code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import os import sys import unittest _UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _UpperCamelCase = os.path.join("tests", "models", "bert", "test_modeling_bert.py") _UpperCamelCase = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class __lowercase (unittest.TestCase ): def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : List[Any] = get_test_to_tester_mapping(A_ ) __lowerCAmelCase : List[str] = get_test_to_tester_mapping(A_ ) __lowerCAmelCase : Tuple = {'''BertModelTest''': '''BertModelTester'''} __lowerCAmelCase : List[str] = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(A_ ) , A_ ) self.assertEqual(get_test_info.to_json(A_ ) , A_ ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : int = get_model_to_test_mapping(A_ ) __lowerCAmelCase : Optional[Any] = get_model_to_test_mapping(A_ ) __lowerCAmelCase : Optional[int] = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } __lowerCAmelCase : str = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(A_ ) , A_ ) self.assertEqual(get_test_info.to_json(A_ ) , A_ ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : Optional[int] = get_model_to_tester_mapping(A_ ) __lowerCAmelCase : Union[str, Any] = get_model_to_tester_mapping(A_ ) __lowerCAmelCase : Any = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } __lowerCAmelCase : int = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(A_ ) , A_ ) self.assertEqual(get_test_info.to_json(A_ ) , A_ )
275
def _lowercase ( lowercase__ = 2_0_0 ): __lowerCAmelCase : Union[str, Any] = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] __lowerCAmelCase : Dict = [0] * (pence + 1) __lowerCAmelCase : Optional[int] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
275
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Any = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : List[str] ): lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase : Tuple = emb.weight.data return lin_layer def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ): lowerCAmelCase : Union[str, Any] = {} for old_key in state_dict.keys(): lowerCAmelCase : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCAmelCase : Tuple = state_dict[old_key] return new_dict def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Tuple = 0 os.makedirs(_snake_case , exist_ok=_snake_case ) for expert in range(_snake_case ): lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(_snake_case ): lowerCAmelCase : List[str] = torch.load(_snake_case )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Any = os.path.join( _snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) torch.save(_snake_case , _snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_snake_case )[0]].dtype ) # Add the last block lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_snake_case ) == 1: lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case ) torch.save(_snake_case , _snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_snake_case , _snake_case ) # Otherwise, let's build the index lowerCAmelCase : Dict = {} for idx, shard in enumerate(_snake_case ): lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' ) lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) ) for key in shard: lowerCAmelCase : List[Any] = shard_file # Add the metadata lowerCAmelCase : Dict = {'''total_size''': total_size} lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n''' f.write(_snake_case ) return metadata, index if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) snake_case__ : List[str] = parser.parse_args() snake_case__ , snake_case__ : Tuple = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) snake_case__ : str = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
314
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase__ = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : UpperCamelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field(default=A , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class __lowerCAmelCase : UpperCamelCase = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) UpperCamelCase = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) UpperCamelCase = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) UpperCamelCase = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) UpperCamelCase = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) UpperCamelCase = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''Source language id for translation.'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''Target language id for translation.'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' logger.info(F"***** {split} metrics *****" ) for key in sorted(metrics.keys() ): logger.info(F" {key} = {metrics[key]}" ) save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , F"{split}_results.json" ) ) def A ( ) -> List[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(_UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCAmelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): assert hasattr(_UpperCAmelCase , _UpperCAmelCase ), F"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_UpperCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _UpperCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_UpperCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _UpperCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_UpperCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _UpperCAmelCase = SeqaSeqDataset # Get datasets _UpperCAmelCase = ( dataset_class( _UpperCAmelCase , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) _UpperCAmelCase = ( dataset_class( _UpperCAmelCase , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _UpperCAmelCase = ( dataset_class( _UpperCAmelCase , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer _UpperCAmelCase = ( build_compute_metrics_fn(data_args.task , _UpperCAmelCase ) if training_args.predict_with_generate else None ) _UpperCAmelCase = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , data_args=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , data_collator=SeqaSeqDataCollator( _UpperCAmelCase , _UpperCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) _UpperCAmelCase = {} # Training if training_args.do_train: logger.info('*** Train ***' ) _UpperCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _UpperCAmelCase = train_result.metrics _UpperCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , _UpperCAmelCase , training_args.output_dir ) all_metrics.update(_UpperCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate(metric_key_prefix='val' ) _UpperCAmelCase = data_args.n_val _UpperCAmelCase = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , _UpperCAmelCase , training_args.output_dir ) all_metrics.update(_UpperCAmelCase ) if training_args.do_predict: logger.info('*** Predict ***' ) _UpperCAmelCase = trainer.predict(test_dataset=_UpperCAmelCase , metric_key_prefix='test' ) _UpperCAmelCase = test_output.metrics _UpperCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _UpperCAmelCase = round(metrics['test_loss'] , 4 ) handle_metrics('test' , _UpperCAmelCase , training_args.output_dir ) all_metrics.update(_UpperCAmelCase ) if training_args.predict_with_generate: _UpperCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) _UpperCAmelCase = lmap(str.strip , _UpperCAmelCase ) write_txt_file(_UpperCAmelCase , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(_UpperCAmelCase , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def A ( _UpperCAmelCase : Dict ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
339
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCAmelCase__ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" UpperCAmelCase__ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" UpperCAmelCase__ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def _lowerCamelCase ( self : str) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'), }) , ) def _lowerCamelCase ( self : Union[str, Any] , A : List[List[List[str]]] , A : List[List[str]] , A : int = 1 , A : int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=A , hypotheses=A , min_len=A , max_len=A) }
339
1
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: if isinstance(_lowercase , torch.Tensor ): return image elif isinstance(_lowercase , PIL.Image.Image ): UpperCAmelCase : Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase : List[str] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] UpperCAmelCase : List[Any] = np.concatenate(_lowercase , axis=0 ) UpperCAmelCase : List[Any] = np.array(_lowercase ).astype(np.floataa ) / 255.0 UpperCAmelCase : List[str] = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase : int = 2.0 * image - 1.0 UpperCAmelCase : str = torch.from_numpy(_lowercase ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase : str = torch.cat(_lowercase , dim=0 ) return image def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=0.9995 ) -> Tuple: if not isinstance(_lowercase , np.ndarray ): UpperCAmelCase : Tuple = True UpperCAmelCase : Union[str, Any] = va.device UpperCAmelCase : List[str] = va.cpu().numpy() UpperCAmelCase : List[Any] = va.cpu().numpy() UpperCAmelCase : Optional[Any] = np.sum(va * va / (np.linalg.norm(_lowercase ) * np.linalg.norm(_lowercase )) ) if np.abs(_lowercase ) > DOT_THRESHOLD: UpperCAmelCase : str = (1 - t) * va + t * va else: UpperCAmelCase : Dict = np.arccos(_lowercase ) UpperCAmelCase : Union[str, Any] = np.sin(_lowercase ) UpperCAmelCase : List[str] = theta_a * t UpperCAmelCase : Union[str, Any] = np.sin(_lowercase ) UpperCAmelCase : Optional[Any] = np.sin(theta_a - theta_t ) / sin_theta_a UpperCAmelCase : Dict = sin_theta_t / sin_theta_a UpperCAmelCase : List[Any] = sa * va + sa * va if inputs_are_torch: UpperCAmelCase : str = torch.from_numpy(_lowercase ).to(_lowercase ) return va def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = F.normalize(_lowercase , dim=-1 ) UpperCAmelCase : Optional[int] = F.normalize(_lowercase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]: for param in model.parameters(): UpperCAmelCase : Optional[int] = value class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> List[Any]: super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) UpperCAmelCase : Optional[Any] = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size["""shortest_edge"""] ) UpperCAmelCase : Any = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def _lowercase( self , A = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def _lowercase( self ) -> Optional[Any]: self.enable_attention_slicing(A ) def _lowercase( self ) -> List[str]: set_requires_grad(self.vae , A ) def _lowercase( self ) -> str: set_requires_grad(self.vae , A ) def _lowercase( self ) -> Tuple: set_requires_grad(self.unet , A ) def _lowercase( self ) -> Optional[int]: set_requires_grad(self.unet , A ) def _lowercase( self , A , A , A ) -> Any: # get the original timestep using init_timestep UpperCAmelCase : Dict = min(int(num_inference_steps * strength ) , A ) UpperCAmelCase : Optional[Any] = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase( self , A , A , A , A , A , A=None ) -> Dict: if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) UpperCAmelCase : Tuple = image.to(device=A , dtype=A ) if isinstance(A , A ): UpperCAmelCase : Optional[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] UpperCAmelCase : List[str] = torch.cat(A , dim=0 ) else: UpperCAmelCase : List[Any] = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase : Tuple = 0.1_8_2_1_5 * init_latents UpperCAmelCase : Optional[int] = init_latents.repeat_interleave(A , dim=0 ) UpperCAmelCase : Tuple = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents UpperCAmelCase : str = self.scheduler.add_noise(A , A , A ) UpperCAmelCase : str = init_latents return latents def _lowercase( self , A ) -> Tuple: UpperCAmelCase : str = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCAmelCase : List[str] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) UpperCAmelCase : Dict = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def _lowercase( self , A , A ) -> int: UpperCAmelCase : Optional[Any] = self.feature_extractor.preprocess(A ) UpperCAmelCase : Any = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() UpperCAmelCase : str = self.clip_model.get_image_features(A ) UpperCAmelCase : str = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) UpperCAmelCase : Tuple = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowercase( self , A , A , A , A , A , A , A , ) -> str: UpperCAmelCase : Optional[Any] = latents.detach().requires_grad_() UpperCAmelCase : str = self.scheduler.scale_model_input(A , A ) # predict the noise residual UpperCAmelCase : str = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCAmelCase : Dict = self.scheduler.alphas_cumprod[timestep] UpperCAmelCase : str = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase : Dict = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCAmelCase : Optional[Any] = torch.sqrt(A ) UpperCAmelCase : Optional[Any] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): UpperCAmelCase : List[Any] = self.scheduler.sigmas[index] UpperCAmelCase : Dict = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase : Optional[Any] = 1 / 0.1_8_2_1_5 * sample UpperCAmelCase : str = self.vae.decode(A ).sample UpperCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Union[str, Any] = transforms.Resize(self.feature_extractor_size )(A ) UpperCAmelCase : Union[str, Any] = self.normalize(A ).to(latents.dtype ) UpperCAmelCase : str = self.clip_model.get_image_features(A ) UpperCAmelCase : Tuple = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) UpperCAmelCase : List[Any] = spherical_dist_loss(A , A ).mean() * clip_guidance_scale UpperCAmelCase : Any = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): UpperCAmelCase : List[str] = latents.detach() + grads * (sigma**2) UpperCAmelCase : List[str] = noise_pred_original else: UpperCAmelCase : Any = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> List[Any]: if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: UpperCAmelCase : Any = [generator] + [None] * (batch_size - 1) UpperCAmelCase : Any = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] UpperCAmelCase : int = [x[0] for x in coca_is_none if x[1]] UpperCAmelCase : str = """, """.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) UpperCAmelCase : Optional[int] = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) UpperCAmelCase : Union[str, Any] = self.get_image_description(A ) # get prompt text embeddings for content and style UpperCAmelCase : List[Any] = self.tokenizer( A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors="""pt""" , ) UpperCAmelCase : Dict = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase : str = self.tokenizer( A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors="""pt""" , ) UpperCAmelCase : Optional[int] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase : Any = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt UpperCAmelCase : Any = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps UpperCAmelCase : Union[str, Any] = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCAmelCase : str = {} if accepts_offset: UpperCAmelCase : List[str] = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCAmelCase : Tuple = self.get_timesteps(A , A , self.device ) UpperCAmelCase : Dict = timesteps[:1].repeat(A ) # Preprocess image UpperCAmelCase : int = preprocess(A , A , A ) UpperCAmelCase : Dict = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) UpperCAmelCase : str = preprocess(A , A , A ) UpperCAmelCase : Any = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) UpperCAmelCase : List[str] = slerp(A , A , A ) if clip_guidance_scale > 0: UpperCAmelCase : Optional[Any] = self.get_clip_image_embeddings(A , A ) UpperCAmelCase : Optional[Any] = self.get_clip_image_embeddings(A , A ) UpperCAmelCase : Tuple = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase : Union[str, Any] = content_text_input.input_ids.shape[-1] UpperCAmelCase : List[str] = self.tokenizer([""""""] , padding="""max_length""" , max_length=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCAmelCase : str = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase : Optional[int] = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCAmelCase : Dict = torch.randn(A , generator=A , device="""cpu""" , dtype=A ).to( self.device ) else: UpperCAmelCase : Optional[int] = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCAmelCase : Tuple = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase : int = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase : int = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase : Dict = {} if accepts_eta: UpperCAmelCase : Any = eta # check if the scheduler accepts generator UpperCAmelCase : Tuple = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCAmelCase : Optional[Any] = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : List[str] = self.scheduler.scale_model_input(A , A ) # predict the noise residual UpperCAmelCase : Union[str, Any] = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCAmelCase : Tuple = noise_pred.chunk(2 ) UpperCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCAmelCase : List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCAmelCase : int = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Tuple = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase : int = 1 / 0.1_8_2_1_5 * latents UpperCAmelCase : Tuple = self.vae.decode(A ).sample UpperCAmelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Optional[Any] = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
357
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
0
"""simple docstring""" lowerCamelCase_ : List[Any] = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
81
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class lowerCAmelCase__ : def __init__( self ): """simple docstring""" lowercase_ : int = {} def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = {} def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if nodea not in self.connections: self.add_node(__SCREAMING_SNAKE_CASE ) if nodea not in self.connections: self.add_node(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = probability def _snake_case ( self ): """simple docstring""" return list(self.connections ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Any = 0 lowercase_ : Tuple = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : list[tuple[str, str, float]] , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : List[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : str = Counter(graph.get_nodes() ) lowercase_ : Any = start for _ in range(__SCREAMING_SNAKE_CASE ): lowercase_ : int = graph.transition(__SCREAMING_SNAKE_CASE ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
93
0
'''simple docstring''' snake_case__ = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.3_5_5_8_1_8, } def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : float ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: A_ : Dict = ( f'Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n' f'Valid values are: {", ".join(lowerCamelCase__ )}' ) raise ValueError(lowerCamelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
4
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example snake_case__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case__ ( lowerCamelCase__ : list[list[int]] ) -> list[list[int]]: A_ : str = [] for i in range(len(lowerCamelCase__ ) ): A_ : Optional[Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours A_ : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. A_ : List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase__ ) return next_generation def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[Image.Image]: A_ : List[Any] = [] for _ in range(lowerCamelCase__ ): # Create output image A_ : Optional[int] = Image.new('''RGB''' , (len(cells[0] ), len(lowerCamelCase__ )) ) A_ : int = img.load() # Save cells to image for x in range(len(lowerCamelCase__ ) ): for y in range(len(cells[0] ) ): A_ : Optional[Any] = 2_5_5 - cells[y][x] * 2_5_5 A_ : str = (colour, colour, colour) # Save image images.append(lowerCamelCase__ ) A_ : Optional[int] = new_generation(lowerCamelCase__ ) return images if __name__ == "__main__": snake_case__ = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
4
1
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase : int = logging.get_logger(__name__) lowercase : List[str] = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class __snake_case ( __snake_case ): _a : List[str]= "bart" _a : Optional[Any]= ["past_key_values"] _a : Any= {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self ,snake_case=50265 ,snake_case=1024 ,snake_case=12 ,snake_case=4096 ,snake_case=16 ,snake_case=12 ,snake_case=4096 ,snake_case=16 ,snake_case=0.0 ,snake_case=0.0 ,snake_case="gelu" ,snake_case=1024 ,snake_case=0.1 ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.02 ,snake_case=0.0 ,snake_case=False ,snake_case=True ,snake_case=3 ,snake_case=1 ,snake_case=0 ,snake_case=2 ,snake_case=True ,snake_case=2 ,snake_case=2 ,**snake_case ,): '''simple docstring''' lowercase : Dict = vocab_size lowercase : Any = max_position_embeddings lowercase : Union[str, Any] = d_model lowercase : str = encoder_ffn_dim lowercase : Dict = encoder_layers lowercase : str = encoder_attention_heads lowercase : Union[str, Any] = decoder_ffn_dim lowercase : Optional[Any] = decoder_layers lowercase : List[Any] = decoder_attention_heads lowercase : Optional[int] = dropout lowercase : Optional[int] = attention_dropout lowercase : Optional[int] = activation_dropout lowercase : Dict = activation_function lowercase : List[str] = init_std lowercase : Any = encoder_layerdrop lowercase : List[Any] = decoder_layerdrop lowercase : List[str] = classifier_dropout lowercase : Any = use_cache lowercase : Optional[Any] = encoder_layers lowercase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=snake_case ,pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,forced_eos_token_id=snake_case ,**snake_case ,) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" ,snake_case ): lowercase : Union[str, Any] = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " """The config can simply be saved and uploaded again to be fixed.""" ) class __snake_case ( __snake_case ): @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase : Dict = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowercase : Optional[int] = {0: '''batch'''} lowercase : Optional[int] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowercase : str = {0: '''batch''', 1: '''decoder_sequence'''} lowercase : Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(snake_case ,direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase : List[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowercase : Tuple = self.num_layers for i in range(snake_case ): lowercase : Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} lowercase : int = {0: '''batch''', 2: '''past_sequence + sequence'''} else: lowercase : Tuple = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase : str = super().outputs else: lowercase : Tuple = super(snake_case ,self ).outputs if self.use_past: lowercase : Any = self.num_layers for i in range(snake_case ): lowercase : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} lowercase : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = -1 ,snake_case = -1 ,snake_case = False ,snake_case = None ,): '''simple docstring''' lowercase : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case ,snake_case ,snake_case ,snake_case ,snake_case ) # Generate decoder inputs lowercase : Union[str, Any] = seq_length if not self.use_past else 1 lowercase : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case ,snake_case ,snake_case ,snake_case ,snake_case ) lowercase : Union[str, Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} lowercase : Union[str, Any] = dict(**snake_case ,**snake_case ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase : Union[str, Any] = common_inputs['''input_ids'''].shape lowercase : Optional[Any] = common_inputs['''decoder_input_ids'''].shape[1] lowercase : str = self.num_attention_heads lowercase : int = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase : Tuple = decoder_seq_length + 3 lowercase : List[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase : Union[str, Any] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(snake_case ,snake_case )] ,dim=1 ) lowercase : Tuple = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase : Tuple = self.num_layers lowercase : Union[str, Any] = min(snake_case ,snake_case ) lowercase : Optional[Any] = max(snake_case ,snake_case ) - min_num_layers lowercase : Any = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(snake_case ): common_inputs["past_key_values"].append( ( torch.zeros(snake_case ), torch.zeros(snake_case ), torch.zeros(snake_case ), torch.zeros(snake_case ), ) ) # TODO: test this. lowercase : List[str] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(snake_case ,snake_case ): common_inputs["past_key_values"].append((torch.zeros(snake_case ), torch.zeros(snake_case )) ) return common_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = -1 ,snake_case = -1 ,snake_case = False ,snake_case = None ,): '''simple docstring''' lowercase : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case ,snake_case ,snake_case ,snake_case ,snake_case ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase : Optional[int] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase : List[Any] = seqlen + 2 lowercase : List[Any] = self.num_layers lowercase : Optional[Any] = self.num_attention_heads lowercase : Union[str, Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase : Union[str, Any] = common_inputs['''attention_mask'''].dtype lowercase : List[Any] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(snake_case ,snake_case ,dtype=snake_case )] ,dim=1 ) lowercase : Tuple = [ (torch.zeros(snake_case ), torch.zeros(snake_case )) for _ in range(snake_case ) ] return common_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = -1 ,snake_case = -1 ,snake_case = False ,snake_case = None ,): '''simple docstring''' lowercase : Tuple = compute_effective_axis_dimension( snake_case ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase : int = tokenizer.num_special_tokens_to_add(snake_case ) lowercase : int = compute_effective_axis_dimension( snake_case ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=snake_case ) # Generate dummy inputs according to compute batch and sequence lowercase : Tuple = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase : List[Any] = dict(tokenizer(snake_case ,return_tensors=snake_case ) ) return common_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = -1 ,snake_case = -1 ,snake_case = False ,snake_case = None ,): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( snake_case ,batch_size=snake_case ,seq_length=snake_case ,is_pair=snake_case ,framework=snake_case ) elif self.task == "causal-lm": lowercase : int = self._generate_dummy_inputs_for_causal_lm( snake_case ,batch_size=snake_case ,seq_length=snake_case ,is_pair=snake_case ,framework=snake_case ) else: lowercase : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case ,batch_size=snake_case ,seq_length=snake_case ,is_pair=snake_case ,framework=snake_case ) return common_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase : List[str] = super()._flatten_past_key_values_(snake_case ,snake_case ,snake_case ,snake_case ) else: lowercase : Optional[Any] = super(snake_case ,self )._flatten_past_key_values_( snake_case ,snake_case ,snake_case ,snake_case )
20
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowercase : Optional[int] = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } lowercase : Optional[Any] = { '169M': 7_68, '430M': 10_24, '1B5': 20_48, '3B': 25_60, '7B': 40_96, '14B': 51_20, } def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Optional[Any] = list(state_dict.keys() ) for name in state_dict_keys: A : str = state_dict.pop(snake_case__ ) # emb -> embedding if name.startswith('''emb.''' ): A : Optional[Any] = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): A : Union[str, Any] = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention A : int = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , snake_case__ ) # ffn -> feed_forward A : List[Any] = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , snake_case__ ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): A : List[str] = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): A : Union[str, Any] = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): A : Union[str, Any] = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": A : List[Any] = '''rwkv.''' + name A : Dict = weight return state_dict def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=False , snake_case__=None ): '''simple docstring''' if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) A : int = 5_0277 A : Optional[int] = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: A : str = PreTrainedTokenizerFast(tokenizer_file=snake_case__ ) A : Any = len(snake_case__ ) tokenizer.save_pretrained(snake_case__ ) # 2. Build the config A : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: A : List[str] = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(F'`size` should be one of {possible_sizes}, got {size}.' ) A : Any = RwkvConfig( vocab_size=snake_case__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(snake_case__ ) # 3. Download model file then convert state_dict A : Union[str, Any] = hf_hub_download(snake_case__ , snake_case__ ) A : Tuple = torch.load(snake_case__ , map_location='''cpu''' ) A : List[Any] = convert_state_dict(snake_case__ ) # 4. Split in shards and save A, A : List[str] = shard_checkpoint(snake_case__ ) for shard_file, shard in shards.items(): torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) if index is not None: A : Dict = os.path.join(snake_case__ , snake_case__ ) # Save the index as well with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: A : List[Any] = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '''\n''' f.write(snake_case__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) A : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: A : Union[str, Any] = torch.load(os.path.join(snake_case__ , snake_case__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(snake_case__ , snake_case__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) A : int = AutoModelForCausalLM.from_pretrained(snake_case__ ) model.push_to_hub(snake_case__ , max_shard_size='''2GB''' ) tokenizer.push_to_hub(snake_case__ ) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) lowercase : Union[str, Any] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
3
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ :Any = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def lowerCAmelCase__ ( a__: Optional[Any] ) -> List[Any]: '''simple docstring''' from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(a__ ) def lowerCAmelCase__ ( a__: Dict ) -> str: '''simple docstring''' from diffusers.utils.testing_utils import pytest_terminal_summary_main _UpperCAmelCase = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(a__ , id=a__ )
185
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class __a ( UpperCAmelCase ): _a : Optional[int] = 'MCTCTFeatureExtractor' _a : int = 'AutoTokenizer' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.feature_extractor _UpperCAmelCase = False def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) _UpperCAmelCase = kwargs.pop('raw_speech' ) else: _UpperCAmelCase = kwargs.pop('audio' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = kwargs.pop('sampling_rate' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = kwargs.pop('text' , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _UpperCAmelCase = self.feature_extractor(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None: _UpperCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is None: return inputs elif audio is None: return encodings else: _UpperCAmelCase = encodings['input_ids'] return inputs def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = kwargs.pop('input_features' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = kwargs.pop('labels' , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if input_features is not None: _UpperCAmelCase = self.feature_extractor.pad(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if labels is not None: _UpperCAmelCase = self.tokenizer.pad(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if labels is None: return input_features elif input_features is None: return labels else: _UpperCAmelCase = labels['input_ids'] return input_features def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @contextmanager def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) _UpperCAmelCase = True _UpperCAmelCase = self.tokenizer yield _UpperCAmelCase = self.feature_extractor _UpperCAmelCase = False
185
1
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Dict , **__lowerCamelCase : Dict ) -> Union[str, Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Optional[Any] , **__lowerCamelCase : Dict ) -> int: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : str ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__lowerCamelCase ): processor() def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
314
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( A__ ): """simple docstring""" a = (UnCLIPScheduler,) def lowercase_ ( self : List[str] , **__lowerCamelCase : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__lowerCamelCase ) return config def lowercase_ ( self : Dict ) -> Any: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowercase_ ( self : str ) -> Union[str, Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCamelCase ) def lowercase_ ( self : List[str] ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Tuple: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowercase_ ( self : int ) -> str: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCamelCase , prev_timestep=__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1e-5 def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''learned_range''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCamelCase ) - -10.1712790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=__lowerCamelCase ) - -5.7998052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=__lowerCamelCase ) - -0.0010011 < 1e-5 def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3284743 ) < 1e-3 def lowercase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(25 ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) if i + 1 == timesteps.shape[0]: SCREAMING_SNAKE_CASE__ = None else: SCREAMING_SNAKE_CASE__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prev_timestep=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3362038 ) < 1e-3 def lowercase_ ( self : int ) -> Tuple: pass def lowercase_ ( self : Dict ) -> Union[str, Any]: pass
314
1
from __future__ import annotations from typing import Any def UpperCamelCase_( lowerCamelCase_ ) -> Dict: create_state_space_tree(UpperCamelCase__ , [] , 0 ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: if index == len(UpperCamelCase__ ): print(UpperCamelCase__ ) return create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": SCREAMING_SNAKE_CASE : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
352
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } SCREAMING_SNAKE_CASE : Tuple = { "b0": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: _lowercase : Union[str, Any] = EfficientNetConfig() _lowercase : Any = CONFIG_MAP[model_name]['hidden_dim'] _lowercase : Any = CONFIG_MAP[model_name]['width_coef'] _lowercase : Optional[int] = CONFIG_MAP[model_name]['depth_coef'] _lowercase : List[Any] = CONFIG_MAP[model_name]['image_size'] _lowercase : Tuple = CONFIG_MAP[model_name]['dropout_rate'] _lowercase : Dict = CONFIG_MAP[model_name]['dw_padding'] _lowercase : str = 'huggingface/label-files' _lowercase : Optional[Any] = 'imagenet-1k-id2label.json' _lowercase : List[Any] = 1000 _lowercase : str = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset' ) , 'r' ) ) _lowercase : Optional[int] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} _lowercase : int = idalabel _lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} return config def UpperCamelCase_( ) -> List[Any]: _lowercase : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase : Tuple = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im def UpperCamelCase_( lowerCamelCase_ ) -> Dict: _lowercase : Tuple = CONFIG_MAP[model_name]['image_size'] _lowercase : List[str] = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=lowerCamelCase_ , ) return preprocessor def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: _lowercase : Tuple = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] _lowercase : Tuple = sorted(set(lowerCamelCase_ ) ) _lowercase : List[Any] = len(lowerCamelCase_ ) _lowercase : List[str] = {b: str(lowerCamelCase_ ) for b, i in zip(lowerCamelCase_ , range(lowerCamelCase_ ) )} _lowercase : Optional[int] = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: _lowercase : Union[str, Any] = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) _lowercase : Optional[Any] = {} for item in rename_keys: if item[0] in original_param_names: _lowercase : str = 'efficientnet.' + item[1] _lowercase : Optional[Any] = 'classifier.weight' _lowercase : List[str] = 'classifier.bias' return key_mapping def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: for key, value in tf_params.items(): if "normalization" in key: continue _lowercase : Any = key_mapping[key] if "_conv" in key and "kernel" in key: _lowercase : Optional[Any] = torch.from_numpy(lowerCamelCase_ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: _lowercase : Dict = torch.from_numpy(lowerCamelCase_ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: _lowercase : Tuple = torch.from_numpy(np.transpose(lowerCamelCase_ ) ) else: _lowercase : List[str] = torch.from_numpy(lowerCamelCase_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCamelCase_ ) @torch.no_grad() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: _lowercase : Any = model_classes[model_name]( include_top=lowerCamelCase_ , weights='imagenet' , input_tensor=lowerCamelCase_ , input_shape=lowerCamelCase_ , pooling=lowerCamelCase_ , classes=1000 , classifier_activation='softmax' , ) _lowercase : int = original_model.trainable_variables _lowercase : Dict = original_model.non_trainable_variables _lowercase : Optional[Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _lowercase : int = param.numpy() _lowercase : int = list(tf_params.keys() ) # Load HuggingFace model _lowercase : int = get_efficientnet_config(lowerCamelCase_ ) _lowercase : List[str] = EfficientNetForImageClassification(lowerCamelCase_ ).eval() _lowercase : str = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) _lowercase : Optional[int] = rename_keys(lowerCamelCase_ ) replace_params(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Initialize preprocessor and preprocess input image _lowercase : Optional[Any] = convert_image_processor(lowerCamelCase_ ) _lowercase : Optional[Any] = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): _lowercase : Any = hf_model(**lowerCamelCase_ ) _lowercase : Optional[int] = outputs.logits.detach().numpy() # Original model inference _lowercase : List[Any] = False _lowercase : List[Any] = CONFIG_MAP[model_name]['image_size'] _lowercase : int = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) _lowercase : Optional[Any] = image.img_to_array(lowerCamelCase_ ) _lowercase : Any = np.expand_dims(lowerCamelCase_ , axis=0 ) _lowercase : Optional[int] = original_model.predict(lowerCamelCase_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(lowerCamelCase_ ): os.mkdir(lowerCamelCase_ ) # Save converted model and image processor hf_model.save_pretrained(lowerCamelCase_ ) preprocessor.save_pretrained(lowerCamelCase_ ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) _lowercase : str = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowerCamelCase_ ) hf_model.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
84
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case_ (UpperCamelCase_ ): UpperCAmelCase__ : Dict = ["""image_processor""", """tokenizer"""] UpperCAmelCase__ : List[str] = """CLIPImageProcessor""" UpperCAmelCase__ : List[str] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self :Tuple ,__snake_case :Union[str, Any]=None ,__snake_case :Dict=None ,**__snake_case :int ) -> Optional[int]: a__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' ,__SCREAMING_SNAKE_CASE ,) a__ = kwargs.pop('feature_extractor' ) a__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) def __call__( self :int ,__snake_case :Tuple=None ,__snake_case :int=None ,__snake_case :Optional[Any]=None ,**__snake_case :List[Any] ) -> Union[str, Any]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: a__ = self.tokenizer(__SCREAMING_SNAKE_CASE ,return_tensors=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) if images is not None: a__ = self.image_processor(__SCREAMING_SNAKE_CASE ,return_tensors=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) if text is not None and images is not None: a__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__SCREAMING_SNAKE_CASE ) ,tensor_type=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__( self :str ,*__snake_case :int ,**__snake_case :List[str] ) -> str: return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__( self :Tuple ,*__snake_case :Optional[Any] ,**__snake_case :str ) -> List[str]: return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) @property def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = self.tokenizer.model_input_names a__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase__( self :Union[str, Any] ) -> Optional[Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' ,__SCREAMING_SNAKE_CASE ,) return self.image_processor_class @property def lowerCamelCase__( self :Union[str, Any] ) -> Optional[int]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' ,__SCREAMING_SNAKE_CASE ,) return self.image_processor
240
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = ["""image_processor""", """tokenizer"""] UpperCAmelCase_ : int = """OwlViTImageProcessor""" UpperCAmelCase_ : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Any: lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __SCREAMING_SNAKE_CASE , ) lowerCAmelCase = kwargs.pop('''feature_extractor''' ) lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="max_length" , __SCREAMING_SNAKE_CASE="np" , **__SCREAMING_SNAKE_CASE ) ->int: if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or (isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(text[0] , __SCREAMING_SNAKE_CASE )): lowerCAmelCase = [self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )] elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(text[0] , __SCREAMING_SNAKE_CASE ): lowerCAmelCase = [] # Maximum number of queries across batch lowerCAmelCase = max([len(__SCREAMING_SNAKE_CASE ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__SCREAMING_SNAKE_CASE ) != max_num_queries: lowerCAmelCase = t + [''' '''] * (max_num_queries - len(__SCREAMING_SNAKE_CASE )) lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) encodings.append(__SCREAMING_SNAKE_CASE ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": lowerCAmelCase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) lowerCAmelCase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCAmelCase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) lowerCAmelCase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCAmelCase = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) lowerCAmelCase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCAmelCase = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) lowerCAmelCase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) lowerCAmelCase = BatchEncoding() lowerCAmelCase = input_ids lowerCAmelCase = attention_mask if query_images is not None: lowerCAmelCase = BatchEncoding() lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).pixel_values lowerCAmelCase = query_pixel_values if images is not None: lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if text is not None and images is not None: lowerCAmelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCAmelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__SCREAMING_SNAKE_CASE ) , tensor_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Optional[int]: return self.image_processor.post_process(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Any: return self.image_processor.post_process_object_detection(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Tuple: return self.image_processor.post_process_image_guided_detection(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->str: return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]: return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE_ ( self ) ->int: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __SCREAMING_SNAKE_CASE , ) return self.image_processor
338
0
"""simple docstring""" def __UpperCAmelCase ( lowercase = 4_00_00_00 ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase , _UpperCAmelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowercase ) _UpperCAmelCase , _UpperCAmelCase = b, a + b return sum(lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
30
"""simple docstring""" from itertools import product def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = sides_number _UpperCAmelCase = max_face_number * dice_number _UpperCAmelCase = [0] * (max_total + 1) _UpperCAmelCase = 1 _UpperCAmelCase = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): _UpperCAmelCase = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = total_frequency_distribution( sides_number=4 ,dice_number=9 ) _UpperCAmelCase = total_frequency_distribution( sides_number=6 ,dice_number=6 ) _UpperCAmelCase = 0 _UpperCAmelCase = 9 _UpperCAmelCase = 4 * 9 _UpperCAmelCase = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase = (4**9) * (6**6) _UpperCAmelCase = peter_wins_count / total_games_number _UpperCAmelCase = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
30
1
'''simple docstring''' __snake_case ={ "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_02_17_66_34e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.3_5_5_8_1_8, } def a_ ( lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCAmelCase = ( f'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' f'''Valid values are: {', '.join(lowerCamelCase )}''' ) raise ValueError(lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
4
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case =random.Random() if is_torch_available(): import torch def a_ ( lowerCamelCase : Dict , lowerCamelCase : Dict=1.0 , lowerCamelCase : List[Any]=None , lowerCamelCase : Union[str, Any]=None ): if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : int=4_0_0 , UpperCAmelCase__ : int=2_0_0_0 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Tuple=1_6_0_0_0 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Union[str, Any]=True , ) -> Any: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = return_attention_mask lowerCAmelCase = do_normalize def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Union[str, Any]=False ) -> Optional[Any]: def _flatten(UpperCAmelCase__ : int ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Dict = ASTFeatureExtractor def __UpperCAmelCase ( self : str ) -> Optional[int]: lowerCAmelCase = ASTFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase = np.asarray(UpperCAmelCase__ ) lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) @require_torch def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: import torch lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str ) -> Tuple: from datasets import load_dataset lowerCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase = ds.sort('id' ).select(range(UpperCAmelCase__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def __UpperCAmelCase ( self : str ) -> Optional[Any]: # fmt: off lowerCAmelCase = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = ASTFeatureExtractor() lowerCAmelCase = feature_extractor(UpperCAmelCase__ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , UpperCAmelCase__ , atol=1E-4 ) )
4
1
def _a ( a :list ) -> list: a = len(a ) for i in range(1 , a ): a = collection[i] a = 0 a = i - 1 while low <= high: a = (low + high) // 2 if val < collection[mid]: a = mid - 1 else: a = mid + 1 for j in range(a , a , -1 ): a = collection[j - 1] a = val return collection if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
357
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : Optional[int] , ) ->List[str]: """simple docstring""" super().__init__() a = value_function a = unet a = scheduler a = env a = env.get_dataset() a = {} for key in self.data.keys(): try: a = self.data[key].mean() except: # noqa: E722 pass a = {} for key in self.data.keys(): try: a = self.data[key].std() except: # noqa: E722 pass a = env.observation_space.shape[0] a = env.action_space.shape[0] def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __lowerCAmelCase ( self : int , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" if type(__UpperCAmelCase ) is dict: return {k: self.to_torch(__UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(__UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(__UpperCAmelCase , device=self.unet.device ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ) ->int: """simple docstring""" for key, val in cond.items(): a = val.clone() return x_in def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = x.shape[0] a = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model a = torch.full((batch_size,) , __UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(__UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models a = self.value_function(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample a = torch.autograd.grad([y.sum()] , [x] )[0] a = self.scheduler._get_variance(__UpperCAmelCase ) a = torch.exp(0.5 * posterior_variance ) a = model_std * grad a = 0 a = x.detach() a = x + scale * grad a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.unet(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , predict_epsilon=__UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) return x, y def __call__( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=64 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : str=0.1 ) ->List[str]: """simple docstring""" a = self.normalize(__UpperCAmelCase , '''observations''' ) a = obs[None].repeat(__UpperCAmelCase , axis=0 ) a = {0: self.to_torch(__UpperCAmelCase )} a = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) a = randn_tensor(__UpperCAmelCase , device=self.unet.device ) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) # run the diffusion process a , a = self.run_diffusion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # sort output trajectories by value a = y.argsort(0 , descending=__UpperCAmelCase ).squeeze() a = x[sorted_idx] a = sorted_values[:, :, : self.action_dim] a = actions.detach().cpu().numpy() a = self.de_normalize(__UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: a = 0 else: # if we didn't run value guiding, select a random action a = np.random.randint(0 , __UpperCAmelCase ) a = denorm_actions[selected_index, 0] return denorm_actions
26
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : float | Decimal , UpperCAmelCase_ : float = 10**-10 ) -> float: __lowerCamelCase : List[str] = a while True: __lowerCamelCase : Tuple = Decimal(UpperCAmelCase_ ) - ( Decimal(eval(UpperCAmelCase_ ) ) / Decimal(eval(str(diff(UpperCAmelCase_ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(UpperCAmelCase_ ) ) < precision: # noqa: S307 return float(UpperCAmelCase_ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
185
