert or_gate(1 ,0 ) == 1 assert or_gate(1 ,1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
176
1
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = 'laion/clap-htsat-unfused' _UpperCAmelCase = tempfile.mkdtemp() def UpperCamelCase ( self , **UpperCAmelCase ): """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase ) def UpperCamelCase ( self , **UpperCAmelCase ): """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = ClapProcessor(tokenizer=UpperCAmelCase , feature_extractor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _UpperCAmelCase = self.get_feature_extractor(do_normalize=UpperCAmelCase , padding_value=1.0 ) _UpperCAmelCase = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = ClapProcessor(tokenizer=UpperCAmelCase , feature_extractor=UpperCAmelCase ) _UpperCAmelCase = floats_list((3, 1000) ) _UpperCAmelCase = feature_extractor(UpperCAmelCase , return_tensors='np' ) _UpperCAmelCase = processor(audios=UpperCAmelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = ClapProcessor(tokenizer=UpperCAmelCase , feature_extractor=UpperCAmelCase ) _UpperCAmelCase = 'This is a test string' _UpperCAmelCase = processor(text=UpperCAmelCase ) _UpperCAmelCase = tokenizer(UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = ClapProcessor(tokenizer=UpperCAmelCase , feature_extractor=UpperCAmelCase ) _UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase = processor.batch_decode(UpperCAmelCase ) _UpperCAmelCase = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = ClapProcessor(tokenizer=UpperCAmelCase , feature_extractor=UpperCAmelCase ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
39
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _a = logging.get_logger(__name__) class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "AutoTokenizer" UpperCamelCase__ = ["tokenizer"] UpperCamelCase__ = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self , UpperCAmelCase , UpperCAmelCase=None ): """simple docstring""" super().__init__(UpperCAmelCase ) _UpperCAmelCase = speaker_embeddings @classmethod def UpperCamelCase ( cls , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , **UpperCAmelCase ): """simple docstring""" if speaker_embeddings_dict_path is not None: _UpperCAmelCase = get_file_from_repo( UpperCAmelCase , UpperCAmelCase , subfolder=kwargs.pop('subfolder' , UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , UpperCAmelCase ) , force_download=kwargs.pop('force_download' , UpperCAmelCase ) , proxies=kwargs.pop('proxies' , UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , UpperCAmelCase ) , revision=kwargs.pop('revision' , UpperCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( F"""`{os.path.join(UpperCAmelCase , UpperCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) _UpperCAmelCase = None else: with open(UpperCAmelCase ) as speaker_embeddings_json: _UpperCAmelCase = json.load(UpperCAmelCase ) else: _UpperCAmelCase = None _UpperCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) return cls(tokenizer=UpperCAmelCase , speaker_embeddings=UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , UpperCAmelCase="speaker_embeddings" , UpperCAmelCase = False , **UpperCAmelCase , ): """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(UpperCAmelCase , UpperCAmelCase , 'v2' ) , exist_ok=UpperCAmelCase ) _UpperCAmelCase = {} _UpperCAmelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _UpperCAmelCase = self._load_voice_preset(UpperCAmelCase ) _UpperCAmelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , UpperCAmelCase , F"""{prompt_key}_{key}""" ) , voice_preset[key] , allow_pickle=UpperCAmelCase , ) _UpperCAmelCase = os.path.join(UpperCAmelCase , F"""{prompt_key}_{key}.npy""" ) _UpperCAmelCase = tmp_dict with open(os.path.join(UpperCAmelCase , UpperCAmelCase ) , 'w' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) super().save_pretrained(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase = None , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.speaker_embeddings[voice_preset] _UpperCAmelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) _UpperCAmelCase = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , UpperCAmelCase ) , force_download=kwargs.pop('force_download' , UpperCAmelCase ) , proxies=kwargs.pop('proxies' , UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , UpperCAmelCase ) , revision=kwargs.pop('revision' , UpperCAmelCase ) , ) if path is None: raise ValueError( F"""`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) _UpperCAmelCase = np.load(UpperCAmelCase ) return voice_preset_dict def UpperCamelCase ( self , UpperCAmelCase = None ): """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="pt" , UpperCAmelCase=256 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , **UpperCAmelCase , ): """simple docstring""" if voice_preset is not None and not isinstance(UpperCAmelCase , UpperCAmelCase ): if ( isinstance(UpperCAmelCase , UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _UpperCAmelCase = self._load_voice_preset(UpperCAmelCase ) else: if isinstance(UpperCAmelCase , UpperCAmelCase ) and not voice_preset.endswith('.npz' ): _UpperCAmelCase = voice_preset + '.npz' _UpperCAmelCase = np.load(UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(UpperCAmelCase , **UpperCAmelCase ) _UpperCAmelCase = BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) _UpperCAmelCase = self.tokenizer( UpperCAmelCase , return_tensors=UpperCAmelCase , padding='max_length' , max_length=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , add_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) if voice_preset is not None: _UpperCAmelCase = voice_preset return encoded_text
39
1
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self :List[str] , lowercase_ :str , lowercase_ :List[Any] , lowercase_ :int ) -> Union[str, Any]: self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for a, b in zip(lowercase_ , lowercase_ ): self.assertAlmostEqual(lowercase_ , lowercase_ , delta=lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> int: UpperCAmelCase = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(lowercase_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> List[Any]: UpperCAmelCase = None ops.enable_eager_execution_internal() UpperCAmelCase = tf.config.list_physical_devices('CPU' ) if len(lowercase_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) UpperCAmelCase = tf.config.list_logical_devices(device_type='CPU' ) UpperCAmelCase = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): UpperCAmelCase = GradientAccumulator() UpperCAmelCase = tf.Variable([4.0, 3.0] ) UpperCAmelCase , UpperCAmelCase = create_optimizer(5E-5 , 10 , 5 ) UpperCAmelCase = tf.Variable([0.0, 0.0] , trainable=lowercase_ ) def accumulate_on_replica(lowercase_ :Optional[Any] ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(lowercase_ :int , lowercase_ :int ): with strategy.scope(): UpperCAmelCase = strategy.experimental_local_results(lowercase_ ) local_variables[0].assign(lowercase_ ) local_variables[1].assign(lowercase_ ) strategy.run(lowercase_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(lowercase_ ) def _check_local_values(lowercase_ :Optional[int] , lowercase_ :List[str] ): UpperCAmelCase = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , lowercase_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , lowercase_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
181
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller snake_case_ = 3 def _lowerCAmelCase ( lowercase_ ): print('Generating primitive root of p' ) while True: UpperCAmelCase = random.randrange(3 , lowercase_ ) if pow(lowercase_ , 2 , lowercase_ ) == 1: continue if pow(lowercase_ , lowercase_ , lowercase_ ) == 1: continue return g def _lowerCAmelCase ( lowercase_ ): print('Generating prime p...' ) UpperCAmelCase = rabin_miller.generate_large_prime(lowercase_ ) # select large prime number. UpperCAmelCase = primitive_root(lowercase_ ) # one primitive root on modulo p. UpperCAmelCase = random.randrange(3 , lowercase_ ) # private_key -> have to be greater than 2 for safety. UpperCAmelCase = cryptomath.find_mod_inverse(pow(lowercase_ , lowercase_ , lowercase_ ) , lowercase_ ) UpperCAmelCase = (key_size, e_a, e_a, p) UpperCAmelCase = (key_size, d) return public_key, private_key def _lowerCAmelCase ( lowercase_ , lowercase_ ): if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() UpperCAmelCase , UpperCAmelCase = generate_key(lowercase_ ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def _lowerCAmelCase ( ): print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
181
1
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _lowercase): snake_case__ = (DDPMScheduler,) def _UpperCamelCase ( self : Any , **__UpperCamelCase : Tuple ) -> Optional[Any]: _UpperCamelCase = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__UpperCamelCase ) return config def _UpperCamelCase ( self : Optional[int] ) -> str: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def _UpperCamelCase ( self : str ) -> Any: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=__UpperCamelCase , beta_end=__UpperCamelCase ) def _UpperCamelCase ( self : Union[str, Any] ) -> str: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__UpperCamelCase ) def _UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__UpperCamelCase ) def _UpperCamelCase ( self : Any ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__UpperCamelCase ) def _UpperCamelCase ( self : Union[str, Any] ) -> str: self.check_over_configs(thresholding=__UpperCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__UpperCamelCase , prediction_type=__UpperCamelCase , sample_max_value=__UpperCamelCase , ) def _UpperCamelCase ( self : Optional[int] ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: for t in [0, 500, 999]: self.check_over_forward(time_step=__UpperCamelCase ) def _UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__UpperCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5 def _UpperCamelCase ( self : List[Any] ) -> Dict: _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__UpperCamelCase ) _UpperCamelCase = len(__UpperCamelCase ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(__UpperCamelCase ) ): # 1. predict noise residual _UpperCamelCase = model(__UpperCamelCase , __UpperCamelCase ) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__UpperCamelCase ) ) _UpperCamelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) _UpperCamelCase = scheduler_class(**__UpperCamelCase ) _UpperCamelCase = len(__UpperCamelCase ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(__UpperCamelCase ) ): # 1. predict noise residual _UpperCamelCase = model(__UpperCamelCase , __UpperCamelCase ) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__UpperCamelCase ) ) _UpperCamelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__UpperCamelCase ) _UpperCamelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__UpperCamelCase ) _UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(__UpperCamelCase ): if i == len(__UpperCamelCase ) - 1: _UpperCamelCase = -1 else: _UpperCamelCase = timesteps[i + 1] _UpperCamelCase = scheduler.previous_timestep(__UpperCamelCase ) _UpperCamelCase = prev_t.item() self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Optional[int] ) -> Dict: _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__UpperCamelCase ) _UpperCamelCase = [100, 87, 50, 51, 0] with self.assertRaises(__UpperCamelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=__UpperCamelCase ) def _UpperCamelCase ( self : List[Any] ) -> Any: _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__UpperCamelCase ) _UpperCamelCase = [100, 87, 50, 1, 0] _UpperCamelCase = len(__UpperCamelCase ) with self.assertRaises(__UpperCamelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=__UpperCamelCase , timesteps=__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] ) -> str: _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__UpperCamelCase ) _UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( __UpperCamelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__UpperCamelCase )
256
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def lowercase ( a__ : str , a__ : bool = True , a__ : float = math.inf , a__ : float = -math.inf , a__ : float = math.inf , a__ : float = -math.inf , a__ : bool = False , a__ : float = 100 , a__ : float = 0.01 , a__ : float = 1 , ) -> Any: _UpperCamelCase = False _UpperCamelCase = search_prob _UpperCamelCase = start_temperate _UpperCamelCase = [] _UpperCamelCase = 0 _UpperCamelCase = None while not search_end: _UpperCamelCase = current_state.score() if best_state is None or current_score > best_state.score(): _UpperCamelCase = current_state scores.append(a__ ) iterations += 1 _UpperCamelCase = None _UpperCamelCase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _UpperCamelCase = random.randint(0 , len(a__ ) - 1 ) # picking a random neighbor _UpperCamelCase = neighbors.pop(a__ ) _UpperCamelCase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _UpperCamelCase = change * -1 # in case we are finding minimum if change > 0: # improves the solution _UpperCamelCase = picked_neighbor else: _UpperCamelCase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _UpperCamelCase = picked_neighbor _UpperCamelCase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _UpperCamelCase = True else: _UpperCamelCase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a__ ) , a__ ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowercase ( a__ : str , a__ : List[Any] ) -> Tuple: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowercase ( a__ : str , a__ : Optional[Any] ) -> Union[str, Any]: return (3 * x**2) - (6 * y) UpperCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) UpperCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
256
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
288
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_28, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class __a ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls ) -> Any: '''simple docstring''' lowercase__: List[Any] = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls ) -> str: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) lowercase__: str = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ , repo_id='test-config' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) lowercase__: Dict = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) lowercase__: Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id='valid_org/test-config-org' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) lowercase__: Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' CustomConfig.register_for_auto_class() lowercase__: Tuple = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowercase__: int = AutoConfig.from_pretrained(F'{USER}/test-dynamic-config' , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowercase__: List[Any] = c.n_embd + 1 # int lowercase__: Any = c.resid_pdrop + 1.0 # float lowercase__: Any = not c.scale_attn_weights # bool lowercase__: List[str] = c.summary_type + 'foo' # str c.update_from_string( F'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(lowerCAmelCase__ , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(lowerCAmelCase__ , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCAmelCase__ , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCAmelCase__ , c.summary_type , 'mismatch for key: summary_type' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Any = PretrainedConfig() lowercase__: Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCAmelCase__ , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowercase__: List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCAmelCase__ , lowerCAmelCase__ )] if len(lowerCAmelCase__ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F' {", ".join(lowerCAmelCase__ )}.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' with self.assertRaises(lowerCAmelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__: str = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowercase__: str = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' # A mock response for an HTTP head request to emulate server down lowercase__: Optional[Any] = mock.Mock() lowercase__: Tuple = 500 lowercase__: Any = {} lowercase__: Dict = HTTPError lowercase__: Optional[Any] = {} # Download this model to make sure it's in the cache. lowercase__: Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=lowerCAmelCase__ ) as mock_head: lowercase__: List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 lowercase__: Tuple = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowercase__: Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCAmelCase__ ) lowercase__: Optional[int] = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCAmelCase__ , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowercase__: str = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowercase__: Dict = ['config.42.0.0.json'] lowercase__: int = 768 configuration.save_pretrained(lowerCAmelCase__ ) shutil.move(os.path.join(lowerCAmelCase__ , 'config.4.0.0.json' ) , os.path.join(lowerCAmelCase__ , 'config.42.0.0.json' ) ) lowercase__: Dict = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowercase__: Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowercase__: Tuple = 'v4.0.0' lowercase__ , lowercase__: List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCAmelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowercase__: Union[str, Any] = 'v3.0.0' lowercase__: Optional[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(old_configuration.hidden_size , 768 )
288
1
_UpperCamelCase = frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) _UpperCamelCase = frozenset(['''prompt''', '''negative_prompt''']) _UpperCamelCase = frozenset([]) _UpperCamelCase = frozenset(['''image''']) _UpperCamelCase = frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) _UpperCamelCase = frozenset(['''image''']) _UpperCamelCase = frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) _UpperCamelCase = frozenset(['''prompt''', '''image''', '''negative_prompt''']) _UpperCamelCase = frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) _UpperCamelCase = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) _UpperCamelCase = frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) _UpperCamelCase = frozenset(['''image''', '''mask_image''']) _UpperCamelCase = frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) _UpperCamelCase = frozenset(['''example_image''', '''image''', '''mask_image''']) _UpperCamelCase = frozenset(['''class_labels''']) _UpperCamelCase = frozenset(['''class_labels''']) _UpperCamelCase = frozenset(['''batch_size''']) _UpperCamelCase = frozenset([]) _UpperCamelCase = frozenset(['''batch_size''']) _UpperCamelCase = frozenset([]) _UpperCamelCase = frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) _UpperCamelCase = frozenset(['''prompt''', '''negative_prompt''']) _UpperCamelCase = frozenset(['''input_tokens''']) _UpperCamelCase = frozenset(['''input_tokens'''])
326
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : str UpperCAmelCase_ : str =None @staticmethod def UpperCAmelCase ( ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def UpperCAmelCase ( cls ) -> Tuple: '''simple docstring''' return F"""`pip install {cls.pip_package or cls.name}`""" class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[int] ="optuna" @staticmethod def UpperCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' return is_optuna_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' return default_hp_space_optuna(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : List[str] ="ray" UpperCAmelCase_ : Dict ="'ray[tune]'" @staticmethod def UpperCAmelCase ( ) -> str: '''simple docstring''' return is_ray_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' return default_hp_space_ray(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="sigopt" @staticmethod def UpperCAmelCase ( ) -> int: '''simple docstring''' return is_sigopt_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return default_hp_space_sigopt(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : str ="wandb" @staticmethod def UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' return is_wandb_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return default_hp_space_wandb(UpperCAmelCase ) _UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase__( ) -> str: __snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase ) > 0: __snake_case : Dict = available_backends[0].name if len(lowercase ) > 1: logger.info( f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
326
1
from math import factorial def snake_case ( snake_case__ :int = 100): return sum(int(snake_case__) for x in str(factorial(snake_case__))) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
352
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case ( ) -> List[Any]: _A = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" )) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=snake_case__ , default=1 , help="""Number of TPU cores to use (1 or 8).""") # positional parser.add_argument( """training_script""" , type=snake_case__ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=snake_case__) return parser.parse_args() def snake_case ( ) -> List[str]: _A = parse_args() # Import training_script as a module. _A = Path(args.training_script) sys.path.append(str(script_fpath.parent.resolve())) _A = script_fpath.stem _A = importlib.import_module(snake_case__) # Patch sys.argv _A = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores)] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores) if __name__ == "__main__": main()
81
0
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ : def __init__( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : List[str]=[10, 20, 30, 40] , UpperCAmelCase_ : Union[str, Any]=[1, 1, 2, 1] , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[str]="relu" , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=None , ): SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = embeddings_size SCREAMING_SNAKE_CASE__ = hidden_sizes SCREAMING_SNAKE_CASE__ = depths SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = len(UpperCAmelCase_ ) def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, pixel_values, labels def A_ ( self : List[str] ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def A_ ( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE__ = TFRegNetModel(config=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , training=UpperCAmelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A_ ( self : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFRegNetForImageClassification(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ , training=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A__ : Any =(TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () A__ : int =( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) A__ : Any =False A__ : Optional[Any] =False A__ : Dict =False A__ : List[str] =False A__ : Union[str, Any] =False def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = TFRegNetModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ): return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def A_ ( self : Tuple ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) @slow def A_ ( self : Any ): super().test_keras_fit() @unittest.skip(reason='RegNet does not support input and output embeddings' ) def A_ ( self : str ): pass def A_ ( self : str ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def A_ ( self : Dict ): def check_hidden_states_output(UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE__ = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) , training=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE__ = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE__ = layer_type SCREAMING_SNAKE_CASE__ = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str]={} ): SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , return_dict=UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , return_dict=UpperCAmelCase_ , **UpperCAmelCase_ ).to_tuple() def recursive_check(UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple ): if isinstance(UpperCAmelCase_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase_ , UpperCAmelCase_ ): recursive_check(UpperCAmelCase_ , UpperCAmelCase_ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(UpperCAmelCase_ , UpperCAmelCase_ ) ) , msg=( 'Tuple and dict output are not equal. Difference:' F' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}' ) , ) recursive_check(UpperCAmelCase_ , UpperCAmelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , {'output_hidden_states': True} ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , {'output_hidden_states': True} ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def A_ ( self : Dict ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = TFRegNetModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _lowercase ( ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def A_ ( self : Optional[Any] ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=UpperCAmelCase_ , return_tensors='tf' ) # forward pass SCREAMING_SNAKE_CASE__ = model(**UpperCAmelCase_ , training=UpperCAmelCase_ ) # verify the logits SCREAMING_SNAKE_CASE__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tf.constant([-0.4_180, -1.5_051, -3.4_836] ) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4 )
176
import os def _lowercase ( ) -> List[str]: '''simple docstring''' with open(os.path.dirname(UpperCamelCase_ ) + '/p022_names.txt' ) as file: SCREAMING_SNAKE_CASE__ = str(file.readlines()[0] ) SCREAMING_SNAKE_CASE__ = names.replace('"' , '' ).split(',' ) names.sort() SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 for i, name in enumerate(UpperCamelCase_ ): for letter in name: name_score += ord(UpperCamelCase_ ) - 64 total_score += (i + 1) * name_score SCREAMING_SNAKE_CASE__ = 0 return total_score if __name__ == "__main__": print(solution())
176
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class a_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=3_0 , lowercase_=4_0_0 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , lowercase_=1 / 2_5_5 , lowercase_=True , ) -> int: '''simple docstring''' lowerCAmelCase_ = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = min_resolution lowerCAmelCase_ = max_resolution lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean lowerCAmelCase_ = image_std lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_pad def _lowercase ( self ) -> Tuple: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self , lowercase_ , lowercase_=False ) -> int: '''simple docstring''' if not batched: lowerCAmelCase_ = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase_ , lowerCAmelCase_ = image.size else: lowerCAmelCase_ , lowerCAmelCase_ = image.shape[1], image.shape[2] if w < h: lowerCAmelCase_ = int(self.size['shortest_edge'] * h / w ) lowerCAmelCase_ = self.size['shortest_edge'] elif w > h: lowerCAmelCase_ = self.size['shortest_edge'] lowerCAmelCase_ = int(self.size['shortest_edge'] * w / h ) else: lowerCAmelCase_ = self.size['shortest_edge'] lowerCAmelCase_ = self.size['shortest_edge'] else: lowerCAmelCase_ = [] for image in image_inputs: lowerCAmelCase_ , lowerCAmelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase_ = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase_ = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a_ ( a_ , unittest.TestCase ): '''simple docstring''' __a: Dict = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase_ , 'image_std' ) ) self.assertTrue(hasattr(lowercase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowercase_ , 'do_rescale' ) ) self.assertTrue(hasattr(lowercase_ , 'do_pad' ) ) self.assertTrue(hasattr(lowercase_ , 'size' ) ) def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2, 'longest_edge': 8_4} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' pass def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase_ = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ = image_processing(lowercase_ , return_tensors='pt' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ = image_processing(lowercase_ , return_tensors='pt' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: lowerCAmelCase_ = json.loads(f.read() ) lowerCAmelCase_ = {'image_id': 3_9_7_6_9, 'annotations': target} # encode them lowerCAmelCase_ = DeformableDetrImageProcessor() lowerCAmelCase_ = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors='pt' ) # verify pixel values lowerCAmelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , lowercase_ ) lowerCAmelCase_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase_ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_ ) ) # verify boxes lowerCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_ ) lowerCAmelCase_ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_ ) ) # verify is_crowd lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_ ) ) # verify class_labels lowerCAmelCase_ = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_ ) ) # verify orig_size lowerCAmelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_ ) ) # verify size lowerCAmelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_ ) ) @slow def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: lowerCAmelCase_ = json.loads(f.read() ) lowerCAmelCase_ = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target} lowerCAmelCase_ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowerCAmelCase_ = DeformableDetrImageProcessor(format='coco_panoptic' ) lowerCAmelCase_ = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors='pt' ) # verify pixel values lowerCAmelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , lowercase_ ) lowerCAmelCase_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase_ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_ ) ) # verify boxes lowerCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_ ) lowerCAmelCase_ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_ ) ) # verify is_crowd lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_ ) ) # verify class_labels lowerCAmelCase_ = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_ ) ) # verify masks lowerCAmelCase_ = 8_2_2_8_7_3 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_ ) ) # verify size lowerCAmelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_ ) )
14
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(a_ ) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' super().__init__(*lowercase_ , **lowercase_ ) self.check_model_type(lowercase_ ) def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = {}, {} if padding is not None: lowerCAmelCase_ = padding if truncation is not None: lowerCAmelCase_ = truncation if top_k is not None: lowerCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowercase_ , lowercase_ = None , **lowercase_ ) -> int: '''simple docstring''' if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = {'image': image, 'question': question} else: lowerCAmelCase_ = image lowerCAmelCase_ = super().__call__(lowercase_ , **lowercase_ ) return results def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = load_image(inputs['image'] ) lowerCAmelCase_ = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ ) lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) return model_inputs def _lowercase ( self , lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.model(**lowercase_ ) return model_outputs def _lowercase ( self , lowercase_ , lowercase_=5 ) -> Any: '''simple docstring''' if top_k > self.model.config.num_labels: lowerCAmelCase_ = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase_ = model_outputs.logits.sigmoid()[0] lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowerCAmelCase_ = scores.tolist() lowerCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
14
1
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> int: return abs(lowerCAmelCase__ ) if a == 0 else greatest_common_divisor(b % a , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. UpperCAmelCase__ , UpperCAmelCase__ : Tuple = y, x % y return abs(lowerCAmelCase__ ) def a__ ( ) -> Optional[Any]: try: UpperCAmelCase__ : str = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) UpperCAmelCase__ : str = int(nums[0] ) UpperCAmelCase__ : Optional[int] = int(nums[1] ) print( F"""greatest_common_divisor({num_a}, {num_a}) = """ F"""{greatest_common_divisor(lowerCAmelCase__ , lowerCAmelCase__ )}""" ) print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(lowerCAmelCase__ , lowerCAmelCase__ )}""" ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
181
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def lowercase_ ( self : List[str] ): '''simple docstring''' debug_launcher(test_ops.main )
181
1
