code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' a_ : List[str] = ["""image_processor""", """tokenizer"""] a_ : Dict = """FlavaImageProcessor""" a_ : List[str] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Dict , a_ : Any=None , a_ : Optional[Any]=None , **a_ : List[Any] ): lowerCAmelCase_ : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a_ , ) lowerCAmelCase_ : int = kwargs.pop("feature_extractor" ) lowerCAmelCase_ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a_ , a_ ) lowerCAmelCase_ : Optional[Any] = self.image_processor def __call__( self : int , a_ : Any = None , a_ : int = None , a_ : str = True , a_ : str = False , a_ : List[str] = False , a_ : List[str] = None , a_ : Dict = 0 , a_ : Any = None , a_ : Tuple = None , a_ : Optional[Any] = None , a_ : Dict = None , a_ : Tuple = None , a_ : Optional[Any] = False , a_ : List[str] = False , a_ : Any = False , a_ : List[str] = False , a_ : Optional[Any] = True , a_ : str = None , **a_ : List[Any] , ): if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: lowerCAmelCase_ : Any = self.tokenizer( text=a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ , max_length=a_ , stride=a_ , pad_to_multiple_of=a_ , return_token_type_ids=a_ , return_attention_mask=a_ , return_overflowing_tokens=a_ , return_special_tokens_mask=a_ , return_offsets_mapping=a_ , return_length=a_ , verbose=a_ , return_tensors=a_ , **a_ , ) if images is not None: lowerCAmelCase_ : List[Any] = self.image_processor( a_ , return_image_mask=a_ , return_codebook_pixels=a_ , return_tensors=a_ , **a_ , ) if text is not None and images is not None: encoding.update(a_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def lowerCamelCase ( self : str , *a_ : Union[str, Any] , **a_ : List[Any] ): return self.tokenizer.batch_decode(*a_ , **a_ ) def lowerCamelCase ( self : Union[str, Any] , *a_ : List[str] , **a_ : Any ): return self.tokenizer.decode(*a_ , **a_ ) @property def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Dict = self.tokenizer.model_input_names lowerCAmelCase_ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase ( self : int ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a_ , ) return self.image_processor_class @property def lowerCamelCase ( self : Tuple ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a_ , ) return self.image_processor
241
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'summarization' _SCREAMING_SNAKE_CASE = ['loss'] _SCREAMING_SNAKE_CASE = ROUGE_KEYS _SCREAMING_SNAKE_CASE = 'rouge2' def __init__( self , lowercase , **lowercase ) -> str: if hparams.sortish_sampler and hparams.gpus > 1: lowerCAmelCase = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(lowercase , num_labels=lowercase , mode=self.mode , **lowercase ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) lowerCAmelCase = Path(self.output_dir ) / """metrics.json""" lowerCAmelCase = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) lowerCAmelCase = 0 lowerCAmelCase = defaultdict(lowercase ) lowerCAmelCase = self.config.model_type lowerCAmelCase = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size lowerCAmelCase = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } lowerCAmelCase = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } lowerCAmelCase = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} lowerCAmelCase = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], f'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) lowerCAmelCase = get_git_info()["""repo_sha"""] lowerCAmelCase = hparams.num_workers lowerCAmelCase = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowercase ): lowerCAmelCase = self.tokenizer.lang_code_to_id[hparams.tgt_lang] lowerCAmelCase = self.decoder_start_token_id lowerCAmelCase = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) lowerCAmelCase = False lowerCAmelCase = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: lowerCAmelCase = self.hparams.eval_max_gen_length else: lowerCAmelCase = self.model.config.max_length lowerCAmelCase = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _snake_case ( self , lowercase ) -> Dict[str, List[str]]: lowerCAmelCase = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(lowercase , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) lowerCAmelCase = True return readable_batch def _snake_case ( self , lowercase , **lowercase ) -> Union[str, Any]: return self.model(lowercase , **lowercase ) def _snake_case ( self , lowercase ) -> Union[str, Any]: lowerCAmelCase = self.tokenizer.batch_decode( lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) return