'''simple docstring''' from math import isqrt def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(UpperCAmelCase_ ) + 1 ) ) def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10**6 ) -> int: __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Optional[int] = 1 __lowerCamelCase : List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(UpperCAmelCase_ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'''{solution() = }''')
185
1
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput _A : List[str] = '''scheduler_config.json''' class __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase : Tuple = 1 _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Optional[int] = 3 _UpperCAmelCase : Optional[int] = 4 _UpperCAmelCase : Any = 5 _UpperCAmelCase : Dict = 6 _UpperCAmelCase : Tuple = 7 _UpperCAmelCase : Any = 8 _UpperCAmelCase : Optional[Any] = 9 _UpperCAmelCase : int = 1_0 _UpperCAmelCase : Union[str, Any] = 1_1 _UpperCAmelCase : List[str] = 1_2 _UpperCAmelCase : Tuple = 1_3 _UpperCAmelCase : List[str] = 1_4 @dataclass class __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase : str = 4_2 class __SCREAMING_SNAKE_CASE : _UpperCAmelCase : Union[str, Any] = SCHEDULER_CONFIG_NAME _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Optional[Any] = True @classmethod def __lowerCamelCase ( cls : str , A : Dict[str, Any] = None , A : Optional[str] = None , A : str=False , **A : Tuple , ) ->List[str]: lowerCamelCase__ : int = cls.load_config( pretrained_model_name_or_path=__a , subfolder=__a , return_unused_kwargs=__a , return_commit_hash=__a , **__a , ) return cls.from_config(__a , return_unused_kwargs=__a , **__a ) def __lowerCamelCase ( self : Dict , A : Union[str, os.PathLike] , A : bool = False , **A : Any ) ->List[str]: self.save_config(save_directory=__a , push_to_hub=__a , **__a ) @property def __lowerCamelCase ( self : Tuple ) ->List[Any]: return self._get_compatibles() @classmethod def __lowerCamelCase ( cls : List[Any] ) ->Optional[Any]: lowerCamelCase__ : Union[str, Any] = list(set([cls.__name__] + cls._compatibles ) ) lowerCamelCase__ : str = importlib.import_module(__name__.split('''.''' )[0] ) lowerCamelCase__ : Dict = [ getattr(__a , __a ) for c in compatible_classes_str if hasattr(__a , __a ) ] return compatible_classes
350
import pprint import requests _A : Any = 'https://zenquotes.io/api' def _a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def _a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _A : Optional[Any] = random_quotes() pprint.pprint(response)
265
0
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Dict = 0 if start < end: snake_case_ :Dict = randint(_lowercase, _lowercase ) snake_case_ :List[Any] = a[end] snake_case_ :str = a[pivot] snake_case_ :List[Any] = temp snake_case_, snake_case_ :Any = _in_place_partition(_lowercase, _lowercase, _lowercase ) count += _in_place_quick_sort(_lowercase, _lowercase, p - 1 ) count += _in_place_quick_sort(_lowercase, p + 1, _lowercase ) return count def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Dict = 0 snake_case_ :int = randint(_lowercase, _lowercase ) snake_case_ :Optional[int] = a[end] snake_case_ :List[str] = a[pivot] snake_case_ :Any = temp snake_case_ :str = start - 1 for index in range(_lowercase, _lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ :Optional[int] = new_pivot_index + 1 snake_case_ :Tuple = a[new_pivot_index] snake_case_ :Tuple = a[index] snake_case_ :Tuple = temp snake_case_ :int = a[new_pivot_index + 1] snake_case_ :Union[str, Any] = a[end] snake_case_ :str = temp return new_pivot_index + 1, count __a = TemporaryFile() __a = 1_00 # 1000 elements are to be sorted __a , __a = 0, 1 # mean and standard deviation __a = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array __a = np.load(outfile) __a = len(M) - 1 __a = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
66
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _SCREAMING_SNAKE_CASE : def __lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) lowerCAmelCase_ :int = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase_ :List[Any] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCAmelCase_ :str = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=__A , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) lowerCAmelCase_ :int = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __lowerCAmelCase ( self ) -> List[str]: torch.manual_seed(0 ) lowerCAmelCase_ :Dict = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase_ :Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.4_1_4 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCAmelCase_ :str = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=__A , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[int] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , ) torch.manual_seed(0 ) lowerCAmelCase_ :Dict = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :Dict = self.get_dummy_components() lowerCAmelCase_ :Tuple = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Any = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Optional[int] = inputs["""prompt"""] lowerCAmelCase_ :Optional[int] = inputs["""generator"""] lowerCAmelCase_ :Any = inputs["""num_inference_steps"""] lowerCAmelCase_ :Optional[int] = inputs["""output_type"""] if "image" in inputs: lowerCAmelCase_ :List[Any] = inputs["""image"""] else: lowerCAmelCase_ :int = None if "mask_image" in inputs: lowerCAmelCase_ :List[Any] = inputs["""mask_image"""] else: lowerCAmelCase_ :int = None if "original_image" in inputs: lowerCAmelCase_ :List[Any] = inputs["""original_image"""] else: lowerCAmelCase_ :List[Any] = None lowerCAmelCase_ , lowerCAmelCase_ :int = pipe.encode_prompt(__A ) # inputs with prompt converted to embeddings lowerCAmelCase_ :List[str] = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: lowerCAmelCase_ :int = image if mask_image is not None: lowerCAmelCase_ :Tuple = mask_image if original_image is not None: lowerCAmelCase_ :Optional[Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__A , __A , __A ) lowerCAmelCase_ :Optional[int] = pipe(**__A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__A ) lowerCAmelCase_ :Optional[int] = self.pipeline_class.from_pretrained(__A ) pipe_loaded.to(__A ) pipe_loaded.set_progress_bar_config(disable=__A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__A , __A ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) lowerCAmelCase_ :Dict = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Union[str, Any] = inputs["""generator"""] lowerCAmelCase_ :Any = inputs["""num_inference_steps"""] lowerCAmelCase_ :Tuple = inputs["""output_type"""] # inputs with prompt converted to embeddings lowerCAmelCase_ :Tuple = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: lowerCAmelCase_ :Optional[int] = image if mask_image is not None: lowerCAmelCase_ :str = mask_image if original_image is not None: lowerCAmelCase_ :Tuple = original_image lowerCAmelCase_ :Union[str, Any] = pipe_loaded(**__A )[0] lowerCAmelCase_ :Dict = np.abs(to_np(__A ) - to_np(__A ) ).max() self.assertLess(__A , 1E-4 ) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Any = self.get_dummy_components() lowerCAmelCase_ :Optional[int] = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Optional[int] = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Dict = pipe(**__A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__A ) lowerCAmelCase_ :Any = self.pipeline_class.from_pretrained(__A ) pipe_loaded.to(__A ) pipe_loaded.set_progress_bar_config(disable=__A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowerCAmelCase_ :List[Any] = self.get_dummy_inputs(__A ) lowerCAmelCase_ :str = pipe_loaded(**__A )[0] lowerCAmelCase_ :Dict = np.abs(to_np(__A ) - to_np(__A ) ).max() self.assertLess(__A , 1E-4 )
84
0
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ : List[Any] = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = DebertaVaTokenizer __UpperCamelCase : Any = DebertaVaTokenizerFast __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[Any] = True def lowerCAmelCase__ ( self : Union[str, Any] ): super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase_: List[str] = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : Dict , snake_case_ : Optional[int] ): UpperCamelCase_: Tuple = """this is a test""" UpperCamelCase_: Optional[Any] = """this is a test""" return input_text, output_text def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: List[str] = """<pad>""" UpperCamelCase_: List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(snake_case_ ) , 3_0001 ) def lowerCAmelCase__ ( self : int ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def lowerCAmelCase__ ( self : Dict ): # fmt: off UpperCamelCase_: Dict = """ \tHeLLo!how \n Are yoU? """ UpperCamelCase_: Any = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on UpperCamelCase_: Any = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ ) UpperCamelCase_: Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Tuple = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ ) UpperCamelCase_: Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def lowerCAmelCase__ ( self : str ): pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def lowerCAmelCase__ ( self : Optional[int] ): pass def lowerCAmelCase__ ( self : Optional[int] ): # fmt: off UpperCamelCase_: Optional[Any] = """I was born in 92000, and this is falsé.""" UpperCamelCase_: List[str] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase_: List[str] = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ ) UpperCamelCase_: Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Optional[int] = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ ) UpperCamelCase_: Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] ): # fmt: off UpperCamelCase_: List[str] = """I was born in 92000, and this is falsé.""" UpperCamelCase_: Dict = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase_: List[Any] = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) UpperCamelCase_: int = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Union[str, Any] = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) UpperCamelCase_: str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): # fmt: off UpperCamelCase_: int = """I was born in 92000, and this is falsé.""" UpperCamelCase_: List[str] = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCamelCase_: Optional[Any] = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) UpperCamelCase_: Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) UpperCamelCase_: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: List[str] = """I was born in 92000, and this is falsé.""" UpperCamelCase_: Optional[Any] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase_: Union[str, Any] = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) UpperCamelCase_: str = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: str = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) UpperCamelCase_: List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): # fmt: off UpperCamelCase_: Union[str, Any] = """ \tHeLLo!how \n Are yoU? """ UpperCamelCase_: List[Any] = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on UpperCamelCase_: Union[str, Any] = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) UpperCamelCase_: str = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) UpperCamelCase_: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Optional[int] = self.get_tokenizer() UpperCamelCase_: Tuple = self.get_rust_tokenizer() UpperCamelCase_: List[Any] = """I was born in 92000, and this is falsé.""" UpperCamelCase_: Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) UpperCamelCase_: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Any = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: str = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Any = self.get_rust_tokenizer() UpperCamelCase_: Optional[int] = tokenizer.encode(snake_case_ ) UpperCamelCase_: Dict = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Any = """This is a test""" UpperCamelCase_: Union[str, Any] = [13, 1, 4398, 25, 21, 1289] UpperCamelCase_: Union[str, Any] = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] UpperCamelCase_: List[Any] = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] UpperCamelCase_: Dict = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ ) UpperCamelCase_: Union[str, Any] = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ ) UpperCamelCase_: str = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Dict = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Dict = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Optional[int] = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # fmt: off UpperCamelCase_: int = """I was born in 92000, and this is falsé.""" UpperCamelCase_: Any = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] UpperCamelCase_: Any = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] UpperCamelCase_: Any = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Any = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Any = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Union[str, Any] = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[Any] = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: List[str] = DebertaVaTokenizer(snake_case_ ) UpperCamelCase_: Optional[Any] = tokenizer.encode("""sequence builders""" ) UpperCamelCase_: Tuple = tokenizer.encode("""multi-sequence build""" ) UpperCamelCase_: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[int] = {"""input_ids""": [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
365
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList lowerCamelCase_ : str = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : Optional[int] , snake_case_ : List[str] , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any]=None , snake_case_ : str=1 ): UpperCamelCase_: List[str] = tokenizer UpperCamelCase_: str = dataset UpperCamelCase_: List[str] = len(snake_case_ ) if n_tasks is None else n_tasks UpperCamelCase_: str = n_copies def __iter__( self : Tuple ): UpperCamelCase_: Optional[int] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip() ) UpperCamelCase_: List[str] = self.tokenizer(snake_case_ , padding=snake_case_ , return_tensors="""pt""" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : Any , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = start_length UpperCamelCase_: Dict = eof_strings UpperCamelCase_: List[str] = tokenizer def __call__( self : Tuple , snake_case_ : List[str] , snake_case_ : Optional[Any] , **snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) UpperCamelCase_: Dict = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(snake_case_ ) def A__ ( lowerCamelCase ) -> Optional[int]: UpperCamelCase_: str = re.split("""(%s)""" % """|""".join(lowerCamelCase ) , lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=20 , **lowerCamelCase ) -> int: UpperCamelCase_: str = defaultdict(lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(lowerCamelCase ) ): with torch.no_grad(): UpperCamelCase_: Optional[int] = batch["""ids"""].shape[-1] UpperCamelCase_: Dict = accelerator.unwrap_model(lowerCamelCase ).generate( input_ids=batch["""ids"""][:, : batch["""input_len"""]] , num_return_sequences=lowerCamelCase , **lowerCamelCase ) # each task is generated batch_size times UpperCamelCase_: Optional[int] = batch["""task_id"""].repeat(lowerCamelCase ) UpperCamelCase_: int = accelerator.pad_across_processes( lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) UpperCamelCase_, UpperCamelCase_: Tuple = accelerator.gather((generated_tokens, generated_tasks) ) UpperCamelCase_: Tuple = generated_tokens.cpu().numpy() UpperCamelCase_: Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(lowerCamelCase , lowerCamelCase ): gen_token_dict[task].append(lowerCamelCase ) UpperCamelCase_: Dict = [[] for _ in range(lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: UpperCamelCase_: Any = tokenizer.decode(lowerCamelCase , skip_special_tokens=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase ) code_gens[task].append(remove_last_block(lowerCamelCase ) ) return code_gens def A__ ( ) -> Union[str, Any]: # Setup configuration UpperCamelCase_: Optional[Any] = HfArgumentParser(lowerCamelCase ) UpperCamelCase_: str = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric UpperCamelCase_: List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing UpperCamelCase_: Union[str, Any] = """false""" if args.num_workers is None: UpperCamelCase_: Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate UpperCamelCase_: List[Any] = Accelerator() set_seed(args.seed , device_specific=lowerCamelCase ) # Load model and tokenizer UpperCamelCase_: Any = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCamelCase_: Union[str, Any] = tokenizer.eos_token UpperCamelCase_: Optional[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings UpperCamelCase_: Union[str, Any] = { """do_sample""": args.do_sample, """temperature""": args.temperature, """max_new_tokens""": args.max_new_tokens, """top_p""": args.top_p, """top_k""": args.top_k, """stopping_criteria""": StoppingCriteriaList([EndOfFunctionCriteria(0 , lowerCamelCase , lowerCamelCase )] ), } # Load evaluation dataset and metric UpperCamelCase_: Any = load_dataset("""openai_humaneval""" ) UpperCamelCase_: Union[str, Any] = load_metric("""code_eval""" ) UpperCamelCase_: Union[str, Any] = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""] ) UpperCamelCase_: List[Any] = args.n_samples // args.batch_size UpperCamelCase_: Any = TokenizedDataset(lowerCamelCase , human_eval["""test"""] , n_copies=lowerCamelCase , n_tasks=lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences UpperCamelCase_: Optional[int] = DataLoader(lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: UpperCamelCase_: List[str] = code_eval_metric.compute(references=[""""""] , predictions=[[""""""]] ) except ValueError as exception: print( """Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`""" """ flag to enable code evaluation.""" ) raise exception UpperCamelCase_, UpperCamelCase_: Dict = accelerator.prepare(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = complete_code( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , n_tasks=lowerCamelCase , batch_size=args.batch_size , **lowerCamelCase , ) if accelerator.is_main_process: UpperCamelCase_: List[Any] = [] for task in tqdm(range(lowerCamelCase ) ): UpperCamelCase_: Optional[Any] = human_eval["""test"""][task]["""test"""] UpperCamelCase_: Optional[int] = F'''check({human_eval["test"][task]["entry_point"]})''' references.append("""\n""" + test_func + """\n""" + entry_point ) # Evaluate completions with "code_eval" metric UpperCamelCase_, UpperCamelCase_: str = code_eval_metric.compute( references=lowerCamelCase , predictions=lowerCamelCase , num_workers=args.num_workers ) print(F'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , """w""" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
223
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowercase__( UpperCAmelCase ): """simple docstring""" a :Dict = 'megatron-bert' def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Dict=2_9_0_5_6 , SCREAMING_SNAKE_CASE_ : Tuple=1_0_2_4 , SCREAMING_SNAKE_CASE_ : Optional[int]=2_4 , SCREAMING_SNAKE_CASE_ : Tuple=1_6 , SCREAMING_SNAKE_CASE_ : Any=4_0_9_6 , SCREAMING_SNAKE_CASE_ : Any="gelu" , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : int=5_1_2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Any=0.02 , SCREAMING_SNAKE_CASE_ : Any=1e-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE_ : int="absolute" , SCREAMING_SNAKE_CASE_ : int=True , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> Any: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = hidden_act lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache
30
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __a = logging.get_logger(__name__) def a ( snake_case__: Optional[int] , snake_case__: Dict , snake_case__: int , snake_case__: List[str]=None , snake_case__: List[Any]=None ): '''simple docstring''' # Recurse if needed if "." in tensor_name: lowercase_ = tensor_name.split('''.''' ) for split in splits[:-1]: lowercase_ = getattr(snake_case__ , snake_case__ ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) lowercase_ = new_module lowercase_ = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'''{module} does not have a parameter or a buffer named {tensor_name}.''' ) lowercase_ = tensor_name in module._buffers lowercase_ = getattr(snake_case__ , snake_case__ ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(F'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' ) lowercase_ = False lowercase_ = False if is_buffer or not is_bitsandbytes_available(): lowercase_ = False lowercase_ = False else: lowercase_ = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) lowercase_ = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: lowercase_ = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowercase_ = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): lowercase_ = value.to('''cpu''' ) if value.dtype == torch.inta: lowercase_ = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: lowercase_ = torch.tensor(snake_case__ , device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None: lowercase_ = new_value.T lowercase_ = old_value.__dict__ if is_abit: lowercase_ = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) elif is_abit: lowercase_ = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) lowercase_ = new_value if fpaa_statistics is not None: setattr(module.weight , '''SCB''' , fpaa_statistics.to(snake_case__ ) ) else: if value is None: lowercase_ = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): lowercase_ = value.to(snake_case__ ) else: lowercase_ = torch.tensor(snake_case__ , device=snake_case__ ) if is_buffer: lowercase_ = new_value else: lowercase_ = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad ) lowercase_ = new_value def a ( snake_case__: str , snake_case__: Union[str, Any]=None , snake_case__: Any=None , snake_case__: List[str]=None , snake_case__: Optional[Any]=False ): '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: lowercase_ = [] current_key_name.append(snake_case__ ) if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(snake_case__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(snake_case__ , snake_case__ ): lowercase_ , lowercase_ = module.weight.shape else: lowercase_ = module.in_features lowercase_ = module.out_features if quantization_config.quantization_method() == "llm_int8": lowercase_ = bnb.nn.LinearabitLt( snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) lowercase_ = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowercase_ = bnb.nn.Linearabit( snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) lowercase_ = True # Store the module class in case we need to transpose the weight later lowercase_ = type(snake_case__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(snake_case__ ) if len(list(module.children() ) ) > 0: lowercase_ , lowercase_ = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def a ( snake_case__: Any , snake_case__: Any=None , snake_case__: Union[str, Any]=None , snake_case__: str=None ): '''simple docstring''' lowercase_ = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert lowercase_ , lowercase_ = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def a ( *snake_case__: str , **snake_case__: Dict ): '''simple docstring''' warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , snake_case__ , ) return replace_with_bnb_linear(*snake_case__ , **snake_case__ ) def a ( *snake_case__: Any , **snake_case__: List[Any] ): '''simple docstring''' warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , snake_case__ , ) return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ ) def a ( snake_case__: Optional[Any] ): '''simple docstring''' lowercase_ = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowercase_ = find_tied_parameters(snake_case__ ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__ ): lowercase_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase_ = sum(snake_case__ , [] ) lowercase_ = len(snake_case__ ) > 0 # Check if it is a base model lowercase_ = not hasattr(snake_case__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase_ = list(model.named_children() ) lowercase_ = [list_modules[-1][0]] # add last module together with tied weights lowercase_ = set(snake_case__ ) - set(snake_case__ ) lowercase_ = list(set(snake_case__ ) ) + list(snake_case__ ) # remove ".weight" from the keys lowercase_ = ['''.weight''', '''.bias'''] lowercase_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase_ = name.replace(snake_case__ , '''''' ) filtered_module_names.append(snake_case__ ) return filtered_module_names
30
1
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :str=1024 , __lowerCamelCase :Optional[Any]=1024 , __lowerCamelCase :str=False , **__lowerCamelCase :Any ): _lowerCAmelCase = AutoTokenizer.from_pretrained(__lowerCamelCase ) _lowerCAmelCase = SeqaSeqDataset(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , type_path="""train""" , **__lowerCamelCase ) _lowerCAmelCase = tok.pad_token_id def get_lens(__lowerCamelCase :str ): _lowerCAmelCase = tqdm( DataLoader(__lowerCamelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCamelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _lowerCAmelCase = [] for batch in dl: _lowerCAmelCase = batch['''input_ids'''].ne(__lowerCamelCase ).sum(1 ).tolist() _lowerCAmelCase = batch['''labels'''].ne(__lowerCamelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCamelCase , __lowerCamelCase ): max_lens.append(max(__lowerCamelCase , __lowerCamelCase ) ) else: max_lens.extend(__lowerCamelCase ) return max_lens _lowerCAmelCase = get_lens(__lowerCamelCase ) _lowerCAmelCase = SeqaSeqDataset(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , type_path="""val""" , **__lowerCamelCase ) _lowerCAmelCase = get_lens(__lowerCamelCase ) pickle_save(__lowerCamelCase , train_ds.len_file ) pickle_save(__lowerCamelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
357
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _lowercase = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. _lowercase = direct_transformers_import(PATH_TO_TRANSFORMERS) _lowercase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _lowercase = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") _lowercase = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def A (__lowerCamelCase :str ): _lowerCAmelCase = None # source code of `config_class` _lowerCAmelCase = inspect.getsource(__lowerCamelCase ) _lowerCAmelCase = _re_checkpoint.findall(__lowerCamelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("""/""" ): _lowerCAmelCase = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _lowerCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _lowerCAmelCase = ckpt_name break return checkpoint def A (): _lowerCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _lowerCAmelCase = get_checkpoint_from_config_class(__lowerCamelCase ) _lowerCAmelCase = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: _lowerCAmelCase = """\n""".join(sorted(__lowerCamelCase ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
229
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def snake_case__ ( _A: Any=None ) -> int: '''simple docstring''' if subparsers is not None: lowerCAmelCase = subparsers.add_parser("""test""" ) else: lowerCAmelCase = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" , default=snake_case_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def snake_case__ ( _A: Any ) -> int: '''simple docstring''' lowerCAmelCase = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: lowerCAmelCase = script_name else: lowerCAmelCase = f"--config_file={args.config_file} {script_name}" lowerCAmelCase = ["""accelerate-launch"""] + test_args.split() lowerCAmelCase = execute_subprocess_async(snake_case_ , env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def snake_case__ ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase = test_command_parser() lowerCAmelCase = parser.parse_args() test_command(snake_case_ ) if __name__ == "__main__": main()
272
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _a = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def a__ ( self , _a , _a , _a ) -> int: _A : str = TextaTextGenerationPipeline(model=_a , tokenizer=_a ) return generator, ["Something to write", "Something else"] def a__ ( self , _a , _a ) -> Dict: _A : Any = generator("""Something there""" ) self.assertEqual(_a , [{"""generated_text""": ANY(_a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) _A : List[Any] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) _A : Optional[int] = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) with self.assertRaises(_a ): generator(4 ) @require_torch def a__ ( self ) -> List[str]: _A : Any = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility _A : Dict = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] ) _A : Any = 3 _A : Any = generator( """Something there""" , num_return_sequences=_a , num_beams=_a , ) _A : Optional[int] = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(_a , _a ) _A : Dict = generator("""This is a test""" , do_sample=_a , num_return_sequences=2 , return_tensors=_a ) self.assertEqual( _a , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) _A : Dict = generator.model.config.eos_token_id _A : List[str] = """<pad>""" _A : Dict = generator( ["""This is a test""", """This is a second test"""] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , ) self.assertEqual( _a , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def a__ ( self ) -> int: _A : Optional[Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility _A : str = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] )
26
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING A__ : Optional[Any] = logging.get_logger(__name__) A__ : List[Any] = { 'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json', } class lowercase__ ( snake_case__ ): _UpperCAmelCase :Any = "blip_2_vision_model" def __init__( self : Dict , snake_case__ : int=1408 , snake_case__ : str=6144 , snake_case__ : List[Any]=39 , snake_case__ : Tuple=16 , snake_case__ : str=224 , snake_case__ : Optional[Any]=14 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Dict=0.00_001 , snake_case__ : List[str]=0.0 , snake_case__ : List[Any]=1E-10 , snake_case__ : List[str]=True , **snake_case__ : List[str] , ): super().__init__(**snake_case__ ) lowerCamelCase_ : Tuple =hidden_size lowerCamelCase_ : Union[str, Any] =intermediate_size lowerCamelCase_ : Dict =num_hidden_layers lowerCamelCase_ : Optional[int] =num_attention_heads lowerCamelCase_ : Optional[Any] =patch_size lowerCamelCase_ : Dict =image_size lowerCamelCase_ : List[Any] =initializer_range lowerCamelCase_ : List[Any] =attention_dropout lowerCamelCase_ : List[Any] =layer_norm_eps lowerCamelCase_ : Optional[int] =hidden_act lowerCamelCase_ : Optional[Any] =qkv_bias @classmethod def UpperCAmelCase__ ( cls : Optional[Any] , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Optional[Any] ): cls._set_token_in_kwargs(snake_case__ ) lowerCamelCase_ : Optional[Any] =cls.get_config_dict(snake_case__ , **snake_case__ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": lowerCamelCase_ : Optional[int] =config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case__ , **snake_case__ ) class lowercase__ ( snake_case__ ): _UpperCAmelCase :Tuple = "blip_2_qformer" def __init__( self : Tuple , snake_case__ : Optional[int]=3_0522 , snake_case__ : Tuple=768 , snake_case__ : Optional[Any]=12 , snake_case__ : int=12 , snake_case__ : str=3072 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : List[Any]=512 , snake_case__ : Any=0.02 , snake_case__ : List[str]=1E-12 , snake_case__ : Optional[int]=0 , snake_case__ : List[Any]="absolute" , snake_case__ : int=2 , snake_case__ : Optional[Any]=1408 , **snake_case__ : List[Any] , ): super().__init__(pad_token_id=snake_case__ , **snake_case__ ) lowerCamelCase_ : Tuple =vocab_size lowerCamelCase_ : List[Any] =hidden_size lowerCamelCase_ : Union[str, Any] =num_hidden_layers lowerCamelCase_ : int =num_attention_heads lowerCamelCase_ : Tuple =hidden_act lowerCamelCase_ : List[str] =intermediate_size lowerCamelCase_ : List[str] =hidden_dropout_prob lowerCamelCase_ : Optional[int] =attention_probs_dropout_prob lowerCamelCase_ : Tuple =max_position_embeddings lowerCamelCase_ : Tuple =initializer_range lowerCamelCase_ : Optional[Any] =layer_norm_eps lowerCamelCase_ : Any =position_embedding_type lowerCamelCase_ : List[str] =cross_attention_frequency lowerCamelCase_ : str =encoder_hidden_size @classmethod def UpperCAmelCase__ ( cls : Optional[Any] , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Union[str, Any] ): cls._set_token_in_kwargs(snake_case__ ) lowerCamelCase_ : Tuple =cls.get_config_dict(snake_case__ , **snake_case__ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": lowerCamelCase_ : List[Any] =config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case__ , **snake_case__ ) class lowercase__ ( snake_case__ ): _UpperCAmelCase :Optional[Any] = "blip-2" _UpperCAmelCase :Dict = True def __init__( self : Optional[int] , snake_case__ : Optional[Any]=None , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=None , snake_case__ : Optional[int]=32 , **snake_case__ : Optional[int] ): super().__init__(**snake_case__ ) if vision_config is None: lowerCamelCase_ : Any ={} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values." ) if qformer_config is None: lowerCamelCase_ : Tuple ={} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values." ) if text_config is None: lowerCamelCase_ : Optional[int] ={} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) lowerCamelCase_ : Optional[int] =BlipaVisionConfig(**snake_case__ ) lowerCamelCase_ : Union[str, Any] =BlipaQFormerConfig(**snake_case__ ) lowerCamelCase_ : int =text_config["model_type"] if "model_type" in text_config else "opt" lowerCamelCase_ : int =CONFIG_MAPPING[text_model_type](**snake_case__ ) lowerCamelCase_ : Tuple =self.text_config.tie_word_embeddings lowerCamelCase_ : str =self.text_config.is_encoder_decoder lowerCamelCase_ : Optional[int] =num_query_tokens lowerCamelCase_ : Optional[int] =self.vision_config.hidden_size lowerCamelCase_ : Dict =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase_ : Optional[int] =1.0 lowerCamelCase_ : List[Any] =0.02 @classmethod def UpperCAmelCase__ ( cls : List[str] , snake_case__ : BlipaVisionConfig , snake_case__ : BlipaQFormerConfig , snake_case__ : PretrainedConfig , **snake_case__ : List[Any] , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **snake_case__ , ) def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : str =copy.deepcopy(self.__dict__ ) lowerCamelCase_ : List[str] =self.vision_config.to_dict() lowerCamelCase_ : Dict =self.qformer_config.to_dict() lowerCamelCase_ : str =self.text_config.to_dict() lowerCamelCase_ : List[str] =self.__class__.model_type return output
351
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule A__ : Tuple = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys A__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
209
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) a : Union[str, Any] = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys a : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
265
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging a : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A , A , A , A , ) -> Optional[Any]: super().__init__() self.register_modules( vae=A , text_encoder=A , tokenizer=A , unet=A , scheduler=A , safety_checker=A , feature_extractor=A , ) def _lowercase( self , A = "auto" ) -> List[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def _lowercase( self ) -> Dict: self.enable_attention_slicing(A ) @torch.no_grad() def __call__( self , A , A = 512 , A = 512 , A = 50 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , A = None , **A , ) -> List[Any]: if isinstance(A , A ): UpperCAmelCase : List[str] = 1 elif isinstance(A , A ): UpperCAmelCase : Dict = len(A ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(A )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(A )}.''' ) # get prompt text embeddings UpperCAmelCase : List[str] = self.tokenizer( A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCAmelCase : List[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase : int = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: UpperCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = text_embeddings.shape UpperCAmelCase : List[str] = text_embeddings.repeat(1 , A , 1 ) UpperCAmelCase : List[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase : List[str] if negative_prompt is None: UpperCAmelCase : Any = [""""""] elif type(A ) is not type(A ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(A )} !=''' f''' {type(A )}.''' ) elif isinstance(A , A ): UpperCAmelCase : Optional[int] = [negative_prompt] elif batch_size != len(A ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(A )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: UpperCAmelCase : Any = negative_prompt UpperCAmelCase : Dict = text_input_ids.shape[-1] UpperCAmelCase : List[Any] = self.tokenizer( A , padding="""max_length""" , max_length=A , truncation=A , return_tensors="""pt""" , ) UpperCAmelCase : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase : int = uncond_embeddings.shape[1] UpperCAmelCase : List[Any] = uncond_embeddings.repeat(A , A , 1 ) UpperCAmelCase : List[str] = uncond_embeddings.view(batch_size * num_images_per_prompt , A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase : Optional[int] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) UpperCAmelCase : str = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase : Dict = torch.randn( A , generator=A , device="""cpu""" , dtype=A ).to(self.device ) UpperCAmelCase : int = torch.randn(A , generator=A , device="""cpu""" , dtype=A ).to( self.device ) else: UpperCAmelCase : int = torch.randn( A , generator=A , device=self.device , dtype=A ) UpperCAmelCase : int = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCAmelCase : Optional[Any] = latents_reference.to(self.device ) UpperCAmelCase : Tuple = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images UpperCAmelCase : int = (latents_shape[3] - latents_shape_reference[3]) // 2 UpperCAmelCase : List[str] = (latents_shape[2] - latents_shape_reference[2]) // 2 UpperCAmelCase : Union[str, Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx UpperCAmelCase : Union[str, Any] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy UpperCAmelCase : Optional[int] = 0 if dx < 0 else dx UpperCAmelCase : List[str] = 0 if dy < 0 else dy UpperCAmelCase : Union[str, Any] = max(-dx , 0 ) UpperCAmelCase : List[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() UpperCAmelCase : str = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase : Optional[int] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase : int = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase : Optional[Any] = {} if accepts_eta: UpperCAmelCase : List[str] = eta for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : str = self.scheduler.scale_model_input(A , A ) # predict the noise residual UpperCAmelCase : Any = self.unet(A , A , encoder_hidden_states=A ).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : Any = noise_pred.chunk(2 ) UpperCAmelCase : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Dict = self.scheduler.step(A , A , A , **A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A , A ) UpperCAmelCase : Union[str, Any] = 1 / 0.1_8_2_1_5 * latents UpperCAmelCase : Tuple = self.vae.decode(A ).sample UpperCAmelCase : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: UpperCAmelCase : int = self.feature_extractor(self.numpy_to_pil(A ) , return_tensors="""pt""" ).to( self.device ) UpperCAmelCase , UpperCAmelCase : int = self.safety_checker( images=A , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: UpperCAmelCase : Any = None if output_type == "pil": UpperCAmelCase : int = self.numpy_to_pil(A ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
265
1
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : float UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): def is_valid_tree(SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> bool: if node is None: return True if not isinstance(A__ , A__ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(A__ ): raise ValueError( 'Each node should be type of TreeNode and data should be float.' ) def is_binary_search_tree_recursive_check( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , A__ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , A__ ) ) return is_binary_search_tree_recursive_check(A__ , -float('inf' ) , float('inf' ) ) if __name__ == "__main__": import doctest doctest.testmod()
358
from __future__ import annotations def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): if b == 0: return (1, 0) ((__UpperCamelCase) , (__UpperCamelCase)) =extended_euclid(SCREAMING_SNAKE_CASE__ , a % b ) __UpperCamelCase =a // b return (y, x - k * y) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): ((__UpperCamelCase) , (__UpperCamelCase)) =extended_euclid(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =na * na __UpperCamelCase =ra * x * na + ra * y * na return (n % m + m) % m def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): ((__UpperCamelCase) , (__UpperCamelCase)) =extended_euclid(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if b < 0: __UpperCamelCase =(b % n + n) % n return b def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase , __UpperCamelCase =invert_modulo(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), invert_modulo(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =na * na __UpperCamelCase =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='chinese_remainder_theorem', verbose=True) testmod(name='chinese_remainder_theorem2', verbose=True) testmod(name='invert_modulo', verbose=True) testmod(name='extended_euclid', verbose=True)
117
0
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __lowercase : """simple docstring""" def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=64 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> int: '''simple docstring''' lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = seq_length lowerCamelCase = is_training lowerCamelCase = use_input_mask lowerCamelCase = use_token_type_ids lowerCamelCase = use_labels lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = type_vocab_size lowerCamelCase = type_sequence_label_size lowerCamelCase = initializer_range lowerCamelCase = num_labels lowerCamelCase = num_choices lowerCamelCase = scope lowerCamelCase = vocab_size - 1 def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase = None if self.use_input_mask: lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase = self.get_config() return config, input_ids, input_mask, token_labels def __A ( self ) -> Optional[int]: '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.prepare_config_and_inputs() lowerCamelCase = True return config, input_ids, input_mask, token_labels def __A ( self , A , A , A ) -> str: '''simple docstring''' lowerCamelCase = GPTNeoXModel(config=A ) model.to(A ) model.eval() lowerCamelCase = model(A , attention_mask=A ) lowerCamelCase = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A , A , A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = True lowerCamelCase = GPTNeoXModel(A ) model.to(A ) model.eval() lowerCamelCase = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A , A , A , A ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = GPTNeoXForCausalLM(config=A ) model.to(A ) model.eval() lowerCamelCase = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.num_labels lowerCamelCase = GPTNeoXForQuestionAnswering(A ) model.to(A ) model.eval() lowerCamelCase = model(A , attention_mask=A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , A , A , A , A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = self.num_labels lowerCamelCase = GPTNeoXForSequenceClassification(A ) model.to(A ) model.eval() lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , A , A , A , A ) -> Tuple: '''simple docstring''' lowerCamelCase = self.num_labels lowerCamelCase = GPTNeoXForTokenClassification(A ) model.to(A ) model.eval() lowerCamelCase = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , A , A , A ) -> int: '''simple docstring''' lowerCamelCase = True lowerCamelCase = GPTNeoXForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass lowerCamelCase = model(A , attention_mask=A , use_cache=A ) lowerCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCamelCase = model(A , attention_mask=A , output_hidden_states=A ) lowerCamelCase = output_from_no_past["hidden_states"][0] lowerCamelCase = model( A , attention_mask=A , past_key_values=A , output_hidden_states=A , )["hidden_states"][0] # select random slice lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = self.prepare_config_and_inputs() lowerCamelCase = config_and_inputs lowerCamelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowercase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[str] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase : Union[str, Any] = (GPTNeoXForCausalLM,) if is_torch_available() else () UpperCamelCase : str = ( { "feature-extraction": GPTNeoXModel, "question-answering": GPTNeoXForQuestionAnswering, "text-classification": GPTNeoXForSequenceClassification, "text-generation": GPTNeoXForCausalLM, "token-classification": GPTNeoXForTokenClassification, "zero-shot": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase : Optional[Any] = False UpperCamelCase : List[Any] = False UpperCamelCase : Optional[Any] = False UpperCamelCase : str = False def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = GPTNeoXModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=A , hidden_size=64 , num_attention_heads=8 ) def __A ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A , A , A ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(A , A , A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase = None self.model_tester.create_and_check_model_as_decoder(A , A , A ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(A , A , A ) def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*A ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def __A ( self ) -> List[Any]: '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __A ( self , A ) -> int: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = ids_tensor([1, 10] , config.vocab_size ) lowerCamelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase = GPTNeoXModel(A ) original_model.to(A ) original_model.eval() lowerCamelCase = original_model(A ).last_hidden_state lowerCamelCase = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase = {"type": scaling_type, "factor": 10.0} lowerCamelCase = GPTNeoXModel(A ) scaled_model.to(A ) scaled_model.eval() lowerCamelCase = scaled_model(A ).last_hidden_state lowerCamelCase = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" @slow def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: lowerCamelCase = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(A ) lowerCamelCase = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(A ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" lowerCamelCase = model.generate(**A , do_sample=A , max_new_tokens=20 ) lowerCamelCase = tokenizer.batch_decode(A )[0] self.assertEqual(A , A )
252
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase_ ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : List[str] ,__lowerCamelCase : Dict=True ,__lowerCamelCase : List[Any]="pt" ): lowercase_ :Dict = {"add_prefix_space": True} if isinstance(__lowerCamelCase ,__lowerCamelCase ) and not line.startswith(" " ) else {} lowercase_ :str = padding_side return tokenizer( [line] ,max_length=__lowerCamelCase ,padding="max_length" if pad_to_max_length else None ,truncation=__lowerCamelCase ,return_tensors=__lowerCamelCase ,add_special_tokens=__lowerCamelCase ,**__lowerCamelCase ,) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : Dict ,__lowerCamelCase : str=None ,): lowercase_ :Optional[int] = input_ids.ne(__lowerCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class a_ ( _lowerCAmelCase ): def __init__( self : Optional[int] , lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Tuple , lowercase : str="train" , lowercase : Dict=None , lowercase : Tuple=None , lowercase : List[str]=None , lowercase : int="" , ): """simple docstring""" super().__init__() lowercase_ :List[Any] = Path(lowercase ).joinpath(type_path + ".source" ) lowercase_ :Dict = Path(lowercase ).joinpath(type_path + ".target" ) lowercase_ :Optional[int] = self.get_char_lens(self.src_file ) lowercase_ :List[str] = max_source_length lowercase_ :str = max_target_length assert min(self.src_lens ) > 0, F'found empty line in {self.src_file}' lowercase_ :int = tokenizer lowercase_ :Dict = prefix if n_obs is not None: lowercase_ :Union[str, Any] = self.src_lens[:n_obs] lowercase_ :Optional[int] = src_lang lowercase_ :str = tgt_lang def __len__( self : Tuple ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : str , lowercase : Dict ): """simple docstring""" lowercase_ :Tuple = index + 1 # linecache starts at 1 lowercase_ :Optional[Any] = self.prefix + linecache.getline(str(self.src_file ) , lowercase ).rstrip("\n" ) lowercase_ :List[str] = linecache.getline(str(self.tgt_file ) , lowercase ).rstrip("\n" ) assert source_line, F'empty source line for index {index}' assert tgt_line, F'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowercase_ :List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowercase ) else self.tokenizer ) lowercase_ :int = self.tokenizer.generator if isinstance(self.tokenizer , lowercase ) else self.tokenizer lowercase_ :List[str] = encode_line(lowercase , lowercase , self.max_source_length , "right" ) lowercase_ :Any = encode_line(lowercase , lowercase , self.max_target_length , "right" ) lowercase_ :Dict = source_inputs["input_ids"].squeeze() lowercase_ :Tuple = target_inputs["input_ids"].squeeze() lowercase_ :Optional[int] = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowercase__ ( lowercase : Union[str, Any] ): """simple docstring""" return [len(lowercase ) for x in Path(lowercase ).open().readlines()] def lowercase__ ( self : str , lowercase : List[Any] ): """simple docstring""" lowercase_ :Optional[int] = torch.stack([x["input_ids"] for x in batch] ) lowercase_ :Dict = torch.stack([x["attention_mask"] for x in batch] ) lowercase_ :List[str] = torch.stack([x["decoder_input_ids"] for x in batch] ) lowercase_ :Any = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowercase ) else self.tokenizer.pad_token_id ) lowercase_ :str = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowercase ) else self.tokenizer.pad_token_id ) lowercase_ :Union[str, Any] = trim_batch(lowercase , lowercase ) lowercase_ , lowercase_ :Optional[Any] = trim_batch(lowercase , lowercase , attention_mask=lowercase ) lowercase_ :Tuple = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch lowerCAmelCase : List[str] =getLogger(__name__) def UpperCAmelCase_ ( __lowerCamelCase : List[List] ): return list(itertools.chain.from_iterable(__lowerCamelCase ) ) def UpperCAmelCase_ ( __lowerCamelCase : str ): lowercase_ :List[str] = get_git_info() save_json(__lowerCamelCase ,os.path.join(__lowerCamelCase ,"git_log.json" ) ) def UpperCAmelCase_ ( __lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : List[Any]=4 ,**__lowerCamelCase : List[str] ): with open(__lowerCamelCase ,"w" ) as f: json.dump(__lowerCamelCase ,__lowerCamelCase ,indent=__lowerCamelCase ,**__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : Tuple ): with open(__lowerCamelCase ) as f: return json.load(__lowerCamelCase ) def UpperCAmelCase_ ( ): lowercase_ :Dict = git.Repo(search_parent_directories=__lowerCamelCase ) lowercase_ :List[str] = { "repo_id": str(__lowerCamelCase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def UpperCAmelCase_ ( __lowerCamelCase : Callable ,__lowerCamelCase : Iterable ): return list(map(__lowerCamelCase ,__lowerCamelCase ) ) def UpperCAmelCase_ ( __lowerCamelCase : Union[str, Any] ,__lowerCamelCase : List[str] ): with open(__lowerCamelCase ,"wb" ) as f: return pickle.dump(__lowerCamelCase ,__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : str ): def remove_articles(__lowerCamelCase : Optional[int] ): return re.sub(r"\b(a|an|the)\b" ," " ,__lowerCamelCase ) def white_space_fix(__lowerCamelCase : Dict ): return " ".join(text.split() ) def remove_punc(__lowerCamelCase : Optional[Any] ): lowercase_ :Any = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCamelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCamelCase ) ) ) ) def UpperCAmelCase_ ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[int] ): lowercase_ :Tuple = normalize_answer(__lowerCamelCase ).split() lowercase_ :Dict = normalize_answer(__lowerCamelCase ).split() lowercase_ :Tuple = Counter(__lowerCamelCase ) & Counter(__lowerCamelCase ) lowercase_ :Tuple = sum(common.values() ) if num_same == 0: return 0 lowercase_ :Union[str, Any] = 1.0 * num_same / len(__lowerCamelCase ) lowercase_ :List[Any] = 1.0 * num_same / len(__lowerCamelCase ) lowercase_ :Tuple = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : Union[str, Any] ): return normalize_answer(__lowerCamelCase ) == normalize_answer(__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : List[str] ): assert len(__lowerCamelCase ) == len(__lowerCamelCase ) lowercase_ :Any = 0 for hypo, pred in zip(__lowerCamelCase ,__lowerCamelCase ): em += exact_match_score(__lowerCamelCase ,__lowerCamelCase ) if len(__lowerCamelCase ) > 0: em /= len(__lowerCamelCase ) return {"em": em} def UpperCAmelCase_ ( __lowerCamelCase : str ): return model_prefix.startswith("rag" ) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : int ): lowercase_ :Dict = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowercase_ :List[str] = "dropout_rate" for p in extra_params: if getattr(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ): if not hasattr(__lowerCamelCase ,__lowerCamelCase ) and not hasattr(__lowerCamelCase ,equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(__lowerCamelCase ) ) delattr(__lowerCamelCase ,__lowerCamelCase ) continue lowercase_ :List[Any] = p if hasattr(__lowerCamelCase ,__lowerCamelCase ) else equivalent_param[p] setattr(__lowerCamelCase ,__lowerCamelCase ,getattr(__lowerCamelCase ,__lowerCamelCase ) ) delattr(__lowerCamelCase ,__lowerCamelCase ) return hparams, config