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = ['''image_processor''', '''tokenizer'''] __SCREAMING_SNAKE_CASE = '''BlipImageProcessor''' __SCREAMING_SNAKE_CASE = '''AutoTokenizer''' def __init__( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): super().__init__(__lowerCamelCase,__lowerCamelCase ) # add QFormer tokenizer A__ = qformer_tokenizer def __call__( self,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = True,__lowerCamelCase = False,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = 0,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = True,__lowerCamelCase = None,**__lowerCamelCase,): if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) A__ = BatchFeature() if text is not None: A__ = self.tokenizer( text=__lowerCamelCase,add_special_tokens=__lowerCamelCase,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=__lowerCamelCase,stride=__lowerCamelCase,pad_to_multiple_of=__lowerCamelCase,return_attention_mask=__lowerCamelCase,return_overflowing_tokens=__lowerCamelCase,return_special_tokens_mask=__lowerCamelCase,return_offsets_mapping=__lowerCamelCase,return_token_type_ids=__lowerCamelCase,return_length=__lowerCamelCase,verbose=__lowerCamelCase,return_tensors=__lowerCamelCase,**__lowerCamelCase,) encoding.update(__lowerCamelCase ) A__ = self.qformer_tokenizer( text=__lowerCamelCase,add_special_tokens=__lowerCamelCase,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=__lowerCamelCase,stride=__lowerCamelCase,pad_to_multiple_of=__lowerCamelCase,return_attention_mask=__lowerCamelCase,return_overflowing_tokens=__lowerCamelCase,return_special_tokens_mask=__lowerCamelCase,return_offsets_mapping=__lowerCamelCase,return_token_type_ids=__lowerCamelCase,return_length=__lowerCamelCase,verbose=__lowerCamelCase,return_tensors=__lowerCamelCase,**__lowerCamelCase,) A__ = qformer_text_encoding.pop('''input_ids''' ) A__ = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: A__ = self.image_processor(__lowerCamelCase,return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.batch_decode(*__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.decode(*__lowerCamelCase,**__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase ( self ): A__ = self.tokenizer.model_input_names A__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCamelCase ( self,__lowerCamelCase,**__lowerCamelCase ): if os.path.isfile(__lowerCamelCase ): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(__lowerCamelCase,exist_ok=__lowerCamelCase ) A__ = os.path.join(__lowerCamelCase,'''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase,**__lowerCamelCase ) @classmethod def UpperCamelCase ( cls,__lowerCamelCase,**__lowerCamelCase ): A__ = AutoTokenizer.from_pretrained(__lowerCamelCase,subfolder='''qformer_tokenizer''' ) A__ = cls._get_arguments_from_pretrained(__lowerCamelCase,**__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
360
def UpperCamelCase__( )->Dict: A__ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] A__ = 6 A__ = 1 A__ = 19_01 A__ = 0 while year < 20_01: day += 7 if (year % 4 == 0 and year % 1_00 != 0) or (year % 4_00 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 A__ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 A__ = day - 29 else: if day > days_per_month[month - 1]: month += 1 A__ = day - days_per_month[month - 2] if month > 12: year += 1 A__ = 1 if year < 20_01 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
39
0
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def _UpperCAmelCase ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : bool = False ) -> list[float]: if radian_mode: return [magnitude * cos(__lowerCamelCase ), magnitude * sin(__lowerCamelCase )] return [magnitude * cos(radians(__lowerCamelCase ) ), magnitude * sin(radians(__lowerCamelCase ) )] def _UpperCAmelCase ( __lowerCamelCase : NDArray[floataa] , __lowerCamelCase : NDArray[floataa] , __lowerCamelCase : float = 10**-1 ) -> bool: _snake_case = cross(__lowerCamelCase , __lowerCamelCase ) _snake_case = sum(__lowerCamelCase ) return abs(__lowerCamelCase ) < eps if __name__ == "__main__": # Test to check if it works UpperCAmelCase__ = array( [ polar_force(7_18.4, 180 - 30), polar_force(8_79.54, 45), polar_force(100, -90), ] ) UpperCAmelCase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg UpperCAmelCase__ = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) UpperCAmelCase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg UpperCAmelCase__ = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) UpperCAmelCase__ = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
288
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _UpperCAmelCase ( __lowerCamelCase : str ) -> List[Any]: return 1 / (1 + np.exp(-z )) def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ) -> Optional[Any]: return (-y * np.log(__lowerCamelCase ) - (1 - y) * np.log(1 - h )).mean() def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Dict ) -> List[str]: _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(__lowerCamelCase ) ) ) def _UpperCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str=7_00_00 ) -> Optional[Any]: _snake_case = np.zeros(x.shape[1] ) for iterations in range(__lowerCamelCase ): _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) _snake_case = sigmoid_function(__lowerCamelCase ) _snake_case = np.dot(x.T , h - y ) / y.size _snake_case = theta - alpha * gradient # updating the weights _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) _snake_case = sigmoid_function(__lowerCamelCase ) _snake_case = cost_function(__lowerCamelCase , __lowerCamelCase ) if iterations % 1_00 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCAmelCase__ = datasets.load_iris() UpperCAmelCase__ = iris.data[:, :2] UpperCAmelCase__ = (iris.target != 0) * 1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = logistic_reg(alpha, x, y, max_iterations=70000) print('theta: ', theta) # printing the theta i.e our weights vector def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Union[str, Any]: return sigmoid_function( np.dot(__lowerCamelCase , __lowerCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((UpperCAmelCase__) , (UpperCAmelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCAmelCase__) , (UpperCAmelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCAmelCase__) , (UpperCAmelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCAmelCase__ = np.c_[xxa.ravel(), xxa.ravel()] UpperCAmelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
288
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : Any =MBartConfig __UpperCAmelCase : Tuple ={} __UpperCAmelCase : Optional[Any] ='''gelu''' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = eos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = bos_token_id def snake_case ( self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowerCAmelCase = prepare_mbart_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def snake_case ( self , __a , __a ): __lowerCAmelCase = TFMBartModel(config=UpperCamelCase_ ).get_decoder() __lowerCAmelCase = inputs_dict["input_ids"] __lowerCAmelCase = input_ids[:1, :] __lowerCAmelCase = inputs_dict["attention_mask"][:1, :] __lowerCAmelCase = inputs_dict["head_mask"] __lowerCAmelCase = 1 # first forward pass __lowerCAmelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ ) __lowerCAmelCase , __lowerCAmelCase = outputs.to_tuple() __lowerCAmelCase = past_key_values[1] def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , ): '''simple docstring''' if attention_mask is None: __lowerCAmelCase = tf.cast(tf.math.not_equal(_UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCamelCase ( UpperCamelCase__ ,UpperCamelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Tuple =(TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCAmelCase : Dict =(TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCAmelCase : Optional[int] =( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCAmelCase : Optional[Any] =True __UpperCAmelCase : Tuple =False __UpperCAmelCase : Any =False def snake_case ( self , __a , __a , __a , __a , __a ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def snake_case ( self ): __lowerCAmelCase = TFMBartModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=UpperCamelCase_ ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict =[ ''' UN Chief Says There Is No Military Solution in Syria''', ] __UpperCAmelCase : Dict =[ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] __UpperCAmelCase : int ='''facebook/mbart-large-en-ro''' @cached_property def snake_case ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def snake_case ( self ): __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def snake_case ( self , **__a ): __lowerCAmelCase = self.translate_src_text(**UpperCamelCase_ ) self.assertListEqual(self.expected_text , UpperCamelCase_ ) def snake_case ( self , **__a ): __lowerCAmelCase = self.tokenizer(self.src_text , **UpperCamelCase_ , return_tensors="tf" ) __lowerCAmelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __lowerCAmelCase = self.tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) return generated_words @slow def snake_case ( self ): self._assert_generated_batch_equal_expected()
355
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset A : Any = "bert-base-cased" A : Any = "google/pegasus-xsum" A : Union[str, Any] = [" Sam ate lunch today.", "Sams lunch ingredients."] A : Union[str, Any] = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] A : Optional[int] = "patrickvonplaten/t5-tiny-random" A : int = "sshleifer/bart-tiny-random" A : Optional[int] = "sshleifer/tiny-mbart" A : Any = "sshleifer/tiny-marian-en-de" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = "\n".join(_UpperCamelCase ) Path(_UpperCamelCase ).open("w" ).writelines(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(_UpperCamelCase , f"{split}.source" ) , _UpperCamelCase ) _dump_articles(os.path.join(_UpperCamelCase , f"{split}.target" ) , _UpperCamelCase ) return tmp_dir class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def snake_case ( self , __a ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in ARTICLES ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in SUMMARIES ) __lowerCAmelCase = 4 __lowerCAmelCase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __lowerCAmelCase , __lowerCAmelCase = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=__a , type_path="train" , max_source_length=__a , max_target_length=__a , src_lang=__a , tgt_lang=__a , ) __lowerCAmelCase = DataLoader(__a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__a , __a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __lowerCAmelCase = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def snake_case ( self , __a ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in ARTICLES ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in SUMMARIES ) __lowerCAmelCase = 4 __lowerCAmelCase = LegacySeqaSeqDataset( __a , data_dir=__a , type_path="train" , max_source_length=20 , max_target_length=__a , ) __lowerCAmelCase = DataLoader(__a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def snake_case ( self ): __lowerCAmelCase = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) __lowerCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __lowerCAmelCase = tmp_dir.joinpath("train.source" ).open().readlines() __lowerCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__a , __a , 1_28 , __a ) __lowerCAmelCase = {x.name for x in tmp_dir.iterdir()} __lowerCAmelCase = {x.name for x in save_dir.iterdir()} __lowerCAmelCase = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__a ) < len(__a ) assert len(__a ) == 1 assert len(packed_examples[0] ) == sum(len(__a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def snake_case ( self ): if not FAIRSEQ_AVAILABLE: return __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_dataset(max_len=64 ) __lowerCAmelCase = 64 __lowerCAmelCase = ds.make_dynamic_sampler(__a , required_batch_size_multiple=__a ) __lowerCAmelCase = [len(__a ) for x in batch_sampler] assert len(set(__a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__a ) == len(__a ) # no dropped or added examples __lowerCAmelCase = DataLoader(__a , batch_sampler=__a , collate_fn=ds.collate_fn , num_workers=2 ) __lowerCAmelCase = [] __lowerCAmelCase = [] for batch in data_loader: __lowerCAmelCase = batch["input_ids"].shape __lowerCAmelCase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __lowerCAmelCase = np.product(batch["input_ids"].shape ) num_src_per_batch.append(__a ) if num_src_tokens > (max_tokens * 1.1): failures.append(__a ) assert num_src_per_batch[0] == max(__a ) if failures: raise AssertionError(f"too many tokens in {len(__a )} batches" ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_dataset(max_len=5_12 ) __lowerCAmelCase = 2 __lowerCAmelCase = ds.make_sortish_sampler(__a , shuffle=__a ) __lowerCAmelCase = DataLoader(__a , batch_size=__a , collate_fn=ds.collate_fn , num_workers=2 ) __lowerCAmelCase = DataLoader(__a , batch_size=__a , collate_fn=ds.collate_fn , num_workers=2 , sampler=__a ) __lowerCAmelCase = tokenizer.pad_token_id def count_pad_tokens(__a , __a="input_ids" ): return [batch[k].eq(__a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__a , k="labels" ) ) < sum(count_pad_tokens(__a , k="labels" ) ) assert sum(count_pad_tokens(__a ) ) < sum(count_pad_tokens(__a ) ) assert len(__a ) == len(__a ) def snake_case ( self , __a=10_00 , __a=1_28 ): if os.getenv("USE_REAL_DATA" , __a ): __lowerCAmelCase = "examples/seq2seq/wmt_en_ro" __lowerCAmelCase = max_len * 2 * 64 if not Path(__a ).joinpath("train.len" ).exists(): save_len_file(__a , __a ) else: __lowerCAmelCase = "examples/seq2seq/test_data/wmt_en_ro" __lowerCAmelCase = max_len * 4 save_len_file(__a , __a ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=__a , type_path="train" , max_source_length=__a , max_target_length=__a , n_obs=__a , ) return ds, max_tokens, tokenizer def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_dataset() __lowerCAmelCase = set(DistributedSortishSampler(__a , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=__a ) ) __lowerCAmelCase = set(DistributedSortishSampler(__a , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=__a ) ) assert idsa.intersection(__a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def snake_case ( self , __a ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__a , use_fast=__a ) if tok_name == MBART_TINY: __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) __lowerCAmelCase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) __lowerCAmelCase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__a ) == 1 if tok_name == BART_TINY else len(__a ) == 0
259
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { """configuration_upernet""": ["""UperNetConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ """UperNetForSemanticSegmentation""", """UperNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
250
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase_ : Any = logging.get_logger(__name__) lowerCamelCase_ : Tuple = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCamelCase_ : str = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } lowerCamelCase_ : Optional[int] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } lowerCamelCase_ : Tuple = """▁""" class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , __A , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A = None , **__A , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token a ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) a =vocab_file a =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__A ) ) a ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} a =len(self.sp_model ) - 1 a ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a =[self.cls_token_id] a =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , __A , __A = None , __A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[int]: a =[self.sep_token_id] a =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self ) -> Any: return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self ) -> int: a ={self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self , __A ) -> List[str]: return self.sp_model.encode(__A , out_type=__A ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a =self.sp_model.PieceToId(__A ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self , __A ) -> Optional[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__A ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Tuple: a =[] a ='''''' a =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token a =True a =[] else: current_sub_tokens.append(__A ) a =False out_string += self.sp_model.decode(__A ) return out_string.strip() def __getstate__( self ) -> Tuple: a =self.__dict__.copy() a =None return state def __setstate__( self , __A ) -> Tuple: a =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a ={} a =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return a =os.path.join( __A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , '''wb''' ) as fi: a =self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,)
81
0
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[Any] = CTRLTokenizer __UpperCamelCase : Dict = False __UpperCamelCase : List[str] = False def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''adapt react readapt apt''' __lowerCAmelCase = '''adapt react readapt apt''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCAmelCase = '''adapt react readapt apt''' __lowerCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase )
362
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' ) __lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs['''input_ids'''] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str: '''simple docstring''' A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]: '''simple docstring''' if not batched: A__ = image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size['''shortest_edge'''] * h / w) A__ = self.size['''shortest_edge'''] elif w > h: A__ = self.size['''shortest_edge'''] A__ = int(self.size['''shortest_edge'''] * w / h) else: A__ = self.size['''shortest_edge'''] A__ = self.size['''shortest_edge'''] else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0] A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = DeformableDetrImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''size''')) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' A__ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Tuple: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''image_id''': 39_769, '''annotations''': target} # encode them A__ = DeformableDetrImageProcessor() A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''') # encode them A__ = DeformableDetrImageProcessor(format='''coco_panoptic''') A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify masks A__ = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
14
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' ) A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCamelCase : Optional[Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
14
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __lowerCamelCase : List[Any] = logging.get_logger(__name__) @add_end_docstrings( UpperCamelCase_ , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def _lowercase ( self : Union[str, Any] , __A : GenericTensor ): if self.framework == "tf": snake_case__ : int = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": snake_case__ : List[str] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__A ) else: raise ValueError("Unsupported framework" ) return masked_index def _lowercase ( self : str , __A : GenericTensor ): snake_case__ : Tuple = self.get_masked_index(__A ) snake_case__ : str = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def _lowercase ( self : List[Any] , __A : GenericTensor ): if isinstance(__A , __A ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__A ) def _lowercase ( self : Union[str, Any] , __A : Union[str, Any] , __A : List[str]=None , **__A : List[str] ): if return_tensors is None: snake_case__ : Tuple = self.framework snake_case__ : Union[str, Any] = self.tokenizer(__A , return_tensors=__A ) self.ensure_exactly_one_mask_token(__A ) return model_inputs def _lowercase ( self : List[Any] , __A : Dict ): snake_case__ : int = self.model(**__A ) snake_case__ : str = model_inputs["input_ids"] return model_outputs def _lowercase ( self : List[str] , __A : List[Any] , __A : str=5 , __A : Union[str, Any]=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: snake_case__ : List[Any] = target_ids.shape[0] snake_case__ : int = model_outputs["input_ids"][0] snake_case__ : Dict = model_outputs["logits"] if self.framework == "tf": snake_case__ : List[Any] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] snake_case__ : List[Any] = outputs.numpy() snake_case__ : Any = outputs[0, masked_index, :] snake_case__ : str = stable_softmax(__A , axis=-1 ) if target_ids is not None: snake_case__ : List[Any] = tf.gather_nd(tf.squeeze(__A , 0 ) , target_ids.reshape(-1 , 1 ) ) snake_case__ : List[str] = tf.expand_dims(__A , 0 ) snake_case__ : Optional[int] = tf.math.top_k(__A , k=__A ) snake_case__ : int = topk.values.numpy(), topk.indices.numpy() else: snake_case__ : List[str] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__A ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample snake_case__ : Union[str, Any] = outputs[0, masked_index, :] snake_case__ : str = logits.softmax(dim=-1 ) if target_ids is not None: snake_case__ : Tuple = probs[..., target_ids] snake_case__ : Optional[Any] = probs.topk(__A ) snake_case__ : int = [] snake_case__ : Union[str, Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): snake_case__ : Dict = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place snake_case__ : Optional[Any] = input_ids.numpy().copy() if target_ids is not None: snake_case__ : str = target_ids[p].tolist() snake_case__ : Tuple = p # Filter padding out: snake_case__ : Dict = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back snake_case__ : str = self.tokenizer.decode(__A , skip_special_tokens=__A ) snake_case__ : Optional[int] = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(__A ) result.append(__A ) if single_mask: return result[0] return result def _lowercase ( self : str , __A : int , __A : Optional[Any]=None ): if isinstance(__A , __A ): snake_case__ : str = [targets] try: snake_case__ : Dict = self.tokenizer.get_vocab() except Exception: snake_case__ : List[Any] = {} snake_case__ : Union[str, Any] = [] for target in targets: snake_case__ : str = vocab.get(__A , __A ) if id_ is None: snake_case__ : Any = self.tokenizer( __A , add_special_tokens=__A , return_attention_mask=__A , return_token_type_ids=__A , max_length=1 , truncation=__A , )["input_ids"] if len(__A ) == 0: logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' "We cannot replace it with anything meaningful, ignoring it" ) continue snake_case__ : int = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) snake_case__ : List[str] = list(set(__A ) ) if len(__A ) == 0: raise ValueError("At least one target must be provided when passed." ) snake_case__ : Dict = np.array(__A ) return target_ids def _lowercase ( self : Tuple , __A : List[str]=None , __A : Any=None ): snake_case__ : Optional[int] = {} if targets is not None: snake_case__ : Union[str, Any] = self.get_target_ids(__A , __A ) snake_case__ : List[str] = target_ids if top_k is not None: snake_case__ : Dict = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__( self : List[str] , __A : List[Any] , *__A : List[str] , **__A : Optional[int] ): snake_case__ : Optional[int] = super().__call__(__A , **__A ) if isinstance(__A , __A ) and len(__A ) == 1: return outputs[0] return outputs
360
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : str = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "roberta-prelayernorm" def __init__( self : Tuple , __A : Any=5_0_2_6_5 , __A : Optional[int]=7_6_8 , __A : Dict=1_2 , __A : Union[str, Any]=1_2 , __A : List[Any]=3_0_7_2 , __A : Optional[Any]="gelu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[Any]=5_1_2 , __A : List[str]=2 , __A : Optional[int]=0.0_2 , __A : Tuple=1e-1_2 , __A : Any=1 , __A : str=0 , __A : int=2 , __A : List[str]="absolute" , __A : Optional[Any]=True , __A : List[Any]=None , **__A : Optional[Any] , ): super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : Union[str, Any] = intermediate_size snake_case__ : List[Any] = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : int = max_position_embeddings snake_case__ : Tuple = type_vocab_size snake_case__ : Optional[int] = initializer_range snake_case__ : int = layer_norm_eps snake_case__ : Dict = position_embedding_type snake_case__ : int = use_cache snake_case__ : Dict = classifier_dropout class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" @property def _lowercase ( self : Optional[int] ): if self.task == "multiple-choice": snake_case__ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case__ : Tuple = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
286
0
from collections import deque def UpperCAmelCase ( a_ ) -> str: """simple docstring""" __A = len(__lowerCAmelCase ) __A = deque() __A = [False for _ in range(__lowerCAmelCase )] __A = [-1 for _ in range(__lowerCAmelCase )] __A = index_of[:] def strong_connect(a_ , a_ , a_ ): __A = index # the number when this node is seen __A = index # lowest rank node reachable from here index += 1 stack.append(__lowerCAmelCase ) __A = True for w in g[v]: if index_of[w] == -1: __A = strong_connect(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __A = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __A = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __A = [] __A = stack.pop() __A = False component.append(__lowerCAmelCase ) while w != v: __A = stack.pop() __A = False component.append(__lowerCAmelCase ) components.append(__lowerCAmelCase ) return index __A = [] for v in range(__lowerCAmelCase ): if index_of[v] == -1: strong_connect(__lowerCAmelCase , 0 , __lowerCAmelCase ) return components def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" __A = [[] for _ in range(__lowerCAmelCase )] for u, v in edges: g[u].append(__lowerCAmelCase ) return g if __name__ == "__main__": # Test SCREAMING_SNAKE_CASE :Optional[Any] = 7 SCREAMING_SNAKE_CASE :List[Any] = [0, 0, 1, 2, 3, 3, 4, 4, 6] SCREAMING_SNAKE_CASE :int = [1, 3, 2, 0, 1, 4, 5, 6, 5] SCREAMING_SNAKE_CASE :int = [(u, v) for u, v in zip(source, target)] SCREAMING_SNAKE_CASE :Dict = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
15
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _a = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class __lowerCamelCase ( unittest.TestCase): """simple docstring""" UpperCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = ZeroShotClassificationPipeline( model=UpperCAmelCase , tokenizer=UpperCAmelCase , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) # No kwarg _UpperCAmelCase = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _UpperCAmelCase = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 _UpperCAmelCase = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( UpperCAmelCase , [ {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} for i in range(1 ) ] , ) _UpperCAmelCase = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( UpperCAmelCase , [ {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} for i in range(2 ) ] , ) with self.assertRaises(UpperCAmelCase ): classifier('' , candidate_labels='politics' ) with self.assertRaises(UpperCAmelCase ): classifier(UpperCAmelCase , candidate_labels='politics' ) with self.assertRaises(UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels=UpperCAmelCase ) with self.assertRaises(UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=UpperCAmelCase , ) self.run_entailment_id(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = zero_shot_classifier.model.config _UpperCAmelCase = config.labelaid _UpperCAmelCase = zero_shot_classifier.entailment_id _UpperCAmelCase = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _UpperCAmelCase = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _UpperCAmelCase = original_labelaid self.assertEqual(UpperCAmelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCAmelCase , ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCAmelCase , ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
39
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = 1 _snake_case = 3 _snake_case = (32, 32) _snake_case = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase ) return image @property def A ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=lowercase , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def A ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def A ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) return CLIPTextModel(lowercase ) def A ( self : Tuple ): '''simple docstring''' _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.dummy_cond_unet_upscale _snake_case = DDPMScheduler() _snake_case = DDIMScheduler(prediction_type='v_prediction' ) _snake_case = self.dummy_vae _snake_case = self.dummy_text_encoder _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case = Image.fromarray(np.uinta(lowercase ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _snake_case = StableDiffusionUpscalePipeline( unet=lowercase , low_res_scheduler=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , max_noise_level=350 , ) _snake_case = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) _snake_case = 'A painting of a squirrel eating a burger' _snake_case = torch.Generator(device=lowercase ).manual_seed(0 ) _snake_case = sd_pipe( [prompt] , image=lowercase , generator=lowercase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) _snake_case = output.images _snake_case = torch.Generator(device=lowercase ).manual_seed(0 ) _snake_case = sd_pipe( [prompt] , image=lowercase , generator=lowercase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=lowercase , )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] _snake_case = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _snake_case = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : Any ): '''simple docstring''' _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.dummy_cond_unet_upscale _snake_case = DDPMScheduler() _snake_case = DDIMScheduler(prediction_type='v_prediction' ) _snake_case = self.dummy_vae _snake_case = self.dummy_text_encoder _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case = Image.fromarray(np.uinta(lowercase ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _snake_case = StableDiffusionUpscalePipeline( unet=lowercase , low_res_scheduler=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , max_noise_level=350 , ) _snake_case = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) _snake_case = 'A painting of a squirrel eating a burger' _snake_case = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) _snake_case = output.images assert image.shape[0] == 2 _snake_case = torch.Generator(device=lowercase ).manual_seed(0 ) _snake_case = sd_pipe( [prompt] , image=lowercase , generator=lowercase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) _snake_case = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def A ( self : Any ): '''simple docstring''' _snake_case = self.dummy_cond_unet_upscale _snake_case = DDPMScheduler() _snake_case = DDIMScheduler(prediction_type='v_prediction' ) _snake_case = self.dummy_vae _snake_case = self.dummy_text_encoder _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case = Image.fromarray(np.uinta(lowercase ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _snake_case = unet.half() _snake_case = text_encoder.half() # make sure here that pndm scheduler skips prk _snake_case = StableDiffusionUpscalePipeline( unet=lowercase , low_res_scheduler=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , max_noise_level=350 , ) _snake_case = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) _snake_case = 'A painting of a squirrel eating a burger' _snake_case = torch.manual_seed(0 ) _snake_case = sd_pipe( [prompt] , image=lowercase , generator=lowercase , num_inference_steps=2 , output_type='np' , ).images _snake_case = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[str] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Tuple ): '''simple docstring''' _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) _snake_case = 'stabilityai/stable-diffusion-x4-upscaler' _snake_case = StableDiffusionUpscalePipeline.from_pretrained(lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() _snake_case = 'a cat sitting on a park bench' _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=lowercase , image=lowercase , generator=lowercase , output_type='np' , ) _snake_case = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def A ( self : str ): '''simple docstring''' _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) _snake_case = 'stabilityai/stable-diffusion-x4-upscaler' _snake_case = StableDiffusionUpscalePipeline.from_pretrained( lowercase , torch_dtype=torch.floataa , ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() _snake_case = 'a cat sitting on a park bench' _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=lowercase , image=lowercase , generator=lowercase , output_type='np' , ) _snake_case = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def A ( self : Optional[int] ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) _snake_case = 'stabilityai/stable-diffusion-x4-upscaler' _snake_case = StableDiffusionUpscalePipeline.from_pretrained( lowercase , torch_dtype=torch.floataa , ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _snake_case = 'a cat sitting on a park bench' _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=lowercase , image=lowercase , generator=lowercase , num_inference_steps=5 , output_type='np' , ) _snake_case = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
130
import baseaa def a_ ( __lowercase : str ) -> bytes: return baseaa.aaaencode(string.encode('utf-8' ) ) def a_ ( __lowercase : bytes ) -> str: return baseaa.aaadecode(__lowercase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
130
1
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _lowerCamelCase): A_ : Dict = (DDPMParallelScheduler,) def __lowerCamelCase ( self , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = { 'num_train_timesteps': 10_00, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_SCREAMING_SNAKE_CASE ) return config def __lowerCamelCase ( self ): for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , ) def __lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] __lowerCAmelCase : Dict = self.get_scheduler_config() __lowerCAmelCase : Any = scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1E-5 def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] __lowerCAmelCase : str = self.get_scheduler_config() __lowerCAmelCase : Any = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = self.dummy_model() __lowerCAmelCase : List[Any] = self.dummy_sample_deter __lowerCAmelCase : int = self.dummy_sample_deter + 0.1 __lowerCAmelCase : Tuple = self.dummy_sample_deter - 0.1 __lowerCAmelCase : Tuple = samplea.shape[0] __lowerCAmelCase : Tuple = torch.stack([samplea, samplea, samplea] , dim=0 ) __lowerCAmelCase : str = torch.arange(_SCREAMING_SNAKE_CASE )[0:3, None].repeat(1 , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __lowerCAmelCase : Tuple = scheduler.batch_step_no_noise(_SCREAMING_SNAKE_CASE , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) __lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : int = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.scheduler_classes[0] __lowerCAmelCase : Any = self.get_scheduler_config() __lowerCAmelCase : Optional[Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = len(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = self.dummy_model() __lowerCAmelCase : List[str] = self.dummy_sample_deter __lowerCAmelCase : str = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual __lowerCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 __lowerCAmelCase : Tuple = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample __lowerCAmelCase : Any = pred_prev_sample __lowerCAmelCase : Union[str, Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : List[str] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = self.scheduler_classes[0] __lowerCAmelCase : str = self.get_scheduler_config(prediction_type='v_prediction' ) __lowerCAmelCase : Tuple = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = len(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = self.dummy_model() __lowerCAmelCase : Any = self.dummy_sample_deter __lowerCAmelCase : int = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual __lowerCAmelCase : str = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 __lowerCAmelCase : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample __lowerCAmelCase : int = pred_prev_sample __lowerCAmelCase : int = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Optional[Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = self.scheduler_classes[0] __lowerCAmelCase : Optional[Any] = self.get_scheduler_config() __lowerCAmelCase : Tuple = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = scheduler.timesteps for i, timestep in enumerate(_SCREAMING_SNAKE_CASE ): if i == len(_SCREAMING_SNAKE_CASE ) - 1: __lowerCAmelCase : Optional[int] = -1 else: __lowerCAmelCase : Dict = timesteps[i + 1] __lowerCAmelCase : Optional[int] = scheduler.previous_timestep(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = prev_t.item() self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.scheduler_classes[0] __lowerCAmelCase : List[Any] = self.get_scheduler_config() __lowerCAmelCase : Union[str, Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(_SCREAMING_SNAKE_CASE , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.scheduler_classes[0] __lowerCAmelCase : List[str] = self.get_scheduler_config() __lowerCAmelCase : Optional[Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = [1_00, 87, 50, 1, 0] __lowerCAmelCase : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] __lowerCAmelCase : Any = self.get_scheduler_config() __lowerCAmelCase : Optional[int] = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( _SCREAMING_SNAKE_CASE , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
86
def _A ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ): # Return True if there is node that has not iterated. UpperCamelCase :Tuple = [False] * len(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Tuple = [] queue.append(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :int = True while queue: UpperCamelCase :Optional[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Union[str, Any] = True UpperCamelCase :Optional[int] = u return visited[t] def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ): # This array is filled by BFS and to store path UpperCamelCase :Optional[int] = [-1] * (len(SCREAMING_SNAKE_CASE__ )) UpperCamelCase :Optional[int] = 0 while bfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Dict = float('''Inf''' ) UpperCamelCase :str = sink while s != source: # Find the minimum value in select path UpperCamelCase :Optional[Any] = min(SCREAMING_SNAKE_CASE__ , graph[parent[s]][s] ) UpperCamelCase :Any = parent[s] max_flow += path_flow UpperCamelCase :Tuple = sink while v != source: UpperCamelCase :List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCamelCase :Any = parent[v] return max_flow __snake_case = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __snake_case , __snake_case = 0, 5 print(ford_fulkerson(graph, source, sink))
259
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = [] if len(lowercase__ ) == 1: return [nums.copy()] for _ in range(len(lowercase__ ) ): A = nums.pop(0 ) A = permute(lowercase__ ) for perm in permutations: perm.append(lowercase__ ) result.extend(lowercase__ ) nums.append(lowercase__ ) return result def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" def backtrack(lowercase__ ): if start == len(lowercase__ ) - 1: output.append(nums[:] ) else: for i in range(lowercase__ , len(lowercase__ ) ): A , A = nums[i], nums[start] backtrack(start + 1 ) A , A = nums[i], nums[start] # backtrack A = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __A : Optional[int] = permutea([1, 2, 3]) print(res) doctest.testmod()
352
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def __SCREAMING_SNAKE_CASE ( lowercase__=None ): """simple docstring""" if subparsers is not None: A = subparsers.add_parser("env" ) else: A = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file" , default=lowercase__ , help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = torch.__version__ A = torch.cuda.is_available() A = is_xpu_available() A = is_npu_available() A = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowercase__ ): A = load_config_from_file(args.config_file ).to_dict() A = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": F"""{pt_version} ({pt_cuda_available})""", "PyTorch XPU available": str(lowercase__ ), "PyTorch NPU available": str(lowercase__ ), "System RAM": F"""{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB""", } if pt_cuda_available: A = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) A = ( "\n".join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowercase__ , lowercase__ ) else F"""\t{accelerate_config}""" ) print(lowercase__ ) A = accelerate_config return info def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = env_command_parser() A = parser.parse_args() env_command(lowercase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
57
0
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run lowercase = True except (ImportError, AttributeError): lowercase = object def __UpperCAmelCase ( *a_ , **a_): pass lowercase = False lowercase = logging.get_logger("transformers-cli/serving") def __UpperCAmelCase ( a_): snake_case_ = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(lowercase__ , args.host , args.port , args.workers) class UpperCamelCase_ ( A__ ): '''simple docstring''' lowerCAmelCase = 42 class UpperCamelCase_ ( A__ ): '''simple docstring''' lowerCAmelCase = 42 lowerCAmelCase = 42 class UpperCamelCase_ ( A__ ): '''simple docstring''' lowerCAmelCase = 42 class UpperCamelCase_ ( A__ ): '''simple docstring''' lowerCAmelCase = 42 class UpperCamelCase_ ( A__ ): '''simple docstring''' @staticmethod def _UpperCamelCase ( a ) -> Any: snake_case_ = parser.add_parser( 'serve' , help='CLI tool to run inference requests through REST and GraphQL endpoints.' ) serve_parser.add_argument( '--task' , type=lowerCAmelCase__ , choices=get_supported_tasks() , help='The task to run the pipeline on' , ) serve_parser.add_argument('--host' , type=lowerCAmelCase__ , default='localhost' , help='Interface the server will listen on.' ) serve_parser.add_argument('--port' , type=lowerCAmelCase__ , default=88_88 , help='Port the serving will listen to.' ) serve_parser.add_argument('--workers' , type=lowerCAmelCase__ , default=1 , help='Number of http workers' ) serve_parser.add_argument('--model' , type=lowerCAmelCase__ , help='Model\'s name or path to stored model.' ) serve_parser.add_argument('--config' , type=lowerCAmelCase__ , help='Model\'s config name or path to stored model.' ) serve_parser.add_argument('--tokenizer' , type=lowerCAmelCase__ , help='Tokenizer name to use.' ) serve_parser.add_argument( '--device' , type=lowerCAmelCase__ , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) serve_parser.set_defaults(func=lowerCAmelCase__ ) def __init__( self , a , a , a , a ) -> Any: snake_case_ = pipeline snake_case_ = host snake_case_ = port snake_case_ = workers if not _serve_dependencies_installed: raise RuntimeError( 'Using serve command requires FastAPI and uvicorn. ' 'Please install transformers with [serving]: pip install "transformers[serving]".' 'Or install FastAPI and uvicorn separately.' ) else: logger.info(F'''Serving model over {host}:{port}''' ) snake_case_ = FastAPI( routes=[ APIRoute( '/' , self.model_info , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['GET'] , ), APIRoute( '/tokenize' , self.tokenize , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['POST'] , ), APIRoute( '/detokenize' , self.detokenize , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['POST'] , ), APIRoute( '/forward' , self.forward , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['POST'] , ), ] , timeout=6_00 , ) def _UpperCamelCase ( self ) -> Optional[int]: run(self._app , host=self.host , port=self.port , workers=self.workers ) def _UpperCamelCase ( self ) -> Any: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def _UpperCamelCase ( self , a = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , a = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) ) -> Any: try: snake_case_ = self._pipeline.tokenizer.tokenize(lowerCAmelCase__ ) if return_ids: snake_case_ = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) return ServeTokenizeResult(tokens=lowerCAmelCase__ , tokens_ids=lowerCAmelCase__ ) else: return ServeTokenizeResult(tokens=lowerCAmelCase__ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'model': '', 'error': str(lowerCAmelCase__ )} ) def _UpperCamelCase ( self , a = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , a = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , a = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , ) -> List[Any]: try: snake_case_ = self._pipeline.tokenizer.decode(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return ServeDeTokenizeResult(model='' , text=lowerCAmelCase__ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'model': '', 'error': str(lowerCAmelCase__ )} ) async def _UpperCamelCase ( self , a=Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) ) -> Optional[int]: # Check we don't have empty string if len(lowerCAmelCase__ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model snake_case_ = self._pipeline(lowerCAmelCase__ ) return ServeForwardResult(output=lowerCAmelCase__ ) except Exception as e: raise HTTPException(5_00 , {'error': str(lowerCAmelCase__ )} )
178
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __lowerCAmelCase : Optional[Any] ='\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' __lowerCAmelCase : Any ='\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' __lowerCAmelCase : Optional[Any] =r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Optional[Any] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def __magic_name__( self :Any , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Tuple = 0.0 for i, j in zip(lowerCAmelCase__ , lowerCAmelCase__ ): n_correct += 1.0 if math_equivalence.is_equiv(lowerCAmelCase__ , lowerCAmelCase__ ) else 0.0 __SCREAMING_SNAKE_CASE : str = n_correct / len(lowerCAmelCase__ ) return { "accuracy": accuracy, }
9
0
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Union[str, Any] , snake_case : List[str]=None )-> Any: '''simple docstring''' assert torch_layer.weight.shape == weight.shape, f'{torch_layer} layer.weight does not match' UpperCAmelCase__ : Dict = nn.Parameter(snake_case ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'{torch_layer} layer.bias does not match' UpperCAmelCase__ : Union[str, Any] = nn.Parameter(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple , snake_case : int )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : str = np.asarray(weights[0] ) UpperCAmelCase__ : int = np.asarray(weights[1] ) UpperCAmelCase__ : List[str] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(snake_case ).transpose(1 , 2 ).contiguous().view(-1 , snake_case ) , ) set_param( torch_layer.self_attention.value , torch.tensor(snake_case ).transpose(1 , 2 ).contiguous().view(-1 , snake_case ) , ) set_param( torch_layer.output.dense , torch.tensor(snake_case ).view(-1 , snake_case ).contiguous().transpose(0 , 1 ) , ) def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int , snake_case : List[Any] )-> Any: '''simple docstring''' UpperCAmelCase__ : Any = np.asarray(weights[0] ) UpperCAmelCase__ : Any = np.asarray(weights[1] ) UpperCAmelCase__ : Union[str, Any] = np.asarray(weights[2] ) UpperCAmelCase__ : Union[str, Any] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(snake_case ).transpose(1 , 2 ).contiguous().view(-1 , snake_case ) , ) set_param( torch_layer.self_attention.key , torch.tensor(snake_case ).transpose(1 , 2 ).contiguous().view(-1 , snake_case ) , ) set_param( torch_layer.self_attention.value , torch.tensor(snake_case ).transpose(1 , 2 ).contiguous().view(-1 , snake_case ) , ) set_param( torch_layer.output.dense , torch.tensor(snake_case ).view(-1 , snake_case ).contiguous().transpose(0 , 1 ) , ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Any , snake_case : int )-> Any: '''simple docstring''' UpperCAmelCase__ : List[Any] = weights[0][0][0] UpperCAmelCase__ : Optional[Any] = np.asarray(layer_norm_a[0] ) UpperCAmelCase__ : Optional[int] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(snake_case ) , torch.tensor(snake_case ) , ) # lsh weights + output UpperCAmelCase__ : List[Any] = weights[0][1] if len(snake_case ) < 4: set_layer_weights_in_torch_lsh(snake_case , torch_block.attention , snake_case ) else: set_layer_weights_in_torch_local(snake_case , torch_block.attention , snake_case ) # intermediate weighs UpperCAmelCase__ : Any = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case ) == 4: UpperCAmelCase__ : int = intermediate_weights[2] # layernorm 2 UpperCAmelCase__ : Optional[int] = np.asarray(intermediate_weights[0][0] ) UpperCAmelCase__ : Optional[int] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(snake_case ) , torch.tensor(snake_case ) , ) # intermediate dense UpperCAmelCase__ : List[Any] = np.asarray(intermediate_weights[1][0] ) UpperCAmelCase__ : Union[str, Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(snake_case ).transpose(0 , 1 ).contiguous() , torch.tensor(snake_case ) , ) # intermediate out UpperCAmelCase__ : Any = np.asarray(intermediate_weights[4][0] ) UpperCAmelCase__ : Optional[int] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(snake_case ).transpose(0 , 1 ).contiguous() , torch.tensor(snake_case ) , ) def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str , snake_case : str )-> List[str]: '''simple docstring''' UpperCAmelCase__ : str = torch_model.reformer # word embeds UpperCAmelCase__ : int = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(snake_case ) , ) if isinstance(weights[3] , snake_case ): UpperCAmelCase__ : Optional[int] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): UpperCAmelCase__ : Tuple = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'{position_embeddings[emb_idx]} emb does not match' UpperCAmelCase__ : List[str] = nn.Parameter(torch.tensor(snake_case ) ) UpperCAmelCase__ : List[str] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): UpperCAmelCase__ : Optional[int] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case , snake_case , snake_case ) # output layer norm UpperCAmelCase__ : List[str] = np.asarray(weights[7][0] ) UpperCAmelCase__ : Optional[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(snake_case ) , torch.tensor(snake_case ) , ) # output embeddings UpperCAmelCase__ : Optional[Any] = np.asarray(weights[9][0] ) UpperCAmelCase__ : int = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(snake_case ).transpose(0 , 1 ).contiguous() , torch.tensor(snake_case ) , ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : List[Any] , snake_case : List[str] )-> str: '''simple docstring''' UpperCAmelCase__ : int = ReformerConfig.from_json_file(snake_case ) print(f'Building PyTorch model from configuration: {config}' ) UpperCAmelCase__ : Tuple = ReformerModelWithLMHead(snake_case ) with open(snake_case , "rb" ) as f: UpperCAmelCase__ : Dict = pickle.load(snake_case )["weights"] set_model_weights_in_torch(snake_case , snake_case , config.hidden_size ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , snake_case ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _lowerCAmelCase : List[str] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
298
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE__ ( snake_case : Dataset , snake_case : Dict[str, str] )-> Any: '''simple docstring''' UpperCAmelCase__ : str = args.log_outputs UpperCAmelCase__ : str = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric UpperCAmelCase__ : List[str] = load_metric("wer" ) UpperCAmelCase__ : Tuple = load_metric("cer" ) # compute metrics UpperCAmelCase__ : List[str] = wer.compute(references=result["target"] , predictions=result["prediction"] ) UpperCAmelCase__ : Tuple = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results UpperCAmelCase__ : Union[str, Any] = f'WER: {wer_result}\nCER: {cer_result}' print(snake_case ) with open(f'{dataset_id}_eval_results.txt' , "w" ) as f: f.write(snake_case ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCAmelCase__ : str = f'log_{dataset_id}_predictions.txt' UpperCAmelCase__ : List[str] = f'log_{dataset_id}_targets.txt' with open(snake_case , "w" ) as p, open(snake_case , "w" ) as t: # mapping function to write output def write_to_file(snake_case : List[Any] , snake_case : List[str] ): p.write(f'{i}' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(f'{i}' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case , with_indices=snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str: '''simple docstring''' UpperCAmelCase__ : str = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCAmelCase__ : str = re.sub(snake_case , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCAmelCase__ : Tuple = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: UpperCAmelCase__ : List[Any] = " ".join(text.split(snake_case ) ) return text def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCAmelCase__ : str = feature_extractor.sampling_rate # resample audio UpperCAmelCase__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case ) ) # load eval pipeline if args.device is None: UpperCAmelCase__ : List[str] = 0 if torch.cuda.is_available() else -1 UpperCAmelCase__ : Optional[int] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case : Any ): UpperCAmelCase__ : List[str] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCAmelCase__ : List[Any] = prediction["text"] UpperCAmelCase__ : Optional[int] = normalize_text(batch["sentence"] ) return batch # run inference on all examples UpperCAmelCase__ : Dict = dataset.map(snake_case , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case , snake_case ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCAmelCase : Tuple = parser.parse_args() main(args)
298
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm a__ = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ ( UpperCAmelCase__ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **_a ) -> Any: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _a : Dict = deprecated_arg[3:] setattr(self , snake_case_ , not kwargs.pop(snake_case_ ) ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) _a : Optional[int] = kwargs.pop('''torchscript''' , self.torchscript ) _a : List[Any] = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) _a : Optional[int] = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**snake_case_ ) UpperCAmelCase__ : bool = field(default=UpperCAmelCase__ , metadata={"help": "Trace the models using torchscript"} ) UpperCAmelCase__ : bool = field(default=UpperCAmelCase__ , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) UpperCAmelCase__ : str = field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def __lowercase ( self ) -> Optional[int]: requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: _a : Optional[Any] = torch.device('''cpu''' ) _a : Optional[int] = 0 elif is_torch_tpu_available(): _a : int = xm.xla_device() _a : Union[str, Any] = 0 else: _a : Dict = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) _a : Optional[Any] = torch.cuda.device_count() return device, n_gpu @property def __lowercase ( self ) -> Dict: return is_torch_tpu_available() and self.tpu @property def __lowercase ( self ) -> Dict: requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __lowercase ( self ) -> int: requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def __lowercase ( self ) -> int: requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def __lowercase ( self ) -> List[Any]: return self.n_gpu > 0
235
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : Optional[Any] = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : Tuple = """informer""" lowercase_ : str = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , snake_case_ = None , snake_case_ = None , snake_case_ = "student_t" , snake_case_ = "nll" , snake_case_ = 1 , snake_case_ = None , snake_case_ = "mean" , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = 6_4 , snake_case_ = 3_2 , snake_case_ = 3_2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = True , snake_case_ = "gelu" , snake_case_ = 0.05 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 1_0_0 , snake_case_ = 0.02 , snake_case_=True , snake_case_ = "prob" , snake_case_ = 5 , snake_case_ = True , **snake_case_ , ): """simple docstring""" A_ : str = prediction_length A_ : List[Any] = context_length or prediction_length A_ : str = distribution_output A_ : Dict = loss A_ : Any = input_size A_ : Union[str, Any] = num_time_features A_ : Optional[Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] A_ : List[Any] = scaling A_ : Tuple = num_dynamic_real_features A_ : Any = num_static_real_features A_ : str = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) A_ : Optional[int] = cardinality else: A_ : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) A_ : Any = embedding_dimension else: A_ : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] A_ : int = num_parallel_samples # Transformer architecture configuration A_ : str = input_size * len(self.lags_sequence ) + self._number_of_features A_ : List[Any] = d_model A_ : Dict = encoder_attention_heads A_ : Dict = decoder_attention_heads A_ : List[Any] = encoder_ffn_dim A_ : Union[str, Any] = decoder_ffn_dim A_ : int = encoder_layers A_ : Any = decoder_layers A_ : List[Any] = dropout A_ : str = attention_dropout A_ : Tuple = activation_dropout A_ : List[str] = encoder_layerdrop A_ : List[str] = decoder_layerdrop A_ : str = activation_function A_ : Optional[int] = init_std A_ : List[Any] = use_cache # Informer A_ : Tuple = attention_type A_ : List[Any] = sampling_factor A_ : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def lowerCamelCase_ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
286
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class __UpperCAmelCase : __lowercase = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) __lowercase = field( default=_lowerCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __lowercase = field( default=_lowerCamelCase , metadata={"""help""": """The column name of the images in the files."""} ) __lowercase = field(default=_lowerCamelCase , metadata={"""help""": """A folder containing the training data."""} ) __lowercase = field(default=_lowerCamelCase , metadata={"""help""": """A folder containing the validation data."""} ) __lowercase = field( default=0.1_5 , metadata={"""help""": """Percent to split off of train for validation."""} ) __lowercase = field( default=_lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __lowercase = field( default=_lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = {} if self.train_dir is not None: _snake_case = self.train_dir if self.validation_dir is not None: _snake_case = self.validation_dir _snake_case = data_files if data_files else None @dataclass class __UpperCAmelCase : __lowercase = field( default=_lowerCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) __lowercase = field( default=_lowerCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) __lowercase = field( default=_lowerCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) __lowercase = field( default=_lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) __lowercase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __lowercase = field(default=_lowerCamelCase , metadata={"""help""": """Name or path of preprocessor config."""} ) __lowercase = field( default=_lowerCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __lowercase = field( default=0.7_5 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) __lowercase = field( default=_lowerCamelCase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def SCREAMING_SNAKE_CASE__ ( __A ) -> List[Any]: _snake_case = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case , _snake_case , _snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case , _snake_case , _snake_case = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , __A , __A ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _snake_case = training_args.get_process_log_level() logger.setLevel(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. _snake_case = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _snake_case = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _snake_case = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _snake_case = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __A ) and data_args.train_val_split > 0.0: _snake_case = ds['train'].train_test_split(data_args.train_val_split ) _snake_case = split['train'] _snake_case = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _snake_case = ViTMAEConfig.from_pretrained(model_args.config_name , **__A ) elif model_args.model_name_or_path: _snake_case = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **__A ) else: _snake_case = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _snake_case = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **__A ) elif model_args.model_name_or_path: _snake_case = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **__A ) else: _snake_case = ViTImageProcessor() # create model if model_args.model_name_or_path: _snake_case = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _snake_case = ViTMAEForPreTraining(__A ) if training_args.do_train: _snake_case = ds['train'].column_names else: _snake_case = ds['validation'].column_names if data_args.image_column_name is not None: _snake_case = data_args.image_column_name elif "image" in column_names: _snake_case = 'image' elif "img" in column_names: _snake_case = 'img' else: _snake_case = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _snake_case = image_processor.size['shortest_edge'] else: _snake_case = (image_processor.size['height'], image_processor.size['width']) _snake_case = Compose( [ Lambda(lambda __A : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(__A , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(__A ): _snake_case = [transforms(__A ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _snake_case = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__A ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _snake_case = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__A ) # Compute absolute learning rate _snake_case = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _snake_case = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer _snake_case = Trainer( model=__A , args=__A , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: _snake_case = None if training_args.resume_from_checkpoint is not None: _snake_case = training_args.resume_from_checkpoint elif last_checkpoint is not None: _snake_case = last_checkpoint _snake_case = trainer.train(resume_from_checkpoint=__A ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _snake_case = trainer.evaluate() trainer.log_metrics('eval' , __A ) trainer.save_metrics('eval' , __A ) # Write model card and (optionally) push to hub _snake_case = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) def SCREAMING_SNAKE_CASE__ ( __A ) -> int: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
353
'''simple docstring''' from __future__ import annotations from collections import namedtuple def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> tuple: _snake_case = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
160
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
130
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True ): """simple docstring""" print(F"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": lowercase__ : Union[str, Any] = timm.create_model("levit_128s" , pretrained=lowerCamelCase__ ) else: lowercase__ : Union[str, Any] = timm.create_model("levit_128" , pretrained=lowerCamelCase__ ) if hidden_sizes == 192: lowercase__ : Dict = timm.create_model("levit_192" , pretrained=lowerCamelCase__ ) if hidden_sizes == 256: lowercase__ : Optional[Any] = timm.create_model("levit_256" , pretrained=lowerCamelCase__ ) if hidden_sizes == 384: lowercase__ : List[str] = timm.create_model("levit_384" , pretrained=lowerCamelCase__ ) from_model.eval() lowercase__ : Union[str, Any] = LevitForImageClassificationWithTeacher(lowerCamelCase__ ).eval() lowercase__ : Tuple = OrderedDict() lowercase__ : Dict = from_model.state_dict() lowercase__ : Union[str, Any] = list(from_model.state_dict().keys() ) lowercase__ : Any = list(our_model.state_dict().keys() ) print(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for i in range(len(lowerCamelCase__ ) ): lowercase__ : Union[str, Any] = weights[og_keys[i]] our_model.load_state_dict(lowerCamelCase__ ) lowercase__ : List[str] = torch.randn((2, 3, 224, 224) ) lowercase__ : Optional[Any] = from_model(lowerCamelCase__ ) lowercase__ : Optional[Any] = our_model(lowerCamelCase__ ).logits assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ ), "The model logits don't match the original one." lowercase__ : Optional[Any] = name print(lowerCamelCase__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ : Union[str, Any] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F"""Pushed {checkpoint_name}""" ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = True ): """simple docstring""" lowercase__ : Optional[Any] = "imagenet-1k-id2label.json" lowercase__ : str = 1_000 lowercase__ : Any = (1, num_labels) lowercase__ : Optional[Any] = "huggingface/label-files" lowercase__ : Optional[Any] = num_labels lowercase__ : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowercase__ : Optional[int] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowercase__ : Dict = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Optional[Any] = partial(lowerCamelCase__ , num_labels=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid=lowerCamelCase__ ) lowercase__ : List[str] = { "levit-128S": 128, "levit-128": 128, "levit-192": 192, "levit-256": 256, "levit-384": 384, } lowercase__ : int = { "levit-128S": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-128": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-192": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-256": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-384": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , lowerCamelCase__ , names_to_config[model_name] , lowerCamelCase__ , lowerCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
130
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ = 'vision-encoder-decoder' lowerCAmelCase__ = True def __init__( self , **UpperCAmelCase ) -> List[str]: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'A configuraton of type {self.model_type} cannot be instantiated because ' F'not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}' ) lowercase_ = kwargs.pop("encoder" ) lowercase_ = encoder_config.pop("model_type" ) lowercase_ = kwargs.pop("decoder" ) lowercase_ = decoder_config.pop("model_type" ) lowercase_ = AutoConfig.for_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowercase_ = AutoConfig.for_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowercase_ = True @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> PretrainedConfig: '''simple docstring''' logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) lowercase_ = True lowercase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = copy.deepcopy(self.__dict__ ) lowercase_ = self.encoder.to_dict() lowercase_ = self.decoder.to_dict() lowercase_ = self.__class__.model_type return output class __lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ = version.parse("1.11" ) @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def A__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class __lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowercase_ = OrderedDict() lowercase_ = {0: "batch", 1: "past_decoder_sequence + sequence"} lowercase_ = {0: "batch", 1: "past_decoder_sequence + sequence"} lowercase_ = {0: "batch", 1: "encoder_sequence"} return common_inputs def A__ ( self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' import torch lowercase_ = OrderedDict() lowercase_ = super().generate_dummy_inputs( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) lowercase_ = dummy_input["input_ids"].shape lowercase_ = (batch, encoder_sequence, self._config.encoder_hidden_size) lowercase_ = dummy_input.pop("input_ids" ) lowercase_ = dummy_input.pop("attention_mask" ) lowercase_ = torch.zeros(_SCREAMING_SNAKE_CASE ) return common_inputs class __lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def A__ ( self ) -> None: '''simple docstring''' pass def A__ ( self , UpperCAmelCase ) -> OnnxConfig: '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(_SCREAMING_SNAKE_CASE ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = "default" ) -> OnnxConfig: '''simple docstring''' lowercase_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
364