223
0
"""simple docstring""" import requests def lowercase ( _snake_case : str , _snake_case : str ) ->None: """simple docstring""" __snake_case : Dict = {'''Content-Type''': '''application/json'''} __snake_case : Optional[Any] = requests.post(_snake_case , json={'''text''': message_body} , headers=_snake_case ) if response.status_code != 200: __snake_case : Union[str, Any] = ( '''Request to slack returned an error ''' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(_snake_case ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
24
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : int = torch.nn.Linear(2 , 4 ) __snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) __snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( _snake_case : str ) ->Optional[Any]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( _snake_case : Union[str, Any] ) ->Tuple: """simple docstring""" __snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(a_ ): __snake_case : Any = Accelerator(cpu=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case : Optional[int] = GradientState() assert state.num_steps == 1 __snake_case : str = 4 assert state.num_steps == 4 assert state.sync_gradients is True __snake_case : List[Any] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a_ , **a_ ): pass with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): __snake_case : List[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : Any = get_signature(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : List[Any] = get_signature(a_ ) # saving hook def save_config(a_ , a_ , a_ ): __snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f: json.dump(a_ , a_ ) # loading hook def load_config(a_ , a_ ): with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f: __snake_case : Any = json.load(a_ ) __snake_case : List[str] = config['''class_name'''] __snake_case : str = accelerator.register_save_state_pre_hook(a_ ) __snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Any = '''random''' # make sure loaded weights match with hooks accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks removed load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Union[str, Any] = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components() __snake_case : Union[str, Any] = None # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() __snake_case : Optional[int] = [1, 2, 3] # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , ) __snake_case : Optional[Any] = Accelerator() # This should work __snake_case : Any = accelerator.prepare(a_ ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Any = Accelerator() with init_empty_weights(): __snake_case : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : Union[str, Any] = infer_auto_device_map(a_ ) __snake_case : str = '''cpu''' __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ ) # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Dict = accelerator.prepare(a_ ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): __snake_case : Any = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : List[Any] = infer_auto_device_map(a_ ) __snake_case : Dict = 1 __snake_case : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Any = Accelerator() # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Tuple = accelerator.prepare(a_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) __snake_case : Tuple = infer_auto_device_map(a_ ) __snake_case : Tuple = 1 __snake_case : List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Tuple = Accelerator() # This should work __snake_case : Dict = accelerator.prepare(a_ ) @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = torch.nn.Linear(10 , 10 ) __snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 ) __snake_case : Optional[Any] = Accelerator(cpu=a_ ) __snake_case : str = accelerator.prepare(a_ )
24
1
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = "cpu" SCREAMING_SNAKE_CASE__ = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" SCREAMING_SNAKE_CASE__ = "path-to-your-trained-model" SCREAMING_SNAKE_CASE__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: SCREAMING_SNAKE_CASE__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) SCREAMING_SNAKE_CASE__ = pipe.to(device) # to channels last SCREAMING_SNAKE_CASE__ = pipe.unet.to(memory_format=torch.channels_last) SCREAMING_SNAKE_CASE__ = pipe.vae.to(memory_format=torch.channels_last) SCREAMING_SNAKE_CASE__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: SCREAMING_SNAKE_CASE__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex SCREAMING_SNAKE_CASE__ = torch.randn(2, 4, 64, 64) SCREAMING_SNAKE_CASE__ = torch.rand(1) * 999 SCREAMING_SNAKE_CASE__ = torch.randn(2, 77, 768) SCREAMING_SNAKE_CASE__ = (sample, timestep, encoder_hidden_status) try: SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute SCREAMING_SNAKE_CASE__ = 666 SCREAMING_SNAKE_CASE__ = torch.Generator(device).manual_seed(seed) SCREAMING_SNAKE_CASE__ = {"generator": generator} if args.steps is not None: SCREAMING_SNAKE_CASE__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): SCREAMING_SNAKE_CASE__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
46
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _lowercase : '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[Any]=64 , SCREAMING_SNAKE_CASE__ : int=None ) -> Optional[int]: __lowerCAmelCase = np.random.default_rng(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = length __lowerCAmelCase = rng.normal(size=(length,) ).astype(np.floataa ) __lowerCAmelCase = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Union[str, Any] ) -> Optional[Any]: return self.length def __getitem__( self : str , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]: return {"x": self.x[i], "y": self.y[i]} class _lowercase ( torch.nn.Module ): '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> Any: super().__init__() __lowerCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __lowerCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __lowerCAmelCase = True def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=None ) -> str: if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) __lowerCAmelCase = False return x * self.a[0] + self.b[0] class _lowercase ( torch.nn.Module ): '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Optional[Any]: super().__init__() __lowerCAmelCase = torch.nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE__ ).float() ) __lowerCAmelCase = torch.nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE__ ).float() ) __lowerCAmelCase = True def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=None ) -> int: if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) __lowerCAmelCase = False return x * self.a + self.b def UpperCamelCase_ ( snake_case_ : List[str] , snake_case_ : int = 16 ) -> int: '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer __lowerCAmelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowerCAmelCase = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __lowerCAmelCase = load_dataset("""csv""" , data_files=snake_case_ ) __lowerCAmelCase = datasets["""train"""].unique("""label""" ) __lowerCAmelCase = {v: i for i, v in enumerate(snake_case_ )} def tokenize_function(snake_case_ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case_ , max_length=snake_case_ , padding="""max_length""" ) if "label" in examples: __lowerCAmelCase = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCAmelCase = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(snake_case_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(snake_case_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader(tokenized_datasets["""train"""] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=2 ) __lowerCAmelCase = DataLoader(tokenized_datasets["""validation"""] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=1 ) return train_dataloader, eval_dataloader
229
0
"""simple docstring""" def lowerCAmelCase_( lowercase_ : Dict ) -> Any: _lowerCamelCase = [0] * len(lowercase_ ) _lowerCamelCase = [] _lowerCamelCase = [1] * len(lowercase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase_ ) ): if indegree[i] == 0: queue.append(lowercase_ ) while queue: _lowerCamelCase = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: _lowerCamelCase = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase_ ) print(max(lowercase_ ) ) # Adjacency list of Graph __SCREAMING_SNAKE_CASE : List[str] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
365
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Dict = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : Optional[Any] = 'poolformer' def __init__( self , lowerCamelCase__=3 , lowerCamelCase__=1_6 , lowerCamelCase__=1_6 , lowerCamelCase__=3 , lowerCamelCase__=4.0 , lowerCamelCase__=[2, 2, 6, 2] , lowerCamelCase__=[6_4, 1_2_8, 3_2_0, 5_1_2] , lowerCamelCase__=[7, 3, 3, 3] , lowerCamelCase__=[4, 2, 2, 2] , lowerCamelCase__=[2, 1, 1, 1] , lowerCamelCase__=4 , lowerCamelCase__=0.0 , lowerCamelCase__="gelu" , lowerCamelCase__=True , lowerCamelCase__=1e-5 , lowerCamelCase__=0.0_2 , **lowerCamelCase__ , ): _lowerCamelCase = num_channels _lowerCamelCase = patch_size _lowerCamelCase = stride _lowerCamelCase = padding _lowerCamelCase = pool_size _lowerCamelCase = hidden_sizes _lowerCamelCase = mlp_ratio _lowerCamelCase = depths _lowerCamelCase = patch_sizes _lowerCamelCase = strides _lowerCamelCase = num_encoder_blocks _lowerCamelCase = drop_path_rate _lowerCamelCase = hidden_act _lowerCamelCase = use_layer_scale _lowerCamelCase = layer_scale_init_value _lowerCamelCase = initializer_range super().__init__(**lowerCamelCase__ ) class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : str = version.parse('1.11' ) @property def snake_case__ ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case__ ( self ): return 2e-3
73
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase : Union[str, Any] ={ '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] =['''LayoutLMv2FeatureExtractor'''] lowerCAmelCase : Optional[int] =['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
223
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: _a = None _a = logging.get_logger(__name__) _a = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _a = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } _a = { "xlnet-base-cased": None, "xlnet-large-cased": None, } _a = "▁" # Segments (not really needed) _a = 0 _a = 1 _a = 2 _a = 3 _a = 4 class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = """left""" lowerCAmelCase_ = XLNetTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<sep>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<cls>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=["<eop>", "<eod>"] , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token super().__init__( vocab_file=__lowerCAmelCase , tokenizer_file=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCamelCase__ = 3 lowerCamelCase__ = do_lower_case lowerCamelCase__ = remove_space lowerCamelCase__ = keep_accents lowerCamelCase__ = vocab_file lowerCamelCase__ = False if not self.vocab_file else True def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowerCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase__ = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) return (out_vocab_file,)
209
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a (unittest.TestCase ): '''simple docstring''' def __init__( self , A__ , A__=7 , A__=3 , A__=30 , A__=400 , A__=True , A__=None , A__=True , A__=1 / 255 , A__=True , A__=[0.5, 0.5, 0.5] , A__=[0.5, 0.5, 0.5] , A__=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p A__ : List[str] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} A__ : Tuple = parent A__ : Union[str, Any] = batch_size A__ : str = num_channels A__ : Tuple = min_resolution A__ : Dict = max_resolution A__ : Any = do_resize A__ : List[str] = size A__ : Union[str, Any] = do_rescale A__ : Tuple = rescale_factor A__ : str = do_normalize A__ : Dict = image_mean A__ : Tuple = image_std A__ : str = do_pad def __A ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __A ( self , A__ , A__=False ): if not batched: A__ : Dict = image_inputs[0] if isinstance(A__ , Image.Image ): A__ , A__ : List[str] = image.size else: A__ , A__ : Optional[Any] = image.shape[1], image.shape[2] if w < h: A__ : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) A__ : List[Any] = self.size["""shortest_edge"""] elif w > h: A__ : Optional[Any] = self.size["""shortest_edge"""] A__ : Tuple = int(self.size["""shortest_edge"""] * w / h ) else: A__ : int = self.size["""shortest_edge"""] A__ : int = self.size["""shortest_edge"""] else: A__ : int = [] for image in image_inputs: A__ , A__ : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A__ : Any = max(A__ , key=lambda A__ : item[0] )[0] A__ : int = max(A__ , key=lambda A__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a (__magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: List[str] = DetrImageProcessor if is_vision_available() else None def __A ( self ): A__ : Optional[Any] = DetrImageProcessingTester(self ) @property def __A ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ): A__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , """image_mean""" ) ) self.assertTrue(hasattr(A__ , """image_std""" ) ) self.assertTrue(hasattr(A__ , """do_normalize""" ) ) self.assertTrue(hasattr(A__ , """do_rescale""" ) ) self.assertTrue(hasattr(A__ , """rescale_factor""" ) ) self.assertTrue(hasattr(A__ , """do_resize""" ) ) self.assertTrue(hasattr(A__ , """size""" ) ) self.assertTrue(hasattr(A__ , """do_pad""" ) ) def __A ( self ): A__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , A__ ) A__ : List[str] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A__ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , A__ ) def __A ( self ): pass def __A ( self ): # Initialize image_processing A__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ ) for image in image_inputs: self.assertIsInstance(A__ , Image.Image ) # Test not batched input A__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ : List[Any] = self.image_processor_tester.get_expected_values(A__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ : Union[str, Any] = self.image_processor_tester.get_expected_values(A__ , batched=A__ ) A__ : int = image_processing(A__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self ): # Initialize image_processing A__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , numpify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , np.ndarray ) # Test not batched input A__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ : Union[str, Any] = self.image_processor_tester.get_expected_values(A__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ : Optional[Any] = image_processing(A__ , return_tensors="""pt""" ).pixel_values A__ , A__ : Optional[int] = self.image_processor_tester.get_expected_values(A__ , batched=A__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self ): # Initialize image_processing A__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , torchify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , torch.Tensor ) # Test not batched input A__ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ : str = self.image_processor_tester.get_expected_values(A__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ : int = image_processing(A__ , return_tensors="""pt""" ).pixel_values A__ , A__ : Tuple = self.image_processor_tester.get_expected_values(A__ , batched=A__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __A ( self ): # prepare image and target A__ : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: A__ : Optional[Any] = json.loads(f.read() ) A__ : Dict = {"""image_id""": 3_9769, """annotations""": target} # encode them A__ : List[str] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) A__ : Dict = image_processing(images=A__ , annotations=A__ , return_tensors="""pt""" ) # verify pixel values A__ : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , A__ ) A__ : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A__ , atol=1e-4 ) ) # verify area A__ : Dict = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A__ ) ) # verify boxes A__ : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A__ ) A__ : str = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A__ , atol=1e-3 ) ) # verify image_id A__ : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A__ ) ) # verify is_crowd A__ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A__ ) ) # verify class_labels A__ : Any = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A__ ) ) # verify orig_size A__ : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A__ ) ) # verify size A__ : Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A__ ) ) @slow def __A ( self ): # prepare image, target and masks_path A__ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: A__ : Union[str, Any] = json.loads(f.read() ) A__ : Dict = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} A__ : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them A__ : Union[str, Any] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) A__ : Dict = image_processing(images=A__ , annotations=A__ , masks_path=A__ , return_tensors="""pt""" ) # verify pixel values A__ : List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , A__ ) A__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A__ , atol=1e-4 ) ) # verify area A__ : Any = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A__ ) ) # verify boxes A__ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A__ ) A__ : Tuple = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A__ , atol=1e-3 ) ) # verify image_id A__ : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A__ ) ) # verify is_crowd A__ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A__ ) ) # verify class_labels A__ : int = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A__ ) ) # verify masks A__ : Union[str, Any] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , A__ ) # verify orig_size A__ : Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A__ ) ) # verify size A__ : Optional[int] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A__ ) )
141
from __future__ import annotations def UpperCamelCase (lowercase_: list[int] , lowercase_: list[int] , lowercase_: int ) -> tuple[float, list[float]]: A__ : Tuple = list(range(len(lowercase_ ) ) ) A__ : Union[str, Any] = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ : float = 0 A__ : list[float] = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: A__ : Union[str, Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
141
1
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __snake_case :Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __UpperCAmelCase ,__UpperCAmelCase ): @register_to_config def __init__( self : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None): '''simple docstring''' super().__init__() __a = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __a = torch.zeros(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else: __a = None __a = torch.nn.Parameter(__SCREAMING_SNAKE_CASE) class _A ( __UpperCAmelCase ): UpperCamelCase__ : VQModel UpperCamelCase__ : CLIPTextModel UpperCamelCase__ : CLIPTokenizer UpperCamelCase__ : TransformeraDModel UpperCamelCase__ : LearnedClassifierFreeSamplingEmbeddings UpperCamelCase__ : VQDiffusionScheduler def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : VQModel , __SCREAMING_SNAKE_CASE : CLIPTextModel , __SCREAMING_SNAKE_CASE : CLIPTokenizer , __SCREAMING_SNAKE_CASE : TransformeraDModel , __SCREAMING_SNAKE_CASE : VQDiffusionScheduler , __SCREAMING_SNAKE_CASE : LearnedClassifierFreeSamplingEmbeddings , ): '''simple docstring''' super().__init__() self.register_modules( vqvae=__SCREAMING_SNAKE_CASE , transformer=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , learned_classifier_free_sampling_embeddings=__SCREAMING_SNAKE_CASE , ) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = len(__SCREAMING_SNAKE_CASE) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else 1 # get prompt text embeddings __a = self.tokenizer( __SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) __a = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __a = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F' {self.tokenizer.model_max_length} tokens: {removed_text}') __a = text_input_ids[:, : self.tokenizer.model_max_length] __a = self.text_encoder(text_input_ids.to(self.device))[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __a = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__SCREAMING_SNAKE_CASE) # duplicate text embeddings for each generation per prompt __a = prompt_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __a = self.learned_classifier_free_sampling_embeddings.embeddings __a = negative_prompt_embeds.unsqueeze(0).repeat(__SCREAMING_SNAKE_CASE , 1 , 1) else: __a = [''''''] * batch_size __a = text_input_ids.shape[-1] __a = self.tokenizer( __SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) __a = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # See comment for normalizing text embeddings __a = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__SCREAMING_SNAKE_CASE) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __a = negative_prompt_embeds.shape[1] __a = negative_prompt_embeds.repeat(1 , __SCREAMING_SNAKE_CASE , 1) __a = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __SCREAMING_SNAKE_CASE , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __a = torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds @torch.no_grad() def __call__( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str]] , __SCREAMING_SNAKE_CASE : int = 100 , __SCREAMING_SNAKE_CASE : float = 5.0 , __SCREAMING_SNAKE_CASE : float = 1.0 , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , __SCREAMING_SNAKE_CASE : Optional[str] = "pil" , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __SCREAMING_SNAKE_CASE : int = 1 , ): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = 1 elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = len(__SCREAMING_SNAKE_CASE) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(__SCREAMING_SNAKE_CASE)}') __a = batch_size * num_images_per_prompt __a = guidance_scale > 1.0 __a = self._encode_prompt(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(__SCREAMING_SNAKE_CASE)}.') # get the initial completely masked latents unless the user supplied it __a = (batch_size, self.transformer.num_latent_pixels) if latents is None: __a = self.transformer.num_vector_embeds - 1 __a = torch.full(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE).to(self.device) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}') if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F' {self.transformer.num_vector_embeds - 1} (inclusive).') __a = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE , device=self.device) __a = self.scheduler.timesteps.to(self.device) __a = latents for i, t in enumerate(self.progress_bar(__SCREAMING_SNAKE_CASE)): # expand the sample if we are doing classifier free guidance __a = torch.cat([sample] * 2) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __a = self.transformer(__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE).sample if do_classifier_free_guidance: __a , __a = model_output.chunk(2) __a = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__SCREAMING_SNAKE_CASE , dim=1 , keepdim=__SCREAMING_SNAKE_CASE) __a = self.truncate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # remove `log(0)`'s (`-inf`s) __a = model_output.clamp(-70) # compute the previous noisy sample x_t -> x_t-1 __a = self.scheduler.step(__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , sample=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = self.vqvae.config.vq_embed_dim __a = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __a = self.vqvae.quantize.get_codebook_entry(__SCREAMING_SNAKE_CASE , shape=__SCREAMING_SNAKE_CASE) __a = self.vqvae.decode(__SCREAMING_SNAKE_CASE , force_not_quantize=__SCREAMING_SNAKE_CASE).sample __a = (image / 2 + 0.5).clamp(0 , 1) __a = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": __a = self.numpy_to_pil(__SCREAMING_SNAKE_CASE) if not return_dict: return (image,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : float): '''simple docstring''' __a , __a = torch.sort(__SCREAMING_SNAKE_CASE , 1 , descending=__SCREAMING_SNAKE_CASE) __a = torch.exp(__SCREAMING_SNAKE_CASE) __a = sorted_p_x_0.cumsum(dim=1) < truncation_rate # Ensure that at least the largest probability is not zeroed out __a = torch.full_like(keep_mask[:, 0:1, :] , __SCREAMING_SNAKE_CASE) __a = torch.cat((all_true, keep_mask) , dim=1) __a = keep_mask[:, :-1, :] __a = keep_mask.gather(1 , indices.argsort(1)) __a = log_p_x_0.clone() __a = -torch.inf # -inf = log(0) return rv
49
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() snake_case__ : Dict = logging.get_logger(__name__) snake_case__ : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } snake_case__ : Optional[int] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def _a ( lowerCamelCase: List[Any] , lowerCamelCase: Any , lowerCamelCase: Union[str, Any] , lowerCamelCase: Any , lowerCamelCase: int ) -> List[str]: '''simple docstring''' for attribute in key.split('''.''' ): __A = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: __A = getattr(lowerCamelCase , lowerCamelCase ).shape else: __A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __A = value elif weight_type == "weight_g": __A = value elif weight_type == "weight_v": __A = value elif weight_type == "bias": __A = value else: __A = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _a ( lowerCamelCase: List[str] , lowerCamelCase: Optional[int] ) -> Tuple: '''simple docstring''' __A = [] __A = fairseq_model.state_dict() __A = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __A = False if "conv_layers" in name: load_conv_layer( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) __A = True else: for key, mapped_key in MAPPING.items(): __A = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __A = True if "*" in mapped_key: __A = name.split(lowerCamelCase )[0].split('''.''' )[-2] __A = mapped_key.replace('''*''' , lowerCamelCase ) if "weight_g" in name: __A = '''weight_g''' elif "weight_v" in name: __A = '''weight_v''' elif "bias" in name: __A = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A = '''weight''' else: __A = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _a ( lowerCamelCase: int , lowerCamelCase: Any , lowerCamelCase: int , lowerCamelCase: int , lowerCamelCase: List[str] ) -> Union[str, Any]: '''simple docstring''' __A = full_name.split('''conv_layers.''' )[-1] __A = name.split('''.''' ) __A = int(items[0] ) __A = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __A = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __A = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __A = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __A = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCamelCase ) @torch.no_grad() def _a ( lowerCamelCase: Tuple , lowerCamelCase: int , lowerCamelCase: Optional[Any]=None , lowerCamelCase: Optional[Any]=None , lowerCamelCase: Optional[int]=True ) -> List[Any]: '''simple docstring''' if config_path is not None: __A = UniSpeechSatConfig.from_pretrained(lowerCamelCase ) else: __A = UniSpeechSatConfig() __A = '''''' if is_finetuned: __A = UniSpeechSatForCTC(lowerCamelCase ) else: __A = UniSpeechSatForPreTraining(lowerCamelCase ) __A , __A , __A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __A = model[0].eval() recursively_load_weights(lowerCamelCase , lowerCamelCase ) hf_wavavec.save_pretrained(lowerCamelCase ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ : Any = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
117
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor UpperCAmelCase__ : List[str] =logging.get_logger(__name__) class __A ( a ): def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
370
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCAmelCase__ : Union[str, Any] =subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') UpperCAmelCase__ : List[str] =( subprocess.check_output(F"git diff --diff-filter=d --name-only {fork_point_sha}".split()).decode('''utf-8''').split() ) UpperCAmelCase__ : Tuple ='''|'''.join(sys.argv[1:]) UpperCAmelCase__ : List[str] =re.compile(rF"^({joined_dirs}).*?\.py$") UpperCAmelCase__ : Any =[x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
262
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__(self : Union[str, Any] , a__ : List[str] , a__ : Any=2 , a__ : Dict=3 , a__ : Dict=4 , a__ : Tuple=2 , a__ : str=7 , a__ : List[Any]=True , a__ : str=True , a__ : Optional[Any]=True , a__ : Optional[Any]=True , a__ : Optional[Any]=99 , a__ : List[Any]=36 , a__ : Optional[Any]=3 , a__ : List[str]=4 , a__ : Tuple=37 , a__ : Any="gelu" , a__ : str=0.1 , a__ : Any=0.1 , a__ : List[str]=512 , a__ : Any=16 , a__ : Tuple=2 , a__ : List[str]=0.0_2 , a__ : int=6 , a__ : Union[str, Any]=6 , a__ : str=3 , a__ : Union[str, Any]=4 , a__ : Tuple=None , a__ : List[Any]=1000 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = patch_size __snake_case = text_seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = coordinate_size __snake_case = shape_size __snake_case = num_labels __snake_case = num_choices __snake_case = scope __snake_case = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case = text_seq_length __snake_case = (image_size // patch_size) ** 2 + 1 __snake_case = self.text_seq_length + self.image_seq_length def a (self : Dict ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case = bbox[i, j, 3] __snake_case = bbox[i, j, 1] __snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case = bbox[i, j, 2] __snake_case = bbox[i, j, 0] __snake_case = t __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def a (self : int , a__ : int , a__ : List[Any] , a__ : Any , a__ : Union[str, Any] , a__ : Dict , a__ : Any , a__ : Dict , a__ : Optional[Any] ): """simple docstring""" __snake_case = LayoutLMvaModel(config=a__ ) model.to(a__ ) model.eval() # text + image __snake_case = model(a__ , pixel_values=a__ ) __snake_case = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ , pixel_values=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ , pixel_values=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case = model(a__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case = model(pixel_values=a__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def a (self : Dict , a__ : Dict , a__ : Tuple , a__ : Tuple , a__ : List[Any] , a__ : Union[str, Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : List[Any] ): """simple docstring""" __snake_case = self.num_labels __snake_case = LayoutLMvaForSequenceClassification(a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a (self : Optional[Any] , a__ : Optional[Any] , a__ : List[Any] , a__ : Optional[int] , a__ : Tuple , a__ : Optional[Any] , a__ : int , a__ : Union[str, Any] , a__ : Dict ): """simple docstring""" __snake_case = self.num_labels __snake_case = LayoutLMvaForTokenClassification(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def a (self : List[str] , a__ : Dict , a__ : Tuple , a__ : Dict , a__ : int , a__ : str , a__ : List[str] , a__ : List[Any] , a__ : List[Any] ): """simple docstring""" __snake_case = LayoutLMvaForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a (self : Any ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = False A_ : Any = False A_ : Optional[int] = False A_ : List[str] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) A_ : Union[str, Any] = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def a (self : Any , a__ : Optional[Any] , a__ : Dict , a__ : Optional[Any] , a__ : Tuple , a__ : List[str] ): """simple docstring""" return True def a (self : List[str] ): """simple docstring""" __snake_case = LayoutLMvaModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a (self : Optional[int] , a__ : Union[str, Any] , a__ : Optional[Any] , a__ : Tuple=False ): """simple docstring""" __snake_case = copy.deepcopy(a__ ) if model_class in get_values(a__ ): __snake_case = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(a__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(a__ ): __snake_case = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in get_values(a__ ): __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in [ *get_values(a__ ), ]: __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in [ *get_values(a__ ), ]: __snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=a__ , ) return inputs_dict def a (self : str ): """simple docstring""" self.config_tester.run_common_tests() def a (self : Any ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def a (self : List[str] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def a (self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def a (self : List[Any] ): """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = LayoutLMvaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def lowerCamelCase__ ( ) -> Optional[int]: __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def a (self : int ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=a__ ) if is_vision_available() else None @slow def a (self : Any ): """simple docstring""" __snake_case = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(a__ ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=a__ , return_tensors='''pt''' ).pixel_values.to(a__ ) __snake_case = torch.tensor([[1, 2]] ) __snake_case = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __snake_case = model( input_ids=input_ids.to(a__ ) , bbox=bbox.to(a__ ) , pixel_values=pixel_values.to(a__ ) , ) # verify the logits __snake_case = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , a__ ) __snake_case = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1E-4 ) )
24
import socket def lowerCamelCase__ ( ) -> Any: __snake_case = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) __snake_case = socket.gethostname() __snake_case = 1_2312 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: __snake_case = sock.recv(1024 ) if not data: break out_file.write(snake_case_ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
24
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase: Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Any = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCAmelCase: Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
96
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a__: def __init__( self : Optional[int] ): a : int = '' a : List[str] = '' a : int = [] a : Optional[Any] = 0 a : Optional[Any] = 2_56 a : int = 0 a : Optional[int] = 0 a : str = 0 a : int = 0 def lowercase_ ( self : List[str] , __snake_case : int ): a : Optional[Any] = cva.imread(__snake_case , 0 ) a : int = copy.deepcopy(self.img ) a , a , a : Optional[int] = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' ) a : str = np.sum(__snake_case ) for i in range(len(__snake_case ) ): a : List[str] = x[i] / self.k self.sk += prk a : List[Any] = (self.L - 1) * self.sk if self.rem != 0: a : Union[str, Any] = int(last % last ) a : int = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__snake_case ) a : int = int(np.ma.count(self.img ) / self.img[1].size ) a : Dict = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): a : Tuple = self.img[j][i] if num != self.last_list[num]: a : Union[str, Any] = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def lowercase_ ( self : Union[str, Any] ): plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def lowercase_ ( self : Any ): cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase: Dict = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowerCAmelCase: Optional[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
96
1
'''simple docstring''' from math import isclose, sqrt def __lowercase ( __lowercase , __lowercase , __lowercase ) -> tuple[float, float, float]: '''simple docstring''' _A = point_y / 4 / point_x _A = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _A = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _A = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _A = outgoing_gradient**2 + 4 _A = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _A = (point_y - outgoing_gradient * point_x) ** 2 - 100 _A = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _A = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _A = x_minus if isclose(lowerCamelCase__ , lowerCamelCase__ ) else x_plus _A = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def __lowercase ( __lowercase = 1.4 , __lowercase = -9.6 ) -> int: '''simple docstring''' _A = 0 _A = first_x_coord _A = first_y_coord _A = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): _A = next_point(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
79
import os import sys a =os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) a =[ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *lowerCamelCase__ , **lowerCamelCase__ ) -> int: return AutoConfig.from_pretrained(*lowerCamelCase__ , **lowerCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: return AutoTokenizer.from_pretrained(*lowerCamelCase__ , **lowerCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: return AutoModel.from_pretrained(*lowerCamelCase__ , **lowerCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: return AutoModelForCausalLM.from_pretrained(*lowerCamelCase__ , **lowerCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: return AutoModelForMaskedLM.from_pretrained(*lowerCamelCase__ , **lowerCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: return AutoModelForSequenceClassification.from_pretrained(*lowerCamelCase__ , **lowerCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: return AutoModelForQuestionAnswering.from_pretrained(*lowerCamelCase__ , **lowerCamelCase__ )
73
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva lowerCamelCase__ = '''''' lowerCamelCase__ = '''''' lowerCamelCase__ = '''''' lowerCamelCase__ = 1 # (0 is vertical, 1 is horizontal) def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase, _UpperCamelCase : str = get_dataset(__lowerCAmelCase ,__lowerCAmelCase ) print("Processing..." ) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Tuple = update_image_and_anno(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _UpperCamelCase : Optional[Any] = random_chars(32 ) _UpperCamelCase : Optional[Any] = paths[index].split(os.sep )[-1].rsplit("." ,1 )[0] _UpperCamelCase : int = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(F'''/{file_root}.jpg''' ,__lowerCAmelCase ,[cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' ) _UpperCamelCase : Optional[int] = [] for anno in new_annos[index]: _UpperCamelCase : Any = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__lowerCAmelCase ) with open(F'''/{file_root}.txt''' ,"w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Dict = [] _UpperCamelCase : str = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase ,"*.txt" ) ): _UpperCamelCase : List[Any] = label_file.split(os.sep )[-1].rsplit("." ,1 )[0] with open(__lowerCAmelCase ) as in_file: _UpperCamelCase : Any = in_file.readlines() _UpperCamelCase : int = os.path.join(__lowerCAmelCase ,F'''{label_name}.jpg''' ) _UpperCamelCase : Optional[Any] = [] for obj_list in obj_lists: _UpperCamelCase : List[str] = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : Optional[int] = [] for idx in range(len(__lowerCAmelCase ) ): _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : str = img_list[idx] path_list.append(__lowerCAmelCase ) _UpperCamelCase : Dict = anno_list[idx] _UpperCamelCase : Union[str, Any] = cva.imread(__lowerCAmelCase ) if flip_type == 1: _UpperCamelCase : Tuple = cva.flip(__lowerCAmelCase ,__lowerCAmelCase ) for bbox in img_annos: _UpperCamelCase : Union[str, Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _UpperCamelCase : Dict = cva.flip(__lowerCAmelCase ,__lowerCAmelCase ) for bbox in img_annos: _UpperCamelCase : Any = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def lowercase__ ( lowercase_ = 32 ) -> Union[str, Any]: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _UpperCamelCase : List[Any] = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
371
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCamelCase__ = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = "rag" SCREAMING_SNAKE_CASE__ :List[str] = True def __init__( self : List[Any] , __a : Optional[Any]=None , __a : str=True , __a : Tuple=None , __a : Dict=None , __a : Optional[int]=None , __a : Optional[int]=None , __a : List[Any]=None , __a : Dict=" / " , __a : int=" // " , __a : Optional[Any]=5 , __a : Dict=300 , __a : Optional[int]=768 , __a : Tuple=8 , __a : Union[str, Any]="wiki_dpr" , __a : Dict="train" , __a : List[Any]="compressed" , __a : str=None , __a : Tuple=None , __a : int=False , __a : str=False , __a : Optional[int]=0.0 , __a : Dict=True , __a : Tuple=False , __a : Dict=False , __a : str=False , __a : str=True , __a : Optional[Any]=None , **__a : Tuple , ) -> Any: super().__init__( bos_token_id=__a , pad_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , forced_eos_token_id=__a , is_encoder_decoder=__a , prefix=__a , vocab_size=__a , **__a , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _UpperCamelCase : Optional[int] = kwargs.pop("question_encoder" ) _UpperCamelCase : str = question_encoder_config.pop("model_type" ) _UpperCamelCase : Tuple = kwargs.pop("generator" ) _UpperCamelCase : str = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _UpperCamelCase : Union[str, Any] = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : str = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : Optional[int] = reduce_loss _UpperCamelCase : str = label_smoothing _UpperCamelCase : int = exclude_bos_score _UpperCamelCase : List[str] = do_marginalize _UpperCamelCase : Optional[int] = title_sep _UpperCamelCase : Optional[int] = doc_sep _UpperCamelCase : Union[str, Any] = n_docs _UpperCamelCase : Tuple = max_combined_length _UpperCamelCase : Union[str, Any] = dataset _UpperCamelCase : Any = dataset_split _UpperCamelCase : List[str] = index_name _UpperCamelCase : int = retrieval_vector_size _UpperCamelCase : str = retrieval_batch_size _UpperCamelCase : Dict = passages_path _UpperCamelCase : str = index_path _UpperCamelCase : Tuple = use_dummy_dataset _UpperCamelCase : Union[str, Any] = output_retrieved _UpperCamelCase : Optional[Any] = do_deduplication _UpperCamelCase : str = use_cache if self.forced_eos_token_id is None: _UpperCamelCase : List[str] = getattr(self.generator , "forced_eos_token_id" , __a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Optional[int] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: _UpperCamelCase : Dict = copy.deepcopy(self.__dict__ ) _UpperCamelCase : List[Any] = self.question_encoder.to_dict() _UpperCamelCase : Tuple = self.generator.to_dict() _UpperCamelCase : Any = self.__class__.model_type return output
310
0
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : int, lowercase__ : str ): '''simple docstring''' try: with open(lowercase__, 'rb' ) as flax_state_f: __lowercase =from_bytes(lowercase__, flax_state_f.read() ) except UnpicklingError as e: try: with open(lowercase__ ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(lowercase__, lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str], lowercase__ : List[str] ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights __lowercase =flatten_dict(jax.tree_util.tree_map(lambda lowercase__ : x.dtype == jnp.bfloataa, lowercase__ ) ).values() if any(lowercase__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) __lowercase =jax.tree_util.tree_map( lambda lowercase__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params, lowercase__ ) __lowercase ='' __lowercase =flatten_dict(lowercase__, sep='.' ) __lowercase =pt_model.state_dict() # keep track of unexpected & missing keys __lowercase =[] __lowercase =set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __lowercase =flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __lowercase =flax_key_tuple_array[:-1] + ['weight'] __lowercase =jnp.transpose(lowercase__, (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __lowercase =flax_key_tuple_array[:-1] + ['weight'] __lowercase =flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __lowercase =flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowercase__ ): __lowercase =( flax_key_tuple_string.replace('_0', '.0' ) .replace('_1', '.1' ) .replace('_2', '.2' ) .replace('_3', '.3' ) .replace('_4', '.4' ) .replace('_5', '.5' ) .replace('_6', '.6' ) .replace('_7', '.7' ) .replace('_8', '.8' ) .replace('_9', '.9' ) ) __lowercase ='.'.join(lowercase__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict __lowercase =np.asarray(lowercase__ ) if not isinstance(lowercase__, np.ndarray ) else flax_tensor __lowercase =torch.from_numpy(lowercase__ ) # remove from missing keys missing_keys.remove(lowercase__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowercase__ ) pt_model.load_state_dict(lowercase__ ) # re-transform missing_keys to list __lowercase =list(lowercase__ ) if len(lowercase__ ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(lowercase__ ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' ' use it for predictions and inference.' ) return pt_model
141
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } UpperCAmelCase = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } UpperCAmelCase = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = RealmTokenizer def __init__( self : int , __lowercase : Union[str, Any]=None , __lowercase : int=None , __lowercase : List[Any]=True , __lowercase : Any="[UNK]" , __lowercase : Union[str, Any]="[SEP]" , __lowercase : Union[str, Any]="[PAD]" , __lowercase : Tuple="[CLS]" , __lowercase : List[Any]="[MASK]" , __lowercase : Tuple=True , __lowercase : Union[str, Any]=None , **__lowercase : int , ): """simple docstring""" super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) __lowercase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , __lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __lowercase ) != tokenize_chinese_chars ): __lowercase =getattr(__lowercase , normalizer_state.pop('type' ) ) __lowercase =do_lower_case __lowercase =strip_accents __lowercase =tokenize_chinese_chars __lowercase =normalizer_class(**__lowercase ) __lowercase =do_lower_case def snake_case ( self : List[str] , __lowercase : Optional[Any] , **__lowercase : Any ): """simple docstring""" __lowercase =PaddingStrategy.MAX_LENGTH __lowercase =text __lowercase =kwargs.pop('text_pair' , __lowercase ) __lowercase =kwargs.pop('return_tensors' , __lowercase ) __lowercase ={ 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(__lowercase ): if batch_text_pair is not None: __lowercase =batch_text_pair[idx] else: __lowercase =None __lowercase =super().__call__(__lowercase , __lowercase , return_tensors=__lowercase , **__lowercase ) __lowercase =encoded_candidates.get('input_ids' ) __lowercase =encoded_candidates.get('attention_mask' ) __lowercase =encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(__lowercase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(__lowercase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__lowercase ) __lowercase ={key: item for key, item in output_data.items() if len(__lowercase ) != 0} return BatchEncoding(__lowercase , tensor_type=__lowercase ) def snake_case ( self : List[str] , __lowercase : Tuple , __lowercase : Optional[int]=None ): """simple docstring""" __lowercase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self : List[str] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): """simple docstring""" __lowercase =[self.sep_token_id] __lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self : Dict , __lowercase : str , __lowercase : Optional[str] = None ): """simple docstring""" __lowercase =self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
141
1
"""simple docstring""" def A ( _lowercase ): if not isinstance(_lowercase , _lowercase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
371
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') __UpperCamelCase : Optional[int] = parser.parse_args() if args.model_type == "bert": __UpperCamelCase : Optional[int] = BertForMaskedLM.from_pretrained(args.model_name) __UpperCamelCase : Optional[int] = 'bert' else: raise ValueError('args.model_type should be "bert".') __UpperCamelCase : List[Any] = model.state_dict() __UpperCamelCase : Union[str, Any] = {} for w in ["word_embeddings", "position_embeddings"]: __UpperCamelCase : List[Any] = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: __UpperCamelCase : Optional[int] = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] __UpperCamelCase : Any = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: __UpperCamelCase : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] __UpperCamelCase : Union[str, Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] __UpperCamelCase : Union[str, Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] __UpperCamelCase : List[str] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] __UpperCamelCase : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] __UpperCamelCase : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] __UpperCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] __UpperCamelCase : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 __UpperCamelCase : List[str] = state_dict['cls.predictions.decoder.weight'] __UpperCamelCase : int = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: __UpperCamelCase : List[str] = state_dict[f"""cls.predictions.transform.dense.{w}"""] __UpperCamelCase : List[Any] = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
258
0