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__ = { """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any ): '''simple docstring''' with open(__lowerCamelCase , "r" ) as f: lowercase_ = f.read().splitlines() return [l.strip() for l in lines] class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<unk>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase="<eos>" , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = load_vocab_file(UpperCAmelCase ) lowercase_ = dict(enumerate(self.all_tokens ) ) lowercase_ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ = unk_token lowercase_ = cls_token lowercase_ = pad_token lowercase_ = mask_token lowercase_ = eos_token lowercase_ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return text.split() def A__ ( self , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' return len(self._id_to_token ) def A__ ( self ) -> Tuple: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.cls_token_id] lowercase_ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ = [1] + ([0] * len(UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase ) + [1] return mask def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = os.path.join(UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(UpperCAmelCase , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def A__ ( self ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = False ) -> int: '''simple docstring''' return super()._add_tokens(UpperCAmelCase , special_tokens=UpperCAmelCase )
297
0
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Optional[int] = FlaxAutoencoderKL @property def __lowercase ( self : str ): _a : Dict = 4 _a : Dict = 3 _a : str = (32, 32) _a : Tuple = jax.random.PRNGKey(0 ) _a : List[str] = jax.random.uniform(_UpperCAmelCase ,((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def __lowercase ( self : Tuple ): _a : Any = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } _a : Any = self.dummy_input return init_dict, inputs_dict
89
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = False while is_sorted is False: # Until all the indices are traversed keep looping __lowerCAmelCase = True for i in range(0 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __lowerCAmelCase , __lowerCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order __lowerCAmelCase = False for i in range(1 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __lowerCAmelCase , __lowerCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order __lowerCAmelCase = False return input_list if __name__ == "__main__": print("Enter list to be sorted") A : Union[str, Any] = [int(x) for x in input().split()] # inputing elements of the list in one line A : str = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
57
0
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class UpperCAmelCase_ ( nn.Module ): """simple docstring""" lowercase = 42 lowercase = jnp.floataa def lowerCamelCase ( self : List[str] ): snake_case__ : List[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[Any] , snake_case_ : List[str] ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[Any] = hidden_states.shape snake_case__ : List[Any] = jax.image.resize( _snake_case , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) snake_case__ : Dict = self.conv(_snake_case ) return hidden_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" lowercase = 42 lowercase = jnp.floataa def lowerCamelCase ( self : List[Any] ): snake_case__ : Dict = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Dict , snake_case_ : Optional[Any] ): snake_case__ : List[str] = self.conv(_snake_case ) return hidden_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" lowercase = 42 lowercase = None lowercase = 0.0 lowercase = None lowercase = jnp.floataa def lowerCamelCase ( self : int ): snake_case__ : Tuple = self.in_channels if self.out_channels is None else self.out_channels snake_case__ : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) snake_case__ : str = nn.Conv( _snake_case , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) snake_case__ : Any = nn.Dense(_snake_case , dtype=self.dtype ) snake_case__ : List[str] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) snake_case__ : Optional[Any] = nn.Dropout(self.dropout_prob ) snake_case__ : int = nn.Conv( _snake_case , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) snake_case__ : Dict = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut snake_case__ : str = None if use_nin_shortcut: snake_case__ : Optional[Any] = nn.Conv( _snake_case , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self : Optional[int] , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Optional[int]=True ): snake_case__ : List[Any] = hidden_states snake_case__ : Tuple = self.norma(_snake_case ) snake_case__ : str = nn.swish(_snake_case ) snake_case__ : Union[str, Any] = self.conva(_snake_case ) snake_case__ : List[Any] = self.time_emb_proj(nn.swish(_snake_case ) ) snake_case__ : Optional[int] = jnp.expand_dims(jnp.expand_dims(_snake_case , 1 ) , 1 ) snake_case__ : Tuple = hidden_states + temb snake_case__ : Optional[Any] = self.norma(_snake_case ) snake_case__ : int = nn.swish(_snake_case ) snake_case__ : Tuple = self.dropout(_snake_case , _snake_case ) snake_case__ : Tuple = self.conva(_snake_case ) if self.conv_shortcut is not None: snake_case__ : Tuple = self.conv_shortcut(_snake_case ) return hidden_states + residual
361
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __a = logging.getLogger(__name__) class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Union[str, Any] , snake_case_ : Any , snake_case_ : int , snake_case_ : str , snake_case_ : Tuple=None ): super().__init__( snake_case_ , question_encoder_tokenizer=snake_case_ , generator_tokenizer=snake_case_ , index=snake_case_ , init_retrieval=snake_case_ , ) snake_case__ : int = None def lowerCamelCase ( self : int , snake_case_ : int ): logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually snake_case__ : Optional[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port snake_case__ : int = str(distributed_port + 1 ) snake_case__ : List[str] = dist.new_group(ranks=snake_case_ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowerCamelCase ( self : Optional[Any] ): return dist.get_rank(group=self.process_group ) == 0 def lowerCamelCase ( self : int , snake_case_ : str , snake_case_ : int , snake_case_ : int=torch.floataa ): snake_case__ : str = torch.empty(snake_case_ , dtype=snake_case_ ) dist.scatter(snake_case_ , src=0 , scatter_list=snake_case_ , group=self.process_group ) return target_tensor def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Dict = psutil.net_if_addrs() # a hacky way to deal with varying network interface names snake_case__ : Dict = next((addr for addr in addrs if addr.startswith("""e""" )) , snake_case_ ) return ifname def lowerCamelCase ( self : Tuple , snake_case_ : np.ndarray , snake_case_ : int ): # single GPU training if not dist.is_initialized(): snake_case__ , snake_case__ : Union[str, Any] = self._main_retrieve(snake_case_ , snake_case_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(snake_case_ ) # distributed training snake_case__ : Optional[int] = dist.get_world_size(group=self.process_group ) # gather logic snake_case__ : str = None if self._is_main(): snake_case__ : Any = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(snake_case_ )] dist.gather(torch.tensor(snake_case_ ) , dst=0 , gather_list=snake_case_ , group=self.process_group ) # scatter logic snake_case__ : Union[str, Any] = question_hidden_states.shape[0] snake_case__ : List[str] = [] snake_case__ : Dict = [] if self._is_main(): assert len(snake_case_ ) == world_size snake_case__ , snake_case__ : Union[str, Any] = self._main_retrieve(torch.cat(snake_case_ ).numpy() , snake_case_ ) snake_case__ , snake_case__ : Dict = torch.tensor(snake_case_ ), torch.tensor(snake_case_ ) snake_case__ : Union[str, Any] = self._chunk_tensor(snake_case_ , snake_case_ ) snake_case__ : Union[str, Any] = self._chunk_tensor(snake_case_ , snake_case_ ) snake_case__ : Union[str, Any] = self._scattered(snake_case_ , [n_queries, n_docs] , target_type=torch.intaa ) snake_case__ : Dict = self._scattered(snake_case_ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(snake_case_ )
43
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Any = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["stage2", "stage3", "stage4"] , ) __UpperCamelCase : List[str] = DetaConfig( backbone_config=snake_case__ , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=snake_case__ , with_box_refine=snake_case__ , two_stage=snake_case__ , ) # set labels __UpperCamelCase : Optional[Any] = "huggingface/label-files" if "o365" in model_name: __UpperCamelCase : Dict = 366 __UpperCamelCase : int = "object365-id2label.json" else: __UpperCamelCase : int = 91 __UpperCamelCase : Union[str, Any] = "coco-detection-id2label.json" __UpperCamelCase : Dict = num_labels __UpperCamelCase : Optional[int] = json.load(open(cached_download(hf_hub_url(snake_case__ , snake_case__ , repo_type="dataset" ) ) , "r" ) ) __UpperCamelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCamelCase : Dict = idalabel __UpperCamelCase : int = {v: k for k, v in idalabel.items()} return config def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Optional[Any] = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.0.body.layers.{i}.downsample.reduction.weight", F"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.weight", F"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.bias", F"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", F"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", F"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", F"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", F"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.weight", F"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.bias", F"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.weight", F"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.bias", F"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.weight", F"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", F"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", F"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", F"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", F"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", F"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", F"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.weight", F"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.weight", F"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.bias", F"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : List[Any] = dct.pop(snake_case__ ) __UpperCamelCase : str = val def __lowerCAmelCase ( snake_case__ , snake_case__ ): __UpperCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCamelCase : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCamelCase : Optional[Any] = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) __UpperCamelCase : Optional[int] = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase : Any = in_proj_weight[:dim, :] __UpperCamelCase : Optional[Any] = in_proj_bias[: dim] __UpperCamelCase : Tuple = in_proj_weight[ dim : dim * 2, : ] __UpperCamelCase : List[Any] = in_proj_bias[ dim : dim * 2 ] __UpperCamelCase : List[Any] = in_proj_weight[ -dim :, : ] __UpperCamelCase : Any = in_proj_bias[-dim :] # fmt: on def __lowerCAmelCase ( snake_case__ , snake_case__ ): # transformer decoder self-attention layers __UpperCamelCase : List[str] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __UpperCamelCase : List[str] = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) __UpperCamelCase : List[str] = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase : int = in_proj_weight[:hidden_size, :] __UpperCamelCase : Union[str, Any] = in_proj_bias[:hidden_size] __UpperCamelCase : Union[str, Any] = in_proj_weight[ hidden_size : hidden_size * 2, : ] __UpperCamelCase : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] __UpperCamelCase : Tuple = in_proj_weight[-hidden_size:, :] __UpperCamelCase : Tuple = in_proj_bias[-hidden_size:] def __lowerCAmelCase ( ): __UpperCamelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCamelCase : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Optional[int] = get_deta_config(snake_case__ ) # load original state dict if model_name == "deta-swin-large": __UpperCamelCase : Optional[int] = hf_hub_download(repo_id="nielsr/deta-checkpoints" , filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": __UpperCamelCase : int = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" , filename="deta_swin_pt_o365.pth" ) else: raise ValueError(F"Model name {model_name} not supported" ) __UpperCamelCase : Optional[int] = torch.load(snake_case__ , map_location="cpu" )["model"] # original state dict for name, param in state_dict.items(): print(snake_case__ , param.shape ) # rename keys __UpperCamelCase : Union[str, Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) read_in_swin_q_k_v(snake_case__ , config.backbone_config ) read_in_decoder_q_k_v(snake_case__ , snake_case__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __UpperCamelCase : Union[str, Any] = state_dict.pop(snake_case__ ) __UpperCamelCase : List[str] = val if "input_proj" in key: __UpperCamelCase : Any = state_dict.pop(snake_case__ ) __UpperCamelCase : Optional[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __UpperCamelCase : List[Any] = state_dict.pop(snake_case__ ) __UpperCamelCase : Tuple = val # finally, create HuggingFace model and load state dict __UpperCamelCase : Dict = DetaForObjectDetection(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() __UpperCamelCase : Any = "cuda" if torch.cuda.is_available() else "cpu" model.to(snake_case__ ) # load image processor __UpperCamelCase : Tuple = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image __UpperCamelCase : Dict = prepare_img() __UpperCamelCase : Union[str, Any] = processor(images=snake_case__ , return_tensors="pt" ) __UpperCamelCase : str = encoding["pixel_values"] __UpperCamelCase : str = model(pixel_values.to(snake_case__ ) ) # verify logits print("Logits:" , outputs.logits[0, :3, :3] ) print("Boxes:" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __UpperCamelCase : Any = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) __UpperCamelCase : Optional[int] = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": __UpperCamelCase : Tuple = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) __UpperCamelCase : str = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(snake_case__ ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(snake_case__ ) , atol=1E-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(F"jozhang97/{model_name}" ) processor.push_to_hub(F"jozhang97/{model_name}" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCAmelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
298
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = '''Hello, World!''' _lowerCAmelCase = '''en_XX''' def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Union[str, Any] = Path("data_bin" ) __UpperCamelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(snake_case__ ).parent ) , checkpoint_file=Path(snake_case__ ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(snake_case__ ) , bpe="sentencepiece" , sentencepiece_model=str(Path(snake_case__ ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(snake_case__ ) __UpperCamelCase : List[str] = xmod.model.encoder.sentence_encoder __UpperCamelCase : Optional[int] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __UpperCamelCase : Any = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , snake_case__ ) __UpperCamelCase : Dict = XmodForSequenceClassification(snake_case__ ) if classification_head else XmodForMaskedLM(snake_case__ ) model.eval() # Now let's copy all the weights. # Embeddings __UpperCamelCase : List[Any] = xmod_sent_encoder.embed_tokens.weight __UpperCamelCase : List[Any] = xmod_sent_encoder.embed_positions.weight __UpperCamelCase : str = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __UpperCamelCase : Any = xmod_sent_encoder.layernorm_embedding.weight __UpperCamelCase : str = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __UpperCamelCase : int = model.roberta.encoder.layer[i] __UpperCamelCase : Any = xmod_sent_encoder.layers[i] # self attention __UpperCamelCase : List[str] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) __UpperCamelCase : Dict = xmod_layer.self_attn.q_proj.weight __UpperCamelCase : Optional[Any] = xmod_layer.self_attn.q_proj.bias __UpperCamelCase : Any = xmod_layer.self_attn.k_proj.weight __UpperCamelCase : Tuple = xmod_layer.self_attn.k_proj.bias __UpperCamelCase : Union[str, Any] = xmod_layer.self_attn.v_proj.weight __UpperCamelCase : Any = xmod_layer.self_attn.v_proj.bias # self-attention output __UpperCamelCase : Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) __UpperCamelCase : Union[str, Any] = xmod_layer.self_attn.out_proj.weight __UpperCamelCase : str = xmod_layer.self_attn.out_proj.bias __UpperCamelCase : Dict = xmod_layer.self_attn_layer_norm.weight __UpperCamelCase : Any = xmod_layer.self_attn_layer_norm.bias # intermediate __UpperCamelCase : Dict = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) __UpperCamelCase : List[Any] = xmod_layer.fca.weight __UpperCamelCase : Optional[int] = xmod_layer.fca.bias # output __UpperCamelCase : List[Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) __UpperCamelCase : Tuple = xmod_layer.fca.weight __UpperCamelCase : int = xmod_layer.fca.bias __UpperCamelCase : Dict = xmod_layer.final_layer_norm.weight __UpperCamelCase : int = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __UpperCamelCase : Any = xmod_layer.adapter_layer_norm.weight __UpperCamelCase : int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __UpperCamelCase : Any = bert_output.adapter_modules[lang_code] __UpperCamelCase : Dict = xmod_layer.adapter_modules[lang_code] __UpperCamelCase : int = from_adapter.fca.weight __UpperCamelCase : Dict = from_adapter.fca.bias __UpperCamelCase : List[Any] = from_adapter.fca.weight __UpperCamelCase : int = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __UpperCamelCase : Tuple = xmod_sent_encoder.layer_norm.weight __UpperCamelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: __UpperCamelCase : Optional[Any] = xmod.model.classification_heads["mnli"].dense.weight __UpperCamelCase : Any = xmod.model.classification_heads["mnli"].dense.bias __UpperCamelCase : Tuple = xmod.model.classification_heads["mnli"].out_proj.weight __UpperCamelCase : List[Any] = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head __UpperCamelCase : Any = xmod.model.encoder.lm_head.dense.weight __UpperCamelCase : Optional[Any] = xmod.model.encoder.lm_head.dense.bias __UpperCamelCase : Tuple = xmod.model.encoder.lm_head.layer_norm.weight __UpperCamelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias __UpperCamelCase : Tuple = xmod.model.encoder.lm_head.weight __UpperCamelCase : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __UpperCamelCase : Any = xmod.encode(snake_case__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(snake_case__ ) __UpperCamelCase : Optional[Any] = model(snake_case__ )[0] if classification_head: __UpperCamelCase : int = xmod.model.classification_heads["mnli"](xmod.extract_features(snake_case__ ) ) else: __UpperCamelCase : Optional[Any] = xmod.model(snake_case__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __UpperCamelCase : Dict = torch.max(torch.abs(our_output - their_output ) ).item() print(F"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __UpperCamelCase : Union[str, Any] = torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(snake_case__ ).mkdir(parents=snake_case__ , exist_ok=snake_case__ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) _lowerCAmelCase = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
298
1
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class snake_case ( UpperCAmelCase ): __magic_name__ = 42 __magic_name__ = jnp.floataa __magic_name__ = True def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' super().setup() a : str = nn.Dense(5 , dtype=self.dtype ) def __call__( self : Any , *A : Any , **A : Optional[int] ): '''simple docstring''' a : List[str] = super().__call__(*A , **A ) a : Optional[Any] = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class snake_case ( UpperCAmelCase ): __magic_name__ = FlaxBigBirdForNaturalQuestionsModule def snake_case (A_ :Any , A_ :Any , A_ :Dict , A_ :int , A_ :Optional[Any] , A_ :List[str] ): '''simple docstring''' def cross_entropy(A_ :List[str] , A_ :Optional[Any] , A_ :List[str]=None ): a : Optional[Any] = logits.shape[-1] a : List[str] = (labels[..., None] == jnp.arange(A_ )[None]).astype('f4' ) a : List[Any] = jax.nn.log_softmax(A_ , axis=-1 ) a : Union[str, Any] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: a : Tuple = reduction(A_ ) return loss a : List[Any] = partial(A_ , reduction=jnp.mean ) a : str = cross_entropy(A_ , A_ ) a : List[Any] = cross_entropy(A_ , A_ ) a : List[str] = cross_entropy(A_ , A_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class snake_case : __magic_name__ = '''google/bigbird-roberta-base''' __magic_name__ = 3000 __magic_name__ = 1_0500 __magic_name__ = 128 __magic_name__ = 3 __magic_name__ = 1 __magic_name__ = 5 # tx_args __magic_name__ = 3E-5 __magic_name__ = 0.0 __magic_name__ = 2_0000 __magic_name__ = 0.0095 __magic_name__ = '''bigbird-roberta-natural-questions''' __magic_name__ = '''training-expt''' __magic_name__ = '''data/nq-training.jsonl''' __magic_name__ = '''data/nq-validation.jsonl''' def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=A ) a : Dict = os.path.join(self.base_dir , self.save_dir ) a : Optional[int] = self.batch_size_per_device * jax.device_count() @dataclass class snake_case : __magic_name__ = 42 __magic_name__ = 4096 # no dynamic padding on TPUs def __call__( self : List[Any] , A : Any ): '''simple docstring''' a : List[Any] = self.collate_fn(A ) a : Dict = jax.tree_util.tree_map(A , A ) return batch def lowerCamelCase__ ( self : Optional[int] , A : Optional[int] ): '''simple docstring''' a : Dict = self.fetch_inputs(features['input_ids'] ) a : str = { 'input_ids': jnp.array(A , dtype=jnp.intaa ), 'attention_mask': jnp.array(A , dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa ), } return batch def lowerCamelCase__ ( self : int , A : list ): '''simple docstring''' a : Tuple = [self._fetch_inputs(A ) for ids in input_ids] return zip(*A ) def lowerCamelCase__ ( self : int , A : list ): '''simple docstring''' a : Dict = [1 for _ in range(len(A ) )] while len(A ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def snake_case (A_ :List[Any] , A_ :Dict , A_ :Optional[Any]=None ): '''simple docstring''' if seed is not None: a : Any = dataset.shuffle(seed=A_ ) for i in range(len(A_ ) // batch_size ): a : Optional[Any] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(A_ ) @partial(jax.pmap , axis_name='batch' ) def snake_case (A_ :int , A_ :int , **A_ :Any ): '''simple docstring''' def loss_fn(A_ :Optional[Any] ): a : Tuple = model_inputs.pop('start_labels' ) a : Tuple = model_inputs.pop('end_labels' ) a : Tuple = model_inputs.pop('pooled_labels' ) a : List[Any] = state.apply_fn(**A_ , params=A_ , dropout_rng=A_ , train=A_ ) a : Union[str, Any] = outputs return state.loss_fn( A_ , A_ , A_ , A_ , A_ , A_ , ) a : Any = jax.random.split(A_ ) a : int = jax.value_and_grad(A_ ) a : List[Any] = grad_fn(state.params ) a : Optional[int] = jax.lax.pmean({'loss': loss} , axis_name='batch' ) a : Optional[int] = jax.lax.pmean(A_ , 'batch' ) a : Union[str, Any] = state.apply_gradients(grads=A_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def snake_case (A_ :List[str] , **A_ :str ): '''simple docstring''' a : Tuple = model_inputs.pop('start_labels' ) a : List[Any] = model_inputs.pop('end_labels' ) a : Dict = model_inputs.pop('pooled_labels' ) a : Dict = state.apply_fn(**A_ , params=state.params , train=A_ ) a : Any = outputs a : Dict = state.loss_fn(A_ , A_ , A_ , A_ , A_ , A_ ) a : Optional[int] = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class snake_case ( train_state.TrainState ): __magic_name__ = struct.field(pytree_node=UpperCAmelCase ) @dataclass class snake_case : __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = None def lowerCamelCase__ ( self : Any , A : Optional[Any] , A : Optional[Any] , A : Tuple , A : Optional[Any]=None ): '''simple docstring''' a : Union[str, Any] = model.params a : Tuple = TrainState.create( apply_fn=model.__call__ , params=A , tx=A , loss_fn=A , ) if ckpt_dir is not None: a : Tuple = restore_checkpoint(A , A ) a : Union[str, Any] = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } a : Any = build_tx(**A ) a : Any = train_state.TrainState( step=A , apply_fn=model.__call__ , params=A , tx=A , opt_state=A , ) a : Tuple = args a : List[str] = data_collator a : Optional[Any] = lr a : str = params a : Tuple = jax_utils.replicate(A ) return state def lowerCamelCase__ ( self : List[str] , A : List[str] , A : Dict , A : Union[str, Any] ): '''simple docstring''' a : int = self.args a : Optional[Any] = len(A ) // args.batch_size a : Optional[Any] = jax.random.PRNGKey(0 ) a : Optional[int] = jax.random.split(A , jax.device_count() ) for epoch in range(args.max_epochs ): a : Optional[int] = jnp.array(0 , dtype=jnp.floataa ) a : Optional[int] = get_batched_dataset(A , args.batch_size , seed=A ) a : Any = 0 for batch in tqdm(A , total=A , desc=F'''Running EPOCH-{epoch}''' ): a : Any = self.data_collator(A ) a : Tuple = self.train_step_fn(A , A , **A ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: a : Optional[Any] = jax_utils.unreplicate(state.step ) a : Tuple = running_loss.item() / i a : Optional[int] = self.scheduler_fn(state_step - 1 ) a : Optional[Any] = self.evaluate(A , A ) a : List[str] = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(A ) ) self.logger.log(A , commit=A ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'''-e{epoch}-s{i}''' , state=A ) def lowerCamelCase__ ( self : List[Any] , A : Optional[int] , A : Dict ): '''simple docstring''' a : Any = get_batched_dataset(A , self.args.batch_size ) a : Dict = len(A ) // self.args.batch_size a : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa ) a : str = 0 for batch in tqdm(A , total=A , desc='Evaluating ... ' ): a : Optional[int] = self.data_collator(A ) a : List[str] = self.val_step_fn(A , **A ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def lowerCamelCase__ ( self : int , A : int , A : Optional[Any] ): '''simple docstring''' a : List[Any] = jax_utils.unreplicate(A ) print(F'''SAVING CHECKPOINT IN {save_dir}''' , end=' ... ' ) self.model_save_fn(A , params=state.params ) with open(os.path.join(A , 'opt_state.msgpack' ) , 'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(A , 'args.joblib' ) ) joblib.dump(self.data_collator , os.path.join(A , 'data_collator.joblib' ) ) with open(os.path.join(A , 'training_state.json' ) , 'w' ) as f: json.dump({'step': state.step.item()} , A ) print('DONE' ) def snake_case (A_ :List[Any] , A_ :Optional[int] ): '''simple docstring''' print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=' ... ' ) with open(os.path.join(A_ , 'flax_model.msgpack' ) , 'rb' ) as f: a : Union[str, Any] = from_bytes(state.params , f.read() ) with open(os.path.join(A_ , 'opt_state.msgpack' ) , 'rb' ) as f: a : List[Any] = from_bytes(state.opt_state , f.read() ) a : Optional[int] = joblib.load(os.path.join(A_ , 'args.joblib' ) ) a : List[Any] = joblib.load(os.path.join(A_ , 'data_collator.joblib' ) ) with open(os.path.join(A_ , 'training_state.json' ) , 'r' ) as f: a : List[Any] = json.load(A_ ) a : int = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def snake_case (A_ :Union[str, Any] , A_ :Optional[int] , A_ :int , A_ :Union[str, Any] ): '''simple docstring''' a : Any = num_train_steps - warmup_steps a : Optional[Any] = optax.linear_schedule(init_value=A_ , end_value=A_ , transition_steps=A_ ) a : List[Any] = optax.linear_schedule(init_value=A_ , end_value=1E-7 , transition_steps=A_ ) a : Optional[int] = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def snake_case (A_ :str , A_ :int , A_ :List[str] , A_ :Union[str, Any] , A_ :str ): '''simple docstring''' def weight_decay_mask(A_ :Optional[Any] ): a : Union[str, Any] = traverse_util.flatten_dict(A_ ) a : Optional[int] = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(A_ ) a : Any = scheduler_fn(A_ , A_ , A_ , A_ ) a : int = optax.adamw(learning_rate=A_ , weight_decay=A_ , mask=A_ ) return tx, lr
360
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
186
0
from __future__ import annotations import time import numpy as np _lowerCAmelCase : Optional[Any] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : Tuple = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : """simple docstring""" def __init__( self :Union[str, Any] , snake_case :str , snake_case :Dict , snake_case :Union[str, Any] , ): '''simple docstring''' A_ : Tuple = claim_vector A_ : Any = allocated_resources_table A_ : Union[str, Any] = maximum_claim_table def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_UpperCAmelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return {self.__need().index(_UpperCAmelCase ): i for i in self.__need()} def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : int = self.__need() A_ : int = self.__allocated_resources_table A_ : Tuple = self.__available_resources() A_ : Optional[Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: A_ : str = False for each_need in need_list: A_ : List[str] = True for index, need in enumerate(_UpperCAmelCase ): if need > available_resources[index]: A_ : int = False break if execution: A_ : int = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: A_ : Tuple = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(_UpperCAmelCase ) # update available/freed resources stack A_ : Tuple = np.array(_UpperCAmelCase ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(_UpperCAmelCase ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(_UpperCAmelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(_UpperCAmelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(_UpperCAmelCase ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(_UpperCAmelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
300
"""simple docstring""" A = 9.80665 def __A ( a_ :float , a_ :float , a_ :float = g) -> float: if fluid_density <= 0: raise ValueError('''Impossible fluid density''') if volume < 0: raise ValueError('''Impossible Object volume''') if gravity <= 0: raise ValueError('''Impossible Gravity''') return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
160
0
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=lowerCamelCase_ , dtype=jnp.bfloataa ) lowerCAmelCase__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=lowerCamelCase_ , from_pt=lowerCamelCase_ , dtype=jnp.bfloataa ) lowerCAmelCase__ = controlnet_params lowerCAmelCase__ = 'bird' lowerCAmelCase__ = jax.device_count() lowerCAmelCase__ = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCAmelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) lowerCAmelCase__ = pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCAmelCase__ = jax.random.PRNGKey(0 ) lowerCAmelCase__ = jax.random.split(lowerCamelCase_ , jax.device_count() ) lowerCAmelCase__ = replicate(lowerCamelCase_ ) lowerCAmelCase__ = shard(lowerCamelCase_ ) lowerCAmelCase__ = shard(lowerCamelCase_ ) lowerCAmelCase__ = pipe( prompt_ids=lowerCamelCase_ , image=lowerCamelCase_ , params=lowerCamelCase_ , prng_seed=lowerCamelCase_ , num_inference_steps=50 , jit=lowerCamelCase_ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) lowerCAmelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase__ = images[0, 2_53:2_56, 2_53:2_56, -1] lowerCAmelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase__ = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=lowerCamelCase_ , dtype=jnp.bfloataa ) lowerCAmelCase__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=lowerCamelCase_ , from_pt=lowerCamelCase_ , dtype=jnp.bfloataa ) lowerCAmelCase__ = controlnet_params lowerCAmelCase__ = 'Chef in the kitchen' lowerCAmelCase__ = jax.device_count() lowerCAmelCase__ = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCAmelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) lowerCAmelCase__ = pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCAmelCase__ = jax.random.PRNGKey(0 ) lowerCAmelCase__ = jax.random.split(lowerCamelCase_ , jax.device_count() ) lowerCAmelCase__ = replicate(lowerCamelCase_ ) lowerCAmelCase__ = shard(lowerCamelCase_ ) lowerCAmelCase__ = shard(lowerCamelCase_ ) lowerCAmelCase__ = pipe( prompt_ids=lowerCamelCase_ , image=lowerCamelCase_ , params=lowerCamelCase_ , prng_seed=lowerCamelCase_ , num_inference_steps=50 , jit=lowerCamelCase_ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) lowerCAmelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase__ = images[0, 2_53:2_56, 2_53:2_56, -1] lowerCAmelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase__ = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
362
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _snake_case ( A , A , A , A , ) -> list[float]: lowerCAmelCase__ , lowerCAmelCase__ = coefficient_matrix.shape lowerCAmelCase__ , lowerCAmelCase__ = constant_matrix.shape if rowsa != colsa: lowerCAmelCase__ = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(A ) if colsa != 1: lowerCAmelCase__ = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(A ) if rowsa != rowsa: lowerCAmelCase__ = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(A ) if len(A ) != rowsa: lowerCAmelCase__ = ( '''Number of initial values must be equal to number of rows in coefficient ''' F"""matrix but received {len(A )} and {rowsa}""" ) raise ValueError(A ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) lowerCAmelCase__ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowerCAmelCase__ , lowerCAmelCase__ = table.shape strictly_diagonally_dominant(A ) # Iterates the whole matrix for given number of times for _ in range(A ): lowerCAmelCase__ = [] for row in range(A ): lowerCAmelCase__ = 0 for col in range(A ): if col == row: lowerCAmelCase__ = table[row][col] elif col == cols - 1: lowerCAmelCase__ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCAmelCase__ = (temp + val) / denom new_val.append(A ) lowerCAmelCase__ = new_val return [float(A ) for i in new_val] def _snake_case ( A ) -> bool: lowerCAmelCase__ , lowerCAmelCase__ = table.shape lowerCAmelCase__ = True for i in range(0 , A ): lowerCAmelCase__ = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
228
0
import os from math import logaa def lowercase__ ( __snake_case : str = "base_exp.txt" ): '''simple docstring''' UpperCAmelCase_ : float = 0 UpperCAmelCase_ : Tuple = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__snake_case ) , __snake_case ) ) ): UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = list(map(__snake_case , line.split(',' ) ) ) if x * logaa(__snake_case ) > largest: UpperCAmelCase_ : Union[str, Any] = x * logaa(__snake_case ) UpperCAmelCase_ : Dict = i + 1 return result if __name__ == "__main__": print(solution())
29
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def lowerCamelCase__ ( _A , _A ): if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
297
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar SCREAMING_SNAKE_CASE : Optional[Any] = TypeVar("T") class _lowerCamelCase( Generic[T] ): def __init__( self, lowerCamelCase, lowerCamelCase) -> None: """simple docstring""" _lowercase : Any | T = None _lowercase : int = len(lowerCamelCase) _lowercase : list[T] = [any_type for _ in range(self.N)] + arr _lowercase : Optional[int] = fnc self.build() def UpperCamelCase ( self) -> None: """simple docstring""" for p in range(self.N - 1, 0, -1): _lowercase : Optional[int] = self.fn(self.st[p * 2], self.st[p * 2 + 1]) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> None: """simple docstring""" p += self.N _lowercase : str = v while p > 1: _lowercase : List[Any] = p // 2 _lowercase : str = self.fn(self.st[p * 2], self.st[p * 2 + 1]) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> T | None: # noqa: E741 """simple docstring""" _lowercase , _lowercase : List[Any] = l + self.N, r + self.N _lowercase : T | None = None while l <= r: if l % 2 == 1: _lowercase : Optional[Any] = self.st[l] if res is None else self.fn(lowerCamelCase, self.st[l]) if r % 2 == 0: _lowercase : Tuple = self.st[r] if res is None else self.fn(lowerCamelCase, self.st[r]) _lowercase , _lowercase : List[Any] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce SCREAMING_SNAKE_CASE : List[str] = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] SCREAMING_SNAKE_CASE : str = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } SCREAMING_SNAKE_CASE : Tuple = SegmentTree(test_array, min) SCREAMING_SNAKE_CASE : Optional[int] = SegmentTree(test_array, max) SCREAMING_SNAKE_CASE : Any = SegmentTree(test_array, lambda a, b: a + b) def UpperCamelCase_( ) -> None: for i in range(len(lowerCamelCase_ ) ): for j in range(lowerCamelCase_ , len(lowerCamelCase_ ) ): _lowercase : Dict = reduce(lowerCamelCase_ , test_array[i : j + 1] ) _lowercase : int = reduce(lowerCamelCase_ , test_array[i : j + 1] ) _lowercase : Optional[int] = reduce(lambda lowerCamelCase_ , lowerCamelCase_ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(lowerCamelCase_ , lowerCamelCase_ ) assert max_range == max_segment_tree.query(lowerCamelCase_ , lowerCamelCase_ ) assert sum_range == sum_segment_tree.query(lowerCamelCase_ , lowerCamelCase_ ) test_all_segments() for index, value in test_updates.items(): SCREAMING_SNAKE_CASE : Optional[int] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
84
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } SCREAMING_SNAKE_CASE : Tuple = { "b0": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: _lowercase : Union[str, Any] = EfficientNetConfig() _lowercase : Any = CONFIG_MAP[model_name]['hidden_dim'] _lowercase : Any = CONFIG_MAP[model_name]['width_coef'] _lowercase : Optional[int] = CONFIG_MAP[model_name]['depth_coef'] _lowercase : List[Any] = CONFIG_MAP[model_name]['image_size'] _lowercase : Tuple = CONFIG_MAP[model_name]['dropout_rate'] _lowercase : Dict = CONFIG_MAP[model_name]['dw_padding'] _lowercase : str = 'huggingface/label-files' _lowercase : Optional[Any] = 'imagenet-1k-id2label.json' _lowercase : List[Any] = 1000 _lowercase : str = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset' ) , 'r' ) ) _lowercase : Optional[int] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} _lowercase : int = idalabel _lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} return config def UpperCamelCase_( ) -> List[Any]: _lowercase : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase : Tuple = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im def UpperCamelCase_( lowerCamelCase_ ) -> Dict: _lowercase : Tuple = CONFIG_MAP[model_name]['image_size'] _lowercase : List[str] = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=lowerCamelCase_ , ) return preprocessor def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: _lowercase : Tuple = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] _lowercase : Tuple = sorted(set(lowerCamelCase_ ) ) _lowercase : List[Any] = len(lowerCamelCase_ ) _lowercase : List[str] = {b: str(lowerCamelCase_ ) for b, i in zip(lowerCamelCase_ , range(lowerCamelCase_ ) )} _lowercase : Optional[int] = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: _lowercase : Union[str, Any] = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) _lowercase : Optional[Any] = {} for item in rename_keys: if item[0] in original_param_names: _lowercase : str = 'efficientnet.' + item[1] _lowercase : Optional[Any] = 'classifier.weight' _lowercase : List[str] = 'classifier.bias' return key_mapping def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: for key, value in tf_params.items(): if "normalization" in key: continue _lowercase : Any = key_mapping[key] if "_conv" in key and "kernel" in key: _lowercase : Optional[Any] = torch.from_numpy(lowerCamelCase_ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: _lowercase : Dict = torch.from_numpy(lowerCamelCase_ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: _lowercase : Tuple = torch.from_numpy(np.transpose(lowerCamelCase_ ) ) else: _lowercase : List[str] = torch.from_numpy(lowerCamelCase_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCamelCase_ ) @torch.no_grad() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: _lowercase : Any = model_classes[model_name]( include_top=lowerCamelCase_ , weights='imagenet' , input_tensor=lowerCamelCase_ , input_shape=lowerCamelCase_ , pooling=lowerCamelCase_ , classes=1000 , classifier_activation='softmax' , ) _lowercase : int = original_model.trainable_variables _lowercase : Dict = original_model.non_trainable_variables _lowercase : Optional[Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _lowercase : int = param.numpy() _lowercase : int = list(tf_params.keys() ) # Load HuggingFace model _lowercase : int = get_efficientnet_config(lowerCamelCase_ ) _lowercase : List[str] = EfficientNetForImageClassification(lowerCamelCase_ ).eval() _lowercase : str = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) _lowercase : Optional[int] = rename_keys(lowerCamelCase_ ) replace_params(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Initialize preprocessor and preprocess input image _lowercase : Optional[Any] = convert_image_processor(lowerCamelCase_ ) _lowercase : Optional[Any] = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): _lowercase : Any = hf_model(**lowerCamelCase_ ) _lowercase : Optional[int] = outputs.logits.detach().numpy() # Original model inference _lowercase : List[Any] = False _lowercase : List[Any] = CONFIG_MAP[model_name]['image_size'] _lowercase : int = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) _lowercase : Optional[Any] = image.img_to_array(lowerCamelCase_ ) _lowercase : Any = np.expand_dims(lowerCamelCase_ , axis=0 ) _lowercase : Optional[int] = original_model.predict(lowerCamelCase_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(lowerCamelCase_ ): os.mkdir(lowerCamelCase_ ) # Save converted model and image processor hf_model.save_pretrained(lowerCamelCase_ ) preprocessor.save_pretrained(lowerCamelCase_ ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) _lowercase : str = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowerCamelCase_ ) hf_model.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
84
1
from __future__ import annotations import math from collections.abc import Callable def SCREAMING_SNAKE_CASE_ ( __A : Callable[[int | float], int | float] , __A : int | float , __A : int | float , __A : int = 1_00 , ) -> float: """simple docstring""" a_ : Optional[Any] = x_start a_ : List[str] = fnc(__A ) a_ : str = 0.0 for _ in range(__A ): # Approximates curve as a sequence of linear lines and sums their length a_ : List[str] = (x_end - x_start) / steps + xa a_ : List[Any] = fnc(__A ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step a_ : Optional[int] = xa a_ : int = fxa return length if __name__ == "__main__": def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] ) -> Any: """simple docstring""" return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') UpperCAmelCase_ : List[str] = 10 while i <= 10_0000: print(F'With {i} steps: {line_length(f, -10, 10, i)}') i *= 10
32
import math import qiskit def lowerCamelCase ( SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1 ): '''simple docstring''' if ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers __UpperCamelCase :List[str] = qiskit.QuantumRegister(4 , '''qr''' ) __UpperCamelCase :str = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries __UpperCamelCase :Tuple = [input_a, input_a, carry_in] __UpperCamelCase :Optional[int] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(SCREAMING_SNAKE_CASE ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(SCREAMING_SNAKE_CASE ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(SCREAMING_SNAKE_CASE ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE ) # measure the last two qbits __UpperCamelCase :Optional[Any] = qiskit.Aer.get_backend('''aer_simulator''' ) __UpperCamelCase :Tuple = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
43
0
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase__ : Dict =yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) lowerCAmelCase__ : Optional[int] ={ 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } lowerCAmelCase__ : str ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCAmelCase__ : Optional[int] ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCAmelCase__ : Dict ={ 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } lowerCAmelCase__ : Union[str, Any] ='\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCAmelCase__ : List[str] =( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) lowerCAmelCase__ : List[str] ='\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCAmelCase__ : Tuple =( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) lowerCAmelCase__ : str ='\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCAmelCase__ : Tuple ='The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' lowerCAmelCase__ : str ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCAmelCase__ : int ='The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' lowerCAmelCase__ : Any ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' lowerCAmelCase__ : str ='The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' lowerCAmelCase__ : List[str] ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' lowerCAmelCase__ : Any ='The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' lowerCAmelCase__ : Optional[Any] ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' lowerCAmelCase__ : Dict ='The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' lowerCAmelCase__ : str ='\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCAmelCase__ : Optional[Any] ='The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' lowerCAmelCase__ : Optional[int] ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' lowerCAmelCase__ : Dict ='The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' lowerCAmelCase__ : int ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCAmelCase__ : Dict ='The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' lowerCAmelCase__ : Optional[Any] ='' lowerCAmelCase__ : Dict ='The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' lowerCAmelCase__ : Optional[int] ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCAmelCase__ : int ='The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( 'readme_md, expected_dict', [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ], ) def a__ ( A__, A__ ): assert ReadMe.from_string(A__, A__ ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error', [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ], ) def a__ ( A__, A__ ): with pytest.raises(A__, match=re.escape(expected_error.format(path='root' ) ) ): SCREAMING_SNAKE_CASE_ : Tuple = ReadMe.from_string(A__, A__ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error', [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ], ) def a__ ( A__, A__ ): with pytest.raises(A__, match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(A__, A__ ) @pytest.mark.parametrize( 'readme_md,', [ (README_MULTIPLE_SAME_HEADING_1), ], ) def a__ ( A__ ): ReadMe.from_string(A__, A__, suppress_parsing_errors=A__ ) @pytest.mark.parametrize( 'readme_md, expected_dict', [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ], ) def a__ ( A__, A__ ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(A__ ) / 'README.md' with open(A__, 'w+' ) as readme_file: readme_file.write(A__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ReadMe.from_readme(A__, A__ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error', [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ], ) def a__ ( A__, A__ ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : str = Path(A__ ) / 'README.md' with open(A__, 'w+' ) as readme_file: readme_file.write(A__ ) SCREAMING_SNAKE_CASE_ : List[str] = expected_error.format(path=A__ ) with pytest.raises(A__, match=re.escape(A__ ) ): SCREAMING_SNAKE_CASE_ : Tuple = ReadMe.from_readme(A__, A__ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error', [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ], ) def a__ ( A__, A__ ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : int = Path(A__ ) / 'README.md' with open(A__, 'w+' ) as readme_file: readme_file.write(A__ ) SCREAMING_SNAKE_CASE_ : int = expected_error.format(path=A__ ) with pytest.raises(A__, match=re.escape(A__ ) ): ReadMe.from_readme(A__, A__ ) @pytest.mark.parametrize( 'readme_md,', [ (README_MULTIPLE_SAME_HEADING_1), ], ) def a__ ( A__ ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : Dict = Path(A__ ) / 'README.md' with open(A__, 'w+' ) as readme_file: readme_file.write(A__ ) ReadMe.from_readme(A__, A__, suppress_parsing_errors=A__ )
162
# Lint as: python3 import itertools import os import re lowerCAmelCase__ : Optional[int] =re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCAmelCase__ : List[Any] =re.compile(R'([a-z\d])([A-Z])') lowerCAmelCase__ : Dict =re.compile(R'(?<!_)_(?!_)') lowerCAmelCase__ : int =re.compile(R'(_{2,})') lowerCAmelCase__ : Optional[Any] =R'^\w+(\.\w+)*$' lowerCAmelCase__ : List[Any] =R'<>:/\|?*' def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Dict = _uppercase_uppercase_re.sub(r'\1_\2', A__ ) SCREAMING_SNAKE_CASE_ : List[str] = _lowercase_uppercase_re.sub(r'\1_\2', A__ ) return name.lower() def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = _single_underscore_re.split(A__ ) SCREAMING_SNAKE_CASE_ : str = [_multiple_underscores_re.split(A__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A__ ) if n != '' ) def a__ ( A__ ): if os.path.basename(A__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(A__ ) def a__ ( A__, A__ ): if os.path.basename(A__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re, A__ ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(A__ )}-{split}''' def a__ ( A__, A__, A__, A__=None ): SCREAMING_SNAKE_CASE_ : Tuple = filename_prefix_for_split(A__, A__ ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(A__, A__ ) return F'''{filepath}*''' def a__ ( A__, A__, A__, A__=None, A__=None ): SCREAMING_SNAKE_CASE_ : Tuple = filename_prefix_for_split(A__, A__ ) SCREAMING_SNAKE_CASE_ : Dict = os.path.join(A__, A__ ) if shard_lengths: SCREAMING_SNAKE_CASE_ : Dict = len(A__ ) SCREAMING_SNAKE_CASE_ : Any = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(A__ )] if filetype_suffix: SCREAMING_SNAKE_CASE_ : Optional[int] = [filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: SCREAMING_SNAKE_CASE_ : Optional[Any] = prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
162
1
"""simple docstring""" def UpperCamelCase__ ( lowercase__ : int ): if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) snake_case : Optional[int] = sum(lowercase__ ) / len(lowercase__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
148
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""MobileViTFeatureExtractor"""] UpperCamelCase = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
186
0
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCamelCase_ : List[str] = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") lowerCamelCase_ : str = F'https://www.google.com/search?q={query}&num=100' lowerCamelCase_ : Dict = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: lowerCamelCase_ : Tuple = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: lowerCamelCase_ : Optional[Any] = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
215
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase_ : Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") lowerCamelCase_ : Any = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase_ : Dict = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _A ( lowercase ): """simple docstring""" with open(lowercase , '''rb''' ) as f: a =Image.open(lowercase ) return im.convert('''RGB''' ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." }, ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __lowerCAmelCase = field(default=_SCREAMING_SNAKE_CASE, metadata={"help": "A folder containing the training data."} ) __lowerCAmelCase = field(default=_SCREAMING_SNAKE_CASE, metadata={"help": "A folder containing the validation data."} ) __lowerCAmelCase = field( default=0.1_5, metadata={"help": "Percent to split off of train for validation."} ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default="google/vit-base-patch16-224-in21k", metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_SCREAMING_SNAKE_CASE )}, ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) __lowerCAmelCase = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) __lowerCAmelCase = field(default=_SCREAMING_SNAKE_CASE, metadata={"help": "Name or path of preprocessor config."} ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) }, ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."}, ) def _A ( lowercase ): """simple docstring""" a =torch.stack([example['''pixel_values'''] for example in examples] ) a =torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _A ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a , a , a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a , a , a =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''' , lowercase , lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a =training_args.get_process_log_level() logger.setLevel(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , ) else: a ={} if data_args.train_dir is not None: a =os.path.join(data_args.train_dir , '''**''' ) if data_args.validation_dir is not None: a =os.path.join(data_args.validation_dir , '''**''' ) a =load_dataset( '''imagefolder''' , data_files=lowercase , cache_dir=model_args.cache_dir , task='''image-classification''' , ) # If we don't have a validation split, split off a percentage of train as validation. a =None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase ) and data_args.train_val_split > 0.0: a =dataset['''train'''].train_test_split(data_args.train_val_split ) a =split['''train'''] a =split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. a =dataset['''train'''].features['''labels'''].names a , a ={}, {} for i, label in enumerate(lowercase ): a =str(lowercase ) a =label # Load the accuracy metric from the datasets package a =evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) a =AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase ) , labelaid=lowercase , idalabel=lowercase , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) a =AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) a =AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: a =image_processor.size['''shortest_edge'''] else: a =(image_processor.size['''height'''], image_processor.size['''width''']) a =Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) a =Compose( [ RandomResizedCrop(lowercase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) a =Compose( [ Resize(lowercase ), CenterCrop(lowercase ), ToTensor(), normalize, ] ) def train_transforms(lowercase ): a =[ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(lowercase ): a =[_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: a =( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowercase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: a =( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowercase ) # Initalize our trainer a =Trainer( model=lowercase , args=lowercase , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: a =None if training_args.resume_from_checkpoint is not None: a =training_args.resume_from_checkpoint elif last_checkpoint is not None: a =last_checkpoint a =trainer.train(resume_from_checkpoint=lowercase ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: a =trainer.evaluate() trainer.log_metrics('''eval''' , lowercase ) trainer.save_metrics('''eval''' , lowercase ) # Write model card and (optionally) push to hub a ={ '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) if __name__ == "__main__": main()
215
1
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : """simple docstring""" @staticmethod def snake_case__ ( *lowercase_ : Tuple,**lowercase_ : List[str] )-> Optional[Any]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): """simple docstring""" lowerCamelCase = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def snake_case__ ( self : Dict,lowercase_ : Union[str, Any],lowercase_ : Optional[Any],lowercase_ : Tuple )-> int: '''simple docstring''' A__ = pipeline('visual-question-answering',model='hf-internal-testing/tiny-vilt-random-vqa' ) A__ = [ { 'image': Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'question': 'How many cats are there?', }, { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'question': 'How many cats are there?', }, ] return vqa_pipeline, examples def snake_case__ ( self : Optional[Any],lowercase_ : List[str],lowercase_ : Dict )-> Tuple: '''simple docstring''' A__ = vqa_pipeline(lowercase_,top_k=1 ) self.assertEqual( lowercase_,[ [{'score': ANY(lowercase_ ), 'answer': ANY(lowercase_ )}], [{'score': ANY(lowercase_ ), 'answer': ANY(lowercase_ )}], ],) @require_torch def snake_case__ ( self : List[str] )-> Optional[int]: '''simple docstring''' A__ = pipeline('visual-question-answering',model='hf-internal-testing/tiny-vilt-random-vqa' ) A__ = './tests/fixtures/tests_samples/COCO/000000039769.png' A__ = 'How many cats are there?' A__ = vqa_pipeline(image=lowercase_,question='How many cats are there?',top_k=2 ) self.assertEqual( lowercase_,[{'score': ANY(lowercase_ ), 'answer': ANY(lowercase_ )}, {'score': ANY(lowercase_ ), 'answer': ANY(lowercase_ )}] ) A__ = vqa_pipeline({'image': image, 'question': question},top_k=2 ) self.assertEqual( lowercase_,[{'score': ANY(lowercase_ ), 'answer': ANY(lowercase_ )}, {'score': ANY(lowercase_ ), 'answer': ANY(lowercase_ )}] ) @slow @require_torch def snake_case__ ( self : Dict )-> Optional[int]: '''simple docstring''' A__ = pipeline('visual-question-answering',model='dandelin/vilt-b32-finetuned-vqa' ) A__ = './tests/fixtures/tests_samples/COCO/000000039769.png' A__ = 'How many cats are there?' A__ = vqa_pipeline(image=lowercase_,question=lowercase_,top_k=2 ) self.assertEqual( nested_simplify(lowercase_,decimals=4 ),[{'score': 0.8_799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) A__ = vqa_pipeline({'image': image, 'question': question},top_k=2 ) self.assertEqual( nested_simplify(lowercase_,decimals=4 ),[{'score': 0.8_799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) A__ = vqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}],top_k=2 ) self.assertEqual( nested_simplify(lowercase_,decimals=4 ),[[{'score': 0.8_799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}]] * 2,) @require_tf @unittest.skip('Visual question answering not implemented in TF' ) def snake_case__ ( self : str )-> Optional[Any]: '''simple docstring''' pass
7
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __lowerCAmelCase ( pl.LightningModule ): def __init__( self :Union[str, Any] , __magic_name__ :Optional[int] ): '''simple docstring''' super().__init__() a = model a = 2 a = nn.Linear(self.model.config.hidden_size , self.num_labels ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' pass def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: # load longformer model from model identifier a = LongformerModel.from_pretrained(__lowerCamelCase ) a = LightningModel(__lowerCamelCase ) a = torch.load(__lowerCamelCase , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model a = LongformerForQuestionAnswering.from_pretrained(__lowerCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__lowerCamelCase ) print(f'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCamelCase : List[Any] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
228
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> Optional[Any]: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCamelCase_ ( )-> Optional[Any]: with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" _snake_case : List[str] = [1, 2, 3] with pytest.raises(lowerCAmelCase ): with parallel_backend('unsupported backend' ): map_nested(lowerCAmelCase , lowerCAmelCase , num_proc=2 ) with pytest.raises(lowerCAmelCase ): with parallel_backend('unsupported backend' ): map_nested(lowerCAmelCase , lowerCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def lowerCamelCase_ ( lowerCAmelCase: Dict )-> List[Any]: _snake_case : int = [1, 2] _snake_case : int = {'a': 1, 'b': 2} _snake_case : Optional[int] = {'a': [1, 2], 'b': [3, 4]} _snake_case : Tuple = {'a': {'1': 1}, 'b': 2} _snake_case : Union[str, Any] = {'a': 1, 'b': 2, 'c': 3, 'd': 4} _snake_case : Optional[Any] = [2, 3] _snake_case : int = {'a': 2, 'b': 3} _snake_case : Any = {'a': [2, 3], 'b': [4, 5]} _snake_case : str = {'a': {'1': 2}, 'b': 3} _snake_case : List[str] = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(lowerCAmelCase , lowerCAmelCase , num_proc=lowerCAmelCase ) == expected_map_nested_sa assert map_nested(lowerCAmelCase , lowerCAmelCase , num_proc=lowerCAmelCase ) == expected_map_nested_sa assert map_nested(lowerCAmelCase , lowerCAmelCase , num_proc=lowerCAmelCase ) == expected_map_nested_sa assert map_nested(lowerCAmelCase , lowerCAmelCase , num_proc=lowerCAmelCase ) == expected_map_nested_sa assert map_nested(lowerCAmelCase , lowerCAmelCase , num_proc=lowerCAmelCase ) == expected_map_nested_sa
260
import qiskit def lowerCamelCase_ ( lowerCAmelCase: int = 2 )-> qiskit.result.counts.Counts: _snake_case : Dict = qubits # Using Aer's simulator _snake_case : List[str] = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register _snake_case : Tuple = qiskit.QuantumCircuit(lowerCAmelCase , lowerCAmelCase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowerCAmelCase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowerCAmelCase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowerCAmelCase ) ) , list(range(lowerCAmelCase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator _snake_case : Any = qiskit.execute(lowerCAmelCase , lowerCAmelCase , shots=10_00 ) return job.result().get_counts(lowerCAmelCase ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
260
1
"""simple docstring""" from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE : def __init__( self , __A , __A=13 , __A=30 , __A=2 , __A=3 , __A=True , __A=True , __A=32 , __A=2 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=10 , __A=0.0_2 , __A=3 , __A=0.6 , __A=None , ) -> List[Any]: lowerCAmelCase_ :Union[str, Any] = parent lowerCAmelCase_ :Optional[Any] = batch_size lowerCAmelCase_ :Optional[int] = image_size lowerCAmelCase_ :Any = patch_size lowerCAmelCase_ :Dict = num_channels lowerCAmelCase_ :Optional[Any] = is_training lowerCAmelCase_ :Tuple = use_labels lowerCAmelCase_ :List[Any] = hidden_size lowerCAmelCase_ :Dict = num_hidden_layers lowerCAmelCase_ :str = num_attention_heads lowerCAmelCase_ :str = intermediate_size lowerCAmelCase_ :Optional[int] = hidden_act lowerCAmelCase_ :Optional[int] = hidden_dropout_prob lowerCAmelCase_ :List[str] = attention_probs_dropout_prob lowerCAmelCase_ :str = type_sequence_label_size lowerCAmelCase_ :Dict = initializer_range lowerCAmelCase_ :Optional[int] = mask_ratio lowerCAmelCase_ :Dict = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCAmelCase_ :int = (image_size // patch_size) ** 2 lowerCAmelCase_ :int = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ :str = None if self.use_labels: lowerCAmelCase_ :int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ :Any = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) -> Any: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __lowerCAmelCase ( self , __A , __A , __A ) -> str: lowerCAmelCase_ :List[Any] = TFViTMAEModel(config=__A ) lowerCAmelCase_ :Union[str, Any] = model(__A , training=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , __A , __A , __A ) -> Optional[int]: lowerCAmelCase_ :int = TFViTMAEForPreTraining(__A ) lowerCAmelCase_ :str = model(__A , training=__A ) # expected sequence length = num_patches lowerCAmelCase_ :List[Any] = (self.image_size // self.patch_size) ** 2 lowerCAmelCase_ :Tuple = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCAmelCase_ :List[Any] = 1 lowerCAmelCase_ :List[Any] = TFViTMAEForPreTraining(__A ) lowerCAmelCase_ :str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ :int = model(__A , training=__A ) lowerCAmelCase_ :int = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :List[Any] = self.prepare_config_and_inputs() ((lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_)) :str = config_and_inputs lowerCAmelCase_ :int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( A__ , A__ , unittest.TestCase ): UpperCAmelCase_ :Tuple = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () UpperCAmelCase_ :Any = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} UpperCAmelCase_ :Any = False UpperCAmelCase_ :List[Any] = False UpperCAmelCase_ :Optional[int] = False UpperCAmelCase_ :Optional[int] = False def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Dict = TFViTMAEModelTester(self ) lowerCAmelCase_ :str = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=37 ) def __lowerCAmelCase ( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def __lowerCAmelCase ( self ) -> int: pass def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ , lowerCAmelCase_ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ :int = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase_ :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , tf.keras.layers.Layer ) ) def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ :List[str] = model_class(__A ) lowerCAmelCase_ :Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ :int = [*signature.parameters.keys()] lowerCAmelCase_ :int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __A ) def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def __lowerCAmelCase ( self ) -> int: # make the mask reproducible np.random.seed(2 ) lowerCAmelCase_ , lowerCAmelCase_ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ :Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase_ :List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCAmelCase_ :Optional[int] = model_class(__A ) lowerCAmelCase_ :Optional[int] = self._prepare_for_class(__A , __A ) lowerCAmelCase_ :str = model(__A , noise=__A ) lowerCAmelCase_ :int = copy.deepcopy(self._prepare_for_class(__A , __A ) ) lowerCAmelCase_ :Optional[Any] = model(**__A , noise=__A ) lowerCAmelCase_ :Dict = outputs_dict[0].numpy() lowerCAmelCase_ :Any = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def __lowerCAmelCase ( self ) -> Tuple: # make the mask reproducible np.random.seed(2 ) lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ :Tuple = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase_ :int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__A ): lowerCAmelCase_ :int = {} for k, v in inputs_dict.items(): if tf.is_tensor(__A ): lowerCAmelCase_ :Any = v.numpy() else: lowerCAmelCase_ :Dict = np.array(__A ) return inputs_np_dict for model_class in self.all_model_classes: lowerCAmelCase_ :Tuple = model_class(__A ) lowerCAmelCase_ :str = self._prepare_for_class(__A , __A ) lowerCAmelCase_ :str = prepare_numpy_arrays(__A ) lowerCAmelCase_ :Any = model(__A , noise=__A ) lowerCAmelCase_ :int = model(**__A , noise=__A ) self.assert_outputs_same(__A , __A ) def __lowerCAmelCase ( self , __A , __A , __A ) -> List[Any]: # make masks reproducible np.random.seed(2 ) lowerCAmelCase_ :Optional[Any] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowerCAmelCase_ :Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCAmelCase_ :Optional[Any] = tf.constant(__A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCAmelCase_ :Optional[int] = tf_noise super().check_pt_tf_models(__A , __A , __A ) def __lowerCAmelCase ( self ) -> Any: # make mask reproducible np.random.seed(2 ) lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ :int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__A ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(__A , __A ),) if isinstance(__A , __A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__A , """_keras_serializable""" , __A ) } lowerCAmelCase_ :Any = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase_ :List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCAmelCase_ :Optional[Any] = tf.convert_to_tensor(__A ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: lowerCAmelCase_ :Optional[Any] = main_layer_class(__A ) lowerCAmelCase_ :Optional[Any] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowerCAmelCase_ :Tuple = tf.keras.Model(__A , outputs=main_layer(__A ) ) lowerCAmelCase_ :List[Any] = model(__A ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ :List[Any] = os.path.join(__A , """keras_model.h5""" ) model.save(__A ) lowerCAmelCase_ :List[str] = tf.keras.models.load_model( __A , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__A , tf.keras.Model ) lowerCAmelCase_ :Optional[Any] = model(__A ) self.assert_outputs_same(__A , __A ) @slow def __lowerCAmelCase ( self ) -> List[str]: # make mask reproducible np.random.seed(2 ) lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ :Tuple = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase_ :Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCAmelCase_ :List[str] = model_class(__A ) lowerCAmelCase_ :Optional[int] = self._prepare_for_class(__A , __A ) lowerCAmelCase_ :Tuple = model(__A , noise=__A ) if model_class.__name__ == "TFViTMAEModel": lowerCAmelCase_ :Dict = outputs.last_hidden_state.numpy() lowerCAmelCase_ :int = 0 else: lowerCAmelCase_ :str = outputs.logits.numpy() lowerCAmelCase_ :str = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A , saved_model=__A ) lowerCAmelCase_ :str = model_class.from_pretrained(__A ) lowerCAmelCase_ :Optional[int] = model(__A , noise=__A ) if model_class.__name__ == "TFViTMAEModel": lowerCAmelCase_ :Union[str, Any] = after_outputs["""last_hidden_state"""].numpy() lowerCAmelCase_ :List[str] = 0 else: lowerCAmelCase_ :List[Any] = after_outputs["""logits"""].numpy() lowerCAmelCase_ :str = 0 lowerCAmelCase_ :List[str] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__A , 1E-5 ) def __lowerCAmelCase ( self ) -> List[str]: # make mask reproducible np.random.seed(2 ) lowerCAmelCase_ , lowerCAmelCase_ :int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ :List[str] = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase_ :List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCAmelCase_ :List[Any] = model_class(__A ) lowerCAmelCase_ :Tuple = self._prepare_for_class(__A , __A ) lowerCAmelCase_ :Tuple = model(__A , noise=__A ) lowerCAmelCase_ :Optional[int] = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__A ) lowerCAmelCase_ :Optional[int] = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowerCAmelCase_ :Optional[int] = model_class.from_config(model.config ) lowerCAmelCase_ :str = new_model(__A ) # Build model new_model.set_weights(model.get_weights() ) lowerCAmelCase_ :Dict = new_model(__A , noise=__A ) self.assert_outputs_same(__A , __A ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def __lowerCAmelCase ( self ) -> Optional[Any]: pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def __lowerCAmelCase ( self ) -> List[Any]: pass @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Dict = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(__A ) def _snake_case ( ) -> str: '''simple docstring''' lowerCAmelCase_ :str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ) -> Optional[Any]: return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def __lowerCAmelCase ( self ) -> List[str]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCAmelCase_ :List[Any] = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) lowerCAmelCase_ :Any = self.default_image_processor lowerCAmelCase_ :Dict = prepare_img() lowerCAmelCase_ :int = image_processor(images=__A , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCAmelCase_ :Tuple = ViTMAEConfig() lowerCAmelCase_ :List[str] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCAmelCase_ :int = np.random.uniform(size=(1, num_patches) ) # forward pass lowerCAmelCase_ :Union[str, Any] = model(**__A , noise=__A ) # verify the logits lowerCAmelCase_ :Optional[int] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , __A ) lowerCAmelCase_ :int = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , __A , atol=1E-4 )