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class __A ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase : int = """encodec""" def __init__( self : str ,_snake_case : Optional[int]=[1.5, 3.0, 6.0, 12.0, 24.0] ,_snake_case : int=24_000 ,_snake_case : Tuple=1 ,_snake_case : int=False ,_snake_case : Optional[Any]=None ,_snake_case : Any=None ,_snake_case : Any=128 ,_snake_case : List[Any]=32 ,_snake_case : Union[str, Any]=1 ,_snake_case : List[Any]=[8, 5, 4, 2] ,_snake_case : Optional[Any]="weight_norm" ,_snake_case : List[Any]=7 ,_snake_case : Tuple=7 ,_snake_case : Dict=3 ,_snake_case : Optional[Any]=2 ,_snake_case : List[str]=True ,_snake_case : Any="reflect" ,_snake_case : Optional[int]=2 ,_snake_case : Tuple=2 ,_snake_case : List[str]=1.0 ,_snake_case : Dict=1_024 ,_snake_case : str=None ,_snake_case : Any=True ,**_snake_case : Any ,) -> Optional[int]: """simple docstring""" lowercase__ : Tuple = target_bandwidths lowercase__ : Optional[Any] = sampling_rate lowercase__ : List[Any] = audio_channels lowercase__ : int = normalize lowercase__ : Union[str, Any] = chunk_length_s lowercase__ : int = overlap lowercase__ : Tuple = hidden_size lowercase__ : Optional[int] = num_filters lowercase__ : List[str] = num_residual_layers lowercase__ : int = upsampling_ratios lowercase__ : List[Any] = norm_type lowercase__ : List[str] = kernel_size lowercase__ : Union[str, Any] = last_kernel_size lowercase__ : Any = residual_kernel_size lowercase__ : str = dilation_growth_rate lowercase__ : int = use_causal_conv lowercase__ : Any = pad_mode lowercase__ : Dict = compress lowercase__ : Optional[int] = num_lstm_layers lowercase__ : Union[str, Any] = trim_right_ratio lowercase__ : Dict = codebook_size lowercase__ : Optional[Any] = codebook_dim if codebook_dim is not None else hidden_size lowercase__ : List[Any] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**__lowercase ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) @property def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" lowercase__ : List[Any] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def UpperCAmelCase ( self : List[str] ) -> int: """simple docstring""" return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
16
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _UpperCAmelCase : Union[str, Any] ="""pt""" elif is_tf_available(): _UpperCAmelCase : List[Any] ="""tf""" else: _UpperCAmelCase : Optional[int] ="""jax""" class snake_case__( UpperCAmelCase__, unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = PerceiverTokenizer SCREAMING_SNAKE_CASE__ : Optional[Any] = False def lowercase_ ( self ) -> Optional[int]: super().setUp() lowerCAmelCase_ : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ) -> Any: return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def lowercase_ ( self , **__lowercase ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def lowercase_ ( self , __lowercase , __lowercase=False , __lowercase=2_0 , __lowercase=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowerCAmelCase_ : Optional[Any] = [] for i in range(len(__lowercase ) ): try: lowerCAmelCase_ : List[str] = tokenizer.decode([i] , clean_up_tokenization_spaces=__lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCAmelCase_ : List[str] = list(filter(lambda __lowercase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , __lowercase ) ) lowerCAmelCase_ : Optional[int] = list(filter(lambda __lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__lowercase ) , __lowercase ) ) if max_length is not None and len(__lowercase ) > max_length: lowerCAmelCase_ : Union[str, Any] = toks[:max_length] if min_length is not None and len(__lowercase ) < min_length and len(__lowercase ) > 0: while len(__lowercase ) < min_length: lowerCAmelCase_ : Union[str, Any] = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase_ : List[str] = [t[0] for t in toks] # Ensure consistency lowerCAmelCase_ : int = tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) if " " not in output_txt and len(__lowercase ) > 1: lowerCAmelCase_ : Optional[int] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowercase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowercase ) ) if with_prefix_space: lowerCAmelCase_ : Any = ''' ''' + output_txt lowerCAmelCase_ : List[str] = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) return output_txt, output_ids def lowercase_ ( self ) -> Union[str, Any]: lowerCAmelCase_ : List[str] = self.perceiver_tokenizer lowerCAmelCase_ : Any = '''Unicode €.''' lowerCAmelCase_ : Dict = tokenizer(__lowercase ) lowerCAmelCase_ : Any = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['''input_ids'''] , __lowercase ) # decoding lowerCAmelCase_ : str = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , '''[CLS]Unicode €.[SEP]''' ) lowerCAmelCase_ : Optional[int] = tokenizer('''e è é ê ë''' ) lowerCAmelCase_ : str = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['''input_ids'''] , __lowercase ) # decoding lowerCAmelCase_ : int = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def lowercase_ ( self ) -> List[str]: lowerCAmelCase_ : Any = self.perceiver_tokenizer lowerCAmelCase_ : Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off lowerCAmelCase_ : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on lowerCAmelCase_ : Optional[int] = tokenizer(__lowercase , padding=__lowercase , return_tensors=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) if FRAMEWORK != "jax": lowerCAmelCase_ : str = list(batch.input_ids.numpy()[0] ) else: lowerCAmelCase_ : Union[str, Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__lowercase , __lowercase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def lowercase_ ( self ) -> Union[str, Any]: lowerCAmelCase_ : int = self.perceiver_tokenizer lowerCAmelCase_ : Optional[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCAmelCase_ : List[Any] = tokenizer(__lowercase , padding=__lowercase , return_tensors=__lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , __lowercase ) self.assertIn('''attention_mask''' , __lowercase ) self.assertNotIn('''decoder_input_ids''' , __lowercase ) self.assertNotIn('''decoder_attention_mask''' , __lowercase ) def lowercase_ ( self ) -> List[Any]: lowerCAmelCase_ : Optional[Any] = self.perceiver_tokenizer lowerCAmelCase_ : int = [ '''Summary of the text.''', '''Another summary.''', ] lowerCAmelCase_ : List[str] = tokenizer( text_target=__lowercase , max_length=3_2 , padding='''max_length''' , truncation=__lowercase , return_tensors=__lowercase ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) def lowercase_ ( self ) -> Optional[Any]: # safety check on max_len default value so we are sure the test works lowerCAmelCase_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test lowerCAmelCase_ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() lowerCAmelCase_ : str = ''' He is very happy, UNwant\u00E9d,running''' lowerCAmelCase_ : Optional[int] = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) lowerCAmelCase_ : Any = tokenizer.__class__.from_pretrained(__lowercase ) lowerCAmelCase_ : Tuple = after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) shutil.rmtree(__lowercase ) lowerCAmelCase_ : Optional[int] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase_ : Optional[int] = tempfile.mkdtemp() lowerCAmelCase_ : List[str] = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) lowerCAmelCase_ : Any = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowerCAmelCase_ : str = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) lowerCAmelCase_ : str = tokenizer.__class__.from_pretrained(__lowercase ) lowerCAmelCase_ : Optional[Any] = after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) lowerCAmelCase_ : str = tokenizer.__class__.from_pretrained(__lowercase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(__lowercase ) def lowercase_ ( self ) -> List[str]: lowerCAmelCase_ : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowercase ) with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: lowerCAmelCase_ : Tuple = json.load(__lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: lowerCAmelCase_ : Any = json.load(__lowercase ) lowerCAmelCase_ : Optional[int] = [f"""<extra_id_{i}>""" for i in range(1_2_5 )] lowerCAmelCase_ : Optional[Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] lowerCAmelCase_ : Any = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase_ : int = tokenizer_class.from_pretrained( __lowercase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase_ : Tuple = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=__lowercase )] lowerCAmelCase_ : Dict = tokenizer_class.from_pretrained( __lowercase , additional_special_tokens=__lowercase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def lowercase_ ( self ) -> Dict: lowerCAmelCase_ : Any = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '''�''' ) def lowercase_ ( self ) -> Tuple: pass def lowercase_ ( self ) -> Any: pass def lowercase_ ( self ) -> Tuple: pass def lowercase_ ( self ) -> List[str]: pass def lowercase_ ( self ) -> Dict: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens lowerCAmelCase_ : Tuple = self.get_tokenizers(fast=__lowercase , do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase_ : List[str] = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] lowerCAmelCase_ : Optional[int] = tokenizer.convert_tokens_to_string(__lowercase ) self.assertIsInstance(__lowercase , __lowercase )
262
0
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever UpperCamelCase__ =logging.getLogger(__name__) class lowerCAmelCase__( __lowercase ): def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ) -> Optional[Any]: super().__init__( __lowerCamelCase , question_encoder_tokenizer=__lowerCamelCase , generator_tokenizer=__lowerCamelCase , index=__lowerCamelCase , init_retrieval=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = None def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually _SCREAMING_SNAKE_CASE : List[str] = self._infer_socket_ifname() # avoid clash with the NCCL port _SCREAMING_SNAKE_CASE : List[Any] = str(distributed_port + 1 ) _SCREAMING_SNAKE_CASE : int = dist.new_group(ranks=__lowerCamelCase , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def UpperCamelCase_ ( self ) -> Optional[Any]: return dist.get_rank(group=self.process_group ) == 0 def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=torch.floataa ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = torch.empty(__lowerCamelCase , dtype=__lowerCamelCase ) dist.scatter(__lowerCamelCase , src=0 , scatter_list=__lowerCamelCase , group=self.process_group ) return target_tensor def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _SCREAMING_SNAKE_CASE : Any = next((addr for addr in addrs if addr.startswith("e" )) , __lowerCamelCase ) return ifname def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): _SCREAMING_SNAKE_CASE : Dict = self._main_retrieve(__lowerCamelCase , __lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCamelCase ) # distributed training _SCREAMING_SNAKE_CASE : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic _SCREAMING_SNAKE_CASE : Any = None if self._is_main(): _SCREAMING_SNAKE_CASE : Optional[Any] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__lowerCamelCase )] dist.gather(torch.tensor(__lowerCamelCase ) , dst=0 , gather_list=__lowerCamelCase , group=self.process_group ) # scatter logic _SCREAMING_SNAKE_CASE : Optional[int] = question_hidden_states.shape[0] _SCREAMING_SNAKE_CASE : Optional[Any] = [] _SCREAMING_SNAKE_CASE : Optional[int] = [] if self._is_main(): assert len(__lowerCamelCase ) == world_size _SCREAMING_SNAKE_CASE : int = self._main_retrieve(torch.cat(__lowerCamelCase ).numpy() , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = torch.tensor(__lowerCamelCase ), torch.tensor(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self._scattered(__lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) _SCREAMING_SNAKE_CASE : Optional[Any] = self._scattered(__lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowerCamelCase )
365
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'BlipImageProcessor' __snake_case = 'AutoTokenizer' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer _SCREAMING_SNAKE_CASE : List[str] = qformer_tokenizer def __call__( self , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = True , __lowerCamelCase = False , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = True , __lowerCamelCase = None , **__lowerCamelCase , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) _SCREAMING_SNAKE_CASE : Any = BatchFeature() if text is not None: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : str = qformer_text_encoding.pop("input_ids" ) _SCREAMING_SNAKE_CASE : List[Any] = qformer_text_encoding.pop("attention_mask" ) if images is not None: _SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> Union[str, Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> str: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCamelCase_ ( self , __lowerCamelCase , **__lowerCamelCase ) -> Any: if os.path.isfile(__lowerCamelCase ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) _SCREAMING_SNAKE_CASE : Optional[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
325
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"""vocab_file""": """spiece.model"""} lowercase__ = { """vocab_file""": { """TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""", } } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , lowercase=False , lowercase=True , lowercase=False , lowercase="<s>" , lowercase="</s>" , lowercase="<unk>" , lowercase="<sep>" , lowercase="<pad>" , lowercase="<cls>" , lowercase="<mask>" , lowercase=["<eop>", "<eod>"] , lowercase = None , **lowercase , ): _lowerCamelCase : Optional[Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token _lowerCamelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase , remove_space=lowercase , keep_accents=lowercase , bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) _lowerCamelCase : List[Any] = 3 _lowerCamelCase : Dict = do_lower_case _lowerCamelCase : Optional[Any] = remove_space _lowerCamelCase : Union[str, Any] = keep_accents _lowerCamelCase : int = vocab_file _lowerCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( 'You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ' 'See https://pypi.org/project/jieba/ for installation.' ) _lowerCamelCase : Optional[Any] = jieba _lowerCamelCase : List[Any] = str.maketrans(' \n' , '\u2582\u2583' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def A_ ( self ): return len(self.sp_model ) def A_ ( self ): _lowerCamelCase : Tuple = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCamelCase : Optional[Any] = self.__dict__.copy() _lowerCamelCase : Optional[int] = None return state def __setstate__( self , lowercase ): _lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A_ ( self , lowercase ): if self.remove_space: _lowerCamelCase : List[str] = ' '.join(inputs.strip().split() ) else: _lowerCamelCase : Tuple = inputs _lowerCamelCase : Optional[int] = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: _lowerCamelCase : Any = unicodedata.normalize('NFKD' , lowercase ) _lowerCamelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(lowercase )] ) if self.do_lower_case: _lowerCamelCase : Dict = outputs.lower() return outputs def A_ ( self , lowercase ): _lowerCamelCase : Tuple = self.preprocess_text(lowercase ) _lowerCamelCase : List[Any] = self.sp_model.encode(lowercase , out_type=lowercase ) _lowerCamelCase : int = [] for piece in pieces: if len(lowercase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCamelCase : Optional[int] = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCamelCase : Any = cur_pieces[1:] else: _lowerCamelCase : str = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowercase ) else: new_pieces.append(lowercase ) return new_pieces def A_ ( self , lowercase ): return self.sp_model.PieceToId(lowercase ) def A_ ( self , lowercase ): return self.sp_model.IdToPiece(lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : List[str] = ''.join(lowercase ).replace(lowercase , ' ' ).strip() return out_string def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : Optional[int] = [self.sep_token_id] _lowerCamelCase : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A_ ( self , lowercase , lowercase = None , lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) if token_ids_a is not None: return ([0] * len(lowercase )) + [1] + ([0] * len(lowercase )) + [1, 1] return ([0] * len(lowercase )) + [1, 1] def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : Optional[int] = [self.sep_token_id] _lowerCamelCase : List[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def A_ ( self , lowercase , lowercase = None ): if not os.path.isdir(lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCamelCase : Optional[int] = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , 'wb' ) as fi: _lowerCamelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,) def A_ ( self , *lowercase , **lowercase ): _lowerCamelCase : Any = super()._decode(*lowercase , **lowercase ) _lowerCamelCase : List[Any] = text.replace(' ' , '' ).replace('\u2582' , ' ' ).replace('\u2583' , '\n' ) return text
96
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : Any = data _lowerCamelCase : Node | None = None class lowerCAmelCase__ : '''simple docstring''' def __init__( self ): _lowerCamelCase : str = None _lowerCamelCase : str = None def __iter__( self ): _lowerCamelCase : List[str] = self.head while self.head: yield node.data _lowerCamelCase : Optional[int] = node.next if node == self.head: break def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join(str(lowercase ) for item in iter(self ) ) def A_ ( self , lowercase ): self.insert_nth(len(self ) , lowercase ) def A_ ( self , lowercase ): self.insert_nth(0 , lowercase ) def A_ ( self , lowercase , lowercase ): if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) _lowerCamelCase : List[Any] = Node(lowercase ) if self.head is None: _lowerCamelCase : str = new_node # first node points itself _lowerCamelCase : Union[str, Any] = new_node elif index == 0: # insert at head _lowerCamelCase : List[str] = self.head _lowerCamelCase : str = new_node else: _lowerCamelCase : Union[str, Any] = self.head for _ in range(index - 1 ): _lowerCamelCase : List[Any] = temp.next _lowerCamelCase : Union[str, Any] = temp.next _lowerCamelCase : List[str] = new_node if index == len(self ) - 1: # insert at tail _lowerCamelCase : Any = new_node def A_ ( self ): return self.delete_nth(0 ) def A_ ( self ): return self.delete_nth(len(self ) - 1 ) def A_ ( self , lowercase = 0 ): if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) _lowerCamelCase : Any = self.head if self.head == self.tail: # just one node _lowerCamelCase : List[str] = None elif index == 0: # delete head node _lowerCamelCase : List[str] = self.tail.next.next _lowerCamelCase : Optional[int] = self.head.next else: _lowerCamelCase : Dict = self.head for _ in range(index - 1 ): _lowerCamelCase : List[Any] = temp.next _lowerCamelCase : int = temp.next _lowerCamelCase : Optional[int] = temp.next.next if index == len(self ) - 1: # delete at tail _lowerCamelCase : List[Any] = temp return delete_node.data def A_ ( self ): return len(self ) == 0 def _snake_case ( ): _lowerCamelCase : Union[str, Any] = CircularLinkedList() assert len(lowercase__ ) == 0 assert circular_linked_list.is_empty() is True assert str(lowercase__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(lowercase__ ) == i circular_linked_list.insert_nth(lowercase__ , i + 1 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
96
1
import os def lowerCAmelCase__ ( ): snake_case_ : List[Any] = os.path.dirname(os.path.realpath(__UpperCAmelCase ) ) snake_case_ : List[Any] = os.path.join(__UpperCAmelCase , "triangle.txt" ) with open(__UpperCAmelCase ) as f: snake_case_ : List[str] = f.readlines() snake_case_ : Dict = [] for line in triangle: snake_case_ : List[Any] = [] for number in line.strip().split(" " ): numbers_from_line.append(int(__UpperCAmelCase ) ) a.append(__UpperCAmelCase ) for i in range(1 , len(__UpperCAmelCase ) ): for j in range(len(a[i] ) ): snake_case_ : Optional[int] = a[i - 1][j] if j != len(a[i - 1] ) else 0 snake_case_ : Dict = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__UpperCAmelCase , __UpperCAmelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
355
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : List[Any] = ['pixel_values'] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PIL.Image.BICUBIC , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: super().__init__(**_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = size if size is not None else {"height": 256, "width": 256} snake_case_ : int = get_size_dict(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = crop_size if crop_size is not None else {"height": 224, "width": 224} snake_case_ : Dict = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="crop_size" ) snake_case_ : str = do_resize snake_case_ : Tuple = size snake_case_ : Tuple = resample snake_case_ : Dict = do_center_crop snake_case_ : Any = crop_size snake_case_ : int = do_rescale snake_case_ : Union[str, Any] = rescale_factor snake_case_ : Optional[int] = do_normalize snake_case_ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PIL.Image.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: snake_case_ : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( _SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: snake_case_ : str = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: snake_case_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize snake_case_ : Tuple = resample if resample is not None else self.resample snake_case_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : Optional[int] = image_std if image_std is not None else self.image_std snake_case_ : Optional[Any] = size if size is not None else self.size snake_case_ : int = get_size_dict(_SCREAMING_SNAKE_CASE ) snake_case_ : str = crop_size if crop_size is not None else self.crop_size snake_case_ : Optional[Any] = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="crop_size" ) snake_case_ : int = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case_ : Optional[int] = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: snake_case_ : Optional[Any] = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: snake_case_ : List[Any] = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: snake_case_ : List[str] = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] snake_case_ : int = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] snake_case_ : List[str] = {"pixel_values": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
36
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ :str = logging.get_logger(__name__) lowercase__ :Tuple = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : str ='''megatron-bert''' def __init__( self ,A__=2_9_0_5_6 ,A__=1_0_2_4 ,A__=2_4 ,A__=1_6 ,A__=4_0_9_6 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=5_1_2 ,A__=2 ,A__=0.02 ,A__=1E-12 ,A__=0 ,A__="absolute" ,A__=True ,**A__ ,): super().__init__(pad_token_id=A__ ,**A__) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = use_cache
101
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
0
def snake_case__ ( SCREAMING_SNAKE_CASE_ : int = 50_000_000 ): '''simple docstring''' lowercase__ : List[Any] = set() lowercase__ : Any = int((limit - 24) ** (1 / 2) ) lowercase__ : Any = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE_ ) ) ) for primea in primes: lowercase__ : Any = primea * primea for primea in primes: lowercase__ : Optional[int] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowercase__ : Dict = primea * primea * primea * primea lowercase__ : List[Any] = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(F'''{solution() = }''')
216
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case_ = logging.get_logger(__name__) snake_case_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case_ = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } snake_case_ = { '''gpt2''': 1_024, '''gpt2-medium''': 1_024, '''gpt2-large''': 1_024, '''gpt2-xl''': 1_024, '''distilgpt2''': 1_024, } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : List[str] = VOCAB_FILES_NAMES __lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int = ["""input_ids""", """attention_mask"""] __lowerCamelCase : str = GPTaTokenizer def __init__( self , a=None , a=None , a=None , a="<|endoftext|>" , a="<|endoftext|>" , a="<|endoftext|>" , a=False , **a , ): super().__init__( a , a , tokenizer_file=a , unk_token=a , bos_token=a , eos_token=a , add_prefix_space=a , **a , ) lowercase__ : int = kwargs.pop('add_bos_token' , a) lowercase__ : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , a) != add_prefix_space: lowercase__ : Optional[Any] = getattr(a , pre_tok_state.pop('type')) lowercase__ : List[Any] = add_prefix_space lowercase__ : str = pre_tok_class(**a) lowercase__ : Tuple = add_prefix_space def snake_case_ ( self , *a , **a): lowercase__ : Tuple = kwargs.get('is_split_into_words' , a) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a , **a) def snake_case_ ( self , *a , **a): lowercase__ : Optional[Any] = kwargs.get('is_split_into_words' , a) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*a , **a) def snake_case_ ( self , a , a = None): lowercase__ : Any = self._tokenizer.model.save(a , name=a) return tuple(a) def snake_case_ ( self , a): lowercase__ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a , add_special_tokens=a) + [self.eos_token_id]) if len(a) > self.model_max_length: lowercase__ : Union[str, Any] = input_ids[-self.model_max_length :] return input_ids
216
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase : List[str] = logging.get_logger(__name__) lowercase : Optional[Any] = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( A__ , A__ ): _a : int= "swin" _a : Tuple= { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self ,snake_case=224 ,snake_case=4 ,snake_case=3 ,snake_case=96 ,snake_case=[2, 2, 6, 2] ,snake_case=[3, 6, 12, 24] ,snake_case=7 ,snake_case=4.0 ,snake_case=True ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.1 ,snake_case="gelu" ,snake_case=False ,snake_case=0.02 ,snake_case=1e-5 ,snake_case=32 ,snake_case=None ,snake_case=None ,**snake_case ,): '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase : Optional[Any] = image_size lowercase : List[str] = patch_size lowercase : Tuple = num_channels lowercase : List[str] = embed_dim lowercase : List[str] = depths lowercase : Tuple = len(_lowerCAmelCase ) lowercase : Any = num_heads lowercase : Optional[Any] = window_size lowercase : int = mlp_ratio lowercase : Optional[Any] = qkv_bias lowercase : Dict = hidden_dropout_prob lowercase : Tuple = attention_probs_dropout_prob lowercase : Optional[int] = drop_path_rate lowercase : Dict = hidden_act lowercase : Any = use_absolute_embeddings lowercase : int = layer_norm_eps lowercase : Optional[int] = initializer_range lowercase : List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase : int = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) lowercase : Union[str, Any] = ["""stem"""] + [f"stage{idx}" for idx in range(1 ,len(_lowerCAmelCase ) + 1 )] lowercase , lowercase : Any = get_aligned_output_features_output_indices( out_features=_lowerCAmelCase ,out_indices=_lowerCAmelCase ,stage_names=self.stage_names ) class __snake_case ( A__ ): _a : List[str]= version.parse("1.11" ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 1e-4
20
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : str ): A = """ylacombe/bark-small""" A = tempfile.mkdtemp() A = """en_speaker_1""" A = """This is a test string""" A = """speaker_embeddings_path.json""" A = """speaker_embeddings""" def A (self : Optional[Any] , **_lowerCAmelCase : Any ): return AutoTokenizer.from_pretrained(self.checkpoint , **_lowerCAmelCase ) def A (self : Dict ): shutil.rmtree(self.tmpdirname ) def A (self : Optional[Any] ): A = self.get_tokenizer() A = BarkProcessor(tokenizer=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) A = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def A (self : int ): A = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) A = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def A (self : Union[str, Any] ): A = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) A = 35 A = 2 A = 8 A = { """semantic_prompt""": np.ones(_lowerCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset A = processor(text=self.input_string , voice_preset=_lowerCAmelCase ) A = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowerCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file A = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_lowerCAmelCase , **_lowerCAmelCase ) A = processor(text=self.input_string , voice_preset=_lowerCAmelCase ) A = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowerCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub A = processor(text=self.input_string , voice_preset=self.voice_preset ) def A (self : str ): A = self.get_tokenizer() A = BarkProcessor(tokenizer=_lowerCAmelCase ) A = processor(text=self.input_string ) A = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
258
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, "sqlalchemy.sql.Selectable"] , _SCREAMING_SNAKE_CASE: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , _SCREAMING_SNAKE_CASE: Optional[Features] = None , _SCREAMING_SNAKE_CASE: str = None , _SCREAMING_SNAKE_CASE: bool = False , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> str: """simple docstring""" super().__init__(features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = Sql( cache_dir=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , sql=_SCREAMING_SNAKE_CASE , con=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , ) # Build dataset for splits UpperCamelCase_ = self.builder.as_dataset( split="train" , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class _UpperCamelCase : def __init__( self: Dict , _SCREAMING_SNAKE_CASE: Dataset , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> Optional[Any]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCamelCase_ = dataset UpperCamelCase_ = name UpperCamelCase_ = con UpperCamelCase_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCamelCase_ = num_proc UpperCamelCase_ = to_sql_kwargs def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = self.to_sql_kwargs.pop("sql" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.to_sql_kwargs.pop("con" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.to_sql_kwargs.pop("index" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self._write(index=_SCREAMING_SNAKE_CASE , **self.to_sql_kwargs ) return written def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: str ) -> Any: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = args UpperCamelCase_ = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs UpperCamelCase_ = query_table( table=self.dataset.data , key=slice(_SCREAMING_SNAKE_CASE , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCamelCase_ = batch.to_pandas() UpperCamelCase_ = df.to_sql(self.name , self.con , index=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return num_rows or len(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCamelCase_ , UpperCamelCase_ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
328
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: for param in module.parameters(): UpperCamelCase_ = False def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase_ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase_ = datetime.now() UpperCamelCase_ = current_time.strftime("%H:%M:%S" ) return timestamp
328
1
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowercase__ ( snake_case_ :Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _UpperCAmelCase ( lowerCAmelCase__ ): @staticmethod def a ( _lowercase : ArgumentParser ): __UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=_UpperCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self : Optional[Any] , _lowercase : str , _lowercase : str , _lowercase : bool , _lowercase : bool ): __UpperCAmelCase = model __UpperCAmelCase = cache __UpperCAmelCase = force __UpperCAmelCase = trust_remote_code def a ( self : int ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
332
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = module __lowercase = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) __lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCAmelCase__ : int = "bigscience/bloom-1b7" # Constant values lowerCAmelCase__ : Any = 2.109659552692574 lowerCAmelCase__ : str = "Hello my name is" lowerCAmelCase__ : Any = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCAmelCase__ : List[Any] = 10 def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(self.model_name ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" super().setUp() # Models and tokenizer __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a__ ( self : str ) -> int: """simple docstring""" __lowercase = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) ) __lowercase = config.to_dict() __lowercase = config.to_diff_dict() __lowercase = config.to_json_string() def a__ ( self : Dict ) -> Tuple: """simple docstring""" from bitsandbytes.nn import Paramsabit __lowercase = self.model_fpaa.get_memory_footprint() __lowercase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowercase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a__ ( self : Tuple ) -> str: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a__ ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = BitsAndBytesConfig() __lowercase = True __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : str ) -> List[str]: """simple docstring""" with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_fpaa.to(torch.floataa ) __lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowercase = self.model_fpaa.to('cpu' ) # Check this does not throw an error __lowercase = self.model_fpaa.half() # Check this does not throw an error __lowercase = self.model_fpaa.float() def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): @classmethod def a__ ( cls : int ) -> Tuple: """simple docstring""" __lowercase = 't5-small' __lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __lowercase = AutoTokenizer.from_pretrained(cls.model_name ) __lowercase = 'Translate in German: Hello, my dog is cute' def a__ ( self : List[Any] ) -> Dict: """simple docstring""" gc.collect() torch.cuda.empty_cache() def a__ ( self : int ) -> int: """simple docstring""" from transformers import TaForConditionalGeneration __lowercase = TaForConditionalGeneration._keep_in_fpaa_modules __lowercase = None # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) __lowercase = modules def a__ ( self : str ) -> Optional[Any]: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" super().setUp() # model_name __lowercase = 'bigscience/bloom-560m' __lowercase = 't5-small' # Different types of model __lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Sequence classification model __lowercase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # CausalLM model __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Seq2seq model __lowercase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : int ) -> List[str]: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> str: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A__ ( lowerCAmelCase__ ): def a__ ( self : str ) -> str: """simple docstring""" super().setUp() def a__ ( self : Dict ) -> Any: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> int: """simple docstring""" __lowercase = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowercase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().setUp() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class A__ ( lowerCAmelCase__ ): def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = 'facebook/opt-350m' super().setUp() def a__ ( self : Dict ) -> List[str]: """simple docstring""" if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowercase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowercase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): __lowercase = LoRALayer(module.q_proj , rank=16 ) __lowercase = LoRALayer(module.k_proj , rank=16 ) __lowercase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowercase = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Any = "gpt2-xl" lowerCAmelCase__ : str = 3.3191854854152187
325
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: UpperCAmelCase : Dict = None UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = "▁" UpperCAmelCase : List[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : Optional[Any] = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } UpperCAmelCase : Any = { "google/pegasus-xsum": 512, } class lowerCamelCase__ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = PegasusTokenizer __a = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any] , UpperCamelCase : List[Any]=None , UpperCamelCase : Any=None , UpperCamelCase : Dict="<pad>" , UpperCamelCase : Union[str, Any]="</s>" , UpperCamelCase : List[Any]="<unk>" , UpperCamelCase : Optional[Any]="<mask_2>" , UpperCamelCase : int="<mask_1>" , UpperCamelCase : str=None , UpperCamelCase : Optional[int]=103 , **UpperCamelCase : List[str] , ): '''simple docstring''' __UpperCAmelCase : Any = offset if additional_special_tokens is not None: if not isinstance(a_ , a_ ): raise TypeError( f'''additional_special_tokens should be of type {type(a_ )}, but is''' f''' {type(a_ )}''' ) __UpperCAmelCase : List[str] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(a_ ) , self.offset - 1 ) ] if len(set(a_ ) ) != len(a_ ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) __UpperCAmelCase : Union[str, Any] = additional_special_tokens_extended else: __UpperCAmelCase : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( a_ , tokenizer_file=a_ , pad_token=a_ , eos_token=a_ , unk_token=a_ , mask_token=a_ , mask_token_sent=a_ , offset=a_ , additional_special_tokens=a_ , **a_ , ) __UpperCAmelCase : Any = vocab_file __UpperCAmelCase : Dict = False if not self.vocab_file else True def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : int = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : List , UpperCamelCase : Optional[List] = None , UpperCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(a_ ) elif token_ids_a is None: return self._special_token_mask(a_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ ( self : Any , UpperCamelCase : Dict , UpperCamelCase : int=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(a_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Any = os.path.join( a_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
359
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any , UpperCamelCase : str ): '''simple docstring''' super().__init__() __UpperCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=UpperCamelCase ) __UpperCAmelCase : int = list(model.children() )[:-2] __UpperCAmelCase : List[Any] = nn.Sequential(*UpperCamelCase ) __UpperCAmelCase : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.pool(self.model(UpperCamelCase ) ) __UpperCAmelCase : List[Any] = torch.flatten(UpperCamelCase , start_dim=2 ) __UpperCAmelCase : Any = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [json.loads(UpperCamelCase ) for l in open(UpperCamelCase )] __UpperCAmelCase : Any = os.path.dirname(UpperCamelCase ) __UpperCAmelCase : List[str] = tokenizer __UpperCAmelCase : str = labels __UpperCAmelCase : Optional[int] = len(UpperCamelCase ) __UpperCAmelCase : int = max_seq_length __UpperCAmelCase : int = transforms def __len__( self : List[str] ): '''simple docstring''' return len(self.data ) def __getitem__( self : List[str] , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=UpperCamelCase ) ) __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = sentence[0], sentence[1:-1], sentence[-1] __UpperCAmelCase : Any = sentence[: self.max_seq_length] __UpperCAmelCase : Tuple = torch.zeros(self.n_classes ) __UpperCAmelCase : str = 1 __UpperCAmelCase : Any = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) __UpperCAmelCase : Optional[int] = self.transforms(UpperCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = [len(row["""sentence"""] ) for row in batch] __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ), max(_UpperCamelCase ) __UpperCAmelCase : Any = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) __UpperCAmelCase : str = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ): __UpperCAmelCase : List[str] = input_row["""sentence"""] __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : int = torch.stack([row["""image"""] for row in batch] ) __UpperCAmelCase : Optional[Any] = torch.stack([row["""label"""] for row in batch] ) __UpperCAmelCase : str = torch.stack([row["""image_start_token"""] for row in batch] ) __UpperCAmelCase : int = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ) -> int: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ) -> Optional[Any]: '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
320
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( a ): """simple docstring""" UpperCamelCase__ : int =["""image_processor""", """tokenizer"""] UpperCamelCase__ : Any ="""BridgeTowerImageProcessor""" UpperCamelCase__ : List[str] =("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def __call__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = True , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.tokenizer( text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) # add pixel_values + pixel_mask __UpperCamelCase : Tuple =self.image_processor( lowerCamelCase__ , return_tensors=lowerCamelCase__ , do_normalize=lowerCamelCase__ , do_center_crop=lowerCamelCase__ , **lowerCamelCase__ ) encoding.update(lowerCamelCase__ ) return encoding def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.tokenizer.model_input_names __UpperCamelCase : Optional[int] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
71
def A ( _lowerCamelCase ): '''simple docstring''' if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence _lowerCAmelCase : List[str] = gray_code_sequence_string(_lowerCamelCase ) # # convert them to integers for i in range(len(_lowerCamelCase ) ): _lowerCAmelCase : List[str] = int(sequence[i] , 2 ) return sequence def A ( _lowerCamelCase ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _lowerCAmelCase : List[Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _lowerCAmelCase : Optional[int] = gray_code_sequence_string(bit_count - 1 ) _lowerCAmelCase : str = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _lowerCAmelCase : Dict = "0" + smaller_sequence[i] sequence.append(_lowerCamelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _lowerCAmelCase : Optional[Any] = "1" + smaller_sequence[i] sequence.append(_lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
36
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE__ : int = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on SCREAMING_SNAKE_CASE__ : Tuple = dict(zip(_a , range(len(_a ) ) ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] SCREAMING_SNAKE_CASE__ : List[Any] = {"""unk_token""": """<unk>"""} SCREAMING_SNAKE_CASE__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_a , _a ) def _a ( self , **_a ) -> int: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **_a ) def _a ( self , **_a ) -> Union[str, Any]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **_a ) def _a ( self , **_a ) -> Tuple: """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def _a ( self ) -> List[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ : Dict = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : Tuple = self.get_image_processor() SCREAMING_SNAKE_CASE__ : int = OwlViTProcessor(tokenizer=_a , image_processor=_a ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Any = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) SCREAMING_SNAKE_CASE__ : Dict = OwlViTProcessor(tokenizer=_a , image_processor=_a ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _a ) self.assertIsInstance(processor_fast.tokenizer , _a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _a ) self.assertIsInstance(processor_fast.image_processor , _a ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_image_processor(do_normalize=_a ) SCREAMING_SNAKE_CASE__ : Dict = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_a ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.get_image_processor() SCREAMING_SNAKE_CASE__ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[int] = OwlViTProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE__ : Tuple = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : Optional[int] = image_processor(_a , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = processor(images=_a , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[Any] = OwlViTProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = """lower newer""" SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(text=_a , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_a , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Union[str, Any] = OwlViTProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE__ : List[str] = """lower newer""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = """google/owlvit-base-patch32""" SCREAMING_SNAKE_CASE__ : str = OwlViTProcessor.from_pretrained(_a ) SCREAMING_SNAKE_CASE__ : Any = ["""cat""", """nasa badge"""] SCREAMING_SNAKE_CASE__ : List[Any] = processor(text=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = """google/owlvit-base-patch32""" SCREAMING_SNAKE_CASE__ : Dict = OwlViTProcessor.from_pretrained(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = [["""cat""", """nasa badge"""], ["""person"""]] SCREAMING_SNAKE_CASE__ : Any = processor(text=_a ) SCREAMING_SNAKE_CASE__ : List[str] = 16 SCREAMING_SNAKE_CASE__ : Dict = len(_a ) SCREAMING_SNAKE_CASE__ : Dict = max([len(_a ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = """google/owlvit-base-patch32""" SCREAMING_SNAKE_CASE__ : str = OwlViTProcessor.from_pretrained(_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = ["""cat""", """nasa badge"""] SCREAMING_SNAKE_CASE__ : Dict = processor(text=_a ) SCREAMING_SNAKE_CASE__ : Dict = 16 SCREAMING_SNAKE_CASE__ : int = inputs["""input_ids"""] SCREAMING_SNAKE_CASE__ : str = [ [49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Dict = OwlViTProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE__ : Dict = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : Dict = processor(images=_a , query_images=_a ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.get_image_processor() SCREAMING_SNAKE_CASE__ : int = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Union[str, Any] = OwlViTProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE__ : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ : Any = processor.batch_decode(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a )
56
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a : '''simple docstring''' def __init__( self , _a , _a=3 , _a=32 , _a=3 , _a=10 , _a=[10, 20, 30, 40] , _a=[1, 1, 2, 1] , _a=True , _a=True , _a="relu" , _a=3 , _a=None , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = parent SCREAMING_SNAKE_CASE__ : Any = batch_size SCREAMING_SNAKE_CASE__ : Any = image_size SCREAMING_SNAKE_CASE__ : int = num_channels SCREAMING_SNAKE_CASE__ : int = embeddings_size SCREAMING_SNAKE_CASE__ : List[Any] = hidden_sizes SCREAMING_SNAKE_CASE__ : List[Any] = depths SCREAMING_SNAKE_CASE__ : int = is_training SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE__ : Any = hidden_act SCREAMING_SNAKE_CASE__ : Tuple = num_labels SCREAMING_SNAKE_CASE__ : List[Any] = scope SCREAMING_SNAKE_CASE__ : str = len(_a ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Any = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_config() return config, pixel_values, labels def _a ( self ) -> str: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _a ( self , _a , _a , _a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = RegNetModel(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self , _a , _a , _a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.num_labels SCREAMING_SNAKE_CASE__ : Tuple = RegNetForImageClassification(_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE__ : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[Any] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE :Optional[Any] = ( {"""feature-extraction""": RegNetModel, """image-classification""": RegNetForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE :Dict = False _SCREAMING_SNAKE_CASE :Optional[int] = False _SCREAMING_SNAKE_CASE :Optional[Any] = False _SCREAMING_SNAKE_CASE :Dict = False def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = RegNetModelTester(self ) SCREAMING_SNAKE_CASE__ : Dict = ConfigTester(self , config_class=_a , has_text_modality=_a ) def _a ( self ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ) -> Tuple: """simple docstring""" return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def _a ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def _a ( self ) -> Any: """simple docstring""" pass def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Any = model_class(_a ) SCREAMING_SNAKE_CASE__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str = model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def _a ( self ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(_a , _a , _a ): SCREAMING_SNAKE_CASE__ : Any = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[int] = model(**self._prepare_for_class(_a , _a ) ) SCREAMING_SNAKE_CASE__ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : List[str] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE__ : Tuple = layer_type SCREAMING_SNAKE_CASE__ : Union[str, Any] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : Dict = True check_hidden_states_output(_a , _a , _a ) def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def _a ( self ) -> List[str]: """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Optional[int] = RegNetModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _lowercase ( ) -> Dict: SCREAMING_SNAKE_CASE__ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a (unittest.TestCase): '''simple docstring''' @cached_property def _a ( self ) -> Optional[Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.default_image_processor SCREAMING_SNAKE_CASE__ : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE__ : int = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Dict = model(**_a ) # verify the logits SCREAMING_SNAKE_CASE__ : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor([-0.4_180, -1.5_051, -3.4_836] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) )
56
1
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class UpperCamelCase__ ( __lowercase ): def __init__(self : int , snake_case_ : Callable , snake_case_ : Optional[Features] = None , snake_case_ : str = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : Optional[dict] = None , snake_case_ : Optional[int] = None , **snake_case_ : Optional[Any] , ): super().__init__( features=snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ , streaming=snake_case_ , num_proc=snake_case_ , **snake_case_ , ) __a : str = Generator( cache_dir=snake_case_ , features=snake_case_ , generator=snake_case_ , gen_kwargs=snake_case_ , **snake_case_ , ) def lowerCAmelCase (self : Union[str, Any] ): # Build iterable dataset if self.streaming: __a : Tuple = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: __a : Optional[int] = None __a : Any = None __a : List[str] = None __a : Any = None self.builder.download_and_prepare( download_config=snake_case_ , download_mode=snake_case_ , verification_mode=snake_case_ , base_path=snake_case_ , num_proc=self.num_proc , ) __a : Optional[int] = self.builder.as_dataset( split='''train''' , verification_mode=snake_case_ , in_memory=self.keep_in_memory ) return dataset
216