84
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _SCREAMING_SNAKE_CASE : def __lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) lowerCAmelCase_ :int = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase_ :List[Any] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCAmelCase_ :str = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=__A , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) lowerCAmelCase_ :int = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __lowerCAmelCase ( self ) -> List[str]: torch.manual_seed(0 ) lowerCAmelCase_ :Dict = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase_ :Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.4_1_4 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCAmelCase_ :str = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=__A , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[int] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , ) torch.manual_seed(0 ) lowerCAmelCase_ :Dict = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :Dict = self.get_dummy_components() lowerCAmelCase_ :Tuple = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Any = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Optional[int] = inputs["""prompt"""] lowerCAmelCase_ :Optional[int] = inputs["""generator"""] lowerCAmelCase_ :Any = inputs["""num_inference_steps"""] lowerCAmelCase_ :Optional[int] = inputs["""output_type"""] if "image" in inputs: lowerCAmelCase_ :List[Any] = inputs["""image"""] else: lowerCAmelCase_ :int = None if "mask_image" in inputs: lowerCAmelCase_ :List[Any] = inputs["""mask_image"""] else: lowerCAmelCase_ :int = None if "original_image" in inputs: lowerCAmelCase_ :List[Any] = inputs["""original_image"""] else: lowerCAmelCase_ :List[Any] = None lowerCAmelCase_ , lowerCAmelCase_ :int = pipe.encode_prompt(__A ) # inputs with prompt converted to embeddings lowerCAmelCase_ :List[str] = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: lowerCAmelCase_ :int = image if mask_image is not None: lowerCAmelCase_ :Tuple = mask_image if original_image is not None: lowerCAmelCase_ :Optional[Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__A , __A , __A ) lowerCAmelCase_ :Optional[int] = pipe(**__A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__A ) lowerCAmelCase_ :Optional[int] = self.pipeline_class.from_pretrained(__A ) pipe_loaded.to(__A ) pipe_loaded.set_progress_bar_config(disable=__A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__A , __A ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) lowerCAmelCase_ :Dict = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Union[str, Any] = inputs["""generator"""] lowerCAmelCase_ :Any = inputs["""num_inference_steps"""] lowerCAmelCase_ :Tuple = inputs["""output_type"""] # inputs with prompt converted to embeddings lowerCAmelCase_ :Tuple = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: lowerCAmelCase_ :Optional[int] = image if mask_image is not None: lowerCAmelCase_ :str = mask_image if original_image is not None: lowerCAmelCase_ :Tuple = original_image lowerCAmelCase_ :Union[str, Any] = pipe_loaded(**__A )[0] lowerCAmelCase_ :Dict = np.abs(to_np(__A ) - to_np(__A ) ).max() self.assertLess(__A , 1E-4 ) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Any = self.get_dummy_components() lowerCAmelCase_ :Optional[int] = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Optional[int] = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Dict = pipe(**__A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__A ) lowerCAmelCase_ :Any = self.pipeline_class.from_pretrained(__A ) pipe_loaded.to(__A ) pipe_loaded.set_progress_bar_config(disable=__A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowerCAmelCase_ :List[Any] = self.get_dummy_inputs(__A ) lowerCAmelCase_ :str = pipe_loaded(**__A )[0] lowerCAmelCase_ :Dict = np.abs(to_np(__A ) - to_np(__A ) ).max() self.assertLess(__A , 1E-4 )
84
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __snake_case =logging.get_logger(__name__) __snake_case ={ """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Any , lowerCamelCase : Dict ): for attribute in key.split('.' ): lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape else: lowerCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def a_ ( lowerCamelCase : Tuple , lowerCamelCase : Dict , lowerCamelCase : List[Any] ): lowerCAmelCase = [] lowerCAmelCase = fairseq_model.state_dict() lowerCAmelCase = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , hf_model.config.feat_extract_norm == 'group' , ) lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2] lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase ) if "weight_g" in name: lowerCAmelCase = 'weight_g' elif "weight_v" in name: lowerCAmelCase = 'weight_v' elif "weight" in name: lowerCAmelCase = 'weight' elif "bias" in name: lowerCAmelCase = 'bias' else: lowerCAmelCase = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def a_ ( lowerCamelCase : List[str] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Tuple ): lowerCAmelCase = full_name.split('conv_layers.' )[-1] lowerCAmelCase = name.split('.' ) lowerCAmelCase = int(items[0] ) lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowerCAmelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowerCAmelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowerCAmelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowerCAmelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase ) def a_ ( lowerCamelCase : str , lowerCamelCase : List[str] ): lowerCAmelCase = SEWConfig() if is_finetuned: lowerCAmelCase = model.wav_encoder.wav_model.cfg else: lowerCAmelCase = model.cfg lowerCAmelCase = fs_config.conv_bias lowerCAmelCase = eval(fs_config.conv_feature_layers ) lowerCAmelCase = [x[0] for x in conv_layers] lowerCAmelCase = [x[1] for x in conv_layers] lowerCAmelCase = [x[2] for x in conv_layers] lowerCAmelCase = 'gelu' lowerCAmelCase = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' lowerCAmelCase = 0.0 lowerCAmelCase = fs_config.activation_fn.name lowerCAmelCase = fs_config.encoder_embed_dim lowerCAmelCase = 0.02 lowerCAmelCase = fs_config.encoder_ffn_embed_dim lowerCAmelCase = 1e-5 lowerCAmelCase = fs_config.encoder_layerdrop lowerCAmelCase = fs_config.encoder_attention_heads lowerCAmelCase = fs_config.conv_pos_groups lowerCAmelCase = fs_config.conv_pos lowerCAmelCase = len(lowerCamelCase ) lowerCAmelCase = fs_config.encoder_layers lowerCAmelCase = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowerCAmelCase = model.cfg lowerCAmelCase = fs_config.final_dropout lowerCAmelCase = fs_config.layerdrop lowerCAmelCase = fs_config.activation_dropout lowerCAmelCase = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowerCAmelCase = fs_config.attention_dropout lowerCAmelCase = fs_config.dropout_input lowerCAmelCase = fs_config.dropout lowerCAmelCase = fs_config.mask_channel_length lowerCAmelCase = fs_config.mask_channel_prob lowerCAmelCase = fs_config.mask_length lowerCAmelCase = fs_config.mask_prob lowerCAmelCase = 'Wav2Vec2FeatureExtractor' lowerCAmelCase = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def a_ ( lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : Any=None , lowerCamelCase : Dict=None , lowerCamelCase : int=True ): if is_finetuned: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowerCAmelCase = SEWConfig.from_pretrained(lowerCamelCase ) else: lowerCAmelCase = convert_config(model[0] , lowerCamelCase ) lowerCAmelCase = model[0].eval() lowerCAmelCase = True if config.feat_extract_norm == 'layer' else False lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCamelCase , return_attention_mask=lowerCamelCase , ) if is_finetuned: if dict_path: lowerCAmelCase = Dictionary.load(lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase = target_dict.pad_index lowerCAmelCase = target_dict.bos_index lowerCAmelCase = target_dict.pad_index lowerCAmelCase = target_dict.bos_index lowerCAmelCase = target_dict.eos_index lowerCAmelCase = len(target_dict.symbols ) lowerCAmelCase = os.path.join(lowerCamelCase , 'vocab.json' ) if not os.path.isdir(lowerCamelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase ) ) return os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) with open(lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , lowerCamelCase ) lowerCAmelCase = WavaVecaCTCTokenizer( lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase , ) lowerCAmelCase = WavaVecaProcessor(feature_extractor=lowerCamelCase , tokenizer=lowerCamelCase ) processor.save_pretrained(lowerCamelCase ) lowerCAmelCase = SEWForCTC(lowerCamelCase ) else: lowerCAmelCase = SEWModel(lowerCamelCase ) feature_extractor.save_pretrained(lowerCamelCase ) recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase ) hf_model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __snake_case =parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
350
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCAmelCase_ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : Any = StableUnCLIPPipeline lowerCamelCase : int = TEXT_TO_IMAGE_PARAMS lowerCamelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowerCamelCase : Optional[int] = False def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: lowerCAmelCase = 3_2 lowerCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase__ , projection_dim=UpperCAmelCase__ , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) lowerCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=UpperCAmelCase__ , num_layers=1 , ) torch.manual_seed(0 ) lowerCAmelCase = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_0_0_0 , clip_sample=UpperCAmelCase__ , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) lowerCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase__ ) lowerCAmelCase = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase__ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase__ , layers_per_block=1 , upcast_attention=UpperCAmelCase__ , use_linear_projection=UpperCAmelCase__ , ) torch.manual_seed(0 ) lowerCAmelCase = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=UpperCAmelCase__ , steps_offset=1 , ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL() lowerCAmelCase = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any]=0 ) -> Optional[Any]: if str(UpperCAmelCase__ ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(UpperCAmelCase__ ) else: lowerCAmelCase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: lowerCAmelCase = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase__ ) def __UpperCAmelCase ( self : int ) -> Union[str, Any]: lowerCAmelCase = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase__ ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) lowerCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase = pipe('anime turle' , generator=UpperCAmelCase__ , output_type='np' ) lowerCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
55
0
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __lowerCamelCase = 4 __lowerCamelCase = 3 class A__ ( _snake_case ): pass def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: for shard in shards: for i in range(UpperCAmelCase__ ): yield {"i": i, "shard": shard} def UpperCAmelCase__ ( ) -> List[str]: A_ = int(os.environ["""RANK"""] ) A_ = int(os.environ["""WORLD_SIZE"""] ) A_ = ArgumentParser() parser.add_argument("""--streaming""", type=UpperCAmelCase__ ) parser.add_argument("""--local_rank""", type=UpperCAmelCase__ ) parser.add_argument("""--num_workers""", type=UpperCAmelCase__, default=0 ) A_ = parser.parse_args() A_ = args.streaming A_ = args.num_workers A_ = {"""shards""": [F'''shard_{shard_idx}''' for shard_idx in range(UpperCAmelCase__ )]} A_ = IterableDataset.from_generator(UpperCAmelCase__, gen_kwargs=UpperCAmelCase__ ) if not streaming: A_ = Dataset.from_list(list(UpperCAmelCase__ ) ) A_ = split_dataset_by_node(UpperCAmelCase__, rank=UpperCAmelCase__, world_size=UpperCAmelCase__ ) A_ = torch.utils.data.DataLoader(UpperCAmelCase__, num_workers=UpperCAmelCase__ ) A_ = NUM_SHARDS * NUM_ITEMS_PER_SHARD A_ = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) A_ = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
162
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
162
1
from __future__ import annotations def lowerCamelCase ( a_ ) -> list[int]: # This function is recursive lowerCAmelCase_ = len(lowercase_ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCAmelCase_ = array[0] lowerCAmelCase_ = False lowerCAmelCase_ = 1 lowerCAmelCase_ = [] while not is_found and i < array_length: if array[i] < pivot: lowerCAmelCase_ = True lowerCAmelCase_ = [element for element in array[i:] if element >= array[i]] lowerCAmelCase_ = longest_subsequence(lowercase_ ) if len(lowercase_ ) > len(lowercase_ ): lowerCAmelCase_ = temp_array else: i += 1 lowerCAmelCase_ = [element for element in array[1:] if element >= pivot] lowerCAmelCase_ = [pivot, *longest_subsequence(lowercase_ )] if len(lowercase_ ) > len(lowercase_ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
361
def lowerCamelCase ( a_ ) -> "list[int]": if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) lowerCAmelCase_ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowerCAmelCase_ = 1 if upper_limit > 0: lowerCAmelCase_ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(a_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: lowerCamelCase_ = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
14
0
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance == 0: return {"resistance": sqrt(pow(lowerCAmelCase_ , 2 ) - pow(lowerCAmelCase_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(lowerCAmelCase_ , 2 ) - pow(lowerCAmelCase_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(lowerCAmelCase_ , 2 ) + pow(lowerCAmelCase_ , 2 ) )} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
215
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = (IPNDMScheduler,) UpperCAmelCase = (("""num_inference_steps""", 50),) def _snake_case ( self ,**a_ ) -> Optional[int]: _UpperCAmelCase : str = {"""num_train_timesteps""": 1_000} config.update(**a_ ) return config def _snake_case ( self ,a_=0 ,**a_ ) -> List[str]: _UpperCAmelCase : Any = dict(self.forward_default_kwargs ) _UpperCAmelCase : Any = kwargs.pop("""num_inference_steps""" ,a_ ) _UpperCAmelCase : Union[str, Any] = self.dummy_sample _UpperCAmelCase : Union[str, Any] = 0.1 * sample _UpperCAmelCase : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _UpperCAmelCase : str = self.get_scheduler_config(**a_ ) _UpperCAmelCase : List[str] = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals _UpperCAmelCase : str = dummy_past_residuals[:] if time_step is None: _UpperCAmelCase : List[str] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _UpperCAmelCase : List[str] = scheduler_class.from_pretrained(a_ ) new_scheduler.set_timesteps(a_ ) # copy over dummy past residuals _UpperCAmelCase : Tuple = dummy_past_residuals[:] _UpperCAmelCase : Dict = scheduler.step(a_ ,a_ ,a_ ,**a_ ).prev_sample _UpperCAmelCase : Any = new_scheduler.step(a_ ,a_ ,a_ ,**a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _UpperCAmelCase : str = scheduler.step(a_ ,a_ ,a_ ,**a_ ).prev_sample _UpperCAmelCase : Any = new_scheduler.step(a_ ,a_ ,a_ ,**a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ) -> Any: pass def _snake_case ( self ,a_=0 ,**a_ ) -> Dict: _UpperCAmelCase : str = dict(self.forward_default_kwargs ) _UpperCAmelCase : Union[str, Any] = kwargs.pop("""num_inference_steps""" ,a_ ) _UpperCAmelCase : Optional[int] = self.dummy_sample _UpperCAmelCase : Tuple = 0.1 * sample _UpperCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _UpperCAmelCase : Optional[Any] = self.get_scheduler_config() _UpperCAmelCase : Dict = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase : Any = dummy_past_residuals[:] if time_step is None: _UpperCAmelCase : Optional[int] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _UpperCAmelCase : str = scheduler_class.from_pretrained(a_ ) # copy over dummy past residuals new_scheduler.set_timesteps(a_ ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase : Dict = dummy_past_residuals[:] _UpperCAmelCase : Tuple = scheduler.step(a_ ,a_ ,a_ ,**a_ ).prev_sample _UpperCAmelCase : str = new_scheduler.step(a_ ,a_ ,a_ ,**a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _UpperCAmelCase : str = scheduler.step(a_ ,a_ ,a_ ,**a_ ).prev_sample _UpperCAmelCase : str = new_scheduler.step(a_ ,a_ ,a_ ,**a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ,**a_ ) -> List[Any]: _UpperCAmelCase : int = self.scheduler_classes[0] _UpperCAmelCase : List[str] = self.get_scheduler_config(**a_ ) _UpperCAmelCase : List[Any] = scheduler_class(**a_ ) _UpperCAmelCase : List[Any] = 10 _UpperCAmelCase : Dict = self.dummy_model() _UpperCAmelCase : Dict = self.dummy_sample_deter scheduler.set_timesteps(a_ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Optional[Any] = model(a_ ,a_ ) _UpperCAmelCase : Tuple = scheduler.step(a_ ,a_ ,a_ ).prev_sample for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : List[str] = model(a_ ,a_ ) _UpperCAmelCase : int = scheduler.step(a_ ,a_ ,a_ ).prev_sample return sample def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : int = dict(self.forward_default_kwargs ) _UpperCAmelCase : Optional[Any] = kwargs.pop("""num_inference_steps""" ,a_ ) for scheduler_class in self.scheduler_classes: _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : List[str] = scheduler_class(**a_ ) _UpperCAmelCase : Optional[int] = self.dummy_sample _UpperCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(a_ ,"""set_timesteps""" ): scheduler.set_timesteps(a_ ) elif num_inference_steps is not None and not hasattr(a_ ,"""set_timesteps""" ): _UpperCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCAmelCase : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _UpperCAmelCase : Optional[int] = dummy_past_residuals[:] _UpperCAmelCase : Tuple = scheduler.timesteps[5] _UpperCAmelCase : Optional[Any] = scheduler.timesteps[6] _UpperCAmelCase : Optional[Any] = scheduler.step(a_ ,a_ ,a_ ,**a_ ).prev_sample _UpperCAmelCase : Optional[int] = scheduler.step(a_ ,a_ ,a_ ,**a_ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) _UpperCAmelCase : Dict = scheduler.step(a_ ,a_ ,a_ ,**a_ ).prev_sample _UpperCAmelCase : Any = scheduler.step(a_ ,a_ ,a_ ,**a_ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def _snake_case ( self ) -> List[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=a_ ,time_step=a_ ) def _snake_case ( self ) -> int: for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 100] ): self.check_over_forward(num_inference_steps=a_ ,time_step=a_ ) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = self.full_loop() _UpperCAmelCase : Any = torch.mean(torch.abs(a_ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
215
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger() @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : List[nn.Module] = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : list = field(default_factory=UpperCAmelCase_ ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : Tensor ) -> Union[str, Any]: '''simple docstring''' A: Optional[int] = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE_ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tensor ) -> Optional[Any]: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE_ ) [x.remove() for x in self.handles] return self @property def _snake_case ( self : List[Any] ) -> str: '''simple docstring''' return list(filter(lambda SCREAMING_SNAKE_CASE_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : nn.Module UpperCamelCase_ : int = 1 UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : bool = True def __call__( self : Tuple , SCREAMING_SNAKE_CASE_ : Tensor ) -> Optional[int]: '''simple docstring''' A: List[Any] = Tracker(self.dest )(SCREAMING_SNAKE_CASE_ ).parametrized A: Union[str, Any] = Tracker(self.src )(SCREAMING_SNAKE_CASE_ ).parametrized A: Any = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.src_skip , SCREAMING_SNAKE_CASE_ ) ) A: Union[str, Any] = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.dest_skip , SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ) and self.raise_if_mismatch: raise Exception( f"""Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE_ )} operations while""" f""" destination module has {len(SCREAMING_SNAKE_CASE_ )}.""" ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : nn.Module ) -> Any: '''simple docstring''' super().__init__() A: List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), f"""Unexpected layer name {k}""" A: int = len(SCREAMING_SNAKE_CASE_ ) + 1 feature_blocks.append((f"""res{block_index}""", v) ) A: int = nn.ModuleDict(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Tensor ) -> str: '''simple docstring''' return get_trunk_forward_outputs( SCREAMING_SNAKE_CASE_ , out_feat_keys=SCREAMING_SNAKE_CASE_ , feature_blocks=self._feature_blocks , ) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str ) -> str: '''simple docstring''' A: str = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : List[str] , SCREAMING_SNAKE_CASE_ : str ) -> Callable[[], Tuple[nn.Module, Dict]]: '''simple docstring''' if x not in self: A: List[str] = self.convert_name_to_timm(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = partial(lambda: (timm.create_model(SCREAMING_SNAKE_CASE_ , pretrained=SCREAMING_SNAKE_CASE_ ).eval(), None) ) else: A: Optional[Any] = super().__getitem__(SCREAMING_SNAKE_CASE_ ) return val class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __getitem__( self : Dict , SCREAMING_SNAKE_CASE_ : str ) -> Callable[[], nn.Module]: '''simple docstring''' if "seer" in x and "in1k" not in x: A: int = RegNetModel else: A: int = RegNetForImageClassification return val def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int: for from_key, to_key in keys: A: List[Any] = from_state_dict[from_key].clone() print(F"""Copied key={from_key} to={to_key}""" ) return to_state_dict def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = True , ) -> Tuple: print(F"""Converting {name}...""" ) with torch.no_grad(): A: Dict = from_model_func() A: Tuple = our_model_func(__lowercase ).eval() A: Tuple = ModuleTransfer(src=__lowercase , dest=__lowercase , raise_if_mismatch=__lowercase ) A: str = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__lowercase ) if from_state_dict is not None: A: int = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: A: Dict = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] A: int = manually_copy_vissl_head(__lowercase , our_model.state_dict() , __lowercase ) our_model.load_state_dict(__lowercase ) A: Optional[int] = our_model(__lowercase , output_hidden_states=__lowercase ) A: List[Any] = ( our_outputs.logits if isinstance(__lowercase , __lowercase ) else our_outputs.last_hidden_state ) A: List[str] = from_model(__lowercase ) A: Optional[int] = from_output[-1] if type(__lowercase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: A: Optional[Any] = our_outputs.hidden_states[-1] assert torch.allclose(__lowercase , __lowercase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=__lowercase , ) A: List[str] = 2_2_4 if '''seer''' not in name else 3_8_4 # we can use the convnext one A: Union[str, Any] = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=__lowercase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=__lowercase , ) print(F"""Pushed {name}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = None , __lowercase = True ) -> str: A: str = '''imagenet-1k-id2label.json''' A: Any = 1_0_0_0 A: Optional[Any] = (1, num_labels) A: Tuple = '''huggingface/label-files''' A: Optional[int] = num_labels A: Any = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='''dataset''' ) ) , '''r''' ) ) A: Dict = {int(__lowercase ): v for k, v in idalabel.items()} A: List[Any] = idalabel A: Optional[int] = {v: k for k, v in idalabel.items()} A: List[str] = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) A: Dict = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 1_2] , hidden_sizes=[3_2, 6_4, 1_6_0, 3_8_4] , groups_width=1_6 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[4_8, 9_6, 2_4_0, 5_2_8] , groups_width=2_4 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[6_4, 1_2_8, 2_8_8, 6_7_2] , groups_width=1_6 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 2] , hidden_sizes=[7_2, 1_6_8, 4_0_8, 9_1_2] , groups_width=2_4 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 1_5, 2] , hidden_sizes=[9_6, 1_9_2, 4_3_2, 1_0_0_8] , groups_width=4_8 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 1_4, 2] , hidden_sizes=[8_0, 2_4_0, 5_6_0, 1_3_6_0] , groups_width=4_0 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 3_9_2, 7_8_4, 1_6_2_4] , groups_width=5_6 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 1_5, 1] , hidden_sizes=[8_0, 2_4_0, 7_2_0, 1_9_2_0] , groups_width=1_2_0 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 1_3, 1] , hidden_sizes=[2_5_6, 5_1_2, 8_9_6, 2_0_4_8] , groups_width=1_2_8 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 1_3, 1] , hidden_sizes=[3_3_6, 6_7_2, 1_3_4_4, 2_5_2_0] , groups_width=1_6_8 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[4_8, 1_0_4, 2_0_8, 4_4_0] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[4_8, 1_1_2, 2_5_6, 6_0_8] , groups_width=1_6 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[6_4, 1_2_8, 3_2_0, 7_6_8] , groups_width=1_6 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 1_7, 2] , hidden_sizes=[4_8, 1_2_0, 3_3_6, 8_8_8] , groups_width=2_4 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 1_3, 1] , hidden_sizes=[7_2, 2_1_6, 5_7_6, 1_5_1_2] , groups_width=2_4 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 1_2, 2] , hidden_sizes=[1_2_8, 1_9_2, 5_1_2, 1_0_8_8] , groups_width=6_4 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 1_4, 2] , hidden_sizes=[1_4_4, 2_8_8, 5_7_6, 1_2_9_6] , groups_width=7_2 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 4_4_8, 8_9_6, 2_0_1_6] , groups_width=5_6 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 1_2_3_2, 3_0_2_4] , groups_width=1_1_2 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), } A: Optional[Any] = NameToOurModelFuncMap() A: List[Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__lowercase , __lowercase ) -> Tuple[nn.Module, Dict]: A: Dict = torch.hub.load_state_dict_from_url(__lowercase , model_dir=str(__lowercase ) , map_location='''cpu''' ) A: List[str] = model_func() # check if we have a head, if yes add it A: Optional[int] = files['''classy_state_dict''']['''base_model''']['''model'''] A: Optional[Any] = model_state_dict['''trunk'''] model.load_state_dict(__lowercase ) return model.eval(), model_state_dict["heads"] # pretrained A: List[Any] = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) A: int = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) A: Union[str, Any] = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) A: Tuple = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned A: Dict = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) A: Any = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) A: List[Any] = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) A: Dict = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __lowercase , __lowercase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __lowercase , __lowercase , __lowercase , ) return config, expected_shape if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase = parser.parse_args() UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
356
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Any = DPRContextEncoderTokenizer class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Dict = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Tuple = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Optional[int] = DPRQuestionEncoderTokenizer UpperCamelCase = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) UpperCamelCase = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) UpperCamelCase = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ : '''simple docstring''' def __call__( self : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Union[bool, str] = False , SCREAMING_SNAKE_CASE_ : Union[bool, str] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) elif titles is None or texts is None: A: Union[str, Any] = titles if texts is None else texts return super().__call__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Union[str, Any] = titles if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [titles] A: Optional[Any] = texts if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [texts] A: str = len(SCREAMING_SNAKE_CASE_ ) A: List[Any] = questions if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [questions] * n_passages assert len(SCREAMING_SNAKE_CASE_ ) == len( SCREAMING_SNAKE_CASE_ ), f"""There should be as many titles than texts but got {len(SCREAMING_SNAKE_CASE_ )} titles and {len(SCREAMING_SNAKE_CASE_ )} texts.""" A: Union[str, Any] = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )['''input_ids'''] A: Dict = super().__call__(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )['''input_ids'''] A: str = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] } if return_attention_mask is not False: A: Union[str, Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) A: Optional[Any] = attention_mask return self.pad(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : BatchEncoding , SCREAMING_SNAKE_CASE_ : DPRReaderOutput , SCREAMING_SNAKE_CASE_ : int = 16 , SCREAMING_SNAKE_CASE_ : int = 64 , SCREAMING_SNAKE_CASE_ : int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' A: Any = reader_input['''input_ids'''] A , A , A: str = reader_output[:3] A: str = len(SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = sorted(range(SCREAMING_SNAKE_CASE_ ) , reverse=SCREAMING_SNAKE_CASE_ , key=relevance_logits.__getitem__ ) A: List[DPRReaderOutput] = [] for doc_id in sorted_docs: A: List[str] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence A: Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A: Union[str, Any] = sequence_ids.index(self.pad_token_id ) else: A: int = len(SCREAMING_SNAKE_CASE_ ) A: Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=SCREAMING_SNAKE_CASE_ , top_spans=SCREAMING_SNAKE_CASE_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=SCREAMING_SNAKE_CASE_ , start_index=SCREAMING_SNAKE_CASE_ , end_index=SCREAMING_SNAKE_CASE_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(SCREAMING_SNAKE_CASE_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , ) -> List[DPRSpanPrediction]: '''simple docstring''' A: Union[str, Any] = [] for start_index, start_score in enumerate(SCREAMING_SNAKE_CASE_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) A: Any = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x[1] , reverse=SCREAMING_SNAKE_CASE_ ) A: Dict = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" A: int = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(SCREAMING_SNAKE_CASE_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Dict = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Any = ["""input_ids""", """attention_mask"""] UpperCamelCase_ : Optional[Any] = DPRReaderTokenizer