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowercase__ =['text', 'image', 'audio'] def __UpperCamelCase ( lowerCAmelCase__ : List[str] ): __a : Optional[int] = [] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): inputs.append(create_inputs(lowerCAmelCase__ ) ) else: raise ValueError(f"Invalid type requested: {input_type}" ) return inputs def __UpperCamelCase ( lowerCAmelCase__ : List ): __a : List[str] = [] for output in outputs: if isinstance(lowerCAmelCase__ , (str, AgentText) ): output_types.append('''text''' ) elif isinstance(lowerCAmelCase__ , (Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(lowerCAmelCase__ , (torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(f"Invalid output: {output}" ) return output_types @is_tool_test class UpperCamelCase__ : def lowerCAmelCase (self : Any ): self.assertTrue(hasattr(self.tool , '''inputs''' ) ) self.assertTrue(hasattr(self.tool , '''outputs''' ) ) __a : Any = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) __a : Optional[int] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCAmelCase (self : List[Any] ): __a : Union[str, Any] = create_inputs(self.tool.inputs ) __a : List[Any] = self.tool(*snake_case_ ) # There is a single output if len(self.tool.outputs ) == 1: __a : Tuple = [outputs] self.assertListEqual(output_types(snake_case_ ) , self.tool.outputs ) def lowerCAmelCase (self : List[Any] ): self.assertTrue(hasattr(self.tool , '''description''' ) ) self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def lowerCAmelCase (self : Any ): __a : Any = create_inputs(self.tool.inputs ) __a : Union[str, Any] = self.tool(*snake_case_ ) if not isinstance(snake_case_ , snake_case_ ): __a : Tuple = [outputs] self.assertEqual(len(snake_case_ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case_ , self.tool.outputs ): __a : List[Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case_ , snake_case_ ) ) def lowerCAmelCase (self : Optional[int] ): __a : Any = create_inputs(self.tool.inputs ) __a : Dict = [] for _input, input_type in zip(snake_case_ , self.tool.inputs ): if isinstance(snake_case_ , snake_case_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error __a : Optional[Any] = self.tool(*snake_case_ ) if not isinstance(snake_case_ , snake_case_ ): __a : Dict = [outputs] self.assertEqual(len(snake_case_ ) , len(self.tool.outputs ) )
216
1
from itertools import count def _a ( UpperCAmelCase = 50 ) -> int: """simple docstring""" lowerCamelCase__ : Optional[Any] = [1] * min_block_length for n in count(UpperCAmelCase ): fill_count_functions.append(1 ) for block_length in range(UpperCAmelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1000000: break return n if __name__ == "__main__": print(F'''{solution() = }''')
368
from math import factorial class __SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , A : Dict , A : Any ) ->Optional[Any]: lowerCamelCase__ : Tuple = real if isinstance(A , A ): lowerCamelCase__ : Optional[int] = [1] * rank else: lowerCamelCase__ : List[Any] = rank def __repr__( self : Tuple ) ->str: return ( F"{self.real}+" F"{'+'.join(str(A )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}" ) def __lowerCamelCase ( self : List[Any] ) ->List[Any]: lowerCamelCase__ : Tuple = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , A ) def __add__( self : Union[str, Any] , A : int ) ->str: if not isinstance(A , A ): return Dual(self.real + other , self.duals ) lowerCamelCase__ : int = self.duals.copy() lowerCamelCase__ : int = other.duals.copy() if len(A ) > len(A ): o_dual.extend([1] * (len(A ) - len(A )) ) elif len(A ) < len(A ): s_dual.extend([1] * (len(A ) - len(A )) ) lowerCamelCase__ : Optional[Any] = [] for i in range(len(A ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , A ) _UpperCAmelCase : List[Any] = __add__ def __sub__( self : Any , A : Dict ) ->int: return self + other * -1 def __mul__( self : Optional[Any] , A : List[Any] ) ->Union[str, Any]: if not isinstance(A , A ): lowerCamelCase__ : Optional[int] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , A ) lowerCamelCase__ : Tuple = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , A ) _UpperCAmelCase : Optional[Any] = __mul__ def __truediv__( self : int , A : List[Any] ) ->Dict: if not isinstance(A , A ): lowerCamelCase__ : Tuple = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , A ) raise ValueError def __floordiv__( self : Dict , A : Union[str, Any] ) ->Union[str, Any]: if not isinstance(A , A ): lowerCamelCase__ : Tuple = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , A ) raise ValueError def __pow__( self : Any , A : List[Any] ) ->Tuple: if n < 0 or isinstance(A , A ): raise ValueError('''power must be a positive integer''' ) if n == 0: return 1 if n == 1: return self lowerCamelCase__ : Union[str, Any] = self for _ in range(n - 1 ): x *= self return x def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: """simple docstring""" if not callable(UpperCAmelCase ): raise ValueError('''differentiate() requires a function as input for func''' ) if not isinstance(UpperCAmelCase , (float, int) ): raise ValueError('''differentiate() requires a float as input for position''' ) if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError('''differentiate() requires an int as input for order''' ) lowerCamelCase__ : List[str] = Dual(UpperCAmelCase , 1 ) lowerCamelCase__ : Any = func(UpperCAmelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() def _a ( UpperCAmelCase ) -> int: """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
265
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]: '''simple docstring''' super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Sql( cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , ) # Build dataset for splits __UpperCamelCase = self.builder.as_dataset( split='''train''' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) __UpperCamelCase = dataset __UpperCamelCase = name __UpperCamelCase = con __UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCamelCase = num_proc __UpperCamelCase = to_sql_kwargs def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.to_sql_kwargs.pop('''sql''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''con''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''index''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs ) return written def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args __UpperCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __UpperCamelCase = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCamelCase = batch.to_pandas() __UpperCamelCase = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return num_rows or len(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
328
def A_ ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowercase__ : List[str] = generate_large_matrix() lowercase__ : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A_ ( snake_case : list[list[int]] ) -> None: '''simple docstring''' assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid ) assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) ) def A_ ( snake_case : list[int] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCamelCase = (left + right) // 2 __UpperCamelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCamelCase = mid + 1 else: __UpperCamelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(grid[0] ) for i in range(len(snake_case ) ): __UpperCamelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case ) * len(grid[0] )) - total def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 for row in grid: for i, number in enumerate(snake_case ): if number < 0: total += len(snake_case ) - i break return total def A_ ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCamelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
1
'''simple docstring''' import os lowerCamelCase_ = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def __lowercase ( __lowercase ) -> int: '''simple docstring''' _A = 0 _A = 0 while index < len(__lowercase ) - 1: _A = SYMBOLS[numerals[index]] _A = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __lowercase ( __lowercase ) -> str: '''simple docstring''' _A = "" _A = num // 1000 numerals += m_count * "M" num %= 1000 _A = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _A = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __lowercase ( __lowercase = "/p089_roman.txt" ) -> int: '''simple docstring''' _A = 0 with open(os.path.dirname(__lowercase ) + roman_numerals_filename ) as filea: _A = filea.readlines() for line in lines: _A = line.strip() _A = parse_roman_numerals(__lowercase ) _A = generate_roman_numerals(__lowercase ) savings += len(__lowercase ) - len(__lowercase ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
174
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''levit''' def __init__( self : str , __UpperCAmelCase : int=224 , __UpperCAmelCase : Optional[Any]=3 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Any=1 , __UpperCAmelCase : int=16 , __UpperCAmelCase : Any=[128, 256, 384] , __UpperCAmelCase : Optional[Any]=[4, 8, 12] , __UpperCAmelCase : Dict=[4, 4, 4] , __UpperCAmelCase : Union[str, Any]=[16, 16, 16] , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : str=[2, 2, 2] , __UpperCAmelCase : Optional[Any]=[2, 2, 2] , __UpperCAmelCase : int=0.02 , **__UpperCAmelCase : Dict , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) _A = image_size _A = num_channels _A = kernel_size _A = stride _A = padding _A = hidden_sizes _A = num_attention_heads _A = depths _A = key_dim _A = drop_path_rate _A = patch_size _A = attention_ratio _A = mlp_ratio _A = initializer_range _A = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = version.parse('''1.11''' ) @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase ( self : Any ): '''simple docstring''' return 1E-4
174
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable __SCREAMING_SNAKE_CASE : Optional[int] = {"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = ["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = [ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
31
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) _a = size if size is not None else {'''shortest_edge''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: _a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: _a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
320
0
'''simple docstring''' import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch.nn.Linear(2, 4 ) SCREAMING_SNAKE_CASE__ : Dict =torch.optim.AdamW(model.parameters(), lr=1.0 ) SCREAMING_SNAKE_CASE__ : Dict =torch.optim.lr_scheduler.OneCycleLR(UpperCamelCase__, max_lr=0.0_1, steps_per_epoch=2, epochs=1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] =DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) SCREAMING_SNAKE_CASE__ : Any =DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def _a( UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def _a( UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(UpperCamelCase__ ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): @require_cuda def __magic_name__ ( self : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE__ : Optional[int] =Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__lowercase ): SCREAMING_SNAKE_CASE__ : Any =Accelerator(cpu=__lowercase ) def __magic_name__ ( self : List[Any] ) -> str: SCREAMING_SNAKE_CASE__ : Optional[int] =Accelerator() SCREAMING_SNAKE_CASE__ : List[Any] =GradientState() assert state.num_steps == 1 SCREAMING_SNAKE_CASE__ : Optional[int] =4 assert state.num_steps == 4 assert state.sync_gradients is True SCREAMING_SNAKE_CASE__ : List[str] =False assert state.sync_gradients is False GradientState._reset_state() def __magic_name__ ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =Accelerator() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =create_components() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : int =accelerator.prepare(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __magic_name__ ( self : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE__ : Dict =Accelerator() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =create_components() accelerator.prepare(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __magic_name__ ( self : Any ) -> Any: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__lowercase : List[str] , **__lowercase : List[str] ): pass with patch('''torch.cuda.set_device''' , __lowercase ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): SCREAMING_SNAKE_CASE__ : Union[str, Any] =Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def __magic_name__ ( self : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[Any] =Accelerator() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] =create_components() accelerator.prepare(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =get_signature(__lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowercase ) # make sure random weights don't match load_random_weights(__lowercase ) self.assertTrue(abs(model_signature - get_signature(__lowercase ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(__lowercase ) self.assertTrue(abs(model_signature - get_signature(__lowercase ) ) < 1e-3 ) def __magic_name__ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Any =Accelerator() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =create_components() accelerator.prepare(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =get_signature(__lowercase ) # saving hook def save_config(__lowercase : Tuple , __lowercase : str , __lowercase : Dict ): SCREAMING_SNAKE_CASE__ : Dict ={'''class_name''': models[0].__class__.__name__} with open(os.path.join(__lowercase , '''data.json''' ) , '''w''' ) as f: json.dump(__lowercase , __lowercase ) # loading hook def load_config(__lowercase : Tuple , __lowercase : int ): with open(os.path.join(__lowercase , '''data.json''' ) , '''r''' ) as f: SCREAMING_SNAKE_CASE__ : str =json.load(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =config['''class_name'''] SCREAMING_SNAKE_CASE__ : Optional[Any] =accelerator.register_save_state_pre_hook(__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =accelerator.register_load_state_pre_hook(__lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowercase ) # make sure random weights don't match with hooks load_random_weights(__lowercase ) self.assertTrue(abs(model_signature - get_signature(__lowercase ) ) > 1e-3 ) # random class name to verify correct one is loaded SCREAMING_SNAKE_CASE__ : List[Any] ='''random''' # make sure loaded weights match with hooks accelerator.load_state(__lowercase ) self.assertTrue(abs(model_signature - get_signature(__lowercase ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowercase ) # make sure random weights don't match with hooks removed load_random_weights(__lowercase ) self.assertTrue(abs(model_signature - get_signature(__lowercase ) ) > 1e-3 ) # random class name to verify correct one is loaded SCREAMING_SNAKE_CASE__ : List[Any] ='''random''' # make sure loaded weights match with hooks removed accelerator.load_state(__lowercase ) self.assertTrue(abs(model_signature - get_signature(__lowercase ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __magic_name__ ( self : str ) -> List[str]: SCREAMING_SNAKE_CASE__ : Tuple =Accelerator() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =create_components() SCREAMING_SNAKE_CASE__ : int =None # This should work SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) self.assertTrue(dummy_obj is None ) def __magic_name__ ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ : int =Accelerator() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =create_components() SCREAMING_SNAKE_CASE__ : Union[str, Any] =[1, 2, 3] # This should work SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) self.assertEqual( getattr(__lowercase , '''_is_accelerate_prepared''' , __lowercase ) , __lowercase , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(__lowercase , '''_is_accelerate_prepared''' , __lowercase ) , __lowercase , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(__lowercase , '''_is_accelerate_prepared''' , __lowercase ) , __lowercase , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(__lowercase , '''_is_accelerate_prepared''' , __lowercase ) , __lowercase , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(__lowercase , '''_is_accelerate_prepared''' , __lowercase ) , __lowercase , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(__lowercase , '''_is_accelerate_prepared''' , __lowercase ) , __lowercase , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def __magic_name__ ( self : str ) -> Any: from transformers import AutoModelForCausalLM SCREAMING_SNAKE_CASE__ : Any =AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=__lowercase , device_map={'''''': 0} , ) SCREAMING_SNAKE_CASE__ : Any =Accelerator() # This should work SCREAMING_SNAKE_CASE__ : str =accelerator.prepare(__lowercase ) @slow @require_bnb def __magic_name__ ( self : Any ) -> Any: from transformers import AutoModelForCausalLM SCREAMING_SNAKE_CASE__ : Union[str, Any] =Accelerator() with init_empty_weights(): SCREAMING_SNAKE_CASE__ : str =AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() SCREAMING_SNAKE_CASE__ : List[Any] =infer_auto_device_map(__lowercase ) SCREAMING_SNAKE_CASE__ : Any ='''cpu''' SCREAMING_SNAKE_CASE__ : List[Any] =AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=__lowercase , load_in_abit=__lowercase , llm_inta_enable_fpaa_cpu_offload=__lowercase ) # This should not work and get value error with self.assertRaises(__lowercase ): SCREAMING_SNAKE_CASE__ : List[str] =accelerator.prepare(__lowercase ) @slow @require_bnb @require_multi_gpu def __magic_name__ ( self : List[Any] ) -> Any: from transformers import AutoModelForCausalLM SCREAMING_SNAKE_CASE__ : Optional[int] ={'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): SCREAMING_SNAKE_CASE__ : Any =AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() SCREAMING_SNAKE_CASE__ : Optional[int] =infer_auto_device_map(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =1 SCREAMING_SNAKE_CASE__ : Optional[Any] =AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=__lowercase , device_map=__lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =Accelerator() # This should not work and get value error with self.assertRaises(__lowercase ): SCREAMING_SNAKE_CASE__ : Dict =accelerator.prepare(__lowercase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __magic_name__ ( self : List[str] ) -> int: from transformers import AutoModelForCausalLM with init_empty_weights(): SCREAMING_SNAKE_CASE__ : Tuple =AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =infer_auto_device_map(__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =1 SCREAMING_SNAKE_CASE__ : str =AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=__lowercase , device_map=__lowercase , ) SCREAMING_SNAKE_CASE__ : int =Accelerator() # This should work SCREAMING_SNAKE_CASE__ : int =accelerator.prepare(__lowercase ) @require_cuda def __magic_name__ ( self : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE__ : List[str] =torch.nn.Linear(10 , 10 ) SCREAMING_SNAKE_CASE__ : str =torch.optim.SGD(model.parameters() , lr=0.01 ) SCREAMING_SNAKE_CASE__ : Any =Accelerator(cpu=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =accelerator.prepare(__lowercase )
222
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = ["""pixel_values"""] def __init__( self : List[str] , __lowercase : bool = True , __lowercase : Optional[Dict[str, int]] = None , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 2_55 , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : List[Any] , ) -> None: super().__init__(**__lowercase ) SCREAMING_SNAKE_CASE__ : Any =size if size is not None else {'''shortest_edge''': 2_56} SCREAMING_SNAKE_CASE__ : str =get_size_dict(__lowercase , default_to_square=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} SCREAMING_SNAKE_CASE__ : Tuple =get_size_dict(__lowercase , param_name='''crop_size''' ) SCREAMING_SNAKE_CASE__ : int =do_resize SCREAMING_SNAKE_CASE__ : Dict =size SCREAMING_SNAKE_CASE__ : List[str] =resample SCREAMING_SNAKE_CASE__ : List[Any] =do_center_crop SCREAMING_SNAKE_CASE__ : str =crop_size SCREAMING_SNAKE_CASE__ : List[str] =do_rescale SCREAMING_SNAKE_CASE__ : Optional[Any] =rescale_factor SCREAMING_SNAKE_CASE__ : List[str] =do_normalize SCREAMING_SNAKE_CASE__ : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : Optional[Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD def __magic_name__ ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ : str =get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =get_resize_output_image_size(__lowercase , size=size['''shortest_edge'''] , default_to_square=__lowercase ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : int , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ : List[Any] =get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(__lowercase , size=(size['''height'''], size['''width''']) , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : Optional[Any] , __lowercase : np.ndarray , __lowercase : float , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Tuple ) -> np.ndarray: return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : Dict , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str , ) -> np.ndarray: return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : List[Any] , __lowercase : ImageInput , __lowercase : Optional[bool] = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[float] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowercase : int , ) -> Dict: SCREAMING_SNAKE_CASE__ : List[Any] =do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : int =size if size is not None else self.size SCREAMING_SNAKE_CASE__ : Optional[int] =get_size_dict(__lowercase , default_to_square=__lowercase ) SCREAMING_SNAKE_CASE__ : Any =resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : Optional[Any] =do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE__ : List[str] =crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE__ : int =get_size_dict(__lowercase , param_name='''crop_size''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : int =rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : List[str] =do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Optional[Any] =image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : Any =image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : str =make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : Dict =[to_numpy_array(__lowercase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Union[str, Any] =[self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE__ : List[Any] =[self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : List[Any] =[self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Tuple =[self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : str =[to_channel_dimension_format(__lowercase , __lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : Any ={'''pixel_values''': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase ) def __magic_name__ ( self : Optional[int] , __lowercase : Tuple , __lowercase : List[Tuple] = None ) -> Any: SCREAMING_SNAKE_CASE__ : Optional[int] =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__lowercase ) != len(__lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__lowercase ): SCREAMING_SNAKE_CASE__ : int =target_sizes.numpy() SCREAMING_SNAKE_CASE__ : List[Any] =[] for idx in range(len(__lowercase ) ): SCREAMING_SNAKE_CASE__ : Any =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__lowercase ) else: SCREAMING_SNAKE_CASE__ : Any =logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE__ : Optional[int] =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
222
1
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants a : Any = Mapping[str, np.ndarray] a : Tuple = Mapping[str, Any] # Is a nested dict. a : Union[str, Any] = 0.01 @dataclasses.dataclass(frozen=_lowerCamelCase ) class a : snake_case_ = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. snake_case_ = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. snake_case_ = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. snake_case_ = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. snake_case_ = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions snake_case_ = None # Optional remark about the protein. Included as a comment in output PDB # files snake_case_ = None # Templates used to generate this protein (prediction-only) snake_case_ = None # Chain corresponding to each parent snake_case_ = None def __magic_name__ ( __UpperCAmelCase ) -> Protein: '''simple docstring''' snake_case_ = r'''(\[[A-Z]+\]\n)''' snake_case_ = [tag.strip() for tag in re.split(__UpperCAmelCase, __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0] snake_case_ = zip(tags[0::2], [l.split('''\n''' ) for l in tags[1::2]] ) snake_case_ = ["N", "CA", "C"] snake_case_ = None snake_case_ = None snake_case_ = None for g in groups: if "[PRIMARY]" == g[0]: snake_case_ = g[1][0].strip() for i in range(len(__UpperCAmelCase ) ): if seq[i] not in residue_constants.restypes: snake_case_ = '''X''' # FIXME: strings are immutable snake_case_ = np.array( [residue_constants.restype_order.get(__UpperCAmelCase, residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case_ = [] for axis in range(3 ): tertiary.append(list(map(__UpperCAmelCase, g[1][axis].split() ) ) ) snake_case_ = np.array(__UpperCAmelCase ) snake_case_ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__UpperCAmelCase ): snake_case_ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case_ = np.array(list(map({'''-''': 0, '''+''': 1}.get, g[1][0].strip() ) ) ) snake_case_ = np.zeros( ( len(__UpperCAmelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__UpperCAmelCase ): snake_case_ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__UpperCAmelCase, atom_mask=__UpperCAmelCase, aatype=__UpperCAmelCase, residue_index=np.arange(len(__UpperCAmelCase ) ), b_factors=__UpperCAmelCase, ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase = 0 ) -> List[str]: '''simple docstring''' snake_case_ = [] snake_case_ = prot.remark if remark is not None: pdb_headers.append(F"REMARK {remark}" ) snake_case_ = prot.parents snake_case_ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case_ = [p for i, p in zip(__UpperCAmelCase, __UpperCAmelCase ) if i == chain_id] if parents is None or len(__UpperCAmelCase ) == 0: snake_case_ = ['''N/A'''] pdb_headers.append(F"PARENT {' '.join(__UpperCAmelCase )}" ) return pdb_headers def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> str: '''simple docstring''' snake_case_ = [] snake_case_ = pdb_str.split('''\n''' ) snake_case_ = prot.remark if remark is not None: out_pdb_lines.append(F"REMARK {remark}" ) snake_case_ = 42 if prot.parents is not None and len(prot.parents ) > 0: snake_case_ = [] if prot.parents_chain_index is not None: snake_case_ = {} for p, i in zip(prot.parents, prot.parents_chain_index ): parent_dict.setdefault(str(__UpperCAmelCase ), [] ) parent_dict[str(__UpperCAmelCase )].append(__UpperCAmelCase ) snake_case_ = max([int(__UpperCAmelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case_ = parent_dict.get(str(__UpperCAmelCase ), ['''N/A'''] ) parents_per_chain.append(__UpperCAmelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case_ = [['''N/A''']] def make_parent_line(__UpperCAmelCase ) -> str: return F"PARENT {' '.join(__UpperCAmelCase )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case_ = 0 for i, l in enumerate(__UpperCAmelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__UpperCAmelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__UpperCAmelCase ): snake_case_ = parents_per_chain[chain_counter] else: snake_case_ = ['''N/A'''] out_pdb_lines.append(make_parent_line(__UpperCAmelCase ) ) return "\n".join(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' snake_case_ = residue_constants.restypes + ['''X'''] def res_atoa(__UpperCAmelCase ) -> str: return residue_constants.restype_atoa.get(restypes[r], '''UNK''' ) snake_case_ = residue_constants.atom_types snake_case_ = [] snake_case_ = prot.atom_mask snake_case_ = prot.aatype snake_case_ = prot.atom_positions snake_case_ = prot.residue_index.astype(np.intaa ) snake_case_ = prot.b_factors snake_case_ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) snake_case_ = get_pdb_headers(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: pdb_lines.extend(__UpperCAmelCase ) snake_case_ = aatype.shape[0] snake_case_ = 1 snake_case_ = 0 snake_case_ = string.ascii_uppercase snake_case_ = None # Add all atom sites. for i in range(__UpperCAmelCase ): snake_case_ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__UpperCAmelCase, atom_positions[i], atom_mask[i], b_factors[i] ): if mask < 0.5: continue snake_case_ = '''ATOM''' snake_case_ = atom_name if len(__UpperCAmelCase ) == 4 else F" {atom_name}" snake_case_ = '''''' snake_case_ = '''''' snake_case_ = 1.0_0 snake_case_ = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case_ = '''''' snake_case_ = '''A''' if chain_index is not None: snake_case_ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case_ = ( F"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" F"{res_name_a:>3} {chain_tag:>1}" F"{residue_index[i]:>4}{insertion_code:>1} " F"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" F"{occupancy:>6.2f}{b_factor:>6.2f} " F"{element:>2}{charge:>2}" ) pdb_lines.append(__UpperCAmelCase ) atom_index += 1 snake_case_ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case_ = True snake_case_ = chain_index[i + 1] if should_terminate: # Close the chain. snake_case_ = '''TER''' snake_case_ = ( F"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(__UpperCAmelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__UpperCAmelCase, __UpperCAmelCase ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = None, __UpperCAmelCase = None, __UpperCAmelCase = None, __UpperCAmelCase = None, __UpperCAmelCase = None, ) -> Protein: '''simple docstring''' return Protein( aatype=features['''aatype'''], atom_positions=result['''final_atom_positions'''], atom_mask=result['''final_atom_mask'''], residue_index=features['''residue_index'''] + 1, b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ), chain_index=__UpperCAmelCase, remark=__UpperCAmelCase, parents=__UpperCAmelCase, parents_chain_index=__UpperCAmelCase, )
56
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' snake_case_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__UpperCAmelCase, __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' snake_case_ = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: snake_case_ = s_dict.pop(__UpperCAmelCase ) elif "subsample" in key: snake_case_ = s_dict.pop(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' snake_case_ ,snake_case_ = emb.weight.shape snake_case_ = nn.Linear(__UpperCAmelCase, __UpperCAmelCase, bias=__UpperCAmelCase ) snake_case_ = emb.weight.data return lin_layer def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Dict: '''simple docstring''' snake_case_ = torch.load(__UpperCAmelCase, map_location='''cpu''' ) snake_case_ = mam_aaa['''args'''] snake_case_ = mam_aaa['''model'''] snake_case_ = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(__UpperCAmelCase ) rename_keys(__UpperCAmelCase ) snake_case_ = state_dict['''decoder.embed_tokens.weight'''].shape[0] snake_case_ = args.share_decoder_input_output_embed snake_case_ = [int(__UpperCAmelCase ) for i in args.conv_kernel_sizes.split(''',''' )] snake_case_ = SpeechaTextConfig( vocab_size=__UpperCAmelCase, max_source_positions=args.max_source_positions, max_target_positions=args.max_target_positions, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='''relu''', num_conv_layers=len(__UpperCAmelCase ), conv_channels=args.conv_channels, conv_kernel_sizes=__UpperCAmelCase, input_feat_per_channel=args.input_feat_per_channel, input_channels=args.input_channels, tie_word_embeddings=__UpperCAmelCase, num_beams=5, max_length=200, use_cache=__UpperCAmelCase, decoder_start_token_id=2, early_stopping=__UpperCAmelCase, ) snake_case_ = SpeechaTextForConditionalGeneration(__UpperCAmelCase ) snake_case_ ,snake_case_ = model.model.load_state_dict(__UpperCAmelCase, strict=__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0 and not set(__UpperCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F" but all the following weights are missing {missing}" ) if tie_embeds: snake_case_ = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case_ = lm_head_weights model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') a : List[Any] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
56
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Optional[Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:List[Any] = "mobilenet_v1" def __init__( self , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE="relu6" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.9_9_9 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=0.0_0_1 , **_SCREAMING_SNAKE_CASE , )-> List[str]: super().__init__(**_SCREAMING_SNAKE_CASE ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) lowerCamelCase_ =num_channels lowerCamelCase_ =image_size lowerCamelCase_ =depth_multiplier lowerCamelCase_ =min_depth lowerCamelCase_ =hidden_act lowerCamelCase_ =tf_padding lowerCamelCase_ =classifier_dropout_prob lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:int = version.parse("1.11") @property def _snake_case ( self )-> Mapping[str, Mapping[int, str]]: return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def _snake_case ( self )-> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def _snake_case ( self )-> float: return 1E-4
49
from __future__ import annotations def __UpperCamelCase ( _A : list[int | str] ) ->None: """simple docstring""" create_state_space_tree(_A , [] , 0 , [0 for i in range(len(_A ) )] ) def __UpperCamelCase ( _A : list[int | str] , _A : list[int | str] , _A : int , _A : list[int] , ) ->None: """simple docstring""" if index == len(_A ): print(_A ) return for i in range(len(_A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) lowerCamelCase_ =True create_state_space_tree(_A , _A , index + 1 , _A ) current_sequence.pop() lowerCamelCase_ =False __A : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __A : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
49
1
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class __A (snake_case__): '''simple docstring''' __lowercase: Optional[Any] = ["""pixel_values"""] def __init__( self : Optional[Any] , UpperCAmelCase_ : str = True , UpperCAmelCase_ : Optional[int] = 1 / 255 , UpperCAmelCase_ : Tuple = True , UpperCAmelCase_ : str = 8 , **UpperCAmelCase_ : str , ) ->None: """simple docstring""" super().__init__(**UpperCAmelCase_ ) snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_pad snake_case_ = pad_size def lowerCAmelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str = None , **UpperCAmelCase_ : Optional[int] ) ->np.ndarray: """simple docstring""" return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def lowerCAmelCase ( self : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : str = None ) ->Optional[Any]: """simple docstring""" snake_case_ = get_image_size(UpperCAmelCase_ ) snake_case_ = (old_height // size + 1) * size - old_height snake_case_ = (old_width // size + 1) * size - old_width return pad(UpperCAmelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : Tuple = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : Optional[Any] = ChannelDimension.FIRST , **UpperCAmelCase_ : Dict , ) ->List[Any]: """simple docstring""" snake_case_ = do_rescale if do_rescale is not None else self.do_rescale snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ = do_pad if do_pad is not None else self.do_pad snake_case_ = pad_size if pad_size is not None else self.pad_size snake_case_ = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_rescale: snake_case_ = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ ) for image in images] if do_pad: snake_case_ = [self.pad(UpperCAmelCase_ , size=UpperCAmelCase_ ) for image in images] snake_case_ = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images] snake_case_ = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ )
347
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __lowerCamelCase ( _lowercase ) -> Optional[Any]: return getitem, k def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: return setitem, k, v def __lowerCamelCase ( _lowercase ) -> int: return delitem, k def __lowerCamelCase ( _lowercase , _lowercase , *_lowercase ) -> Optional[Any]: try: return fun(_lowercase , *_lowercase ), None except Exception as e: return None, e a : List[str] = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a : List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a : int = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a : List[Any] = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a : Tuple = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : List[str] = HashMap(initial_block_size=4 ) UpperCAmelCase : Dict = {} for _, (fun, *args) in enumerate(_lowercase ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = _run_operation(_lowercase , _lowercase , *_lowercase ) UpperCAmelCase , UpperCAmelCase : Any = _run_operation(_lowercase , _lowercase , *_lowercase ) assert my_res == py_res assert str(_lowercase ) == str(_lowercase ) assert set(_lowercase ) == set(_lowercase ) assert len(_lowercase ) == len(_lowercase ) assert set(my.items() ) == set(py.items() ) def __lowerCamelCase ( ) -> List[Any]: def is_public(_lowercase ) -> bool: return not name.startswith("""_""" ) UpperCAmelCase : int = {name for name in dir({} ) if is_public(_lowercase )} UpperCAmelCase : Any = {name for name in dir(HashMap() ) if is_public(_lowercase )} assert dict_public_names > hash_public_names
265
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __lowerCamelCase : lowerCamelCase_ : Any = MBartConfig lowerCamelCase_ : Optional[Any] = {} lowerCamelCase_ : str = 'gelu' def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=2 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=20 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=0 , ) -> Optional[int]: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = eos_token_id snake_case_ = pad_token_id snake_case_ = bos_token_id def lowerCAmelCase_ ( self ) -> Tuple: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case_ = prepare_mbart_inputs_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return config, inputs_dict def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ = TFMBartModel(config=lowerCamelCase ).get_decoder() snake_case_ = inputs_dict["""input_ids"""] snake_case_ = input_ids[:1, :] snake_case_ = inputs_dict["""attention_mask"""][:1, :] snake_case_ = inputs_dict["""head_mask"""] snake_case_ = 1 # first forward pass snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase , head_mask=lowerCamelCase , use_cache=lowerCamelCase ) snake_case_ , snake_case_ = outputs.to_tuple() snake_case_ = past_key_values[1] def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , ) -> Union[str, Any]: '''simple docstring''' if attention_mask is None: snake_case_ = tf.cast(tf.math.not_equal(lowercase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowerCamelCase ( __snake_case , __snake_case , unittest.TestCase ): lowerCamelCase_ : List[Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCamelCase_ : Optional[int] = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCamelCase_ : Optional[int] = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase_ : List[str] = True lowerCamelCase_ : Dict = False lowerCamelCase_ : int = False def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def lowerCAmelCase_ ( self ) -> List[Any]: """simple docstring""" snake_case_ = TFMBartModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowerCamelCase ) def lowerCAmelCase_ ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class __lowerCamelCase ( unittest.TestCase ): lowerCamelCase_ : int = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowerCamelCase_ : Optional[int] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowerCamelCase_ : Optional[int] = 'facebook/mbart-large-en-ro' @cached_property def lowerCAmelCase_ ( self ) -> Any: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase_ ( self ) -> Any: """simple docstring""" snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCAmelCase_ ( self , **lowerCamelCase ) -> Optional[Any]: """simple docstring""" snake_case_ = self.translate_src_text(**lowerCamelCase ) self.assertListEqual(self.expected_text , lowerCamelCase ) def lowerCAmelCase_ ( self , **lowerCamelCase ) -> Tuple: """simple docstring""" snake_case_ = self.tokenizer(self.src_text , **lowerCamelCase , return_tensors="""tf""" ) snake_case_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) snake_case_ = self.tokenizer.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) return generated_words @slow def lowerCAmelCase_ ( self ) -> List[Any]: """simple docstring""" self._assert_generated_batch_equal_expected()
352
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def UpperCamelCase( lowercase_ = "" ) -> dict[str, float]: '''simple docstring''' snake_case_ = url or """https://www.imdb.com/chart/top/?ref_=nv_mv_250""" snake_case_ = BeautifulSoup(requests.get(lowercase_ ).text , """html.parser""" ) snake_case_ = soup.find_all("""td""" , attrs="""titleColumn""" ) snake_case_ = soup.find_all("""td""" , class_="""ratingColumn imdbRating""" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(lowercase_ , lowercase_ ) } def UpperCamelCase( lowercase_ = "IMDb_Top_250_Movies.csv" ) -> None: '''simple docstring''' snake_case_ = get_imdb_top_aaa_movies() with open(lowercase_ , """w""" , newline="""""" ) as out_file: snake_case_ = csv.writer(lowercase_ ) writer.writerow(["""Movie title""", """IMDb rating"""] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
34
0
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class a__ ( __A ): """simple docstring""" __UpperCamelCase : Optional[int] = ['image_processor', 'tokenizer'] __UpperCamelCase : Dict = 'BlipImageProcessor' __UpperCamelCase : List[str] = 'AutoTokenizer' def __init__(self , __lowercase , __lowercase , __lowercase ): super().__init__(__lowercase , __lowercase ) # add QFormer tokenizer __lowerCAmelCase = qformer_tokenizer def __call__(self , __lowercase = None , __lowercase = None , __lowercase = True , __lowercase = False , __lowercase = None , __lowercase = None , __lowercase = 0 , __lowercase = None , __lowercase = None , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = True , __lowercase = None , **__lowercase , ): if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) __lowerCAmelCase = BatchFeature() if text is not None: __lowerCAmelCase = self.tokenizer( text=__lowercase , add_special_tokens=__lowercase , padding=__lowercase , truncation=__lowercase , max_length=__lowercase , stride=__lowercase , pad_to_multiple_of=__lowercase , return_attention_mask=__lowercase , return_overflowing_tokens=__lowercase , return_special_tokens_mask=__lowercase , return_offsets_mapping=__lowercase , return_token_type_ids=__lowercase , return_length=__lowercase , verbose=__lowercase , return_tensors=__lowercase , **__lowercase , ) encoding.update(__lowercase ) __lowerCAmelCase = self.qformer_tokenizer( text=__lowercase , add_special_tokens=__lowercase , padding=__lowercase , truncation=__lowercase , max_length=__lowercase , stride=__lowercase , pad_to_multiple_of=__lowercase , return_attention_mask=__lowercase , return_overflowing_tokens=__lowercase , return_special_tokens_mask=__lowercase , return_offsets_mapping=__lowercase , return_token_type_ids=__lowercase , return_length=__lowercase , verbose=__lowercase , return_tensors=__lowercase , **__lowercase , ) __lowerCAmelCase = qformer_text_encoding.pop('''input_ids''' ) __lowerCAmelCase = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: __lowerCAmelCase = self.image_processor(__lowercase , return_tensors=__lowercase ) encoding.update(__lowercase ) return encoding def _snake_case (self , *__lowercase , **__lowercase ): return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def _snake_case (self , *__lowercase , **__lowercase ): return self.tokenizer.decode(*__lowercase , **__lowercase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _snake_case (self ): __lowerCAmelCase = self.tokenizer.model_input_names __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _snake_case (self , __lowercase , **__lowercase ): if os.path.isfile(__lowercase ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(__lowercase , exist_ok=__lowercase ) __lowerCAmelCase = os.path.join(__lowercase , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(__lowercase ) return super().save_pretrained(__lowercase , **__lowercase ) @classmethod def _snake_case (cls , __lowercase , **__lowercase ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase , subfolder='''qformer_tokenizer''' ) __lowerCAmelCase = cls._get_arguments_from_pretrained(__lowercase , **__lowercase ) args.append(__lowercase ) return cls(*__lowercase )
174
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
174
1
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
285
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : Union[str, Any] = {"""vocab_file""": """spiece.model"""} lowercase : Any = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } lowercase : List[Any] = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) lowercase : Optional[int] = 0 lowercase : Any = 1 lowercase : Any = 2 lowercase : str = 3 lowercase : Optional[Any] = 4 class __snake_case ( lowerCAmelCase ): _a : Optional[Any]= VOCAB_FILES_NAMES _a : Optional[Any]= PRETRAINED_VOCAB_FILES_MAP _a : List[str]= PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Union[str, Any]= "left" def __init__( self ,snake_case ,snake_case=False ,snake_case=True ,snake_case=False ,snake_case="<s>" ,snake_case="</s>" ,snake_case="<unk>" ,snake_case="<sep>" ,snake_case="<pad>" ,snake_case="<cls>" ,snake_case="<mask>" ,snake_case=["<eop>", "<eod>"] ,snake_case = None ,**snake_case ,): '''simple docstring''' lowercase : str = AddedToken(snake_case ,lstrip=snake_case ,rstrip=snake_case ) if isinstance(snake_case ,snake_case ) else mask_token lowercase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case ,remove_space=snake_case ,keep_accents=snake_case ,bos_token=snake_case ,eos_token=snake_case ,unk_token=snake_case ,sep_token=snake_case ,pad_token=snake_case ,cls_token=snake_case ,mask_token=snake_case ,additional_special_tokens=snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**snake_case ,) lowercase : str = 3 lowercase : str = do_lower_case lowercase : List[Any] = remove_space lowercase : Dict = keep_accents lowercase : Union[str, Any] = vocab_file lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return len(self.sp_model ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' lowercase : Any = self.__dict__.copy() lowercase : List[str] = None return state def __setstate__( self ,snake_case ): '''simple docstring''' lowercase : Dict = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowercase : List[str] = {} lowercase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.remove_space: lowercase : Optional[int] = """ """.join(inputs.strip().split() ) else: lowercase : Optional[int] = inputs lowercase : Dict = outputs.replace("""``""" ,"""\"""" ).replace("""''""" ,"""\"""" ) if not self.keep_accents: lowercase : int = unicodedata.normalize("""NFKD""" ,snake_case ) lowercase : Any = """""".join([c for c in outputs if not unicodedata.combining(snake_case )] ) if self.do_lower_case: lowercase : Any = outputs.lower() return outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Dict = self.preprocess_text(snake_case ) lowercase : Any = self.sp_model.encode(snake_case ,out_type=snake_case ) lowercase : Tuple = [] for piece in pieces: if len(snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowercase : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case ,"""""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowercase : Any = cur_pieces[1:] else: lowercase : List[str] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case ) else: new_pieces.append(snake_case ) return new_pieces def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' return self.sp_model.PieceToId(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' return self.sp_model.IdToPiece(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = """""".join(snake_case ).replace(snake_case ,""" """ ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = False ,snake_case = None ,snake_case = True ,**snake_case ,): '''simple docstring''' lowercase : List[str] = kwargs.pop("""use_source_tokenizer""" ,snake_case ) lowercase : List[str] = self.convert_ids_to_tokens(snake_case ,skip_special_tokens=snake_case ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowercase : Optional[int] = [] lowercase : Optional[int] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case ) ) lowercase : Union[str, Any] = [] sub_texts.append(snake_case ) else: current_sub_text.append(snake_case ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowercase : Any = """""".join(snake_case ) lowercase : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowercase : int = self.clean_up_tokenization(snake_case ) return clean_text else: return text def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : int = [self.sep_token_id] lowercase : str = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case ,token_ids_a=snake_case ,already_has_special_tokens=snake_case ) if token_ids_a is not None: return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1, 1] return ([0] * len(snake_case )) + [1, 1] def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : List[str] = [self.sep_token_id] lowercase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase : Any = os.path.join( snake_case ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case ,"""wb""" ) as fi: lowercase : str = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
285
1
from math import factorial def A ( lowercase = 100 ) -> int: '''simple docstring''' return sum(int(lowercase ) for x in str(factorial(lowercase ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
222
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A_ , 'embed_dim' ) ) self.parent.assertTrue(hasattr(A_ , 'num_heads' ) ) class lowercase : def __init__( self , A_ , A_=13 , A_=64 , A_=3 , A_=[16, 48, 96] , A_=[1, 3, 6] , A_=[1, 2, 10] , A_=[7, 3, 3] , A_=[4, 2, 2] , A_=[2, 1, 1] , A_=[2, 2, 2] , A_=[False, False, True] , A_=[0.0, 0.0, 0.0] , A_=0.02 , A_=1e-12 , A_=True , A_=True , A_=2 , ) -> int: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_sizes UpperCamelCase = patch_stride UpperCamelCase = patch_padding UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = num_labels UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = num_heads UpperCamelCase = stride_kv UpperCamelCase = depth UpperCamelCase = cls_token UpperCamelCase = attention_drop_rate UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" UpperCamelCase = CvtModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) UpperCamelCase = (self.image_size, self.image_size) UpperCamelCase , UpperCamelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCamelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCamelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = CvtForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : List[str] = (CvtModel, CvtForImageClassification) if is_torch_available() else () __lowercase : Tuple = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Union[str, Any] = False __lowercase : Optional[Any] = False __lowercase : List[str] = False __lowercase : Dict = False def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = CvtModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self ) -> Any: """simple docstring""" return @unittest.skip(reason='Cvt does not output attentions' ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = len(self.model_tester.depth ) self.assertEqual(len(A_ ) , A_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" pass @slow def __UpperCamelCase ( self ) -> Dict: """simple docstring""" for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = CvtModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A ( ) -> Tuple: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
222
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer __snake_case ={"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __snake_case ={ """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } __snake_case ={ """unc-nlp/lxmert-base-uncased""": 512, } __snake_case ={ """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Any = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Any = LxmertTokenizer def __init__( self : str , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Tuple="[UNK]" , UpperCAmelCase__ : str="[SEP]" , UpperCAmelCase__ : Union[str, Any]="[PAD]" , UpperCAmelCase__ : List[str]="[CLS]" , UpperCAmelCase__ : int="[MASK]" , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Any=None , **UpperCAmelCase__ : Optional[int] , ) -> Optional[Any]: super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase = getattr(UpperCAmelCase__ , normalizer_state.pop('type' ) ) lowerCAmelCase = do_lower_case lowerCAmelCase = strip_accents lowerCAmelCase = tokenize_chinese_chars lowerCAmelCase = normalizer_class(**UpperCAmelCase__ ) lowerCAmelCase = do_lower_case def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict=None ) -> Optional[Any]: lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
55
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ : def __init__( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Any=9_9 , UpperCAmelCase__ : Any=3_6 , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : int=3_7 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Dict=5_1_2 , UpperCAmelCase__ : Optional[Any]=1_6 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : str=6 , UpperCAmelCase__ : List[str]=6 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[Any]=1_0_0_0 , ) -> int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = text_seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = coordinate_size lowerCAmelCase = shape_size lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCAmelCase = text_seq_length lowerCAmelCase = (image_size // patch_size) ** 2 + 1 lowerCAmelCase = self.text_seq_length + self.image_seq_length def __UpperCAmelCase ( self : str ) -> Dict: lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowerCAmelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str ) -> str: lowerCAmelCase = LayoutLMvaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # text + image lowerCAmelCase = model(UpperCAmelCase__ , pixel_values=UpperCAmelCase__ ) lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCAmelCase = model(pixel_values=UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Optional[int]: lowerCAmelCase = self.num_labels lowerCAmelCase = LayoutLMvaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = LayoutLMvaForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ) -> Optional[Any]: lowerCAmelCase = LayoutLMvaForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self : Tuple ) -> Any: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : List[str] = False lowerCamelCase : Tuple = False lowerCamelCase : int = False lowerCamelCase : Optional[int] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase : int = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> str: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: lowerCAmelCase = LayoutLMvaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int]=False ) -> Optional[int]: lowerCAmelCase = copy.deepcopy(UpperCAmelCase__ ) if model_class in get_values(UpperCAmelCase__ ): lowerCAmelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCAmelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase__ ): lowerCAmelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in get_values(UpperCAmelCase__ ): lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in [ *get_values(UpperCAmelCase__ ), ]: lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in [ *get_values(UpperCAmelCase__ ), ]: lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase__ , ) return inputs_dict def __UpperCAmelCase ( self : Tuple ) -> Any: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Dict ) -> List[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : str ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any ) -> Dict: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Any ) -> Any: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = LayoutLMvaModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def a_ ( ): lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self : int ) -> str: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) if is_vision_available() else None @slow def __UpperCAmelCase ( self : int ) -> Any: lowerCAmelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(UpperCAmelCase__ ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors='pt' ).pixel_values.to(UpperCAmelCase__ ) lowerCAmelCase = torch.tensor([[1, 2]] ) lowerCAmelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowerCAmelCase = model( input_ids=input_ids.to(UpperCAmelCase__ ) , bbox=bbox.to(UpperCAmelCase__ ) , pixel_values=pixel_values.to(UpperCAmelCase__ ) , ) # verify the logits lowerCAmelCase = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) )
55
1
from ....configuration_utils import PretrainedConfig from ....utils import logging __snake_case :Union[str, Any] = logging.get_logger(__name__) __snake_case :Optional[int] = { '''Visual-Attention-Network/van-base''': ( '''https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json''' ), } class _A ( __UpperCAmelCase ): UpperCamelCase__ : Optional[int] = '''van''' def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any]=224 , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Any=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE : Optional[Any]=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE : Tuple=[64, 128, 320, 512] , __SCREAMING_SNAKE_CASE : Optional[Any]=[3, 3, 12, 3] , __SCREAMING_SNAKE_CASE : Dict=[8, 8, 4, 4] , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=1E-6 , __SCREAMING_SNAKE_CASE : Optional[Any]=1E-2 , __SCREAMING_SNAKE_CASE : Optional[int]=0.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , **__SCREAMING_SNAKE_CASE : Any , ): '''simple docstring''' super().__init__(**__SCREAMING_SNAKE_CASE) __a = image_size __a = num_channels __a = patch_sizes __a = strides __a = hidden_sizes __a = depths __a = mlp_ratios __a = hidden_act __a = initializer_range __a = layer_norm_eps __a = layer_scale_init_value __a = drop_path_rate __a = dropout_rate
49
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _A ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __a = '''fp16''' self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] __a = '''fp16''' self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE))
49
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowerCAmelCase__ ( unittest.TestCase ): lowerCAmelCase : Union[str, Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str ) ->str: '''simple docstring''' _UpperCAmelCase : Any = TextaTextGenerationPipeline(model=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) return generator, ["Something to write", "Something else"] def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int ) ->List[str]: '''simple docstring''' _UpperCAmelCase : str = generator("Something there" ) self.assertEqual(lowerCamelCase__ , [{"generated_text": ANY(lowerCamelCase__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there" ) ) _UpperCAmelCase : Dict = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCamelCase__ ) self.assertEqual( lowerCamelCase__ , [ [{"generated_text": ANY(lowerCamelCase__ )}, {"generated_text": ANY(lowerCamelCase__ )}], [{"generated_text": ANY(lowerCamelCase__ )}, {"generated_text": ANY(lowerCamelCase__ )}], ] , ) _UpperCAmelCase : Union[str, Any] = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCamelCase__ ) self.assertEqual( lowerCamelCase__ , [ [{"generated_text": ANY(lowerCamelCase__ )}, {"generated_text": ANY(lowerCamelCase__ )}], [{"generated_text": ANY(lowerCamelCase__ )}, {"generated_text": ANY(lowerCamelCase__ )}], ] , ) with self.assertRaises(lowerCamelCase__ ): generator(4 ) @require_torch def lowerCAmelCase__ ( self : Any ) ->str: '''simple docstring''' _UpperCAmelCase : int = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt" ) # do_sample=False necessary for reproducibility _UpperCAmelCase : Union[str, Any] = generator("Something there" , do_sample=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , [{"generated_text": ""}] ) _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Dict = generator( "Something there" , num_return_sequences=lowerCamelCase__ , num_beams=lowerCamelCase__ , ) _UpperCAmelCase : List[str] = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : str = generator("This is a test" , do_sample=lowerCamelCase__ , num_return_sequences=2 , return_tensors=lowerCamelCase__ ) self.assertEqual( lowerCamelCase__ , [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ] , ) _UpperCAmelCase : List[str] = generator.model.config.eos_token_id _UpperCAmelCase : str = "<pad>" _UpperCAmelCase : int = generator( ["This is a test", "This is a second test"] , do_sample=lowerCamelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCamelCase__ , ) self.assertEqual( lowerCamelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Dict = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf" ) # do_sample=False necessary for reproducibility _UpperCAmelCase : Any = generator("Something there" , do_sample=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , [{"generated_text": ""}] )
322
'''simple docstring''' import pytest lowerCamelCase__ = '__dummy_dataset1__' lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = dataset_loading_script_name _UpperCAmelCase : Any = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py""" with open(__lowerCAmelCase , "w" ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase )
322
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( __a): """simple docstring""" UpperCamelCase__ = (DEISMultistepScheduler,) UpperCamelCase__ = (("""num_inference_steps""", 25),) def UpperCamelCase ( self , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = { 'num_train_timesteps': 1000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, } config.update(**UpperCAmelCase ) return config def UpperCamelCase ( self , UpperCAmelCase=0 , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop('num_inference_steps' , UpperCAmelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**UpperCAmelCase ) _UpperCAmelCase = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(UpperCAmelCase ) new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase , _UpperCAmelCase = sample, sample for t in range(UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): _UpperCAmelCase = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self , UpperCAmelCase=0 , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop('num_inference_steps' , UpperCAmelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase ( self , UpperCAmelCase=None , **UpperCAmelCase ): """simple docstring""" if scheduler is None: _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**UpperCAmelCase ) _UpperCAmelCase = scheduler_class(**UpperCAmelCase ) _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**UpperCAmelCase ) _UpperCAmelCase = scheduler_class(**UpperCAmelCase ) _UpperCAmelCase = 10 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample return sample def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop('num_inference_steps' , UpperCAmelCase ) for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**UpperCAmelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCAmelCase , 'set_timesteps' ): scheduler.set_timesteps(UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(UpperCAmelCase , 'set_timesteps' ): _UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] _UpperCAmelCase = scheduler.timesteps[5] _UpperCAmelCase = scheduler.timesteps[6] _UpperCAmelCase = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample _UpperCAmelCase = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = DEISMultistepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase = self.full_loop(scheduler=UpperCAmelCase ) _UpperCAmelCase = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1e-3 _UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = self.full_loop(scheduler=UpperCAmelCase ) _UpperCAmelCase = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1e-3 def UpperCamelCase ( self ): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" self.check_over_configs(thresholding=UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , algorithm_type='deis' , solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , ) def UpperCamelCase ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) _UpperCAmelCase = self.full_loop( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) assert not torch.isnan(UpperCAmelCase ).any(), "Samples have nan numbers" def UpperCamelCase ( self ): """simple docstring""" self.check_over_configs(lower_order_final=UpperCAmelCase ) self.check_over_configs(lower_order_final=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=UpperCAmelCase , time_step=0 ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.full_loop() _UpperCAmelCase = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1e-3 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.full_loop(prediction_type='v_prediction' ) _UpperCAmelCase = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0_91 ) < 1e-3 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0 ) _UpperCAmelCase = scheduler_class(**UpperCAmelCase ) _UpperCAmelCase = 10 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
39
'''simple docstring''' import os from distutils.util import strtobool def snake_case_ (_a : Union[str, Any] , _a : List[Any] ): for e in env_keys: UpperCAmelCase = int(os.environ.get(_a , -1 ) ) if val >= 0: return val return default def snake_case_ (_a : Dict , _a : Any=False ): UpperCAmelCase = os.environ.get(_a , str(_a ) ) return strtobool(_a ) == 1 # As its name indicates `strtobool` actually returns an int... def snake_case_ (_a : str , _a : Optional[Any]="no" ): UpperCAmelCase = os.environ.get(_a , str(_a ) ) return value
34
0
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=[10, 20, 30, 40] , __UpperCAmelCase=[2, 2, 3, 2] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase=["stage2", "stage3", "stage4"] , __UpperCAmelCase=3 , __UpperCAmelCase=None , ) -> Tuple: _a = parent _a = batch_size _a = image_size _a = num_channels _a = num_stages _a = hidden_sizes _a = depths _a = is_training _a = use_labels _a = intermediate_size _a = hidden_act _a = type_sequence_label_size _a = initializer_range _a = out_features _a = num_labels _a = scope _a = num_stages def _UpperCAmelCase ( self ) -> str: _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _UpperCAmelCase ( self ) -> Optional[int]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=__UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: _a = UperNetForSemanticSegmentation(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = (UperNetForSemanticSegmentation,) if is_torch_available() else () A_ : Dict = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} A_ : Dict = False A_ : Optional[Any] = False A_ : List[str] = False A_ : Optional[int] = False A_ : List[str] = False A_ : int = False def _UpperCAmelCase ( self ) -> List[Any]: _a = UperNetModelTester(self ) _a = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def _UpperCAmelCase ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> int: return def _UpperCAmelCase ( self ) -> Tuple: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__UpperCAmelCase ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def _UpperCAmelCase ( self ) -> Dict: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def _UpperCAmelCase ( self ) -> str: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _a = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) _a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = _config_zero_init(__UpperCAmelCase ) _a = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _a = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def _UpperCAmelCase ( self ) -> Any: pass @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = UperNetForSemanticSegmentation.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A_ ( ): """simple docstring""" _a = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''', repo_type='''dataset''', filename='''ADE_val_00000001.jpg''' ) _a = Image.open(_lowerCAmelCase ).convert('''RGB''' ) return image @require_torch @require_vision @slow class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[Any]: _a = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) _a = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(__UpperCAmelCase ) _a = prepare_img() _a = processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) with torch.no_grad(): _a = model(**__UpperCAmelCase ) _a = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) _a = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCAmelCase , atol=1e-4 ) ) def _UpperCAmelCase ( self ) -> Tuple: _a = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) _a = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(__UpperCAmelCase ) _a = prepare_img() _a = processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) with torch.no_grad(): _a = model(**__UpperCAmelCase ) _a = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) _a = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCAmelCase , atol=1e-4 ) )
357
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __snake_case = datasets.load_iris() __snake_case = np.array(data['''data''']) __snake_case = np.array(data['''target''']) __snake_case = data['''target_names'''] __snake_case ,__snake_case ,__snake_case ,__snake_case = train_test_split(X, y) def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : Union[str, Any] ): """simple docstring""" return np.linalg.norm(np.array(_lowerCAmelCase ) - np.array(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : Tuple, _lowerCAmelCase : Optional[Any], _lowerCAmelCase : int, _lowerCAmelCase : str=5 ): """simple docstring""" _a = zip(_lowerCAmelCase, _lowerCAmelCase ) # List of distances of all points from the point to be classified _a = [] for data_point in data: _a = euclidean_distance(data_point[0], _lowerCAmelCase ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. _a = [i[1] for i in sorted(_lowerCAmelCase )[:k]] # Most commonly occurring class among them # is the class into which the point is classified _a = Counter(_lowerCAmelCase ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
153
0
def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' assert column_title.isupper() snake_case_ = 0 snake_case_ = len(UpperCamelCase__ ) - 1 snake_case_ = 0 while index >= 0: snake_case_ = (ord(column_title[index] ) - 64) * pow(26 , UpperCamelCase__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
285
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowercase ( unittest.TestCase ): def a ( self ): snake_case_ = tempfile.mkdtemp() snake_case_ = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) snake_case_ = { 'do_resize': True, 'size': {'height': 224, 'width': 224}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], 'do_convert_rgb': True, } snake_case_ = os.path.join(self.tmpdirname , snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(snake_case , snake_case ) def a ( self , **snake_case ): return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def a ( self , **snake_case ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **snake_case ) def a ( self , **snake_case ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **snake_case ) def a ( self ): shutil.rmtree(self.tmpdirname ) def a ( self ): snake_case_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case_ = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def a ( self ): snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = self.get_image_processor() snake_case_ = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) processor_slow.save_pretrained(self.tmpdirname ) snake_case_ = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case ) snake_case_ = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) processor_fast.save_pretrained(self.tmpdirname ) snake_case_ = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , snake_case ) self.assertIsInstance(processor_fast.tokenizer , snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , snake_case ) self.assertIsInstance(processor_fast.image_processor , snake_case ) def a ( self ): snake_case_ = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) snake_case_ = self.get_image_processor(do_normalize=snake_case ) snake_case_ = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=snake_case ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def a ( self ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) snake_case_ = self.prepare_image_inputs() snake_case_ = image_processor(snake_case , return_tensors='np' ) snake_case_ = processor(images=snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) snake_case_ = 'Alexandra,T-shirt的价格是15便士。' snake_case_ = processor(text=snake_case ) snake_case_ = tokenizer(snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) snake_case_ = 'Alexandra,T-shirt的价格是15便士。' snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def a ( self ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ = processor.batch_decode(snake_case ) snake_case_ = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case , snake_case ) def a ( self ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) snake_case_ = 'Alexandra,T-shirt的价格是15便士。' snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
285
1
'''simple docstring''' from math import factorial, pi def SCREAMING_SNAKE_CASE__ ( __A , __A = 30 ) -> float: if not isinstance(__A , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(__A , __A ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) _snake_case = float(__A ) _snake_case = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__A ) ) def SCREAMING_SNAKE_CASE__ ( __A , __A = 30 ) -> float: if not isinstance(__A , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(__A , __A ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) _snake_case = float(__A ) _snake_case = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
363
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowercase : int = NewType("DataClass", Any) lowercase : Dict = NewType("DataClassType", Any) def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[Any]: if isinstance(__A , __A ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def SCREAMING_SNAKE_CASE__ ( __A ) -> Callable[[str], Any]: _snake_case = {str(__A ): choice for choice in choices} return lambda __A : str_to_choice.get(__A , __A ) def SCREAMING_SNAKE_CASE__ ( *, __A = None , __A = None , __A = dataclasses.MISSING , __A = dataclasses.MISSING , __A = None , **__A , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls _snake_case = {} if aliases is not None: _snake_case = aliases if help is not None: _snake_case = help return dataclasses.field(metadata=__A , default=__A , default_factory=__A , **__A ) class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = 42 def __init__( self , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" if "formatter_class" not in kwargs: _snake_case = ArgumentDefaultsHelpFormatter super().__init__(**lowerCAmelCase_ ) if dataclasses.is_dataclass(lowerCAmelCase_ ): _snake_case = [dataclass_types] _snake_case = list(lowerCAmelCase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowerCAmelCase_ ) @staticmethod def lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = F'--{field.name}' _snake_case = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowerCAmelCase_ ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) _snake_case = kwargs.pop('aliases' , [] ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = [aliases] _snake_case = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(lowerCAmelCase_ , 'UnionType' ) and isinstance(lowerCAmelCase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowerCAmelCase_ ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F' Problem encountered in field \'{field.name}\'.' ) if type(lowerCAmelCase_ ) not in field.type.__args__: # filter `str` in Union _snake_case = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] _snake_case = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) _snake_case = ( field.type.__args__[0] if isinstance(lowerCAmelCase_ , field.type.__args__[1] ) else field.type.__args__[1] ) _snake_case = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) _snake_case = {} if origin_type is Literal or (isinstance(field.type , lowerCAmelCase_ ) and issubclass(field.type , lowerCAmelCase_ )): if origin_type is Literal: _snake_case = field.type.__args__ else: _snake_case = [x.value for x in field.type] _snake_case = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: _snake_case = field.default else: _snake_case = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument _snake_case = copy(lowerCAmelCase_ ) # Hack because type=bool in argparse does not behave as we want. _snake_case = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. _snake_case = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way _snake_case = default # This tells argparse we accept 0 or 1 value after --field_name _snake_case = '?' # This is the value that will get picked if we do --field_name (without value) _snake_case = True elif isclass(lowerCAmelCase_ ) and issubclass(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = field.type.__args__[0] _snake_case = '+' if field.default_factory is not dataclasses.MISSING: _snake_case = field.default_factory() elif field.default is dataclasses.MISSING: _snake_case = True else: _snake_case = field.type if field.default is not dataclasses.MISSING: _snake_case = field.default elif field.default_factory is not dataclasses.MISSING: _snake_case = field.default_factory() else: _snake_case = True parser.add_argument(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): _snake_case = False parser.add_argument(F'--no_{field.name}' , action='store_false' , dest=field.name , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if hasattr(lowerCAmelCase_ , '_argument_group_name' ): _snake_case = self.add_argument_group(dtype._argument_group_name ) else: _snake_case = self try: _snake_case = get_type_hints(lowerCAmelCase_ ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(lowerCAmelCase_ ): _snake_case = '.'.join(map(lowerCAmelCase_ , sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(lowerCAmelCase_ ): if not field.init: continue _snake_case = type_hints[field.name] self._parse_dataclass_field(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): _snake_case = [] if args_filename: args_files.append(Path(lowerCAmelCase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values _snake_case = ArgumentParser() args_file_parser.add_argument(lowerCAmelCase_ , type=lowerCAmelCase_ , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) _snake_case , _snake_case = args_file_parser.parse_known_args(args=lowerCAmelCase_ ) _snake_case = vars(lowerCAmelCase_ ).get(args_file_flag.lstrip('-' ) , lowerCAmelCase_ ) if cmd_args_file_paths: args_files.extend([Path(lowerCAmelCase_ ) for p in cmd_args_file_paths] ) _snake_case = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last _snake_case = file_args + args if args is not None else file_args + sys.argv[1:] _snake_case , _snake_case = self.parse_known_args(args=lowerCAmelCase_ ) _snake_case = [] for dtype in self.dataclass_types: _snake_case = {f.name for f in dataclasses.fields(lowerCAmelCase_ ) if f.init} _snake_case = {k: v for k, v in vars(lowerCAmelCase_ ).items() if k in keys} for k in keys: delattr(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = dtype(**lowerCAmelCase_ ) outputs.append(lowerCAmelCase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowerCAmelCase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" _snake_case = set(args.keys() ) _snake_case = [] for dtype in self.dataclass_types: _snake_case = {f.name for f in dataclasses.fields(lowerCAmelCase_ ) if f.init} _snake_case = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) _snake_case = dtype(**lowerCAmelCase_ ) outputs.append(lowerCAmelCase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(lowerCAmelCase_ )}' ) return tuple(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" with open(Path(lowerCAmelCase_ ) , encoding='utf-8' ) as open_json_file: _snake_case = json.loads(open_json_file.read() ) _snake_case = self.parse_dict(lowerCAmelCase_ , allow_extra_keys=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" _snake_case = self.parse_dict(yaml.safe_load(Path(lowerCAmelCase_ ).read_text() ) , allow_extra_keys=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
160
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a_ : int = logging.get_logger(__name__) class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = ["pixel_values"] def __init__( self , UpperCamelCase = True , UpperCamelCase = None , UpperCamelCase = PILImageResampling.BILINEAR , UpperCamelCase = True , UpperCamelCase = None , UpperCamelCase = True , UpperCamelCase = 1 / 255 , UpperCamelCase = True , UpperCamelCase = None , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" super().__init__(**UpperCamelCase ) lowerCamelCase_ = size if size is not None else {"shortest_edge": 256} lowerCamelCase_ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) lowerCamelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCamelCase_ = get_size_dict(UpperCamelCase ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase = PILImageResampling.BICUBIC , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowerCamelCase_ = get_resize_output_image_size(UpperCamelCase , size=size["shortest_edge"] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = get_size_dict(UpperCamelCase ) return center_crop(UpperCamelCase , size=(size["height"], size["width"]) , data_format=UpperCamelCase , **UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , **UpperCamelCase ): """simple docstring""" return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = ChannelDimension.FIRST , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(UpperCamelCase ) lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] lowerCamelCase_ = {"pixel_values": images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
55
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class snake_case ( lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = BlenderbotSmallTokenizer _lowerCamelCase = False def snake_case ( self ): """simple docstring""" super().setUp() lowerCamelCase_ = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] lowerCamelCase_ = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) lowerCamelCase_ = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] lowerCamelCase_ = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCamelCase ) ) def snake_case ( self , **UpperCamelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = "adapt act apte" lowerCamelCase_ = "adapt act apte" return input_text, output_text def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase_ = "adapt act apte" lowerCamelCase_ = ["adapt", "act", "ap@@", "te"] lowerCamelCase_ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowerCamelCase_ = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1384] lowerCamelCase_ = "I am a small frog." lowerCamelCase_ = tok([src_text] , padding=UpperCamelCase , truncation=UpperCamelCase )["input_ids"] lowerCamelCase_ = tok.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) lowerCamelCase_ = "I am a small frog ." lowerCamelCase_ = "." lowerCamelCase_ = tok(UpperCamelCase )["input_ids"] lowerCamelCase_ = tok(UpperCamelCase )["input_ids"] assert encoded[-1] == encoded_dot[0]
55
1
from __future__ import annotations from typing import TypedDict class _a ( _lowercase): _a : str _a : int def lowerCamelCase_ ( _a ): """simple docstring""" if not isinstance(_a , _a ): raise TypeError('''The parameter s type must be str.''' ) return [s[i:] + s[:i] for i in range(len(_a ) )] def lowerCamelCase_ ( _a ): """simple docstring""" if not isinstance(_a , _a ): raise TypeError('''The parameter s type must be str.''' ) if not s: raise ValueError('''The parameter s must not be empty.''' ) lowerCAmelCase__ : Optional[Any] = all_rotations(_a ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation lowerCAmelCase__ : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(_a ), } return response def lowerCamelCase_ ( _a , _a ): """simple docstring""" if not isinstance(_a , _a ): raise TypeError('''The parameter bwt_string type must be str.''' ) if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''' ) try: lowerCAmelCase__ : List[str] = int(_a ) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''' ) if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''' ) if idx_original_string >= len(_a ): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' ) lowerCAmelCase__ : int = [''''''] * len(_a ) for _ in range(len(_a ) ): for i in range(len(_a ) ): lowerCAmelCase__ : List[str] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase = '''Provide a string that I will generate its BWT transform: ''' lowerCamelCase = input(entry_msg).strip() lowerCamelCase = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result["bwt_string"]}\'''' ) lowerCamelCase = reverse_bwt(result['''bwt_string'''], result['''idx_original_string''']) print( f'''Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ''' f'''we get original string \'{original_string}\'''' )
211
from collections.abc import Iterable from typing import Any class _a : def __init__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : int | None = None )-> Tuple: lowerCAmelCase__ : Union[str, Any] = value lowerCAmelCase__ : Node | None = None # Added in order to delete a node easier lowerCAmelCase__ : Node | None = None lowerCAmelCase__ : Node | None = None def __repr__( self : List[Any] )-> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'{self.value}': (self.left, self.right)} , indent=1 ) class _a : def __init__( self : Tuple , _SCREAMING_SNAKE_CASE : Node | None = None )-> int: lowerCAmelCase__ : Dict = root def __str__( self : Tuple )-> str: return str(self.root ) def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : Node , _SCREAMING_SNAKE_CASE : Node | None )-> None: if new_children is not None: # reset its kids lowerCAmelCase__ : Union[str, Any] = node.parent if node.parent is not None: # reset its parent if self.is_right(_SCREAMING_SNAKE_CASE ): # If it is the right children lowerCAmelCase__ : List[str] = new_children else: lowerCAmelCase__ : Any = new_children else: lowerCAmelCase__ : Optional[Any] = new_children def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : Node )-> bool: if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase__( self : int )-> bool: return self.root is None def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] )-> None: lowerCAmelCase__ : Any = Node(_SCREAMING_SNAKE_CASE ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase__ : Optional[Any] = new_node # set its root else: # Tree is not empty lowerCAmelCase__ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase__ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase__ : List[Any] = parent_node.left else: if parent_node.right is None: lowerCAmelCase__ : Tuple = new_node break else: lowerCAmelCase__ : Union[str, Any] = parent_node.right lowerCAmelCase__ : Dict = parent_node def UpperCAmelCase__( self : str , *_SCREAMING_SNAKE_CASE : List[Any] )-> None: for value in values: self.__insert(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] )-> Node | None: if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: lowerCAmelCase__ : Union[str, Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase__ : List[str] = node.left if value < node.value else node.right return node def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : Node | None = None )-> Node | None: if node is None: if self.root is None: return None lowerCAmelCase__ : List[Any] = self.root if not self.empty(): while node.right is not None: lowerCAmelCase__ : str = node.right return node def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : Node | None = None )-> Node | None: if node is None: lowerCAmelCase__ : Any = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase__ : Dict = self.root while node.left is not None: lowerCAmelCase__ : Tuple = node.left return node def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : int )-> None: lowerCAmelCase__ : Optional[Any] = self.search(_SCREAMING_SNAKE_CASE ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif node.left is None: # Has only right children self.__reassign_nodes(_SCREAMING_SNAKE_CASE , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_SCREAMING_SNAKE_CASE , node.left ) else: lowerCAmelCase__ : Tuple = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase__ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Node | None )-> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple=None )-> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : Node | None )-> None: if node: self.inorder(_SCREAMING_SNAKE_CASE , node.left ) arr.append(node.value ) self.inorder(_SCREAMING_SNAKE_CASE , node.right ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Node )-> int: lowerCAmelCase__ : list[int] = [] self.inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # append all values to list using inorder traversal return arr[k - 1] def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : List[str] = [] if curr_node is not None: lowerCAmelCase__ : Optional[int] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : List[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase__ : str = BinarySearchTree() for i in testlist: t.insert(_a ) # Prints all the elements of the list in order traversal print(_a ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(_a ) print(_a ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
211
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class A_ ( unittest.TestCase ): _lowercase : Optional[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowercase : Optional[Any] = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: __lowerCAmelCase: Optional[int] = TextaTextGenerationPipeline(model=UpperCAmelCase , tokenizer=UpperCAmelCase ) return generator, ["Something to write", "Something else"] def UpperCAmelCase ( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Any ) -> int: __lowerCAmelCase: Tuple = generator('Something there' ) self.assertEqual(UpperCAmelCase , [{'generated_text': ANY(UpperCAmelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) __lowerCAmelCase: Any = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=UpperCAmelCase ) self.assertEqual( UpperCAmelCase , [ [{'generated_text': ANY(UpperCAmelCase )}, {'generated_text': ANY(UpperCAmelCase )}], [{'generated_text': ANY(UpperCAmelCase )}, {'generated_text': ANY(UpperCAmelCase )}], ] , ) __lowerCAmelCase: Dict = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=UpperCAmelCase ) self.assertEqual( UpperCAmelCase , [ [{'generated_text': ANY(UpperCAmelCase )}, {'generated_text': ANY(UpperCAmelCase )}], [{'generated_text': ANY(UpperCAmelCase )}, {'generated_text': ANY(UpperCAmelCase )}], ] , ) with self.assertRaises(UpperCAmelCase ): generator(4 ) @require_torch def UpperCAmelCase ( self : int ) -> Any: __lowerCAmelCase: str = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility __lowerCAmelCase: Any = generator('Something there' , do_sample=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , [{'generated_text': ''}] ) __lowerCAmelCase: Any = 3 __lowerCAmelCase: List[str] = generator( 'Something there' , num_return_sequences=UpperCAmelCase , num_beams=UpperCAmelCase , ) __lowerCAmelCase: Optional[Any] = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: str = generator('This is a test' , do_sample=UpperCAmelCase , num_return_sequences=2 , return_tensors=UpperCAmelCase ) self.assertEqual( UpperCAmelCase , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) __lowerCAmelCase: int = generator.model.config.eos_token_id __lowerCAmelCase: str = '<pad>' __lowerCAmelCase: Optional[Any] = generator( ['This is a test', 'This is a second test'] , do_sample=UpperCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=UpperCAmelCase , ) self.assertEqual( UpperCAmelCase , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def UpperCAmelCase ( self : Any ) -> Optional[int]: __lowerCAmelCase: Union[str, Any] = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility __lowerCAmelCase: Optional[Any] = generator('Something there' , do_sample=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , [{'generated_text': ''}] )
322
import os from datetime import datetime as dt from github import Github _a = [ '''good first issue''', '''feature request''', '''wip''', ] def _a ( ) -> List[Any]: """simple docstring""" __lowerCAmelCase: Dict = Github(os.environ['GITHUB_TOKEN'] ) __lowerCAmelCase: Tuple = g.get_repo('huggingface/accelerate' ) __lowerCAmelCase: str = repo.get_issues(state='open' ) for issue in open_issues: __lowerCAmelCase: Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = comments[0] if len(SCREAMING_SNAKE_CASE ) > 0 else None __lowerCAmelCase: Tuple = dt.utcnow() __lowerCAmelCase: Optional[int] = (current_time - issue.updated_at).days __lowerCAmelCase: str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
322
1
"""simple docstring""" import re def a__ ( __SCREAMING_SNAKE_CASE ) -> bool: __lowerCAmelCase: str = re.compile( R"^(?:0|94|\+94|0{2}94)" R"7(0|1|2|4|5|6|7|8)" R"(-| |)" R"\d{7}$" ) return bool(re.search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": __A = "0094702343221" print(is_sri_lankan_phone_number(phone))
108
"""simple docstring""" from __future__ import annotations from math import pi def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
108
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _a = logging.get_logger(__name__) class __lowerCamelCase ( _lowercase): """simple docstring""" def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
39
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: UpperCamelCase = _modexpt(_SCREAMING_SNAKE_CASE , exponent // 2 , _SCREAMING_SNAKE_CASE ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_SCREAMING_SNAKE_CASE , exponent - 1 , _SCREAMING_SNAKE_CASE )) % modulo_value def a__ ( _SCREAMING_SNAKE_CASE = 1_777 , _SCREAMING_SNAKE_CASE = 1_855 , _SCREAMING_SNAKE_CASE = 8 ): """simple docstring""" UpperCamelCase = base for _ in range(1 , _SCREAMING_SNAKE_CASE ): UpperCamelCase = _modexpt(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
153
0
"""simple docstring""" import sys import turtle def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->tuple[float, float]: """simple docstring""" return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, ) ->None: """simple docstring""" my_pen.up() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) if depth == 0: return triangle(_UpperCamelCase, get_mid(_UpperCamelCase, _UpperCamelCase ), get_mid(_UpperCamelCase, _UpperCamelCase ), depth - 1 ) triangle(_UpperCamelCase, get_mid(_UpperCamelCase, _UpperCamelCase ), get_mid(_UpperCamelCase, _UpperCamelCase ), depth - 1 ) triangle(_UpperCamelCase, get_mid(_UpperCamelCase, _UpperCamelCase ), get_mid(_UpperCamelCase, _UpperCamelCase ), depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) __a = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') __a = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
353
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __lowerCamelCase ( self ): lowercase : int = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase : List[Any] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase : Optional[int] = '''The dog is cute and lives in the garden house''' lowercase : List[str] = jnp.array([tokenizer.encode(SCREAMING_SNAKE_CASE__ )] ) lowercase : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase : Union[str, Any] = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase : Any = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) )
173
0
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) __lowerCAmelCase : int ={ """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _A ( _UpperCamelCase ): snake_case__ : Any = 'time_series_transformer' snake_case__ : str = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = "student_t" , __lowerCAmelCase = "nll" , __lowerCAmelCase = 1 , __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7] , __lowerCAmelCase = "mean" , __lowerCAmelCase = 0 , __lowerCAmelCase = 0 , __lowerCAmelCase = 0 , __lowerCAmelCase = 0 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 32 , __lowerCAmelCase = 32 , __lowerCAmelCase = 2 , __lowerCAmelCase = 2 , __lowerCAmelCase = 2 , __lowerCAmelCase = 2 , __lowerCAmelCase = True , __lowerCAmelCase = "gelu" , __lowerCAmelCase = 64 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase=True , **__lowerCAmelCase , ): """simple docstring""" lowercase = prediction_length lowercase = context_length or prediction_length lowercase = distribution_output lowercase = loss lowercase = input_size lowercase = num_time_features lowercase = lags_sequence lowercase = scaling lowercase = num_dynamic_real_features lowercase = num_static_real_features lowercase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_UpperCAmelCase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) lowercase = cardinality else: lowercase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCAmelCase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) lowercase = embedding_dimension else: lowercase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase = num_parallel_samples # Transformer architecture configuration lowercase = input_size * len(_UpperCAmelCase ) + self._number_of_features lowercase = d_model lowercase = encoder_attention_heads lowercase = decoder_attention_heads lowercase = encoder_ffn_dim lowercase = decoder_ffn_dim lowercase = encoder_layers lowercase = decoder_layers lowercase = dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = encoder_layerdrop lowercase = decoder_layerdrop lowercase = activation_function lowercase = init_std lowercase = use_cache super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def A__ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
197
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = { '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
0
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __snake_case( ) -> Optional[int]: snake_case__ : Dict = 9, 14 # noqa: F841 snake_case__ : List[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] snake_case__ : str = defaultdict(_lowerCAmelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) snake_case__ : Tuple = mst(_lowerCAmelCase ) snake_case__ : Tuple = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: snake_case__ : List[Any] = tuple(answer[:2] ) snake_case__ : Any = tuple(edge[::-1] ) assert edge in result or reverse in result
355
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Any ): snake_case__ : int = [] def lowerCamelCase ( self : Optional[int] , snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : Any , **snake_case_ : str ): self.events.append("""on_init_end""" ) def lowerCamelCase ( self : List[str] , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : List[Any] , **snake_case_ : List[str] ): self.events.append("""on_train_begin""" ) def lowerCamelCase ( self : Dict , snake_case_ : Dict , snake_case_ : str , snake_case_ : int , **snake_case_ : str ): self.events.append("""on_train_end""" ) def lowerCamelCase ( self : List[str] , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : List[str] , **snake_case_ : int ): self.events.append("""on_epoch_begin""" ) def lowerCamelCase ( self : List[Any] , snake_case_ : str , snake_case_ : List[str] , snake_case_ : List[Any] , **snake_case_ : Union[str, Any] ): self.events.append("""on_epoch_end""" ) def lowerCamelCase ( self : Tuple , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , **snake_case_ : str ): self.events.append("""on_step_begin""" ) def lowerCamelCase ( self : Optional[Any] , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Any , **snake_case_ : Optional[Any] ): self.events.append("""on_step_end""" ) def lowerCamelCase ( self : List[str] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : int , **snake_case_ : List[Any] ): self.events.append("""on_evaluate""" ) def lowerCamelCase ( self : int , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : Optional[int] , **snake_case_ : Any ): self.events.append("""on_predict""" ) def lowerCamelCase ( self : int , snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : Dict , **snake_case_ : str ): self.events.append("""on_save""" ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : int , **snake_case_ : Optional[int] ): self.events.append("""on_log""" ) def lowerCamelCase ( self : Any , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , **snake_case_ : Tuple ): self.events.append("""on_prediction_step""" ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Tuple ): snake_case__ : List[Any] = tempfile.mkdtemp() def lowerCamelCase ( self : List[Any] ): shutil.rmtree(self.output_dir ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : List[Any]=0 , snake_case_ : List[Any]=0 , snake_case_ : List[str]=64 , snake_case_ : Optional[Any]=64 , snake_case_ : List[Any]=None , snake_case_ : Optional[int]=False , **snake_case_ : int ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. snake_case__ : Optional[int] = RegressionDataset(length=snake_case_ ) snake_case__ : Dict = RegressionDataset(length=snake_case_ ) snake_case__ : Any = RegressionModelConfig(a=snake_case_ , b=snake_case_ ) snake_case__ : str = RegressionPreTrainedModel(snake_case_ ) snake_case__ : Any = TrainingArguments(self.output_dir , disable_tqdm=snake_case_ , report_to=[] , **snake_case_ ) return Trainer( snake_case_ , snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , callbacks=snake_case_ , ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[int] ): self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) # Order doesn't matter snake_case__ : int = sorted(snake_case_ , key=lambda snake_case_ : cb.__name__ if isinstance(snake_case_ , snake_case_ ) else cb.__class__.__name__ ) snake_case__ : Optional[int] = sorted(snake_case_ , key=lambda snake_case_ : cb.__name__ if isinstance(snake_case_ , snake_case_ ) else cb.__class__.__name__ ) for cba, cba in zip(snake_case_ , snake_case_ ): if isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ): self.assertEqual(snake_case_ , snake_case_ ) elif isinstance(snake_case_ , snake_case_ ) and not isinstance(snake_case_ , snake_case_ ): self.assertEqual(snake_case_ , cba.__class__ ) elif not isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ): self.assertEqual(cba.__class__ , snake_case_ ) else: self.assertEqual(snake_case_ , snake_case_ ) def lowerCamelCase ( self : str , snake_case_ : Optional[Any] ): snake_case__ : Optional[Any] = ["""on_init_end""", """on_train_begin"""] snake_case__ : Optional[int] = 0 snake_case__ : Any = len(trainer.get_eval_dataloader() ) snake_case__ : Optional[int] = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(snake_case_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowerCamelCase ( self : Optional[int] ): snake_case__ : Tuple = self.get_trainer() snake_case__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) # Callbacks passed at init are added to the default callbacks snake_case__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback snake_case__ : int = self.get_trainer(disable_tqdm=snake_case_ ) snake_case__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) def lowerCamelCase ( self : Optional[int] ): snake_case__ : Optional[int] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] snake_case__ : Any = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(snake_case_ ) expected_callbacks.remove(snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) snake_case__ : List[Any] = self.get_trainer() snake_case__ : List[Any] = trainer.pop_callback(snake_case_ ) self.assertEqual(cb.__class__ , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) trainer.add_callback(snake_case_ ) expected_callbacks.insert(0 , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) # We can also add, pop, or remove by instance snake_case__ : Optional[Any] = self.get_trainer() snake_case__ : Any = trainer.callback_handler.callbacks[0] trainer.remove_callback(snake_case_ ) expected_callbacks.remove(snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) snake_case__ : Any = self.get_trainer() snake_case__ : Dict = trainer.callback_handler.callbacks[0] snake_case__ : Optional[int] = trainer.pop_callback(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) trainer.add_callback(snake_case_ ) expected_callbacks.insert(0 , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) def lowerCamelCase ( self : str ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=snake_case_ ) snake_case__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() snake_case__ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) # Independent log/save/eval snake_case__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() snake_case__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() snake_case__ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) snake_case__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() snake_case__ : Optional[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) snake_case__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() snake_case__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) # A bit of everything snake_case__ : Optional[int] = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() snake_case__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: snake_case__ : Optional[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(snake_case_ ) in warn_mock.call_args[0][0]