334
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
260
"""simple docstring""" import random def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = a[left_index] _UpperCAmelCase = left_index + 1 for j in range(left_index + 1 , _SCREAMING_SNAKE_CASE ): if a[j] < pivot: _UpperCAmelCase , _UpperCAmelCase = a[i], a[j] i += 1 _UpperCAmelCase , _UpperCAmelCase = a[i - 1], a[left_index] return i - 1 def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' if left < right: _UpperCAmelCase = random.randint(_SCREAMING_SNAKE_CASE , right - 1 ) _UpperCAmelCase , _UpperCAmelCase = ( a[left], a[pivot], ) # switches the pivot with the left most bound _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) quick_sort_random( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # recursive quicksort to the left of the pivot point quick_sort_random( _SCREAMING_SNAKE_CASE , pivot_index + 1 , _SCREAMING_SNAKE_CASE ) # recursive quicksort to the right of the pivot point def lowercase ( ): '''simple docstring''' _UpperCAmelCase = input('''Enter numbers separated by a comma:\n''' ).strip() _UpperCAmelCase = [int(_SCREAMING_SNAKE_CASE ) for item in user_input.split(''',''' )] quick_sort_random(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
260
1
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowercase : Any = _symbol_database.Default() lowercase : int = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowercase : Optional[int] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowercase : List[Any] = None lowercase : Tuple = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowercase : List[str] = 45 lowercase : List[Any] = 15_81 lowercase : List[str] = 15_17 lowercase : List[Any] = 15_70 lowercase : Optional[int] = 15_84 lowercase : Any = 17_93 lowercase : Any = 17_95 lowercase : Tuple = 19_16 lowercase : Any = 18_64 lowercase : List[Any] = 19_05 lowercase : str = 19_19 lowercase : Any = 24_29 lowercase : Optional[int] = 22_08 lowercase : Dict = 24_18 lowercase : Tuple = 23_23 lowercase : Tuple = 24_07 # @@protoc_insertion_point(module_scope)
359
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase_ ( snake_case__ = "laptop" ): '''simple docstring''' A : Tuple = F'https://www.amazon.in/laptop/s?k={product}' A : Optional[int] = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } A : Any = BeautifulSoup(requests.get(snake_case__ , headers=snake_case__ ).text ) # Initialize a Pandas dataframe with the column titles A : List[str] = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: A : Optional[Any] = item.ha.text A : Union[str, Any] = '''https://www.amazon.in/''' + item.ha.a['''href'''] A : Tuple = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: A : int = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: A : Optional[int] = '''Not available''' try: A : str = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: A : List[Any] = '''''' try: A : Dict = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 100 ) except ValueError: A : str = float('''nan''' ) except AttributeError: pass A : Union[str, Any] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A : List[str] = ''' ''' A : Optional[Any] = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase : Union[str, Any] = 'headphones' get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
311
0
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class _A : """simple docstring""" @staticmethod def __snake_case ( *__UpperCAmelCase : str , **__UpperCAmelCase : Union[str, Any]): pass def lowercase ( A_ )-> List[Any]: '''simple docstring''' a : Any = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class _A ( unittest.TestCase ): """simple docstring""" UpperCAmelCase : List[Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __snake_case ( self : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple): a : List[Any] = DepthEstimationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __snake_case ( self : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : str): a : List[str] = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png") self.assertEqual({"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)} , __UpperCAmelCase) import datasets a : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test") a : Tuple = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ]) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, {"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, {"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, {"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, {"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, ] , __UpperCAmelCase , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF") def __snake_case ( self : str): pass @slow @require_torch def __snake_case ( self : Union[str, Any]): a : Any = "Intel/dpt-large" a : Union[str, Any] = pipeline("depth-estimation" , model=__UpperCAmelCase) a : Tuple = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg") a : List[str] = hashimage(outputs["depth"]) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item()) , 29.304) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item()) , 2.662) @require_torch def __snake_case ( self : Optional[int]): self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT")
40
'''simple docstring''' import math def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ): return math.pow(UpperCAmelCase_ , 2 ) - a def __snake_case ( UpperCAmelCase_ : float ): return 2 * x def __snake_case ( UpperCAmelCase_ : float ): lowerCamelCase_ = 2.0 while start <= a: lowerCamelCase_ = math.pow(UpperCAmelCase_ , 2 ) return start def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : int = 9999 , UpperCAmelCase_ : float = 0.00_0000_0000_0001 ): if a < 0: raise ValueError("math domain error" ) lowerCamelCase_ = get_initial_point(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ): lowerCamelCase_ = value lowerCamelCase_ = value - fx(UpperCAmelCase_ , UpperCAmelCase_ ) / fx_derivative(UpperCAmelCase_ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
55
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') _lowerCamelCase = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) _lowerCamelCase = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) _lowerCamelCase = BeautifulSoup(res.text, 'html.parser') _lowerCamelCase = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F"https://google.com{link.get('href')}")
367
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCamelCase = logging.get_logger(__name__) class a ( _A ): '''simple docstring''' lowerCAmelCase : List[Any] = ['pixel_values'] def __init__( self : Any , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 2_55 , __snake_case : bool = True , __snake_case : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , __snake_case : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **__snake_case : Optional[Any] , ): super().__init__(**__snake_case ) UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 2_24} UpperCAmelCase_ = get_size_dict(__snake_case , default_to_square=__snake_case ) UpperCAmelCase_ = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} UpperCAmelCase_ = get_size_dict(__snake_case , param_name='''crop_size''' ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = resample UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCamelCase_ ( self : int , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Tuple , ): UpperCAmelCase_ = get_size_dict(__snake_case , default_to_square=__snake_case ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: UpperCAmelCase_ = int((2_56 / 2_24) * size['''shortest_edge'''] ) UpperCAmelCase_ = get_resize_output_image_size(__snake_case , size=__snake_case , default_to_square=__snake_case ) UpperCAmelCase_ = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( __snake_case , size=(size_dict['''height'''], size_dict['''width''']) , resample=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCamelCase_ ( self : Tuple , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[int] , ): UpperCAmelCase_ = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(__snake_case , size=(size['''height'''], size['''width''']) , data_format=__snake_case , **__snake_case ) def lowerCamelCase_ ( self : Optional[Any] , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : List[Any] , ): return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCamelCase_ ( self : int , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Union[str, Any] , ): return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCamelCase_ ( self : int , __snake_case : ImageInput , __snake_case : Optional[bool] = None , __snake_case : Optional[Dict[str, int]] = None , __snake_case : PILImageResampling = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Dict[str, int]] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[float] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[float, Iterable[float]]] = None , __snake_case : Optional[Union[float, Iterable[float]]] = None , __snake_case : Optional[TensorType] = None , __snake_case : ChannelDimension = ChannelDimension.FIRST , **__snake_case : List[str] , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(__snake_case , default_to_square=__snake_case ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(__snake_case , param_name='''crop_size''' ) UpperCAmelCase_ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(__snake_case ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(__snake_case , __snake_case , __snake_case ) for image in images] if do_center_crop: UpperCAmelCase_ = [self.center_crop(__snake_case , __snake_case ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(__snake_case , __snake_case ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(__snake_case , __snake_case , __snake_case ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] UpperCAmelCase_ = {'''pixel_values''': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
177
0
'''simple docstring''' from jiwer import compute_measures import datasets A ='\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' A ='\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' A ='\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def A ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def A ( self : List[Any] , lowercase : List[str]=None , lowercase : List[str]=None , lowercase : Union[str, Any]=False ): '''simple docstring''' if concatenate_texts: return compute_measures(lowercase , lowercase )["wer"] else: UpperCAmelCase = 0 UpperCAmelCase = 0 for prediction, reference in zip(lowercase , lowercase ): UpperCAmelCase = compute_measures(lowercase , lowercase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : str = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git_vision_model''' def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''') == "git": A__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git''' def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any: '''simple docstring''' super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__) if vision_config is None: A__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''') A__ = GitVisionConfig(**UpperCAmelCase__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = tie_word_embeddings A__ = num_image_with_embedding A__ = bos_token_id A__ = eos_token_id def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
14
0
import unittest from transformers import DonutProcessor lowercase_ = "naver-clova-ix/donut-base" class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ): __snake_case : Tuple = DonutProcessor.from_pretrained(UpperCamelCase_ ) def snake_case__ ( self : Optional[Any] ): __snake_case : List[str] = { """name""": """John Doe""", """age""": """99""", """city""": """Atlanta""", """state""": """GA""", """zip""": """30301""", """phone""": """123-4567""", """nicknames""": [{"""nickname""": """Johnny"""}, {"""nickname""": """JD"""}], } __snake_case : List[str] = ( """<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>""" """<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>""" """<s_nicknames><s_nickname>Johnny</s_nickname>""" """<sep/><s_nickname>JD</s_nickname></s_nicknames>""" ) __snake_case : Union[str, Any] = self.processor.tokenajson(UpperCamelCase_ ) self.assertDictEqual(UpperCamelCase_ , UpperCamelCase_ )
354
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ): __snake_case : Optional[Any] = {} __snake_case : int = {} if prompt is not None: __snake_case : Dict = prompt if generate_kwargs is not None: __snake_case : List[Any] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __snake_case : Optional[int] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) __snake_case : Any = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ): return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ): __snake_case : Optional[Any] = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) __snake_case : Tuple = self.model.config.model_type if model_type == "git": __snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids __snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids __snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": __snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: __snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __snake_case : int = None return model_inputs def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): __snake_case : List[Any] = None if generate_kwargs is None: __snake_case : Dict = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __snake_case : Dict = model_inputs.pop(self.model.main_input_name ) __snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ): __snake_case : Union[str, Any] = [] for output_ids in model_outputs: __snake_case : Union[str, Any] = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
20
0
def lowercase__ ( __snake_case : Optional[int] ): '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
29
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" _lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" _lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,): SCREAMING_SNAKE_CASE =compute_mauve( p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,) return out
334
0
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE ( snake_case_ : int ) -> int: print("Generating primitive root of p" ) while True: snake_case__ : Union[str, Any] = random.randrange(3 , snake_case_ ) if pow(snake_case_ , 2 , snake_case_ ) == 1: continue if pow(snake_case_ , snake_case_ , snake_case_ ) == 1: continue return g def SCREAMING_SNAKE_CASE ( snake_case_ : int ) -> str: print("Generating prime p..." ) snake_case__ : Optional[Any] = rabin_miller.generate_large_prime(snake_case_ ) # select large prime number. snake_case__ : Optional[int] = primitive_root(snake_case_ ) # one primitive root on modulo p. snake_case__ : Any = random.randrange(3 , snake_case_ ) # private_key -> have to be greater than 2 for safety. snake_case__ : List[str] = cryptomath.find_mod_inverse(pow(snake_case_ , snake_case_ , snake_case_ ) , snake_case_ ) snake_case__ : str = (key_size, e_a, e_a, p) snake_case__ : List[str] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : int ) -> str: if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print("\nWARNING:" ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' "Use a different name or delete these files and re-run this program." ) sys.exit() snake_case__ : int = generate_key(snake_case_ ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' , "w" ) as fo: fo.write(F'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' , "w" ) as fo: fo.write(F'''{private_key[0]},{private_key[1]}''' ) def SCREAMING_SNAKE_CASE ( ) -> Tuple: print("Making key files..." ) make_key_files("elgamal" , 2048 ) print("Key files generation successful" ) if __name__ == "__main__": main()
359
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : List[str] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase : Any = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Optional[int] = { """allenai/led-base-16384""": 1_6384, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = LEDTokenizer a_ = ["input_ids", "attention_mask"] def __init__( self : int , __A : Optional[int]=None , __A : Any=None , __A : Any=None , __A : int="replace" , __A : Optional[Any]="<s>" , __A : List[Any]="</s>" , __A : Dict="</s>" , __A : Union[str, Any]="<s>" , __A : List[Any]="<unk>" , __A : Optional[Any]="<pad>" , __A : Optional[int]="<mask>" , __A : str=False , __A : Optional[Any]=True , **__A : List[Any] , ): super().__init__( __A , __A , tokenizer_file=__A , errors=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , trim_offsets=__A , **__A , ) snake_case__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __A ) != add_prefix_space: snake_case__ : List[str] = getattr(__A , pre_tok_state.pop("type" ) ) snake_case__ : Tuple = add_prefix_space snake_case__ : Any = pre_tok_class(**__A ) snake_case__ : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case__ : str = "post_processor" snake_case__ : Union[str, Any] = getattr(self.backend_tokenizer , __A , __A ) if tokenizer_component_instance: snake_case__ : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case__ : int = tuple(state["sep"] ) if "cls" in state: snake_case__ : Optional[int] = tuple(state["cls"] ) snake_case__ : Union[str, Any] = False if state.get("add_prefix_space" , __A ) != add_prefix_space: snake_case__ : Optional[Any] = add_prefix_space snake_case__ : List[str] = True if state.get("trim_offsets" , __A ) != trim_offsets: snake_case__ : str = trim_offsets snake_case__ : Tuple = True if changes_to_apply: snake_case__ : Any = getattr(__A , state.pop("type" ) ) snake_case__ : Optional[Any] = component_class(**__A ) setattr(self.backend_tokenizer , __A , __A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowercase ( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _lowercase ( self : str , __A : int ): snake_case__ : str = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else value snake_case__ : Optional[int] = value def _lowercase ( self : List[str] , *__A : Union[str, Any] , **__A : int ): snake_case__ : Dict = kwargs.get("is_split_into_words" , __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A , **__A ) def _lowercase ( self : Union[str, Any] , *__A : Tuple , **__A : Union[str, Any] ): snake_case__ : List[str] = kwargs.get("is_split_into_words" , __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A , **__A ) def _lowercase ( self : Union[str, Any] , __A : str , __A : Optional[str] = None ): snake_case__ : str = self._tokenizer.model.save(__A , name=__A ) return tuple(__A ) def _lowercase ( self : Union[str, Any] , __A : int , __A : str=None ): snake_case__ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase ( self : Any , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Optional[Any] = [self.sep_token_id] snake_case__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : str , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Dict = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Optional[Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : List[Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : Dict = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : Optional[Any] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Optional[Any] = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
286
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
205
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) a : Optional[Any] = ["model.decoder.embed_positions.weights"] def lowercase ( __magic_name__ ): '''simple docstring''' if "emb" in name: UpperCAmelCase : str = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: UpperCAmelCase : List[str] = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: UpperCAmelCase : int = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: UpperCAmelCase : List[Any] = name.replace("linear1" , "fc1" ) if "linear2" in name: UpperCAmelCase : int = name.replace("linear2" , "fc2" ) if "norm1" in name: UpperCAmelCase : Dict = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: UpperCAmelCase : Any = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: UpperCAmelCase : Union[str, Any] = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: UpperCAmelCase : Dict = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: UpperCAmelCase : List[Any] = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: UpperCAmelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = list(state_dict.keys() ) UpperCAmelCase : List[Any] = {} for key in keys: UpperCAmelCase : Any = state_dict.pop(__magic_name__ ) UpperCAmelCase : str = rename_keys(__magic_name__ ) if "in_proj_weight" in key: # split fused qkv proj UpperCAmelCase : Optional[int] = val[:hidden_size, :] UpperCAmelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] UpperCAmelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCAmelCase : str = val else: UpperCAmelCase : int = val return state_dict, enc_dec_proj_state_dict def lowercase ( __magic_name__ ): '''simple docstring''' if checkpoint == "small": # default config values UpperCAmelCase : List[Any] = 1024 UpperCAmelCase : Tuple = 24 UpperCAmelCase : Union[str, Any] = 16 elif checkpoint == "medium": UpperCAmelCase : List[Any] = 1536 UpperCAmelCase : Optional[Any] = 48 UpperCAmelCase : List[str] = 24 elif checkpoint == "large": UpperCAmelCase : List[Any] = 2048 UpperCAmelCase : str = 48 UpperCAmelCase : Optional[Any] = 32 else: raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) UpperCAmelCase : Tuple = MusicgenDecoderConfig( hidden_size=__magic_name__ , ffn_dim=hidden_size * 4 , num_hidden_layers=__magic_name__ , num_attention_heads=__magic_name__ , ) return config @torch.no_grad() def lowercase ( __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__="cpu" ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = MusicGen.get_pretrained(__magic_name__ , device=__magic_name__ ) UpperCAmelCase : List[str] = decoder_config_from_checkpoint(__magic_name__ ) UpperCAmelCase : Dict = fairseq_model.lm.state_dict() UpperCAmelCase , UpperCAmelCase : List[str] = rename_state_dict( __magic_name__ , hidden_size=decoder_config.hidden_size ) UpperCAmelCase : Any = TaEncoderModel.from_pretrained("t5-base" ) UpperCAmelCase : Any = EncodecModel.from_pretrained("facebook/encodec_32khz" ) UpperCAmelCase : int = MusicgenForCausalLM(__magic_name__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCAmelCase , UpperCAmelCase : Optional[int] = decoder.load_state_dict(__magic_name__ , strict=__magic_name__ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__magic_name__ ) if len(__magic_name__ ) > 0: raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" ) if len(__magic_name__ ) > 0: raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model UpperCAmelCase : List[Any] = MusicgenForConditionalGeneration(text_encoder=__magic_name__ , audio_encoder=__magic_name__ , decoder=__magic_name__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__magic_name__ ) # check we can do a forward pass UpperCAmelCase : Union[str, Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) UpperCAmelCase : Optional[Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): UpperCAmelCase : str = model(input_ids=__magic_name__ , decoder_input_ids=__magic_name__ ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("t5-base" ) UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) UpperCAmelCase : Dict = MusicgenProcessor(feature_extractor=__magic_name__ , tokenizer=__magic_name__ ) # set the appropriate bos/pad token ids UpperCAmelCase : List[Any] = 2048 UpperCAmelCase : Tuple = 2048 # set other default generation config params UpperCAmelCase : Tuple = int(30 * audio_encoder.config.frame_rate ) UpperCAmelCase : str = True UpperCAmelCase : Tuple = 3.0 if pytorch_dump_folder is not None: Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if repo_id: logger.info(F"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(__magic_name__ ) processor.push_to_hub(__magic_name__ ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) a : int = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
311
0
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float: '''simple docstring''' return base * power(SCREAMING_SNAKE_CASE__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") _lowerCAmelCase : str = int(input("Enter the base: ").strip()) _lowerCAmelCase : List[str] = int(input("Enter the exponent: ").strip()) _lowerCAmelCase : Dict = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _lowerCAmelCase : int = 1 / result print(F"{base} to the power of {exponent} is {result}")
363
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def __snake_case ( *SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Union[Dict, Any]] = None , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Tuple=2 ) -> Optional[Any]: '''simple docstring''' from .. import __version__ _UpperCAmelCase : Tuple = take_from _UpperCAmelCase : Optional[int] = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase : int = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE__ ): raise ValueError( f'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' f' version {__version__} is >= {version_name}' ) _UpperCAmelCase : Any = None if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE__ ),) _UpperCAmelCase : Tuple = f'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): values += (getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ),) _UpperCAmelCase : str = f'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: _UpperCAmelCase : Tuple = f'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: _UpperCAmelCase : Optional[int] = warning + " " if standard_warn else "" warnings.warn(warning + message , SCREAMING_SNAKE_CASE__ , stacklevel=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: _UpperCAmelCase : List[Any] = inspect.getouterframes(inspect.currentframe() )[1] _UpperCAmelCase : Optional[int] = call_frame.filename _UpperCAmelCase : Dict = call_frame.lineno _UpperCAmelCase : List[Any] = call_frame.function _UpperCAmelCase , _UpperCAmelCase : Optional[int] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return elif len(SCREAMING_SNAKE_CASE__ ) == 1: return values[0] return values
202
0
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging a_ : Any = logging.get_logger(__name__) def _A (lowerCAmelCase__ :Dict=None , lowerCAmelCase__ :Dict=None ) -> List[str]: '''simple docstring''' return field(default_factory=lambda: default , metadata=__UpperCAmelCase ) @dataclass class a : _lowerCAmelCase = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) _lowerCAmelCase = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) _lowerCAmelCase = list_field( default=[8, 3_2, 1_2_8, 5_1_2] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) _lowerCAmelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) _lowerCAmelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) _lowerCAmelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) _lowerCAmelCase = field(default=_UpperCAmelCase , metadata={"""help""": """Use FP16 to accelerate inference."""} ) _lowerCAmelCase = field(default=_UpperCAmelCase , metadata={"""help""": """Benchmark training of model"""} ) _lowerCAmelCase = field(default=_UpperCAmelCase , metadata={"""help""": """Verbose memory tracing"""} ) _lowerCAmelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) _lowerCAmelCase = field( default=_UpperCAmelCase , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) _lowerCAmelCase = field(default=_UpperCAmelCase , metadata={"""help""": """Trace memory line by line"""} ) _lowerCAmelCase = field(default=_UpperCAmelCase , metadata={"""help""": """Save result to a CSV file"""} ) _lowerCAmelCase = field(default=_UpperCAmelCase , metadata={"""help""": """Save all print statements in a log file"""} ) _lowerCAmelCase = field(default=_UpperCAmelCase , metadata={"""help""": """Whether to print environment information"""} ) _lowerCAmelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) _lowerCAmelCase = field( default=f'''inference_time_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) _lowerCAmelCase = field( default=f'''inference_memory_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) _lowerCAmelCase = field( default=f'''train_time_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) _lowerCAmelCase = field( default=f'''train_memory_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) _lowerCAmelCase = field( default=f'''env_info_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving environment information."""} , ) _lowerCAmelCase = field( default=f'''log_{round(time() )}.csv''' , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) _lowerCAmelCase = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) _lowerCAmelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def __UpperCAmelCase ( self ) -> Optional[int]: warnings.warn( f'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' , _UpperCAmelCase , ) def __UpperCAmelCase ( self ) -> List[str]: return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def __UpperCAmelCase ( self ) -> Union[str, Any]: if len(self.models ) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].' ) return self.models @property def __UpperCAmelCase ( self ) -> Tuple: if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.' ) return False else: return True
168
"""simple docstring""" from jiwer import compute_measures import datasets __A = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" __A = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" __A = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase (datasets.Metric ): """simple docstring""" def _snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def _snake_case ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False ): if concatenate_texts: return compute_measures(_UpperCAmelCase , _UpperCAmelCase )["wer"] else: lowercase__: Dict = 0 lowercase__: Union[str, Any] = 0 for prediction, reference in zip(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = compute_measures(_UpperCAmelCase , _UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
177
0
"""simple docstring""" import operator as op UpperCAmelCase__ = "scaler.pt" UpperCAmelCase__ = "pytorch_model" UpperCAmelCase__ = "random_states" UpperCAmelCase__ = "optimizer" UpperCAmelCase__ = "scheduler" UpperCAmelCase__ = "pytorch_model.bin" UpperCAmelCase__ = "pytorch_model.bin.index.json" UpperCAmelCase__ = "model.safetensors" UpperCAmelCase__ = "model.safetensors.index.json" UpperCAmelCase__ = "1.10.2" UpperCAmelCase__ = "py38" UpperCAmelCase__ = "4.17.0" UpperCAmelCase__ = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] UpperCAmelCase__ = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] UpperCAmelCase__ = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] UpperCAmelCase__ = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] UpperCAmelCase__ = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] UpperCAmelCase__ = "2.0.1" UpperCAmelCase__ = ["pdsh", "standard", "openmpi", "mvapich"] UpperCAmelCase__ = ["default", "reduce-overhead", "max-autotune"] UpperCAmelCase__ = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 UpperCAmelCase__ = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] UpperCAmelCase__ = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] UpperCAmelCase__ = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
358
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = ShapEImgaImgPipeline UpperCamelCase = ['''image'''] UpperCamelCase = ['''image'''] UpperCamelCase = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] UpperCamelCase = False @property def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" return 32 @property def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" return 32 @property def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def _lowerCamelCase ( self : List[str]) -> List[Any]: """simple docstring""" return 8 @property def _lowerCamelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _UpperCAmelCase = CLIPVisionModel(A) return model @property def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" _UpperCAmelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=A , do_normalize=A , do_resize=A , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=2_24 , ) return image_processor @property def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _UpperCAmelCase = PriorTransformer(**A) return model @property def _lowerCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _UpperCAmelCase = ShapERenderer(**A) return model def _lowerCamelCase ( self : Any) -> Any: """simple docstring""" _UpperCAmelCase = self.dummy_prior _UpperCAmelCase = self.dummy_image_encoder _UpperCAmelCase = self.dummy_image_processor _UpperCAmelCase = self.dummy_renderer _UpperCAmelCase = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=10_24 , prediction_type='sample' , use_karras_sigmas=A , clip_sample=A , clip_sample_range=1.0 , ) _UpperCAmelCase = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : List[str] , A : Optional[Any] , A : Tuple=0) -> Dict: """simple docstring""" _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(A)).to(A) if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def _lowerCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**A) _UpperCAmelCase = pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = pipe(**self.get_dummy_inputs(A)) _UpperCAmelCase = output.images[0] _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCAmelCase = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _lowerCamelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = torch_device == 'cpu' _UpperCAmelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=A , relax_max_difference=A , ) def _lowerCamelCase ( self : Tuple) -> Dict: """simple docstring""" _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**A) _UpperCAmelCase = pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = 1 _UpperCAmelCase = 2 _UpperCAmelCase = self.get_dummy_inputs(A) for key in inputs.keys(): if key in self.batch_params: _UpperCAmelCase = batch_size * [inputs[key]] _UpperCAmelCase = pipe(**A , num_images_per_prompt=A)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Dict) -> List[str]: """simple docstring""" _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png') _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy') _UpperCAmelCase = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img') _UpperCAmelCase = pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = torch.Generator(device=A).manual_seed(0) _UpperCAmelCase = pipe( A , generator=A , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(A , A)