43
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = ['pixel_values'] def __init__(self , A = True , A = None , A = None , A = PILImageResampling.BILINEAR , A = True , A = 1 / 255 , A = True , A = None , A = None , **A , ) -> None: """simple docstring""" super().__init__(**A ) _a = size if size is not None else {'''shortest_edge''': 384} _a = get_size_dict(A , default_to_square=A ) _a = do_resize _a = size # Default value set here for backwards compatibility where the value in config is None _a = crop_pct if crop_pct is not None else 224 / 256 _a = resample _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ (self , A , A , A , A = PILImageResampling.BICUBIC , A = None , **A , ) -> np.ndarray: """simple docstring""" _a = get_size_dict(A , default_to_square=A ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) _a = size['''shortest_edge'''] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _a = int(shortest_edge / crop_pct ) _a = get_resize_output_image_size(A , size=A , default_to_square=A ) _a = resize(image=A , size=A , resample=A , data_format=A , **A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=A , size=(shortest_edge, shortest_edge) , data_format=A , **A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( A , size=(shortest_edge, shortest_edge) , resample=A , data_format=A , **A ) def a__ (self , A , A , A = None , **A , ) -> int: """simple docstring""" return rescale(A , scale=A , data_format=A , **A ) def a__ (self , A , A , A , A = None , **A , ) -> np.ndarray: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A ) def a__ (self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: """simple docstring""" _a = do_resize if do_resize is not None else self.do_resize _a = crop_pct if crop_pct is not None else self.crop_pct _a = resample if resample is not None else self.resample _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = size if size is not None else self.size _a = get_size_dict(A , default_to_square=A ) _a = make_list_of_images(A ) if not valid_images(A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _a = [to_numpy_array(A ) for image in images] if do_resize: _a = [self.resize(image=A , size=A , crop_pct=A , resample=A ) for image in images] if do_rescale: _a = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: _a = [self.normalize(image=A , mean=A , std=A ) for image in images] _a = [to_channel_dimension_format(A , A ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=A , tensor_type=A )
211
'''simple docstring''' from collections.abc import Generator from math import sin def lowerCAmelCase (__A): """simple docstring""" if len(__A) != 32: raise ValueError('''Input must be of length 32''') _a = b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowerCAmelCase (__A): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''') _a = format(__A , '''08x''')[-8:] _a = b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''') return little_endian_hex def lowerCAmelCase (__A): """simple docstring""" _a = b'''''' for char in message: bit_string += format(__A , '''08b''').encode('''utf-8''') _a = format(len(__A) , '''064b''').encode('''utf-8''') # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__A) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:]) + to_little_endian(start_len[:32]) return bit_string def lowerCAmelCase (__A): """simple docstring""" if len(__A) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''') for pos in range(0 , len(__A) , 512): _a = bit_string[pos : pos + 512] _a = [] for i in range(0 , 512 , 32): block_words.append(int(to_little_endian(block[i : i + 32]) , 2)) yield block_words def lowerCAmelCase (__A): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''') _a = format(__A , '''032b''') _a = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(__A , 2) def lowerCAmelCase (__A , __A): """simple docstring""" return (a + b) % 2**32 def lowerCAmelCase (__A , __A): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''') if shift < 0: raise ValueError('''Shift must be non-negative''') return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def lowerCAmelCase (__A): """simple docstring""" _a = preprocess(__A) _a = [int(2**32 * abs(sin(i + 1))) for i in range(64)] # Starting states _a = 0x67_452_301 _a = 0xEF_CDA_B89 _a = 0x98_BAD_CFE _a = 0x10_325_476 _a = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__A): _a = aa _a = ba _a = ca _a = da # Hash current chunk for i in range(64): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a = d ^ (b & (c ^ d)) _a = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a = c ^ (d & (b ^ c)) _a = (5 * i + 1) % 16 elif i <= 47: _a = b ^ c ^ d _a = (3 * i + 5) % 16 else: _a = c ^ (b | not_aa(__A)) _a = (7 * i) % 16 _a = (f + a + added_consts[i] + block_words[g]) % 2**32 _a = d _a = c _a = b _a = sum_aa(__A , left_rotate_aa(__A , shift_amounts[i])) # Add hashed chunk to running total _a = sum_aa(__A , __A) _a = sum_aa(__A , __A) _a = sum_aa(__A , __A) _a = sum_aa(__A , __A) _a = reformat_hex(__A) + reformat_hex(__A) + reformat_hex(__A) + reformat_hex(__A) return digest if __name__ == "__main__": import doctest doctest.testmod()
211
1
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Optional[int] = """owlvit_text_model""" def __init__( self : Optional[int] , UpperCAmelCase : Optional[Any]=4_94_08 , UpperCAmelCase : Tuple=5_12 , UpperCAmelCase : Optional[Any]=20_48 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : str=16 , UpperCAmelCase : Union[str, Any]="quick_gelu" , UpperCAmelCase : Any=1e-5 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : List[str]=0.02 , UpperCAmelCase : List[Any]=1.0 , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=4_94_06 , UpperCAmelCase : List[str]=4_94_07 , **UpperCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : int = hidden_size lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : List[str] = num_attention_heads lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Optional[Any] = hidden_act lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : List[str] = attention_dropout lowerCAmelCase_ : Tuple = initializer_range lowerCAmelCase_ : int = initializer_factor @classmethod def A ( cls : str , UpperCAmelCase : Union[str, os.PathLike] , **UpperCAmelCase : List[str] ): cls._set_token_in_kwargs(UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ : str = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": lowerCAmelCase_ : Tuple = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class __a ( __UpperCamelCase ): __snake_case : List[str] = """owlvit_vision_model""" def __init__( self : List[Any] , UpperCAmelCase : Dict=7_68 , UpperCAmelCase : Union[str, Any]=30_72 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : int=3 , UpperCAmelCase : Dict=7_68 , UpperCAmelCase : Dict=32 , UpperCAmelCase : Tuple="quick_gelu" , UpperCAmelCase : str=1e-5 , UpperCAmelCase : int=0.0 , UpperCAmelCase : str=0.02 , UpperCAmelCase : Optional[Any]=1.0 , **UpperCAmelCase : Dict , ): super().__init__(**UpperCAmelCase ) lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Tuple = intermediate_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : List[Any] = num_attention_heads lowerCAmelCase_ : Any = num_channels lowerCAmelCase_ : Optional[int] = image_size lowerCAmelCase_ : int = patch_size lowerCAmelCase_ : Optional[Any] = hidden_act lowerCAmelCase_ : Any = layer_norm_eps lowerCAmelCase_ : Any = attention_dropout lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : Any = initializer_factor @classmethod def A ( cls : List[str] , UpperCAmelCase : Union[str, os.PathLike] , **UpperCAmelCase : Optional[Any] ): cls._set_token_in_kwargs(UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ : List[str] = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": lowerCAmelCase_ : Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class __a ( __UpperCamelCase ): __snake_case : Dict = """owlvit""" __snake_case : List[str] = True def __init__( self : Tuple , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[int]=5_12 , UpperCAmelCase : Tuple=2.6592 , UpperCAmelCase : List[str]=True , **UpperCAmelCase : str , ): super().__init__(**UpperCAmelCase ) if text_config is None: lowerCAmelCase_ : List[str] = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: lowerCAmelCase_ : str = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) lowerCAmelCase_ : Union[str, Any] = OwlViTTextConfig(**UpperCAmelCase ) lowerCAmelCase_ : Tuple = OwlViTVisionConfig(**UpperCAmelCase ) lowerCAmelCase_ : int = projection_dim lowerCAmelCase_ : int = logit_scale_init_value lowerCAmelCase_ : Dict = return_dict lowerCAmelCase_ : Optional[int] = 1.0 @classmethod def A ( cls : Union[str, Any] , UpperCAmelCase : Union[str, os.PathLike] , **UpperCAmelCase : Dict ): cls._set_token_in_kwargs(UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Dict = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) @classmethod def A ( cls : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , **UpperCAmelCase : Union[str, Any] ): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : List[str] = text_config lowerCAmelCase_ : List[Any] = vision_config return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Tuple = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : str = self.text_config.to_dict() lowerCAmelCase_ : Optional[int] = self.vision_config.to_dict() lowerCAmelCase_ : Dict = self.__class__.model_type return output class __a ( __UpperCamelCase ): @property def A ( self : Tuple ): return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def A ( self : Optional[Any] ): return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def A ( self : Dict ): return 1e-4 def A ( self : Any , UpperCAmelCase : "ProcessorMixin" , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : Optional["TensorType"] = None , ): lowerCAmelCase_ : List[Any] = super().generate_dummy_inputs( processor.tokenizer , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , framework=UpperCAmelCase ) lowerCAmelCase_ : Dict = super().generate_dummy_inputs( processor.image_processor , batch_size=UpperCAmelCase , framework=UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def A ( self : List[Any] ): return 14
28
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
28
1
"""simple docstring""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib lowerCAmelCase__ = threading.Lock() lowerCAmelCase__ = None lowerCAmelCase__ = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } lowerCAmelCase__ = logging.WARNING lowerCAmelCase__ = True def a__ ( ): '''simple docstring''' lowerCAmelCase : Dict = os.getenv("TRANSFORMERS_VERBOSITY" , SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def a__ ( ): '''simple docstring''' return __name__.split("." )[0] def a__ ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def a__ ( ): '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return lowerCAmelCase : int = logging.StreamHandler() # Set sys.stderr as stream. lowerCAmelCase : Optional[int] = sys.stderr.flush # Apply our default configuration to the library root logger. lowerCAmelCase : Optional[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) lowerCAmelCase : List[Any] = False def a__ ( ): '''simple docstring''' global _default_handler with _lock: if not _default_handler: return lowerCAmelCase : Tuple = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) lowerCAmelCase : Optional[Any] = None def a__ ( ): '''simple docstring''' return log_levels def a__ ( SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if name is None: lowerCAmelCase : List[str] = _get_library_name() _configure_library_root_logger() return logging.getLogger(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def a__ ( ): '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def a__ ( SCREAMING_SNAKE_CASE : logging.Handler ): '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : logging.Handler ): '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' _configure_library_root_logger() lowerCAmelCase : Optional[Any] = False def a__ ( ): '''simple docstring''' _configure_library_root_logger() lowerCAmelCase : List[Any] = True def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = _get_library_root_logger().handlers for handler in handlers: lowerCAmelCase : Optional[Any] = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Dict = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(SCREAMING_SNAKE_CASE ) def a__ ( self : int , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , SCREAMING_SNAKE_CASE ) if no_advisory_warnings: return self.warning(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = warning_advice @functools.lru_cache(SCREAMING_SNAKE_CASE ) def a__ ( self : str , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' self.warning(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = warning_once class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , *snake_case__ , **snake_case__ ): # pylint: disable=unused-argument """simple docstring""" lowerCAmelCase : Dict = args[0] if args else None def __iter__( self ): """simple docstring""" return iter(self._iterator ) def __getattr__( self , snake_case__ ): """simple docstring""" def empty_fn(*snake_case__ , **snake_case__ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): """simple docstring""" return self def __exit__( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __call__( self , *snake_case__ , **snake_case__ ): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm(*snake_case__ , **snake_case__ ) else: return EmptyTqdm(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case__ , **snake_case__ ) def lowercase__ ( self ): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCAmelCase__ = _tqdm_cls() def a__ ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def a__ ( ): '''simple docstring''' global _tqdm_active lowerCAmelCase : Optional[Any] = True hf_hub_utils.enable_progress_bars() def a__ ( ): '''simple docstring''' global _tqdm_active lowerCAmelCase : Tuple = False hf_hub_utils.disable_progress_bars()
108
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , snake_case__=None , snake_case__=None , *snake_case__ , **snake_case__ ): """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) if config is None: assert isinstance(self.model , snake_case__ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f""" {self.model.__class__}""" ) lowerCAmelCase : Optional[int] = self.model.config else: lowerCAmelCase : List[str] = config lowerCAmelCase : Any = data_args lowerCAmelCase : Tuple = self.config.tgt_vocab_size if isinstance(self.config , snake_case__ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" " padding.." ) if self.args.label_smoothing == 0: lowerCAmelCase : int = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowerCAmelCase : Tuple = label_smoothed_nll_loss def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.optimizer is None: lowerCAmelCase : Optional[int] = ["bias", "LayerNorm.weight"] lowerCAmelCase : str = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] lowerCAmelCase : Union[str, Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowerCAmelCase : Dict = Adafactor lowerCAmelCase : Optional[int] = {"scale_parameter": False, "relative_step": False} else: lowerCAmelCase : int = AdamW lowerCAmelCase : int = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } lowerCAmelCase : Any = self.args.learning_rate if self.sharded_ddp: lowerCAmelCase : int = OSS( params=snake_case__ , optim=snake_case__ , **snake_case__ , ) else: lowerCAmelCase : Any = optimizer_cls(snake_case__ , **snake_case__ ) if self.lr_scheduler is None: lowerCAmelCase : Tuple = self._get_lr_scheduler(snake_case__ ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowerCAmelCase : Tuple = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowerCAmelCase : Any = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: lowerCAmelCase : str = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=snake_case__ ) return scheduler def lowercase__ ( self ): """simple docstring""" if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowerCAmelCase : Dict = model(**snake_case__ , use_cache=snake_case__ )[0] lowerCAmelCase : List[Any] = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models lowerCAmelCase , lowerCAmelCase : str = model(**snake_case__ , labels=snake_case__ , use_cache=snake_case__ )[:2] else: # compute label smoothed loss lowerCAmelCase : int = model(**snake_case__ , use_cache=snake_case__ )[0] lowerCAmelCase : List[Any] = torch.nn.functional.log_softmax(snake_case__ , dim=-1 ) lowerCAmelCase , lowerCAmelCase : str = self.loss_fn(snake_case__ , snake_case__ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = inputs.pop("labels" ) lowerCAmelCase , lowerCAmelCase : str = self._compute_loss(snake_case__ , snake_case__ , snake_case__ ) return loss def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , ): """simple docstring""" lowerCAmelCase : List[str] = self._prepare_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowerCAmelCase : Dict = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **snake_case__ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowerCAmelCase : Dict = self._pad_tensors_to_max_len(snake_case__ , gen_kwargs["max_length"] ) lowerCAmelCase : Optional[Any] = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data lowerCAmelCase , lowerCAmelCase : Dict = self._compute_loss(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[str] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowerCAmelCase : int = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowerCAmelCase : Optional[int] = self._pad_tensors_to_max_len(snake_case__ , gen_kwargs["max_length"] ) return (loss, logits, labels) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" f""" padded to `max_length`={max_length}""" ) lowerCAmelCase : Optional[Any] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) lowerCAmelCase : int = tensor return padded_tensor
108
1
import datasets _snake_case : Tuple = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' _snake_case : Dict = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' _snake_case : Optional[int] = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def lowercase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: return {"accuracy": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )}
361
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : List[str] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Union[str, Any]=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Dict, lowerCAmelCase_ : int=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = ViTConfig() __lowerCAmelCase = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": __lowerCAmelCase = True __lowerCAmelCase = int(vit_name[-12:-10] ) __lowerCAmelCase = int(vit_name[-9:-6] ) else: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = int(vit_name[-6:-4] ) __lowerCAmelCase = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): __lowerCAmelCase = 192 __lowerCAmelCase = 768 __lowerCAmelCase = 12 __lowerCAmelCase = 3 elif vit_name[9:].startswith('small' ): __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 else: pass else: if vit_name[4:].startswith('small' ): __lowerCAmelCase = 768 __lowerCAmelCase = 2304 __lowerCAmelCase = 8 __lowerCAmelCase = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif vit_name[4:].startswith('huge' ): __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 # load original model from timm __lowerCAmelCase = timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = timm_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if vit_name[-5:] == "in21k": __lowerCAmelCase = ViTModel(lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: __lowerCAmelCase = DeiTImageProcessor(size=config.image_size ) else: __lowerCAmelCase = ViTImageProcessor(size=config.image_size ) __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = timm_model.forward_features(lowerCAmelCase_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCAmelCase_, outputs.pooler_output, atol=1E-3 ) else: __lowerCAmelCase = timm_model(lowerCAmelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _snake_case : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
207
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 60_08_51_47_51_43 ) -> Tuple: '''simple docstring''' try: lowercase_ = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) lowercase_ = 2 lowercase_ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 lowercase_ = i while n % i == 0: lowercase_ = n // i i += 1 return int(__lowerCAmelCase ) if __name__ == "__main__": print(F"{solution() = }")
136
"""simple docstring""" from maths.prime_factors import prime_factors def __magic_name__ ( lowercase ): if not isinstance(lowercase , lowercase ): SCREAMING_SNAKE_CASE_: int =f'''Input value of [number={number}] must be an integer''' raise TypeError(lowercase ) if number < 1: raise ValueError("""Input must be a positive integer""" ) return -1 if len(prime_factors(lowercase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
173
0
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _snake_case : Any = get_logger(__name__) class A : def __init__( self : List[Any] , lowerCAmelCase_ : Optional[str] = None ) -> Optional[int]: """simple docstring""" _a = ( os.path.join(lowerCAmelCase_ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _a = Extractor def __lowerCAmelCase ( self : int , lowerCAmelCase_ : str ) -> str: """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _a = os.path.abspath(lowerCAmelCase_ ) return os.path.join(self.extract_dir , hash_url_to_filename(lowerCAmelCase_ ) ) def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : bool ) -> bool: """simple docstring""" return force_extract or ( not os.path.isfile(lowerCAmelCase_ ) and not (os.path.isdir(lowerCAmelCase_ ) and os.listdir(lowerCAmelCase_ )) ) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : bool = False ) -> str: """simple docstring""" _a = self.extractor.infer_extractor_format(lowerCAmelCase_ ) if not extractor_format: return input_path _a = self._get_output_path(lowerCAmelCase_ ) if self._do_extract(lowerCAmelCase_ , lowerCAmelCase_ ): self.extractor.extract(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return output_path class A ( _a ): @classmethod @abstractmethod def __lowerCAmelCase ( cls : str , lowerCAmelCase_ : Union[Path, str] , **lowerCAmelCase_ : List[Any] ) -> bool: """simple docstring""" ... @staticmethod @abstractmethod def __lowerCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: """simple docstring""" ... class A ( _a ,_a ): lowercase_ = [] @staticmethod def __lowerCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : int ) -> Tuple: """simple docstring""" with open(lowerCAmelCase_ , '''rb''' ) as f: return f.read(lowerCAmelCase_ ) @classmethod def __lowerCAmelCase ( cls : Any , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : bytes = b"" ) -> bool: """simple docstring""" if not magic_number: _a = max(len(lowerCAmelCase_ ) for cls_magic_number in cls.magic_numbers ) try: _a = cls.read_magic_number(lowerCAmelCase_ , lowerCAmelCase_ ) except OSError: return False return any(magic_number.startswith(lowerCAmelCase_ ) for cls_magic_number in cls.magic_numbers ) class A ( _a ): @classmethod def __lowerCAmelCase ( cls : str , lowerCAmelCase_ : Union[Path, str] , **lowerCAmelCase_ : Any ) -> bool: """simple docstring""" return tarfile.is_tarfile(lowerCAmelCase_ ) @staticmethod def __lowerCAmelCase ( lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] ) -> List[str]: """simple docstring""" def resolved(lowerCAmelCase_ : str ) -> str: return os.path.realpath(os.path.abspath(lowerCAmelCase_ ) ) def badpath(lowerCAmelCase_ : str , lowerCAmelCase_ : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ).startswith(lowerCAmelCase_ ) def badlink(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ) -> bool: # Links are interpreted relative to the directory containing the link _a = resolved(os.path.join(lowerCAmelCase_ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=lowerCAmelCase_ ) _a = resolved(lowerCAmelCase_ ) for finfo in members: if badpath(finfo.name , lowerCAmelCase_ ): logger.error(F'Extraction of {finfo.name} is blocked (illegal path)' ) elif finfo.issym() and badlink(lowerCAmelCase_ , lowerCAmelCase_ ): logger.error(F'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}' ) elif finfo.islnk() and badlink(lowerCAmelCase_ , lowerCAmelCase_ ): logger.error(F'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}' ) else: yield finfo @staticmethod def __lowerCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: """simple docstring""" os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) _a = tarfile.open(lowerCAmelCase_ ) tar_file.extractall(lowerCAmelCase_ , members=TarExtractor.safemembers(lowerCAmelCase_ , lowerCAmelCase_ ) ) tar_file.close() class A ( _a ): lowercase_ = [b'\x1F\x8B'] @staticmethod def __lowerCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: """simple docstring""" with gzip.open(lowerCAmelCase_ , '''rb''' ) as gzip_file: with open(lowerCAmelCase_ , '''wb''' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase_ , lowerCAmelCase_ ) class A ( _a ): lowercase_ = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def __lowerCAmelCase ( cls : str , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : bytes = b"" ) -> bool: """simple docstring""" if super().is_extractable(lowerCAmelCase_ , magic_number=lowerCAmelCase_ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowerCAmelCase_ , '''rb''' ) as fp: _a = _EndRecData(lowerCAmelCase_ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _a = fp.read(lowerCAmelCase_ ) # CD is where we expect it to be if len(lowerCAmelCase_ ) == sizeCentralDir: _a = struct.unpack(lowerCAmelCase_ , lowerCAmelCase_ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def __lowerCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: """simple docstring""" os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) with zipfile.ZipFile(lowerCAmelCase_ , '''r''' ) as zip_file: zip_file.extractall(lowerCAmelCase_ ) zip_file.close() class A ( _a ): lowercase_ = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def __lowerCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: """simple docstring""" with lzma.open(lowerCAmelCase_ ) as compressed_file: with open(lowerCAmelCase_ , '''wb''' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase_ , lowerCAmelCase_ ) class A ( _a ): lowercase_ = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def __lowerCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) _a = rarfile.RarFile(lowerCAmelCase_ ) rf.extractall(lowerCAmelCase_ ) rf.close() class A ( _a ): lowercase_ = [b'\x28\xb5\x2F\xFD'] @staticmethod def __lowerCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd _a = zstd.ZstdDecompressor() with open(lowerCAmelCase_ , '''rb''' ) as ifh, open(lowerCAmelCase_ , '''wb''' ) as ofh: dctx.copy_stream(lowerCAmelCase_ , lowerCAmelCase_ ) class A ( _a ): lowercase_ = [b'\x42\x5A\x68'] @staticmethod def __lowerCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: """simple docstring""" with bza.open(lowerCAmelCase_ , '''rb''' ) as compressed_file: with open(lowerCAmelCase_ , '''wb''' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase_ , lowerCAmelCase_ ) class A ( _a ): lowercase_ = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def __lowerCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) with pyazr.SevenZipFile(lowerCAmelCase_ , '''r''' ) as archive: archive.extractall(lowerCAmelCase_ ) class A ( _a ): lowercase_ = [b'\x04\x22\x4D\x18'] @staticmethod def __lowerCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(lowerCAmelCase_ , '''rb''' ) as compressed_file: with open(lowerCAmelCase_ , '''wb''' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase_ , lowerCAmelCase_ ) class A : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) lowercase_ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def __lowerCAmelCase ( cls : List[Any] ) -> Optional[Any]: """simple docstring""" return max( len(lowerCAmelCase_ ) for extractor in cls.extractors.values() if issubclass(lowerCAmelCase_ , lowerCAmelCase_ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def __lowerCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : int ) -> List[Any]: """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(lowerCAmelCase_ , magic_number_length=lowerCAmelCase_ ) except OSError: return b"" @classmethod def __lowerCAmelCase ( cls : Any , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : bool = False ) -> bool: """simple docstring""" warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=lowerCAmelCase_ , ) _a = cls.infer_extractor_format(lowerCAmelCase_ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def __lowerCAmelCase ( cls : List[str] , lowerCAmelCase_ : Union[Path, str] ) -> str: # <Added version="2.4.0"/> """simple docstring""" _a = cls._get_magic_number_max_length() _a = cls._read_magic_number(lowerCAmelCase_ , lowerCAmelCase_ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowerCAmelCase_ , magic_number=lowerCAmelCase_ ): return extractor_format @classmethod def __lowerCAmelCase ( cls : Tuple , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[BaseExtractor] = "deprecated" , ) -> None: """simple docstring""" os.makedirs(os.path.dirname(lowerCAmelCase_ ) , exist_ok=lowerCAmelCase_ ) # Prevent parallel extractions _a = str(Path(lowerCAmelCase_ ).with_suffix('''.lock''' ) ) with FileLock(lowerCAmelCase_ ): shutil.rmtree(lowerCAmelCase_ , ignore_errors=lowerCAmelCase_ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=lowerCAmelCase_ , ) _a = extractor if extractor != '''deprecated''' else extractor_format else: _a = cls.extractors[extractor_format] return extractor.extract(lowerCAmelCase_ , lowerCAmelCase_ ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=lowerCAmelCase_ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowerCAmelCase_ ): return extractor.extract(lowerCAmelCase_ , lowerCAmelCase_ )
179
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=_a ): lowercase_ = ['torch', 'scipy'] def __init__( self : Tuple , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Any ) -> Tuple: """simple docstring""" requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def __lowerCAmelCase ( cls : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : str ) -> Tuple: """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[int] , *lowerCAmelCase_ : str , **lowerCAmelCase_ : List[str] ) -> str: """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] )
179
1
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _snake_case : Dict = FlaxDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""", safety_checker=__lowercase, cache_dir=__lowercase ) _snake_case : int = [t[-1] for t in os.walk(os.path.join(__lowercase, os.listdir(__lowercase )[0], """snapshots""" ) )] _snake_case : Tuple = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(""".bin""" ) for f in files ) @slow @require_flax class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Tuple = FlaxStableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""", safety_checker=__lowercase ) _snake_case : Optional[int] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _snake_case : Optional[Any] = jax.random.PRNGKey(0 ) _snake_case : str = 4 _snake_case : Union[str, Any] = jax.device_count() _snake_case : Dict = num_samples * [prompt] _snake_case : Optional[int] = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng _snake_case : str = replicate(__lowercase ) _snake_case : Optional[Any] = jax.random.split(__lowercase, __lowercase ) _snake_case : Optional[Any] = shard(__lowercase ) _snake_case : Optional[Any] = pipeline(__lowercase, __lowercase, __lowercase, __lowercase, jit=__lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1_514_745 ) < 1E-3 assert np.abs(np.abs(__lowercase, dtype=np.floataa ).sum() - 49_947.875 ) < 5E-1 _snake_case : Optional[int] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__lowercase ) == num_samples def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Dict = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""", revision="""flax""", safety_checker=__lowercase ) _snake_case : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _snake_case : List[Any] = jax.random.PRNGKey(0 ) _snake_case : str = 50 _snake_case : Union[str, Any] = jax.device_count() _snake_case : Any = num_samples * [prompt] _snake_case : Dict = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng _snake_case : List[str] = replicate(__lowercase ) _snake_case : List[Any] = jax.random.split(__lowercase, __lowercase ) _snake_case : str = shard(__lowercase ) _snake_case : List[str] = pipeline(__lowercase, __lowercase, __lowercase, __lowercase, jit=__lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05_652_401) ) < 1E-3 assert np.abs((np.abs(__lowercase, dtype=np.floataa ).sum() - 2_383_808.2) ) < 5E-1 def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : List[str] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""", revision="""bf16""", dtype=jnp.bfloataa, safety_checker=__lowercase ) _snake_case : Optional[int] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _snake_case : str = jax.random.PRNGKey(0 ) _snake_case : Dict = 50 _snake_case : Optional[Any] = jax.device_count() _snake_case : Optional[int] = num_samples * [prompt] _snake_case : Optional[int] = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng _snake_case : List[str] = replicate(__lowercase ) _snake_case : Optional[Any] = jax.random.split(__lowercase, __lowercase ) _snake_case : Optional[int] = shard(__lowercase ) _snake_case : Optional[Any] = pipeline(__lowercase, __lowercase, __lowercase, __lowercase, jit=__lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(__lowercase, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""", revision="""bf16""", dtype=jnp.bfloataa ) _snake_case : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _snake_case : List[Any] = jax.random.PRNGKey(0 ) _snake_case : List[Any] = 50 _snake_case : Any = jax.device_count() _snake_case : List[str] = num_samples * [prompt] _snake_case : Tuple = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng _snake_case : Any = replicate(__lowercase ) _snake_case : Optional[int] = jax.random.split(__lowercase, __lowercase ) _snake_case : Dict = shard(__lowercase ) _snake_case : Optional[Any] = pipeline(__lowercase, __lowercase, __lowercase, __lowercase, jit=__lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(__lowercase, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Tuple = FlaxDDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="""scaled_linear""", set_alpha_to_one=__lowercase, steps_offset=1, ) _snake_case : Any = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""", revision="""bf16""", dtype=jnp.bfloataa, scheduler=__lowercase, safety_checker=__lowercase, ) _snake_case : str = scheduler.create_state() _snake_case : Any = scheduler_state _snake_case : Any = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _snake_case : Union[str, Any] = jax.random.PRNGKey(0 ) _snake_case : Any = 50 _snake_case : str = jax.device_count() _snake_case : Optional[int] = num_samples * [prompt] _snake_case : List[str] = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng _snake_case : Optional[int] = replicate(__lowercase ) _snake_case : List[Any] = jax.random.split(__lowercase, __lowercase ) _snake_case : int = shard(__lowercase ) _snake_case : List[Any] = pipeline(__lowercase, __lowercase, __lowercase, __lowercase, jit=__lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045_043_945) ) < 1E-3 assert np.abs((np.abs(__lowercase, dtype=np.floataa ).sum() - 2_347_693.5) ) < 5E-1 def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _snake_case : Optional[int] = jax.device_count() _snake_case : int = num_samples * [prompt] _snake_case : Optional[Any] = jax.random.split(jax.random.PRNGKey(0 ), __lowercase ) _snake_case : Dict = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""", revision="""bf16""", dtype=jnp.bfloataa, safety_checker=__lowercase, ) _snake_case : List[str] = replicate(__lowercase ) _snake_case : Optional[int] = pipeline.prepare_inputs(__lowercase ) _snake_case : List[Any] = shard(__lowercase ) _snake_case : str = pipeline(__lowercase, __lowercase, __lowercase, jit=__lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) _snake_case : int = images[2, 0, 256, 10:17, 1] # With memory efficient attention _snake_case : Dict = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""", revision="""bf16""", dtype=jnp.bfloataa, safety_checker=__lowercase, use_memory_efficient_attention=__lowercase, ) _snake_case : List[str] = replicate(__lowercase ) _snake_case : Dict = pipeline.prepare_inputs(__lowercase ) _snake_case : Union[str, Any] = shard(__lowercase ) _snake_case : str = pipeline(__lowercase, __lowercase, __lowercase, jit=__lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) _snake_case : Union[str, Any] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
64
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __lowercase = (720, 1280) # Height, Width __lowercase = (0.4, 0.6) # if height or width lower than this scale, drop it. __lowercase = 1 / 100 __lowercase = '''''' __lowercase = '''''' __lowercase = '''''' __lowercase = 250 def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase :List[Any] = get_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for index in range(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[Any] = random.sample(range(len(SCREAMING_SNAKE_CASE ) ) , 4 ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :str = update_image_and_anno( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , filter_scale=SCREAMING_SNAKE_CASE , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCamelCase :List[Any] = random_chars(32 ) __UpperCamelCase :List[str] = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCamelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(f"""{file_root}.jpg""" , SCREAMING_SNAKE_CASE , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) __UpperCamelCase :Optional[Any] = [] for anno in new_annos: __UpperCamelCase :int = anno[3] - anno[1] __UpperCamelCase :Optional[int] = anno[4] - anno[2] __UpperCamelCase :int = anno[1] + width / 2 __UpperCamelCase :List[str] = anno[2] + height / 2 __UpperCamelCase :str = f"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(SCREAMING_SNAKE_CASE ) with open(f"""{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :str = [] __UpperCamelCase :str = [] for label_file in glob.glob(os.path.join(SCREAMING_SNAKE_CASE , '''*.txt''' ) ): __UpperCamelCase :Any = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(SCREAMING_SNAKE_CASE ) as in_file: __UpperCamelCase :str = in_file.readlines() __UpperCamelCase :Optional[int] = os.path.join(SCREAMING_SNAKE_CASE , f"""{label_name}.jpg""" ) __UpperCamelCase :int = [] for obj_list in obj_lists: __UpperCamelCase :Optional[int] = obj_list.rstrip('''\n''' ).split(''' ''' ) __UpperCamelCase :Any = float(obj[1] ) - float(obj[3] ) / 2 __UpperCamelCase :List[str] = float(obj[2] ) - float(obj[4] ) / 2 __UpperCamelCase :Dict = float(obj[1] ) + float(obj[3] ) / 2 __UpperCamelCase :List[str] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(SCREAMING_SNAKE_CASE ) labels.append(SCREAMING_SNAKE_CASE ) return img_paths, labels def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.0 , ): '''simple docstring''' __UpperCamelCase :List[str] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __UpperCamelCase :List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase :int = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase :Optional[int] = int(scale_x * output_size[1] ) __UpperCamelCase :Any = int(scale_y * output_size[0] ) __UpperCamelCase :List[str] = [] __UpperCamelCase :Dict = [] for i, index in enumerate(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Any = all_img_list[index] path_list.append(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = all_annos[index] __UpperCamelCase :Union[str, Any] = cva.imread(SCREAMING_SNAKE_CASE ) if i == 0: # top-left __UpperCamelCase :str = cva.resize(SCREAMING_SNAKE_CASE , (divid_point_x, divid_point_y) ) __UpperCamelCase :Union[str, Any] = img for bbox in img_annos: __UpperCamelCase :Union[str, Any] = bbox[1] * scale_x __UpperCamelCase :Optional[Any] = bbox[2] * scale_y __UpperCamelCase :int = bbox[3] * scale_x __UpperCamelCase :Union[str, Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __UpperCamelCase :str = cva.resize(SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, divid_point_y) ) __UpperCamelCase :List[str] = img for bbox in img_annos: __UpperCamelCase :str = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase :Dict = bbox[2] * scale_y __UpperCamelCase :Optional[Any] = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase :List[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __UpperCamelCase :str = cva.resize(SCREAMING_SNAKE_CASE , (divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase :Optional[int] = img for bbox in img_annos: __UpperCamelCase :Tuple = bbox[1] * scale_x __UpperCamelCase :Optional[Any] = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase :Tuple = bbox[3] * scale_x __UpperCamelCase :Dict = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __UpperCamelCase :Optional[int] = cva.resize( SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase :Optional[int] = img for bbox in img_annos: __UpperCamelCase :Optional[Any] = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase :Optional[int] = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase :Optional[Any] = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase :int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __UpperCamelCase :List[Any] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" __UpperCamelCase :Optional[Any] = ascii_lowercase + digits return "".join(random.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main() print('''DONE ✅''')
43
0
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A_ = """xvjiarui/stable-diffusion-2-inpainting""" A_ , A_ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase__ , safety_checker=UpperCamelCase__ ) A_ = """Face of a yellow cat, high resolution, sitting on a park bench""" A_ = jax.random.PRNGKey(0 ) A_ = 50 A_ = jax.device_count() A_ = num_samples * [prompt] A_ = num_samples * [init_image] A_ = num_samples * [mask_image] A_ , A_ , A_ = pipeline.prepare_inputs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # shard inputs and rng A_ = replicate(UpperCamelCase__ ) A_ = jax.random.split(UpperCamelCase__ , jax.device_count() ) A_ = shard(UpperCamelCase__ ) A_ = shard(UpperCamelCase__ ) A_ = shard(UpperCamelCase__ ) A_ = pipeline( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , jit=UpperCamelCase__ ) A_ = output.images.reshape(UpperCamelCase__ , 512 , 512 , 3 ) A_ = images[0, 253:256, 253:256, -1] A_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) A_ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
101
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> list[float]: A_ , A_ = coefficient_matrix.shape A_ , A_ = constant_matrix.shape if rowsa != colsa: A_ = F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(UpperCAmelCase__ ) if colsa != 1: A_ = F'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(UpperCAmelCase__ ) if rowsa != rowsa: A_ = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ F'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != rowsa: A_ = ( """Number of initial values must be equal to number of rows in coefficient """ F'''matrix but received {len(UpperCAmelCase__ )} and {rowsa}''' ) raise ValueError(UpperCAmelCase__ ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) A_ = np.concatenate( (coefficient_matrix, constant_matrix), axis=1 ) A_ , A_ = table.shape strictly_diagonally_dominant(UpperCAmelCase__ ) # Iterates the whole matrix for given number of times for _ in range(UpperCAmelCase__ ): A_ = [] for row in range(UpperCAmelCase__ ): A_ = 0 for col in range(UpperCAmelCase__ ): if col == row: A_ = table[row][col] elif col == cols - 1: A_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] A_ = (temp + val) / denom new_val.append(UpperCAmelCase__ ) A_ = new_val return [float(UpperCAmelCase__ ) for i in new_val] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: A_ , A_ = table.shape A_ = True for i in range(0, UpperCAmelCase__ ): A_ = 0 for j in range(0, cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
101
1
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : Tuple ): """simple docstring""" UpperCamelCase = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) UpperCamelCase = Vector() def A ( self : Any ): """simple docstring""" UpperCamelCase = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCamelCase__ ) , '(0,0,0,0,0,1)' ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCamelCase__ ) , 4 ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = Vector([1, 2] ) UpperCamelCase = Vector([1, 2, 3, 4, 5] ) UpperCamelCase = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) UpperCamelCase = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = Vector([1, 2, 3] ) UpperCamelCase = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def A ( self : Any ): """simple docstring""" UpperCamelCase = Vector([1, 2, 3] ) UpperCamelCase = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = Vector([1, 2, 3] ) UpperCamelCase = Vector([2, -1, 4] ) # for test of dot product UpperCamelCase = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def A ( self : Dict ): """simple docstring""" self.assertEqual(str(zero_vector(1_0 ) ).count('0' ) , 1_0 ) def A ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def A ( self : str ): """simple docstring""" UpperCamelCase = Vector([1, 2, 3] ) UpperCamelCase = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCamelCase__ , UpperCamelCase__ ) ) , '(3,4,7)' ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = Vector([1, 0, 0, 0, 0, 0] ) UpperCamelCase = x.copy() self.assertEqual(str(UpperCamelCase__ ) , str(UpperCamelCase__ ) ) def A ( self : List[str] ): """simple docstring""" UpperCamelCase = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCamelCase__ ) , '(0,1,0)' ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(UpperCamelCase__ ) ) def A ( self : Any ): """simple docstring""" UpperCamelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCamelCase = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCamelCase__ , UpperCamelCase__ ) ) def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCamelCase = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCamelCase__ , UpperCamelCase__ ) ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def A ( self : List[str] ): """simple docstring""" UpperCamelCase = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) UpperCamelCase = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(UpperCamelCase__ ) ) def A ( self : List[str] ): """simple docstring""" UpperCamelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def A ( self : List[str] ): """simple docstring""" UpperCamelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCamelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def A ( self : List[str] ): """simple docstring""" UpperCamelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCamelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def A ( self : List[str] ): """simple docstring""" self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
28
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowerCamelCase : Any = logging.get_logger(__name__) @add_end_docstrings(_a ) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Any , *UpperCamelCase__ : Dict , **UpperCamelCase__ : Union[str, Any] ): """simple docstring""" super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) requires_backends(self , 'decord' ) self.check_model_type(UpperCamelCase__ ) def A ( self : Optional[int] , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[Any]=None ): """simple docstring""" UpperCamelCase = {} if frame_sampling_rate is not None: UpperCamelCase = frame_sampling_rate if num_frames is not None: UpperCamelCase = num_frames UpperCamelCase = {} if top_k is not None: UpperCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[str] , UpperCamelCase__ : Union[str, List[str]] , **UpperCamelCase__ : Dict ): """simple docstring""" return super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) def A ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Tuple=1 ): """simple docstring""" if num_frames is None: UpperCamelCase = self.model.config.num_frames if video.startswith('http://' ) or video.startswith('https://' ): UpperCamelCase = BytesIO(requests.get(UpperCamelCase__ ).content ) UpperCamelCase = VideoReader(UpperCamelCase__ ) videoreader.seek(0 ) UpperCamelCase = 0 UpperCamelCase = num_frames * frame_sampling_rate - 1 UpperCamelCase = np.linspace(UpperCamelCase__ , UpperCamelCase__ , num=UpperCamelCase__ , dtype=np.intaa ) UpperCamelCase = videoreader.get_batch(UpperCamelCase__ ).asnumpy() UpperCamelCase = list(UpperCamelCase__ ) UpperCamelCase = self.image_processor(UpperCamelCase__ , return_tensors=self.framework ) return model_inputs def A ( self : Union[str, Any] , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = self.model(**UpperCamelCase__ ) return model_outputs def A ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : List[Any]=5 ): """simple docstring""" if top_k > self.model.config.num_labels: UpperCamelCase = self.model.config.num_labels if self.framework == "pt": UpperCamelCase = model_outputs.logits.softmax(-1 )[0] UpperCamelCase , UpperCamelCase = probs.topk(UpperCamelCase__ ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) UpperCamelCase = scores.tolist() UpperCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase__ , UpperCamelCase__ )]
28
1
'''simple docstring''' import math import sys import cva import numpy as np def lowerCamelCase ( lowerCAmelCase : np.ndarray , lowerCAmelCase : float ): """simple docstring""" __magic_name__ : List[str] = math.sqrt(lowerCAmelCase ) __magic_name__ : Optional[Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def lowerCamelCase ( lowerCAmelCase : np.ndarray , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" __magic_name__ : List[Any] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : float ): """simple docstring""" __magic_name__ : Tuple = np.zeros((kernel_size, kernel_size) ) for i in range(0 , lowerCAmelCase ): for j in range(0 , lowerCAmelCase ): __magic_name__ : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : np.ndarray , lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : int , ): """simple docstring""" __magic_name__ : Any = np.zeros(img.shape ) __magic_name__ : Dict = get_gauss_kernel(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Tuple = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __magic_name__ : List[Any] = get_slice(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __magic_name__ : int = img_s - img_s[kernel_size // 2, kernel_size // 2] __magic_name__ : int = vec_gaussian(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Union[str, Any] = np.multiply(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : int = np.multiply(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Optional[int] = np.sum(lowerCAmelCase ) / np.sum(lowerCAmelCase ) __magic_name__ : List[str] = val return imga def lowerCamelCase ( lowerCAmelCase : list ): """simple docstring""" __magic_name__ : List[str] = args[1] if args[1:] else '../image_data/lena.jpg' __magic_name__ : Tuple = float(args[2] ) if args[2:] else 1.0 __magic_name__ : str = float(args[3] ) if args[3:] else 1.0 if args[4:]: __magic_name__ : List[str] = int(args[4] ) __magic_name__ : Optional[int] = kernel_size + abs(kernel_size % 2 - 1 ) else: __magic_name__ : str = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCAmelCase :Union[str, Any] = parse_args(sys.argv) lowerCAmelCase :int = cva.imread(filename, 0) cva.imshow('''input image''', img) lowerCAmelCase :Tuple = img / 2_5_5 lowerCAmelCase :Optional[int] = out.astype('''float32''') lowerCAmelCase :List[Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCAmelCase :Tuple = out * 2_5_5 lowerCAmelCase :Union[str, Any] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
356
'''simple docstring''' lowerCAmelCase :Union[str, Any] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase :Union[str, Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase :Tuple = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
275
0
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean A : Tuple = 0 A : Any = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A : Optional[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right A : str = tuple[int, int] class __A: def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) -> List[Any]: '''simple docstring''' __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() __a = self.g_cost + self.h_cost def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.pos_x - self.goal_x __a = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_snake_case ) + abs(_snake_case ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , _snake_case ) -> Optional[int]: '''simple docstring''' return self.f_cost < other.f_cost class __A: def __init__( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _snake_case ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _snake_case ) __a = [self.start] __a = [] __a = False def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_snake_case ) self.closed_nodes.append(_snake_case ) __a = self.get_successors(_snake_case ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_snake_case ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(_snake_case ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_snake_case ) else: self.open_nodes.append(_snake_case ) return [self.start.pos] def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_snake_case ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _snake_case , _snake_case , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _snake_case , ) ) return successors def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Any: '''simple docstring''' __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path class __A: def __init__( self , _snake_case , _snake_case ) -> Any: '''simple docstring''' __a = AStar(_snake_case , _snake_case ) __a = AStar(_snake_case , _snake_case ) __a = False def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __a = self.fwd_astar.open_nodes.pop(0 ) __a = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _snake_case , _snake_case ) self.fwd_astar.closed_nodes.append(_snake_case ) self.bwd_astar.closed_nodes.append(_snake_case ) __a = current_bwd_node __a = current_fwd_node __a = { self.fwd_astar: self.fwd_astar.get_successors(_snake_case ), self.bwd_astar: self.bwd_astar.get_successors(_snake_case ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_snake_case ) else: # retrieve the best current path __a = astar.open_nodes.pop( astar.open_nodes.index(_snake_case ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_snake_case ) else: astar.open_nodes.append(_snake_case ) return [self.fwd_astar.start.pos] def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = self.fwd_astar.retrace_path(_snake_case ) __a = self.bwd_astar.retrace_path(_snake_case ) bwd_path.pop() bwd_path.reverse() __a = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] A : Optional[Any] = (0, 0) A : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) A : str = time.time() A : List[str] = AStar(init, goal) A : Optional[Any] = a_star.search() A : Optional[int] = time.time() - start_time print(F"AStar execution time = {end_time:f} seconds") A : Optional[int] = time.time() A : Optional[Any] = BidirectionalAStar(init, goal) A : Tuple = time.time() - bd_start_time print(F"BidirectionalAStar execution time = {bd_end_time:f} seconds")
6
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') lowercase__ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(lowerCamelCase_ ): os.makedirs(lowerCamelCase_ ) lowercase__ = model.state_dict() def to_tf_var_name(lowerCamelCase_ ): for patt, repl in iter(lowerCamelCase_ ): lowercase__ = name.replace(lowerCamelCase_ , lowerCamelCase_ ) return F"""bert/{name}""" def create_tf_var(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): lowercase__ = tf.dtypes.as_dtype(tensor.dtype ) lowercase__ = tf.get_variable(dtype=lowerCamelCase_ , shape=tensor.shape , name=lowerCamelCase_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowerCamelCase_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase__ = to_tf_var_name(lowerCamelCase_ ) lowercase__ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase__ = torch_tensor.T lowercase__ = create_tf_var(tensor=lowerCamelCase_ , name=lowerCamelCase_ , session=lowerCamelCase_ ) tf.keras.backend.set_value(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = session.run(lowerCamelCase_ ) print(F"""Successfully created {tf_name}: {np.allclose(lowerCamelCase_ , lowerCamelCase_ )}""" ) lowercase__ = tf.train.Saver(tf.trainable_variables() ) saver.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def a ( lowerCamelCase_=None ): '''simple docstring''' lowercase__ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=lowerCamelCase_ , default=lowerCamelCase_ , required=lowerCamelCase_ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''Directory in which to save tensorflow model''' ) lowercase__ = parser.parse_args(lowerCamelCase_ ) lowercase__ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowerCamelCase_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
207
0
"""simple docstring""" import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class __magic_name__ ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = inspect.getfile(accelerate.test_utils ) __UpperCamelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] ) __UpperCamelCase = ["accelerate", "launch"] __UpperCamelCase = Path.home() / ".cache/huggingface/accelerate" __UpperCamelCase = "default_config.yaml" __UpperCamelCase = config_folder / config_file __UpperCamelCase = config_folder / "_default_config.yaml" __UpperCamelCase = Path("tests/test_configs" ) @classmethod def _lowerCAmelCase ( cls ): """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def _lowerCAmelCase ( cls ): """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def _lowerCAmelCase ( self ): """simple docstring""" for config in sorted(self.test_config_path.glob("""**/*.yaml""" ) ): with self.subTest(config_file=_a ): execute_subprocess_async( self.base_cmd + ["""--config_file""", str(_a ), self.test_file_path] , env=os.environ.copy() ) def _lowerCAmelCase ( self ): """simple docstring""" execute_subprocess_async(["""accelerate""", """test"""] , env=os.environ.copy() ) class __magic_name__ ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = "test-tpu" __UpperCamelCase = "us-central1-a" __UpperCamelCase = "ls" __UpperCamelCase = ["accelerate", "tpu-config"] __UpperCamelCase = "cd /usr/share" __UpperCamelCase = "tests/test_samples/test_command_file.sh" __UpperCamelCase = "Running gcloud compute tpus tpu-vm ssh" def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = run_command( self.cmd + ["""--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug"""] , return_stdout=_a , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , _a , ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=_a , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , _a , ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--debug"""] , return_stdout=_a ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , _a , ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--debug"""] , return_stdout=_a , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , _a , ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--command""", """echo \"Hello World\"""", """--debug""", ] , return_stdout=_a , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all' , _a , ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command_file""", self.command_file, """--debug"""] , return_stdout=_a , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , _a , ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command_file""", self.command_file, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=_a , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , _a , ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--debug"""] , return_stdout=_a , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all' , _a , ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--accelerate_version""", """12.0.0""", """--debug""", ] , return_stdout=_a , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all' , _a , )
168
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def a__ ( snake_case__ ) -> List[str]: lowerCamelCase = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def a__ ( snake_case__ ) -> int: lowerCamelCase , lowerCamelCase = emb.weight.shape lowerCamelCase = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) lowerCamelCase = emb.weight.data return lin_layer def a__ ( snake_case__ ) -> Tuple: lowerCamelCase = torch.load(snake_case__ , map_location="""cpu""" ) lowerCamelCase = Namespace(**checkpoint["""cfg"""]["""model"""] ) lowerCamelCase = checkpoint["""model"""] remove_ignore_keys_(snake_case__ ) lowerCamelCase = state_dict["""decoder.embed_tokens.weight"""].shape[0] lowerCamelCase = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} lowerCamelCase = XGLMConfig( vocab_size=snake_case__ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) lowerCamelCase = XGLMForCausalLM(snake_case__ ) lowerCamelCase = model.load_state_dict(snake_case__ , strict=snake_case__ ) print(snake_case__ ) lowerCamelCase = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") lowerCAmelCase : Union[str, Any] = parser.parse_args() lowerCAmelCase : Tuple = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
168
1
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __snake_case : """simple docstring""" def __init__( self , __lowerCamelCase , __lowerCamelCase=99 , __lowerCamelCase=13 , __lowerCamelCase=16 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=2 , __lowerCamelCase=32 , __lowerCamelCase=4 , __lowerCamelCase=4 , __lowerCamelCase=30 , __lowerCamelCase=0 , __lowerCamelCase=1 , __lowerCamelCase=2 , __lowerCamelCase=None , ): '''simple docstring''' __A : List[Any] = parent __A : int = batch_size __A : List[str] = decoder_seq_length # For common tests __A : Any = self.decoder_seq_length __A : List[str] = is_training __A : Dict = use_attention_mask __A : List[str] = use_labels __A : Dict = vocab_size __A : Tuple = d_model __A : Optional[int] = d_model __A : Dict = decoder_layers __A : Union[str, Any] = decoder_layers __A : int = decoder_ffn_dim __A : Optional[int] = decoder_attention_heads __A : Any = decoder_attention_heads __A : Optional[Any] = eos_token_id __A : Tuple = bos_token_id __A : Tuple = pad_token_id __A : Optional[Any] = decoder_start_token_id __A : str = use_cache __A : Tuple = max_position_embeddings __A : Optional[int] = None __A : Any = decoder_seq_length __A : Tuple = 2 __A : Optional[int] = 1 def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __A : List[str] = None if self.use_attention_mask: __A : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __A : Tuple = None if self.use_labels: __A : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __A : Dict = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): '''simple docstring''' __A : Dict = True __A : Any = TrOCRDecoder(config=__lowerCamelCase ).to(__lowerCamelCase ).eval() __A : int = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __A : List[Any] = model(__lowerCamelCase , use_cache=__lowerCamelCase ) __A : Optional[Any] = model(__lowerCamelCase ) __A : Optional[int] = model(__lowerCamelCase , use_cache=__lowerCamelCase ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) + 1 ) __A : Any = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids __A : Dict = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __A : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __A : Dict = model(__lowerCamelCase )['''last_hidden_state'''] __A : List[str] = model(__lowerCamelCase , past_key_values=__lowerCamelCase )['''last_hidden_state'''] # select random slice __A : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __A : Tuple = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __A : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) def UpperCamelCase__( self ): '''simple docstring''' __A : Union[str, Any] = self.prepare_config_and_inputs() __A , __A , __A , __A : List[str] = config_and_inputs __A : Dict = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class __snake_case ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () _lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else () _lowerCamelCase = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} _lowerCamelCase = True _lowerCamelCase = False def UpperCamelCase__( self ): '''simple docstring''' __A : str = TrOCRStandaloneDecoderModelTester(self , is_training=__lowerCamelCase ) __A : Dict = ConfigTester(self , config_class=__lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' pass def UpperCamelCase__( self ): '''simple docstring''' pass def UpperCamelCase__( self ): '''simple docstring''' pass def UpperCamelCase__( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def UpperCamelCase__( self ): '''simple docstring''' pass
179
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """roberta""" def __init__( self , __lowerCamelCase=5_0265 , __lowerCamelCase=768 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=3072 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=512 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-1_2 , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , __lowerCamelCase="absolute" , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) __A : str = vocab_size __A : Any = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : List[Any] = hidden_act __A : Any = intermediate_size __A : List[str] = hidden_dropout_prob __A : List[Any] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : str = type_vocab_size __A : int = initializer_range __A : Tuple = layer_norm_eps __A : str = position_embedding_type __A : int = use_cache __A : Optional[int] = classifier_dropout class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCamelCase__( self ): '''simple docstring''' if self.task == "multiple-choice": __A : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __A : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
179
1
'''simple docstring''' class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : list ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = set_counts __SCREAMING_SNAKE_CASE = max(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [1] * num_sets __SCREAMING_SNAKE_CASE = list(range(__SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_parent(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_parent(__SCREAMING_SNAKE_CASE ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __SCREAMING_SNAKE_CASE = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = src_parent __SCREAMING_SNAKE_CASE = self.set_counts[src_parent] __SCREAMING_SNAKE_CASE = max(self.max_set , __SCREAMING_SNAKE_CASE ) return True def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set __SCREAMING_SNAKE_CASE = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
355
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( a__ ): """simple docstring""" return x + 2 class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3} ) __SCREAMING_SNAKE_CASE = """x = y""" __SCREAMING_SNAKE_CASE = {"""y""": 5} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 5, """y""": 5} ) def UpperCAmelCase__ ( self : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = """y = add_two(x)""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result is None assert "tried to execute add_two" in out.out def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3} ) def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3\ny = 5""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """text = f'This is x: {x}.'""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """text""": """This is x: 3."""} ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """if x <= 3:\n y = 2\nelse:\n y = 5""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 2} ) __SCREAMING_SNAKE_CASE = {"""x""": 8} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 8, """y""": 5} ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [3, 5] ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_list""": [3, 5]} ) def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """y = x""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 3} ) def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]\ntest_list[1]""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_list""": [3, 5]} ) __SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 0\nfor i in range(3):\n x = i""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""range""": range} , state=__SCREAMING_SNAKE_CASE ) assert result == 2 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 2, """i""": 2} )
331
0
import heapq as hq import math from collections.abc import Iterator class lowercase : def __init__( self ,A__): lowercase = str(id_) lowercase = None lowercase = None lowercase = [] lowercase = {} # {vertex:distance} def __lt__( self ,A__): return self.key < other.key def __repr__( self): return self.id def A__ ( self ,A__): self.neighbors.append(A__) def A__ ( self ,A__ ,A__): lowercase = weight def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowerCAmelCase__ ) graph[b - 1].add_edge(graph[a - 1] , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = [] for u in graph: lowercase = math.inf lowercase = None lowercase = 0 lowercase = graph[:] while q: lowercase = min(lowerCAmelCase__ ) q.remove(lowerCAmelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowercase = u lowercase = u.edges[v.id] for i in range(1 , len(lowerCAmelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' for u in graph: lowercase = math.inf lowercase = None lowercase = 0 lowercase = list(lowerCAmelCase__ ) hq.heapify(lowerCAmelCase__ ) while h: lowercase = hq.heappop(lowerCAmelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowercase = u lowercase = u.edges[v.id] hq.heapify(lowerCAmelCase__ ) for i in range(1 , len(lowerCAmelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCamelCase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
101
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase ( unittest.TestCase ): def A__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self): lowercase = 1 lowercase = 3 lowercase = (3_2, 3_2) lowercase = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0)).to(A__) return image @property def A__ ( self): torch.manual_seed(0) lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=3_2 ,) return model @property def A__ ( self): torch.manual_seed(0) lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) return model @property def A__ ( self): torch.manual_seed(0) lowercase = RobertaSeriesConfig( hidden_size=3_2 ,project_dim=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=5_0_0_6 ,) return RobertaSeriesModelWithTransformation(A__) @property def A__ ( self): def extract(*A__ ,**A__): class lowercase : def __init__( self): lowercase = torch.ones([0]) def A__ ( self ,A__): self.pixel_values.to(A__) return self return Out() return extract def A__ ( self): lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=A__) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''') lowercase = 7_7 lowercase = self.dummy_image.to(A__) lowercase = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase = AltDiffusionImgaImgPipeline( unet=A__ ,scheduler=A__ ,vae=A__ ,text_encoder=A__ ,tokenizer=A__ ,safety_checker=A__ ,feature_extractor=self.dummy_extractor ,) lowercase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=A__) lowercase = alt_pipe.to(A__) alt_pipe.set_progress_bar_config(disable=A__) lowercase = '''A painting of a squirrel eating a burger''' lowercase = torch.Generator(device=A__).manual_seed(0) lowercase = alt_pipe( [prompt] ,generator=A__ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='''np''' ,image=A__ ,) lowercase = output.images lowercase = torch.Generator(device=A__).manual_seed(0) lowercase = alt_pipe( [prompt] ,generator=A__ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='''np''' ,image=A__ ,return_dict=A__ ,)[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowercase = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' ,'''This test requires a GPU''') def A__ ( self): lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=A__) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''') lowercase = 7_7 lowercase = self.dummy_image.to(A__) # put models in fp16 lowercase = unet.half() lowercase = vae.half() lowercase = bert.half() # make sure here that pndm scheduler skips prk lowercase = AltDiffusionImgaImgPipeline( unet=A__ ,scheduler=A__ ,vae=A__ ,text_encoder=A__ ,tokenizer=A__ ,safety_checker=A__ ,feature_extractor=self.dummy_extractor ,) lowercase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=A__) lowercase = alt_pipe.to(A__) alt_pipe.set_progress_bar_config(disable=A__) lowercase = '''A painting of a squirrel eating a burger''' lowercase = torch.manual_seed(0) lowercase = alt_pipe( [prompt] ,generator=A__ ,num_inference_steps=2 ,output_type='''np''' ,image=A__ ,).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' ,'''This test requires a GPU''') def A__ ( self): lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') # resize to resolution that is divisible by 8 but not 16 or 32 lowercase = init_image.resize((7_6_0, 5_0_4)) lowercase = '''BAAI/AltDiffusion''' lowercase = AltDiffusionImgaImgPipeline.from_pretrained( A__ ,safety_checker=A__ ,) pipe.to(A__) pipe.set_progress_bar_config(disable=A__) pipe.enable_attention_slicing() lowercase = '''A fantasy landscape, trending on artstation''' lowercase = torch.manual_seed(0) lowercase = pipe( prompt=A__ ,image=A__ ,strength=0.75 ,guidance_scale=7.5 ,generator=A__ ,output_type='''np''' ,) lowercase = output.images[0] lowercase = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) lowercase = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def A__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self): lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') lowercase = init_image.resize((7_6_8, 5_1_2)) lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''') lowercase = '''BAAI/AltDiffusion''' lowercase = AltDiffusionImgaImgPipeline.from_pretrained( A__ ,safety_checker=A__ ,) pipe.to(A__) pipe.set_progress_bar_config(disable=A__) pipe.enable_attention_slicing() lowercase = '''A fantasy landscape, trending on artstation''' lowercase = torch.manual_seed(0) lowercase = pipe( prompt=A__ ,image=A__ ,strength=0.75 ,guidance_scale=7.5 ,generator=A__ ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image).max() < 1E-2
101
1
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _UpperCAmelCase ( nn.Module ): a : int a : int a : float =0.0 a : int =1 a : int =1 a : bool =True a : bool =False a : bool =False a : bool =False a : jnp.dtype =jnp.floataa def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = [] for i in range(self.num_layers ): __lowerCAmelCase = self.in_channels if i == 0 else self.out_channels __lowerCAmelCase = FlaxResnetBlockaD( in_channels=__SCREAMING_SNAKE_CASE,out_channels=self.out_channels,dropout_prob=self.dropout,dtype=self.dtype,) resnets.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = FlaxTransformeraDModel( in_channels=self.out_channels,n_heads=self.num_attention_heads,d_head=self.out_channels // self.num_attention_heads,depth=1,use_linear_projection=self.use_linear_projection,only_cross_attention=self.only_cross_attention,use_memory_efficient_attention=self.use_memory_efficient_attention,dtype=self.dtype,) attentions.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = resnets __lowerCAmelCase = attentions if self.add_downsample: __lowerCAmelCase = FlaxDownsampleaD(self.out_channels,dtype=self.dtype ) def __call__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' __lowerCAmelCase = () for resnet, attn in zip(self.resnets,self.attentions ): __lowerCAmelCase = resnet(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,deterministic=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = attn(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,deterministic=__SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: __lowerCAmelCase = self.downsamplers_a(__SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class _UpperCAmelCase ( nn.Module ): a : int a : int a : float =0.0 a : int =1 a : bool =True a : jnp.dtype =jnp.floataa def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [] for i in range(self.num_layers ): __lowerCAmelCase = self.in_channels if i == 0 else self.out_channels __lowerCAmelCase = FlaxResnetBlockaD( in_channels=__SCREAMING_SNAKE_CASE,out_channels=self.out_channels,dropout_prob=self.dropout,dtype=self.dtype,) resnets.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = resnets if self.add_downsample: __lowerCAmelCase = FlaxDownsampleaD(self.out_channels,dtype=self.dtype ) def __call__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' __lowerCAmelCase = () for resnet in self.resnets: __lowerCAmelCase = resnet(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,deterministic=__SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: __lowerCAmelCase = self.downsamplers_a(__SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class _UpperCAmelCase ( nn.Module ): a : int a : int a : int a : float =0.0 a : int =1 a : int =1 a : bool =True a : bool =False a : bool =False a : bool =False a : jnp.dtype =jnp.floataa def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = [] for i in range(self.num_layers ): __lowerCAmelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels __lowerCAmelCase = self.prev_output_channel if i == 0 else self.out_channels __lowerCAmelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels,out_channels=self.out_channels,dropout_prob=self.dropout,dtype=self.dtype,) resnets.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = FlaxTransformeraDModel( in_channels=self.out_channels,n_heads=self.num_attention_heads,d_head=self.out_channels // self.num_attention_heads,depth=1,use_linear_projection=self.use_linear_projection,only_cross_attention=self.only_cross_attention,use_memory_efficient_attention=self.use_memory_efficient_attention,dtype=self.dtype,) attentions.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = resnets __lowerCAmelCase = attentions if self.add_upsample: __lowerCAmelCase = FlaxUpsampleaD(self.out_channels,dtype=self.dtype ) def __call__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' for resnet, attn in zip(self.resnets,self.attentions ): # pop res hidden states __lowerCAmelCase = res_hidden_states_tuple[-1] __lowerCAmelCase = res_hidden_states_tuple[:-1] __lowerCAmelCase = jnp.concatenate((hidden_states, res_hidden_states),axis=-1 ) __lowerCAmelCase = resnet(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,deterministic=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = attn(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,deterministic=__SCREAMING_SNAKE_CASE ) if self.add_upsample: __lowerCAmelCase = self.upsamplers_a(__SCREAMING_SNAKE_CASE ) return hidden_states class _UpperCAmelCase ( nn.Module ): a : int a : int a : int a : float =0.0 a : int =1 a : bool =True a : jnp.dtype =jnp.floataa def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [] for i in range(self.num_layers ): __lowerCAmelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels __lowerCAmelCase = self.prev_output_channel if i == 0 else self.out_channels __lowerCAmelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels,out_channels=self.out_channels,dropout_prob=self.dropout,dtype=self.dtype,) resnets.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = resnets if self.add_upsample: __lowerCAmelCase = FlaxUpsampleaD(self.out_channels,dtype=self.dtype ) def __call__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' for resnet in self.resnets: # pop res hidden states __lowerCAmelCase = res_hidden_states_tuple[-1] __lowerCAmelCase = res_hidden_states_tuple[:-1] __lowerCAmelCase = jnp.concatenate((hidden_states, res_hidden_states),axis=-1 ) __lowerCAmelCase = resnet(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,deterministic=__SCREAMING_SNAKE_CASE ) if self.add_upsample: __lowerCAmelCase = self.upsamplers_a(__SCREAMING_SNAKE_CASE ) return hidden_states class _UpperCAmelCase ( nn.Module ): a : int a : float =0.0 a : int =1 a : int =1 a : bool =False a : bool =False a : jnp.dtype =jnp.floataa def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [ FlaxResnetBlockaD( in_channels=self.in_channels,out_channels=self.in_channels,dropout_prob=self.dropout,dtype=self.dtype,) ] __lowerCAmelCase = [] for _ in range(self.num_layers ): __lowerCAmelCase = FlaxTransformeraDModel( in_channels=self.in_channels,n_heads=self.num_attention_heads,d_head=self.in_channels // self.num_attention_heads,depth=1,use_linear_projection=self.use_linear_projection,use_memory_efficient_attention=self.use_memory_efficient_attention,dtype=self.dtype,) attentions.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = FlaxResnetBlockaD( in_channels=self.in_channels,out_channels=self.in_channels,dropout_prob=self.dropout,dtype=self.dtype,) resnets.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = resnets __lowerCAmelCase = attentions def __call__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' __lowerCAmelCase = self.resnets[0](__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for attn, resnet in zip(self.attentions,self.resnets[1:] ): __lowerCAmelCase = attn(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,deterministic=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = resnet(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,deterministic=__SCREAMING_SNAKE_CASE ) return hidden_states
362
'''simple docstring''' import random def _lowerCAmelCase ( lowercase ) -> bool: __lowerCAmelCase = num - 1 __lowerCAmelCase = 0 while s % 2 == 0: __lowerCAmelCase = s // 2 t += 1 for _ in range(5 ): __lowerCAmelCase = random.randrange(2 , num - 1 ) __lowerCAmelCase = pow(lowercase , lowercase , lowercase ) if v != 1: __lowerCAmelCase = 0 while v != (num - 1): if i == t - 1: return False else: __lowerCAmelCase = i + 1 __lowerCAmelCase = (v**2) % num return True def _lowerCAmelCase ( lowercase ) -> bool: if num < 2: return False __lowerCAmelCase = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(lowercase ) def _lowerCAmelCase ( lowercase = 1024 ) -> int: while True: __lowerCAmelCase = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(lowercase ): return num if __name__ == "__main__": _a : Optional[int] = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
46
0
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) SCREAMING_SNAKE_CASE__ = os.path.join("tests", "models", "bert", "test_modeling_bert.py") SCREAMING_SNAKE_CASE__ = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> str: lowerCAmelCase = get_test_to_tester_mapping(A_ ) lowerCAmelCase = get_test_to_tester_mapping(A_ ) lowerCAmelCase = {'''BertModelTest''': '''BertModelTester'''} lowerCAmelCase = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(A_ ) , A_ ) self.assertEqual(get_test_info.to_json(A_ ) , A_ ) def _snake_case ( self ) -> str: lowerCAmelCase = get_model_to_test_mapping(A_ ) lowerCAmelCase = get_model_to_test_mapping(A_ ) lowerCAmelCase = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } lowerCAmelCase = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(A_ ) , A_ ) self.assertEqual(get_test_info.to_json(A_ ) , A_ ) def _snake_case ( self ) -> Any: lowerCAmelCase = get_model_to_tester_mapping(A_ ) lowerCAmelCase = get_model_to_tester_mapping(A_ ) lowerCAmelCase = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } lowerCAmelCase = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(A_ ) , A_ ) self.assertEqual(get_test_info.to_json(A_ ) , A_ )
46
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): _UpperCamelCase = ViTImageProcessor if is_vision_available() else None @property def UpperCamelCase__ ( self ) ->str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : Tuple = (3, 32, 128) __lowerCAmelCase : List[str] = tempfile.mkdtemp() # fmt: off __lowerCAmelCase : List[str] = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __lowerCAmelCase : Optional[int] = dict(zip(A_ , range(len(A_ ) ) ) ) __lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) __lowerCAmelCase : Union[str, Any] = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } __lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A_ , A_ ) def UpperCamelCase__ ( self , **A_ ) ->Tuple: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase__ ( self , **A_ ) ->Tuple: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __lowerCAmelCase : str = Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) return image_input def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : Dict = self.get_tokenizer() __lowerCAmelCase : List[Any] = self.get_image_processor() __lowerCAmelCase : List[Any] = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase : Union[str, Any] = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : Union[str, Any] = self.get_image_processor() __lowerCAmelCase : List[Any] = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase : List[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase : int = self.get_image_processor(do_normalize=A_ , padding_value=1.0 ) __lowerCAmelCase : int = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Any = self.get_image_processor() __lowerCAmelCase : Optional[Any] = self.get_tokenizer() __lowerCAmelCase : int = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : Optional[int] = self.prepare_image_inputs() __lowerCAmelCase : Optional[Any] = image_processor(A_ , return_tensors='''np''' ) __lowerCAmelCase : Tuple = processor(images=A_ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : str = self.get_image_processor() __lowerCAmelCase : Union[str, Any] = self.get_tokenizer() __lowerCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : Any = '''test''' __lowerCAmelCase : Dict = processor(text=A_ ) __lowerCAmelCase : str = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Dict = self.get_image_processor() __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : str = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : List[Any] = '''test''' __lowerCAmelCase : int = self.prepare_image_inputs() __lowerCAmelCase : int = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = self.get_image_processor() __lowerCAmelCase : int = self.get_tokenizer() __lowerCAmelCase : Any = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase : Optional[int] = processor.char_decode(A_ ) __lowerCAmelCase : Tuple = tokenizer.batch_decode(A_ ) __lowerCAmelCase : Any = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(A_ , A_ ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : str = self.get_image_processor() __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : int = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() __lowerCAmelCase : List[Any] = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : List[str] = self.get_image_processor() __lowerCAmelCase : List[str] = self.get_tokenizer() __lowerCAmelCase : Any = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : List[Any] = torch.randn(1 , 27 , 38 ) __lowerCAmelCase : Optional[int] = torch.randn(1 , 27 , 5_0257 ) __lowerCAmelCase : Optional[Any] = torch.randn(1 , 27 , 3_0522 ) __lowerCAmelCase : List[str] = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
275
0
'''simple docstring''' from __future__ import annotations def a_ ( _UpperCAmelCase : list ,_UpperCAmelCase : int | None = None ,_UpperCAmelCase : int | None = None ) -> None: if start is None: __snake_case : Dict = 0 if end is None: __snake_case : Optional[Any] = len(_UpperCAmelCase ) - 1 if start >= end: return __snake_case : List[str] = (start + end) // 2 slowsort(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) slowsort(_UpperCAmelCase ,mid + 1 ,_UpperCAmelCase ) if sequence[end] < sequence[mid]: __snake_case , __snake_case : Union[str, Any] = sequence[mid], sequence[end] slowsort(_UpperCAmelCase ,_UpperCAmelCase ,end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Optional[int] = {} class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = '''llama''' A__ = ['''past_key_values'''] def __init__( self : Any , __a : List[str]=32000 , __a : Union[str, Any]=4096 , __a : Optional[Any]=11008 , __a : Any=32 , __a : str=32 , __a : Optional[int]=None , __a : Dict="silu" , __a : Dict=2048 , __a : List[str]=0.0_2 , __a : Union[str, Any]=1e-6 , __a : Dict=True , __a : List[str]=0 , __a : Tuple=1 , __a : Tuple=2 , __a : Optional[Any]=1 , __a : Any=False , __a : Tuple=None , **__a : List[Any] , ) -> Optional[int]: '''simple docstring''' __snake_case : str = vocab_size __snake_case : List[str] = max_position_embeddings __snake_case : List[Any] = hidden_size __snake_case : Union[str, Any] = intermediate_size __snake_case : Optional[int] = num_hidden_layers __snake_case : List[Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: __snake_case : Optional[int] = num_attention_heads __snake_case : Optional[Any] = num_key_value_heads __snake_case : int = hidden_act __snake_case : Any = initializer_range __snake_case : Any = rms_norm_eps __snake_case : Union[str, Any] = pretraining_tp __snake_case : Optional[int] = use_cache __snake_case : Any = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , ) def A_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'''got {self.rope_scaling}''' ) __snake_case : Optional[Any] = self.rope_scaling.get('type' , __a ) __snake_case : Tuple = self.rope_scaling.get('factor' , __a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
0
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class a : def __init__( self , __magic_name__ , __magic_name__=13 , __magic_name__=7 , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=99 , __magic_name__=32 , __magic_name__=2 , __magic_name__=4 , __magic_name__=37 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=5_12 , __magic_name__=16 , __magic_name__=2 , __magic_name__=0.0_2 , __magic_name__=False , __magic_name__=True , __magic_name__="None" , __magic_name__=3 , __magic_name__=4 , __magic_name__=None , ) -> Optional[int]: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = relative_attention _a = position_biased_input _a = pos_att_type _a = scope def __UpperCAmelCase ( self ) -> Any: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__magic_name__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: _a = TFDebertaVaModel(config=__magic_name__ ) _a = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _a = [input_ids, input_mask] _a = model(__magic_name__ ) _a = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[Any]: _a = TFDebertaVaForMaskedLM(config=__magic_name__ ) _a = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _a = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: _a = self.num_labels _a = TFDebertaVaForSequenceClassification(config=__magic_name__ ) _a = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _a = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: _a = self.num_labels _a = TFDebertaVaForTokenClassification(config=__magic_name__ ) _a = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _a = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: _a = TFDebertaVaForQuestionAnswering(config=__magic_name__ ) _a = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _a = model(__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self ) -> Optional[int]: _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCAmelCase = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _lowerCAmelCase = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False def __UpperCAmelCase ( self ) -> Optional[int]: _a = TFDebertaVaModelTester(self ) _a = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def __UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def __UpperCAmelCase ( self ) -> Optional[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __UpperCAmelCase ( self ) -> Optional[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__magic_name__ ) def __UpperCAmelCase ( self ) -> str: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) def __UpperCAmelCase ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ ) def __UpperCAmelCase ( self ) -> List[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) @slow def __UpperCAmelCase ( self ) -> Optional[int]: _a = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(__magic_name__ ) @require_tf class a ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def __UpperCAmelCase ( self ) -> List[str]: pass @slow def __UpperCAmelCase ( self ) -> Optional[int]: _a = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) _a = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) _a = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a = model(__magic_name__ , attention_mask=__magic_name__ )[0] _a = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __magic_name__ , atol=1e-4 )
168
'''simple docstring''' import numpy as np class a : def __init__( self ) -> List[str]: _a = (0, 0) _a = None _a = 0 _a = 0 _a = 0 def __eq__( self , __magic_name__ ) -> Optional[int]: return self.position == cell.position def __UpperCAmelCase ( self ) -> Any: print(self.position ) class a : def __init__( self , __magic_name__=(5, 5) ) -> Optional[int]: _a = np.zeros(__magic_name__ ) _a = world_size[0] _a = world_size[1] def __UpperCAmelCase ( self ) -> List[Any]: print(self.w ) def __UpperCAmelCase ( self , __magic_name__ ) -> Union[str, Any]: _a = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] _a = cell.position[0] _a = cell.position[1] _a = [] for n in neughbour_cord: _a = current_x + n[0] _a = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: _a = Cell() _a = (x, y) _a = cell neighbours.append(__magic_name__ ) return neighbours def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :int ) -> List[str]: '''simple docstring''' _a = [] _a = [] _open.append(lowerCAmelCase__ ) while _open: _a = np.argmin([n.f for n in _open] ) _a = _open[min_f] _closed.append(_open.pop(lowerCAmelCase__ ) ) if current == goal: break for n in world.get_neigbours(lowerCAmelCase__ ): for c in _closed: if c == n: continue _a = current.g + 1 _a , _a = n.position _a , _a = goal.position _a = (ya - ya) ** 2 + (xa - xa) ** 2 _a = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowerCAmelCase__ ) _a = [] while current.parent is not None: path.append(current.position ) _a = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a_ : str = Gridworld() # Start position and goal a_ : str = Cell() a_ : Dict = (0, 0) a_ : Dict = Cell() a_ : Optional[Any] = (4, 4) print(f'''path from {start.position} to {goal.position}''') a_ : Tuple = astar(world, start, goal) # Just for visual reasons. for i in s: a_ : Any = 1 print(world.w)
168
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class a ( __lowerCamelCase ): __lowerCAmelCase : Union[str, Any] = """poolformer""" def __init__( self :Any ,__lowercase :str=3 ,__lowercase :Optional[Any]=1_6 ,__lowercase :List[Any]=1_6 ,__lowercase :Tuple=3 ,__lowercase :List[Any]=4.0 ,__lowercase :str=[2, 2, 6, 2] ,__lowercase :Tuple=[6_4, 1_2_8, 3_2_0, 5_1_2] ,__lowercase :Any=[7, 3, 3, 3] ,__lowercase :Optional[Any]=[4, 2, 2, 2] ,__lowercase :str=[2, 1, 1, 1] ,__lowercase :Tuple=4 ,__lowercase :List[Any]=0.0 ,__lowercase :int="gelu" ,__lowercase :List[str]=True ,__lowercase :Dict=1e-5 ,__lowercase :Tuple=0.02 ,**__lowercase :int ,): snake_case__ : Any = num_channels snake_case__ : Union[str, Any] = patch_size snake_case__ : Union[str, Any] = stride snake_case__ : Dict = padding snake_case__ : int = pool_size snake_case__ : Tuple = hidden_sizes snake_case__ : Tuple = mlp_ratio snake_case__ : Union[str, Any] = depths snake_case__ : List[str] = patch_sizes snake_case__ : Any = strides snake_case__ : Optional[Any] = num_encoder_blocks snake_case__ : Tuple = drop_path_rate snake_case__ : str = hidden_act snake_case__ : List[Any] = use_layer_scale snake_case__ : Tuple = layer_scale_init_value snake_case__ : List[Any] = initializer_range super().__init__(**__lowercase ) class a ( __lowerCamelCase ): __lowerCAmelCase : List[Any] = version.parse("""1.11""" ) @property def __lowerCamelCase ( self :Dict ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCamelCase ( self :List[str] ): return 2e-3
44
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class a ( unittest.TestCase ): def __init__( self :Optional[Any] ,__lowercase :List[Any] ,__lowercase :Tuple=7 ,__lowercase :Optional[Any]=3 ,__lowercase :Dict=3_0 ,__lowercase :Union[str, Any]=4_0_0 ,__lowercase :Optional[int]=True ,__lowercase :int=None ,__lowercase :int=0.9 ,__lowercase :Optional[int]=None ,__lowercase :Dict=True ,__lowercase :str=[0.5, 0.5, 0.5] ,__lowercase :str=[0.5, 0.5, 0.5] ,): snake_case__ : List[Any] = size if size is not None else {'''shortest_edge''': 3_0} snake_case__ : Any = crop_size if crop_size is not None else {'''height''': 3_0, '''width''': 3_0} snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Tuple = num_channels snake_case__ : List[Any] = min_resolution snake_case__ : int = max_resolution snake_case__ : str = do_resize_and_center_crop snake_case__ : Dict = size snake_case__ : Union[str, Any] = crop_pct snake_case__ : List[str] = crop_size snake_case__ : Optional[Any] = do_normalize snake_case__ : Tuple = image_mean snake_case__ : List[str] = image_std def __lowerCamelCase ( self :Any ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Any = PoolFormerImageProcessor if is_vision_available() else None def __lowerCamelCase ( self :List[str] ): snake_case__ : Tuple = PoolFormerImageProcessingTester(self ) @property def __lowerCamelCase ( self :Any ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self :Tuple ): snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase ,'''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(__lowercase ,'''size''' ) ) self.assertTrue(hasattr(__lowercase ,'''crop_pct''' ) ) self.assertTrue(hasattr(__lowercase ,'''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase ,'''image_mean''' ) ) self.assertTrue(hasattr(__lowercase ,'''image_std''' ) ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 3_0} ) self.assertEqual(image_processor.crop_size ,{'''height''': 3_0, '''width''': 3_0} ) snake_case__ : int = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ,crop_size=8_4 ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size ,{'''height''': 8_4, '''width''': 8_4} ) def __lowerCamelCase ( self :int ): pass def __lowerCamelCase ( self :Optional[Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched snake_case__ : Union[str, Any] = image_processing(__lowercase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def __lowerCamelCase ( self :List[str] ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowercase ,numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,np.ndarray ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched snake_case__ : str = image_processing(__lowercase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def __lowerCamelCase ( self :Optional[Any] ): # Initialize image_processing snake_case__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowercase ,torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,torch.Tensor ) # Test not batched input snake_case__ : Dict = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched snake_case__ : str = image_processing(__lowercase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,)
44
1
from __future__ import annotations from cmath import sqrt def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): """simple docstring""" if a == 0: raise ValueError('''Coefficient \'a\' must not be zero.''' ) a :Any = b * b - 4 * a * c a :str = (-b + sqrt(UpperCAmelCase_ )) / (2 * a) a :Dict = (-b - sqrt(UpperCAmelCase_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __lowerCamelCase ( ): """simple docstring""" a :Any = quadratic_roots(a=5 , b=6 , c=1 ) print(F'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
94
'''simple docstring''' class _lowerCamelCase : # Public class to implement a graph '''simple docstring''' def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: __magic_name__ : Tuple = row __magic_name__ : str = col __magic_name__ : Optional[Any] = graph def __lowerCAmelCase ( self : Any , _A : int , _A : int , _A : list[list[bool]] ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: # Checking all 8 elements surrounding nth element __magic_name__ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __magic_name__ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1] __magic_name__ : Optional[int] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __lowerCAmelCase ( self : int ) -> int: # And finally, count all islands. __magic_name__ : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] __magic_name__ : Any = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
331
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class __a ( __UpperCamelCase ): __snake_case : str = """roberta-prelayernorm""" def __init__( self : Any , UpperCAmelCase : Any=5_02_65 , UpperCAmelCase : int=7_68 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : Optional[Any]=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Optional[int]=5_12 , UpperCAmelCase : str=2 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : Optional[int]=1e-1_2 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : Optional[int]=0 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : List[Any]="absolute" , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=None , **UpperCAmelCase : str , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = vocab_size lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Optional[int] = hidden_act lowerCAmelCase_ : Tuple = intermediate_size lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : List[str] = attention_probs_dropout_prob lowerCAmelCase_ : Dict = max_position_embeddings lowerCAmelCase_ : List[str] = type_vocab_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[Any] = position_embedding_type lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Any = classifier_dropout class __a ( __UpperCamelCase ): @property def A ( self : Optional[int] ): if self.task == "multiple-choice": lowerCAmelCase_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
363
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
0