290
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class a__ : def __init__( self , _A , _A=9_9 , _A=1_3 , _A=1_6 , _A=7 , _A=True , _A=True , _A=True , _A=False , _A=True , _A=2 , _A=3_2 , _A=4 , _A=4 , _A=3_0 , _A=0 , _A=1 , _A=2 , _A=None , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = decoder_seq_length # For common tests __lowerCAmelCase = self.decoder_seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_attention_mask __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = d_model __lowerCAmelCase = d_model __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = eos_token_id __lowerCAmelCase = bos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = decoder_start_token_id __lowerCAmelCase = use_cache __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = None __lowerCAmelCase = decoder_seq_length __lowerCAmelCase = 2 __lowerCAmelCase = 1 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_attention_mask: __lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __lowerCAmelCase = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , ): """simple docstring""" __lowerCAmelCase = True __lowerCAmelCase = TrOCRDecoder(config=_A ).to(_A ).eval() __lowerCAmelCase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __lowerCAmelCase = model(_A , use_cache=_A ) __lowerCAmelCase = model(_A ) __lowerCAmelCase = model(_A , use_cache=_A ) self.parent.assertTrue(len(_A ) == len(_A ) ) self.parent.assertTrue(len(_A ) == len(_A ) + 1 ) __lowerCAmelCase = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCAmelCase = model(_A )["last_hidden_state"] __lowerCAmelCase = model(_A , past_key_values=_A )["last_hidden_state"] # select random slice __lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCAmelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __lowerCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_A , _A , atol=1E-3 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class a__ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _a : List[Any] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () _a : Dict = (TrOCRForCausalLM,) if is_torch_available() else () _a : Union[str, Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} _a : List[Any] = True _a : Dict = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TrOCRStandaloneDecoderModelTester(self , is_training=_A ) __lowerCAmelCase = ConfigTester(self , config_class=_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass
92
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case( *SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=2 ) -> Optional[Any]: from .. import __version__ lowercase : int = take_from lowercase : Tuple = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE__ ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowercase : int = None if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE__ ),) lowercase : Union[str, Any] = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): values += (getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ),) lowercase : int = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowercase : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowercase : Dict = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , SCREAMING_SNAKE_CASE__ , stacklevel=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: lowercase : str = inspect.getouterframes(inspect.currentframe() )[1] lowercase : List[str] = call_frame.filename lowercase : Tuple = call_frame.lineno lowercase : List[str] = call_frame.function lowercase , lowercase : Optional[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return elif len(SCREAMING_SNAKE_CASE__ ) == 1: return values[0] return values
20
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class _lowerCamelCase : '''simple docstring''' def __init__( self : List[Any] , _A : int , _A : str=13 , _A : Optional[Any]=7 , _A : Union[str, Any]=False , _A : Optional[int]=True , _A : Optional[int]=False , _A : List[str]=False , _A : List[str]=19 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Dict=4 , _A : Any=37 , _A : Union[str, Any]="gelu" , _A : Dict=0.1 , _A : List[Any]=0.1 , _A : List[str]=512 , _A : Tuple=16 , _A : Optional[int]=2 , _A : Dict=0.02 , _A : str=3 , _A : List[Any]=4 , _A : str=None , ) -> List[Any]: __magic_name__ : Tuple = parent __magic_name__ : Dict = batch_size __magic_name__ : int = seq_length __magic_name__ : Union[str, Any] = is_training __magic_name__ : Dict = use_input_mask __magic_name__ : List[str] = use_token_type_ids __magic_name__ : Optional[int] = use_labels __magic_name__ : Union[str, Any] = vocab_size __magic_name__ : Dict = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : int = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : str = hidden_dropout_prob __magic_name__ : List[Any] = attention_probs_dropout_prob __magic_name__ : Optional[Any] = max_position_embeddings __magic_name__ : Dict = type_vocab_size __magic_name__ : int = type_sequence_label_size __magic_name__ : Any = initializer_range __magic_name__ : Union[str, Any] = num_labels __magic_name__ : Tuple = num_choices __magic_name__ : Union[str, Any] = scope def __lowerCAmelCase ( self : Dict ) -> List[Any]: __magic_name__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Tuple = None if self.use_input_mask: __magic_name__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : Optional[int] = None __magic_name__ : int = None __magic_name__ : str = None if self.use_labels: __magic_name__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : str = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : str ) -> List[str]: __magic_name__ : List[Any] = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=_A , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[Any] , _A : Optional[Any] , _A : Tuple , _A : Tuple , _A : Optional[Any] , _A : Optional[int] ) -> Union[str, Any]: __magic_name__ : Any = EsmForProteinFolding(config=_A ).float() model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A ) __magic_name__ : Any = model(_A ) __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: __magic_name__ : List[Any] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Dict = config_and_inputs __magic_name__ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : str = False A_ : Union[str, Any] = (EsmForProteinFolding,) if is_torch_available() else () A_ : List[Any] = () A_ : Any = {} if is_torch_available() else {} A_ : Optional[int] = False def __lowerCAmelCase ( self : Tuple ) -> int: __magic_name__ : Optional[int] = EsmFoldModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) @unittest.skip('Does not support attention outputs' ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: pass @unittest.skip def __lowerCAmelCase ( self : List[str] ) -> List[str]: pass @unittest.skip('Esm does not support embedding resizing' ) def __lowerCAmelCase ( self : int ) -> str: pass @unittest.skip('Esm does not support embedding resizing' ) def __lowerCAmelCase ( self : Any ) -> Any: pass @unittest.skip('ESMFold does not support passing input embeds!' ) def __lowerCAmelCase ( self : int ) -> int: pass @unittest.skip('ESMFold does not support head pruning.' ) def __lowerCAmelCase ( self : str ) -> int: pass @unittest.skip('ESMFold does not support head pruning.' ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def __lowerCAmelCase ( self : str ) -> List[str]: pass @unittest.skip('ESMFold does not support head pruning.' ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def __lowerCAmelCase ( self : Optional[Any] ) -> int: pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def __lowerCAmelCase ( self : Any ) -> Tuple: pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def __lowerCAmelCase ( self : Dict ) -> int: pass @unittest.skip('ESMFold only has one output format.' ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def __lowerCAmelCase ( self : int ) -> Tuple: pass @unittest.skip('ESMFold does not support input chunking.' ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def __lowerCAmelCase ( self : Tuple ) -> List[Any]: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: pass @require_torch class _lowerCamelCase ( lowercase__ ): '''simple docstring''' @slow def __lowerCAmelCase ( self : Any ) -> Any: __magic_name__ : Any = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() __magic_name__ : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __magic_name__ : List[Any] = model(_A )['positions'] __magic_name__ : Tuple = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , _A , atol=1E-4 ) )
275
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCAmelCase :Optional[Any] = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" if isinstance(lowerCAmelCase , torch.Tensor ): return image elif isinstance(lowerCAmelCase , PIL.Image.Image ): __magic_name__ : List[Any] = [image] __magic_name__ : List[Any] = [trans(img.convert('RGB' ) ) for img in image] __magic_name__ : Dict = torch.stack(lowerCAmelCase ) return image class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , _A : str , _A : int ) -> Dict: super().__init__() # make sure scheduler can always be converted to DDIM __magic_name__ : Optional[int] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_A , scheduler=_A ) def __lowerCAmelCase ( self : Union[str, Any] , _A : Union[str, Any] ) -> Optional[int]: if strength < 0 or strength > 1: raise ValueError(F'The value of strength should in [0.0, 1.0] but is {strength}' ) def __lowerCAmelCase ( self : Any , _A : List[str] , _A : Optional[Any] , _A : int ) -> List[Any]: # get the original timestep using init_timestep __magic_name__ : Tuple = min(int(num_inference_steps * strength ) , _A ) __magic_name__ : Any = max(num_inference_steps - init_timestep , 0 ) __magic_name__ : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __lowerCAmelCase ( self : Any , _A : str , _A : Optional[int] , _A : Tuple , _A : List[str] , _A : str , _A : Optional[int]=None ) -> Dict: if not isinstance(_A , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_A )}' ) __magic_name__ : Union[str, Any] = image.to(device=_A , dtype=_A ) if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(_A )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) __magic_name__ : Tuple = init_latents.shape __magic_name__ : Any = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) # get latents print('add noise to latents at timestep' , _A ) __magic_name__ : List[str] = self.scheduler.add_noise(_A , _A , _A ) __magic_name__ : List[str] = init_latents return latents @torch.no_grad() def __call__( self : Tuple , _A : Union[torch.FloatTensor, PIL.Image.Image] = None , _A : float = 0.8 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : float = 0.0 , _A : int = 50 , _A : Optional[bool] = None , _A : Optional[str] = "pil" , _A : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: self.check_inputs(_A ) # 2. Preprocess image __magic_name__ : int = preprocess(_A ) # 3. set timesteps self.scheduler.set_timesteps(_A , device=self.device ) __magic_name__ , __magic_name__ : Dict = self.get_timesteps(_A , _A , self.device ) __magic_name__ : Dict = timesteps[:1].repeat(_A ) # 4. Prepare latent variables __magic_name__ : Optional[Any] = self.prepare_latents(_A , _A , _A , self.unet.dtype , self.device , _A ) __magic_name__ : Optional[Any] = latents # 5. Denoising loop for t in self.progress_bar(_A ): # 1. predict noise model_output __magic_name__ : Dict = self.unet(_A , _A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __magic_name__ : List[Any] = self.scheduler.step( _A , _A , _A , eta=_A , use_clipped_model_output=_A , generator=_A , ).prev_sample __magic_name__ : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) __magic_name__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __magic_name__ : Dict = self.numpy_to_pil(_A ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_A )
275
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=UpperCAmelCase__ ): __lowerCamelCase : Tuple = ["""flax""", """transformers"""] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["flax", "transformers"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["flax", "transformers"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["flax", "transformers"] ) class lowerCAmelCase_ ( metaclass=UpperCAmelCase__ ): __lowerCamelCase : Optional[Any] = ["""flax""", """transformers"""] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["flax", "transformers"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["flax", "transformers"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["flax", "transformers"] ) class lowerCAmelCase_ ( metaclass=UpperCAmelCase__ ): __lowerCamelCase : List[str] = ["""flax""", """transformers"""] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["flax", "transformers"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["flax", "transformers"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["flax", "transformers"] ) class lowerCAmelCase_ ( metaclass=UpperCAmelCase__ ): __lowerCamelCase : Union[str, Any] = ["""flax""", """transformers"""] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["flax", "transformers"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["flax", "transformers"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["flax", "transformers"] )
158
"""simple docstring""" from heapq import heappop, heappush import numpy as np def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): """simple docstring""" A_ , A_ : List[str] = grid.shape A_ : Optional[int] = [-1, 1, 0, 0] A_ : str = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] A_ , A_ : List[Any] = [(0, source)], set() A_ : Optional[Any] = np.full((rows, cols) , np.inf ) A_ : int = 0 A_ : Optional[int] = np.empty((rows, cols) , dtype=_UpperCAmelCase ) A_ : Optional[int] = None while queue: ((A_) , (A_)) : str = heappop(_UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: A_ : int = [] while (x, y) != source: path.append((x, y) ) A_ , A_ : List[Any] = predecessors[x, y] path.append(_UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_UpperCAmelCase ) ): A_ , A_ : Tuple = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: A_ : Union[str, Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_UpperCAmelCase , (dist + 1, (nx, ny)) ) A_ : Optional[Any] = dist + 1 A_ : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
286
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether tp freeze the encoder."""} ) a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) a__ : Optional[str] = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) a__ : Optional[int] = field( default=1_024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Source language id for translation."""} ) a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Target language id for translation."""} ) a__ : Optional[int] = field(default=__lowercase , metadata={"""help""": """# num_beams to use for evaluation."""} ) a__ : bool = field( default=__lowercase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Dict: logger.info(f'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(f''' {key} = {metrics[key]}''' ) save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f'''{split}_results.json''' ) ) def __magic_name__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses() check_output_dir(__lowerCAmelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): assert hasattr(__lowerCAmelCase , __lowerCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) __lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __lowerCamelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __lowerCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __lowerCamelCase = SeqaSeqDataset # Get datasets __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __lowerCamelCase = ( build_compute_metrics_fn(data_args.task , __lowerCAmelCase ) if training_args.predict_with_generate else None ) __lowerCamelCase = SeqaSeqTrainer( model=__lowerCAmelCase , args=__lowerCAmelCase , data_args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , data_collator=SeqaSeqDataCollator( __lowerCAmelCase , __lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , ) __lowerCamelCase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __lowerCamelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __lowerCamelCase = train_result.metrics __lowerCamelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowerCamelCase = trainer.evaluate(metric_key_prefix='''val''' ) __lowerCamelCase = data_args.n_val __lowerCamelCase = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __lowerCamelCase = trainer.predict(test_dataset=__lowerCAmelCase , metric_key_prefix='''test''' ) __lowerCamelCase = test_output.metrics __lowerCamelCase = data_args.n_test if trainer.is_world_process_zero(): __lowerCamelCase = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) if training_args.predict_with_generate: __lowerCamelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) __lowerCamelCase = lmap(str.strip , __lowerCAmelCase ) write_txt_file(__lowerCAmelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(__lowerCAmelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
339
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowerCamelCase , __lowerCamelCase = y, x % y return abs(__lowerCAmelCase ) def __magic_name__ ( ) -> Tuple: try: __lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) __lowerCamelCase = int(nums[0] ) __lowerCamelCase = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
339
1
def a_ ( _A , _A , _A ) -> float: """simple docstring""" snake_case__ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def a_ ( ) -> int: """simple docstring""" print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
307
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Any ) -> Any: # Initialise PyTorch model lowercase : Union[str, Any] = RemBertConfig.from_json_file(__snake_case ) print("Building PyTorch model from configuration: {}".format(str(__snake_case ) ) ) lowercase : str = RemBertModel(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print("Save PyTorch model to {}".format(__snake_case ) ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": _A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _A : List[str] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
202
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def _a ( ): """simple docstring""" lowercase__ = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=SCREAMING_SNAKE_CASE__ ) lowercase__ = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) TestCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) RunBeamCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) DummyDataCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) # Parse args lowercase__ = parser.parse_known_args() if not hasattr(SCREAMING_SNAKE_CASE__ , '''func''' ): parser.print_help() exit(1 ) lowercase__ = parse_unknown_args(SCREAMING_SNAKE_CASE__ ) # Run lowercase__ = args.func(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) service.run() if __name__ == "__main__": main()
367
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = len(SCREAMING_SNAKE_CASE ) lowercase__ = [] for i in range(len(SCREAMING_SNAKE_CASE ) - pat_len + 1 ): lowercase__ = True for j in range(SCREAMING_SNAKE_CASE ): if s[i + j] != pattern[j]: lowercase__ = False break if match_found: position.append(SCREAMING_SNAKE_CASE ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
93
0
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed UpperCamelCase__: Any = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def snake_case_ ( _lowerCAmelCase : Optional[Any] ) -> Tuple: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ) -> str: if args.student_type == "roberta": UpperCAmelCase : Any = False elif args.student_type == "gpt2": UpperCAmelCase : List[Any] = False def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> str: if args.student_type == "roberta": UpperCAmelCase : List[Any] = False def snake_case_ ( ) -> Union[str, Any]: UpperCAmelCase : str = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=_lowerCAmelCase , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=_lowerCAmelCase , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=_lowerCAmelCase , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=_lowerCAmelCase , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=_lowerCAmelCase , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=_lowerCAmelCase , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=_lowerCAmelCase , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=_lowerCAmelCase , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=_lowerCAmelCase , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.1_5 , type=_lowerCAmelCase , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=_lowerCAmelCase , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=_lowerCAmelCase , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=_lowerCAmelCase , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=_lowerCAmelCase , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=_lowerCAmelCase , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=_lowerCAmelCase , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=_lowerCAmelCase , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=_lowerCAmelCase , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.0_5 , type=_lowerCAmelCase , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=_lowerCAmelCase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5e-4 , type=_lowerCAmelCase , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1e-6 , type=_lowerCAmelCase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=_lowerCAmelCase , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.0_2 , type=_lowerCAmelCase , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=_lowerCAmelCase , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=_lowerCAmelCase , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=_lowerCAmelCase , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=_lowerCAmelCase , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=_lowerCAmelCase , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=_lowerCAmelCase , default=4000 , help='''Checkpoint interval.''' ) UpperCAmelCase : Optional[int] = parser.parse_args() sanity_checks(_lowerCAmelCase ) # ARGS # init_gpu_params(_lowerCAmelCase ) set_seed(_lowerCAmelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(_lowerCAmelCase ) , _lowerCAmelCase , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase : List[Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase : str = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase : int = tokenizer.all_special_tokens.index(_lowerCAmelCase ) UpperCAmelCase : List[Any] = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase : Any = special_tok_ids UpperCAmelCase : List[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase : str = pickle.load(_lowerCAmelCase ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase : List[str] = pickle.load(_lowerCAmelCase ) UpperCAmelCase : str = np.maximum(_lowerCAmelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase : Optional[Any] = 0.0 # do not predict special tokens UpperCAmelCase : str = torch.from_numpy(_lowerCAmelCase ) else: UpperCAmelCase : Optional[int] = None UpperCAmelCase : List[str] = LmSeqsDataset(params=_lowerCAmelCase , data=_lowerCAmelCase ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase : Dict = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase : List[str] = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase : Optional[int] = student_model_class.from_pretrained(args.student_pretrained_weights , config=_lowerCAmelCase ) else: UpperCAmelCase : Optional[Any] = student_model_class(_lowerCAmelCase ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase : List[Any] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_lowerCAmelCase ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_lowerCAmelCase , _lowerCAmelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_lowerCAmelCase , _lowerCAmelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase : Union[str, Any] = Distiller( params=_lowerCAmelCase , dataset=_lowerCAmelCase , token_probs=_lowerCAmelCase , student=_lowerCAmelCase , teacher=_lowerCAmelCase ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
23
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowercase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __a ( _SCREAMING_SNAKE_CASE ) ->Any: if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): return image elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): a__: Optional[int] = [image] a__: str = [trans(img.convert('RGB' ) ) for img in image] a__: Any = torch.stack(_SCREAMING_SNAKE_CASE ) return image class __snake_case ( __lowerCAmelCase ): def __init__( self , lowercase , lowercase) -> Optional[int]: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM a__: Dict = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=lowercase , scheduler=lowercase) def lowerCamelCase_ ( self , lowercase) -> int: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> Dict: '''simple docstring''' a__: int = min(int(num_inference_steps * strength) , lowercase) a__: Any = max(num_inference_steps - init_timestep , 0) a__: Union[str, Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=None) -> List[Any]: '''simple docstring''' if not isinstance(lowercase , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase)}') a__: Tuple = image.to(device=lowercase , dtype=lowercase) if isinstance(lowercase , lowercase) and len(lowercase) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(lowercase)}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.') a__: List[str] = init_latents.shape a__: List[Any] = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase) # get latents print('add noise to latents at timestep' , lowercase) a__: int = self.scheduler.add_noise(lowercase , lowercase , lowercase) a__: Dict = init_latents return latents @torch.no_grad() def __call__( self , lowercase = None , lowercase = 0.8 , lowercase = 1 , lowercase = None , lowercase = 0.0 , lowercase = 50 , lowercase = None , lowercase = "pil" , lowercase = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowercase) # 2. Preprocess image a__: Tuple = preprocess(lowercase) # 3. set timesteps self.scheduler.set_timesteps(lowercase , device=self.device) a__ , a__: Union[str, Any] = self.get_timesteps(lowercase , lowercase , self.device) a__: Optional[int] = timesteps[:1].repeat(lowercase) # 4. Prepare latent variables a__: Union[str, Any] = self.prepare_latents(lowercase , lowercase , lowercase , self.unet.dtype , self.device , lowercase) a__: Optional[Any] = latents # 5. Denoising loop for t in self.progress_bar(lowercase): # 1. predict noise model_output a__: Dict = self.unet(lowercase , lowercase).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 a__: Optional[Any] = self.scheduler.step( lowercase , lowercase , lowercase , eta=lowercase , use_clipped_model_output=lowercase , generator=lowercase , ).prev_sample a__: Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1) a__: Optional[int] = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": a__: Dict = self.numpy_to_pil(lowercase) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowercase)
290
0
'''simple docstring''' import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[Any]=13 , __snake_case : Union[str, Any]=7 , __snake_case : List[Any]=True , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : List[Any]=True , __snake_case : List[str]=99 , __snake_case : int=32 , __snake_case : List[Any]=5 , __snake_case : Tuple=4 , __snake_case : Dict=4 , __snake_case : Tuple="gelu" , __snake_case : Optional[int]=0.0 , __snake_case : Tuple=0.1 , __snake_case : str=True , __snake_case : Tuple=5_12 , __snake_case : str=16 , __snake_case : Optional[int]=2 , __snake_case : Dict=0.02 , __snake_case : List[Any]=3 , __snake_case : Union[str, Any]=4 , __snake_case : Dict=None , )-> Dict: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_multiple_size snake_case = hidden_act snake_case = hidden_dropout snake_case = attention_dropout snake_case = weight_tying snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope def lowerCAmelCase ( self : int )-> str: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = self.get_config() return config, input_ids, input_mask, token_labels def lowerCAmelCase ( self : str )-> Any: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: snake_case , snake_case , snake_case , snake_case = self.prepare_config_and_inputs() snake_case = True return config, input_ids, input_mask, token_labels def lowerCAmelCase ( self : str , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[Any] )-> List[Any]: snake_case = GPTNeoXJapaneseModel(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case ) snake_case = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : List[str] , __snake_case : Optional[Any] )-> Optional[int]: snake_case = True snake_case = GPTNeoXJapaneseModel(__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : Tuple , __snake_case : int , __snake_case : str )-> Tuple: snake_case = GPTNeoXJapaneseForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] )-> Dict: snake_case = True snake_case = GPTNeoXJapaneseForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() # first forward pass snake_case = model(__snake_case , attention_mask=__snake_case , use_cache=__snake_case ) snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case = model(__snake_case , attention_mask=__snake_case , output_hidden_states=__snake_case ) snake_case = output_from_no_past["""hidden_states"""][0] snake_case = model( __snake_case , attention_mask=__snake_case , past_key_values=__snake_case , output_hidden_states=__snake_case , )["""hidden_states"""][0] # select random slice snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-3 ) ) def lowerCAmelCase ( self : List[Any] )-> List[str]: snake_case = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case = config_and_inputs snake_case = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( A__ , A__ , unittest.TestCase ): """simple docstring""" snake_case_ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () snake_case_ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () snake_case_ = ( {"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowerCAmelCase ( self : Tuple )-> Optional[int]: snake_case = GPTNeoXJapaneseModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def lowerCAmelCase ( self : List[Any] )-> str: self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] )-> Union[str, Any]: snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__snake_case , __snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Union[str, Any]: snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__snake_case , __snake_case , __snake_case ) def lowerCAmelCase ( self : Optional[int] )-> Tuple: # This regression test was failing with PyTorch < 1.3 snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case = None self.model_tester.create_and_check_model_as_decoder(__snake_case , __snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Dict: snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__snake_case , __snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> List[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__snake_case ) @slow def lowerCAmelCase ( self : Optional[int] )-> Optional[Any]: snake_case = """abeja/gpt-neox-japanese-2.7b""" snake_case = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] snake_case = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] snake_case = GPTNeoXJapaneseTokenizer.from_pretrained(__snake_case ) snake_case = GPTNeoXJapaneseForCausalLM.from_pretrained(__snake_case ) snake_case = [] for prompt in prompts: snake_case = tokenizer(__snake_case , return_tensors="""pt""" ).input_ids snake_case = model.generate(__snake_case , max_length=50 ) snake_case = tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) predicted_outputs += generated_string self.assertListEqual(__snake_case , __snake_case )
368
'''simple docstring''' _SCREAMING_SNAKE_CASE = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _SCREAMING_SNAKE_CASE = ["a", "b", "c", "d", "e"] def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> Optional[int]: snake_case = start # add current to visited visited.append(__lowerCAmelCase ) snake_case = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(__lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): for vertice in vertices: if vertice not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # return sort return sort if __name__ == "__main__": _SCREAMING_SNAKE_CASE = topological_sort("a", [], []) print(sort)
3
0