lmap(str.strip , lowercase ) def _snake_case ( self , lowercase ) -> Tuple: lowerCAmelCase = self.tokenizer.pad_token_id lowerCAmelCase , lowerCAmelCase = batch["""input_ids"""], batch["""attention_mask"""] lowerCAmelCase = batch["""labels"""] if isinstance(self.model , lowercase ): lowerCAmelCase = self.model._shift_right(lowercase ) else: lowerCAmelCase = shift_tokens_right(lowercase , lowercase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero lowerCAmelCase = decoder_input_ids self.save_readable_batch(lowercase ) lowerCAmelCase = self(lowercase , attention_mask=lowercase , decoder_input_ids=lowercase , use_cache=lowercase ) lowerCAmelCase = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id lowerCAmelCase = nn.CrossEntropyLoss(ignore_index=lowercase ) assert lm_logits.shape[-1] == self.vocab_size lowerCAmelCase = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: lowerCAmelCase = nn.functional.log_softmax(lowercase , dim=-1 ) lowerCAmelCase , lowerCAmelCase = label_smoothed_nll_loss( lowercase , lowercase , self.hparams.label_smoothing , ignore_index=lowercase ) return (loss,) @property def _snake_case ( self ) -> int: return self.tokenizer.pad_token_id def _snake_case ( self , lowercase , lowercase ) -> Dict: lowerCAmelCase = self._step(lowercase ) lowerCAmelCase = dict(zip(self.loss_names , lowercase ) ) # tokens per batch lowerCAmelCase = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() lowerCAmelCase = batch["""input_ids"""].shape[0] lowerCAmelCase = batch["""input_ids"""].eq(self.pad ).sum() lowerCAmelCase = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _snake_case ( self , lowercase , lowercase ) -> Dict: return self._generative_step(lowercase ) def _snake_case ( self , lowercase , lowercase="val" ) -> Dict: self.step_count += 1 lowerCAmelCase = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} lowerCAmelCase = losses["""loss"""] lowerCAmelCase = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } lowerCAmelCase = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) lowerCAmelCase = torch.tensor(lowercase ).type_as(lowercase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowercase ) lowerCAmelCase = {f'{prefix}_avg_{k}': x for k, x in losses.items()} lowerCAmelCase = self.step_count self.metrics[prefix].append(lowercase ) # callback writes this to self.metrics_save_path lowerCAmelCase = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'{prefix}_loss': loss, f'{prefix}_{self.val_metric}': metric_tensor, } def _snake_case ( self , lowercase , lowercase ) -> Dict: return calculate_rouge(lowercase , lowercase ) def _snake_case ( self , lowercase ) -> dict: lowerCAmelCase = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') lowerCAmelCase = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=lowercase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) lowerCAmelCase = (time.time() - ta) / batch["""input_ids"""].shape[0] lowerCAmelCase = self.ids_to_clean_text(lowercase ) lowerCAmelCase = self.ids_to_clean_text(batch["""labels"""] ) lowerCAmelCase = self._step(lowercase ) lowerCAmelCase = dict(zip(self.loss_names , lowercase ) ) lowerCAmelCase = self.calc_generative_metrics(lowercase , lowercase ) lowerCAmelCase = np.mean(lmap(lowercase , lowercase ) ) base_metrics.update(gen_time=lowercase , gen_len=lowercase , preds=lowercase , target=lowercase , **lowercase ) return base_metrics def _snake_case ( self , lowercase , lowercase ) -> Dict: return self._generative_step(lowercase ) def _snake_case ( self , lowercase ) -> int: return self.validation_epoch_end(lowercase , prefix="""test""" ) def _snake_case ( self , lowercase ) -> SeqaSeqDataset: lowerCAmelCase = self.n_obs[type_path] lowerCAmelCase = self.target_lens[type_path] lowerCAmelCase = self.dataset_class( self.tokenizer , type_path=lowercase , n_obs=lowercase , max_target_length=lowercase , **self.dataset_kwargs , ) return dataset def _snake_case ( self , lowercase , lowercase , lowercase = False ) -> DataLoader: lowerCAmelCase = self.get_dataset(lowercase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": lowerCAmelCase = dataset.make_sortish_sampler(lowercase , distributed=self.hparams.gpus > 1 ) return DataLoader( lowercase , batch_size=lowercase , collate_fn=dataset.collate_fn , shuffle=lowercase , num_workers=self.num_workers , sampler=lowercase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": lowerCAmelCase = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowercase , batch_sampler=lowercase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowercase , batch_size=lowercase , collate_fn=dataset.collate_fn , shuffle=lowercase , num_workers=self.num_workers , sampler=lowercase , ) def _snake_case ( self ) -> DataLoader: lowerCAmelCase = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=lowercase ) return dataloader def _snake_case ( self ) -> DataLoader: return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def _snake_case ( self ) -> DataLoader: return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def _snake_case ( lowercase , lowercase ) -> Optional[int]: BaseTransformer.add_model_specific_args(lowercase , lowercase ) add_generic_args(lowercase , lowercase ) parser.add_argument( """--max_source_length""" , default=1_024 , type=lowercase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=lowercase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=142 , type=lowercase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=142 , type=lowercase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=lowercase ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=lowercase ) parser.add_argument("""--max_tokens_per_batch""" , type=lowercase , default=lowercase ) parser.add_argument("""--logger_name""" , type=lowercase , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=lowercase , default=-1 , required=lowercase , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=lowercase , default=500 , required=lowercase , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=lowercase , default=-1 , required=lowercase , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=lowercase , default="""summarization""" , required=lowercase , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=lowercase , default=0.0 , required=lowercase ) parser.add_argument("""--src_lang""" , type=lowercase , default="""""" , required=lowercase ) parser.add_argument("""--tgt_lang""" , type=lowercase , default="""""" , required=lowercase ) parser.add_argument("""--eval_beams""" , type=lowercase , default=lowercase , required=lowercase ) parser.add_argument( """--val_metric""" , type=lowercase , default=lowercase , required=lowercase , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=lowercase , default=lowercase , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=lowercase , default=1 , required=lowercase , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=lowercase , default=-1 , required=lowercase , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'translation' _SCREAMING_SNAKE_CASE = ['loss'] _SCREAMING_SNAKE_CASE = ['bleu'] _SCREAMING_SNAKE_CASE = 'bleu' def __init__( self , lowercase , **lowercase ) -> Union[str, Any]: super().__init__(lowercase , **lowercase ) lowerCAmelCase = hparams.src_lang lowerCAmelCase = hparams.tgt_lang def _snake_case ( self , lowercase , lowercase ) -> dict: return calculate_bleu(lowercase , lowercase ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=None ): '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) check_output_dir(SCREAMING_SNAKE_CASE , expected_items=3 ) if model is None: if "summarization" in args.task: lowerCAmelCase = SummarizationModule(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = TranslationModule(SCREAMING_SNAKE_CASE ) lowerCAmelCase = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): lowerCAmelCase = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger lowerCAmelCase = os.environ.get("""WANDB_PROJECT""" , SCREAMING_SNAKE_CASE ) lowerCAmelCase = WandbLogger(name=model.output_dir.name , project=SCREAMING_SNAKE_CASE ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger lowerCAmelCase = WandbLogger(name=model.output_dir.name , project=F'hf_{dataset}' ) if args.early_stopping_patience >= 0: lowerCAmelCase = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: lowerCAmelCase = False lowerCAmelCase = args.val_metric == """loss""" lowerCAmelCase = generic_train( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , SCREAMING_SNAKE_CASE ) , early_stopping_callback=SCREAMING_SNAKE_CASE , logger=SCREAMING_SNAKE_CASE , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model lowerCAmelCase = """""" lowerCAmelCase = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=SCREAMING_SNAKE_CASE ) ) if checkpoints: lowerCAmelCase = checkpoints[-1] lowerCAmelCase = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() SCREAMING_SNAKE_CASE__ = pl.Trainer.add_argparse_args(parser) SCREAMING_SNAKE_CASE__ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) SCREAMING_SNAKE_CASE__ = parser.parse_args() main(args)
46
0
'''simple docstring''' def __magic_name__( lowerCamelCase, lowerCamelCase): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''') __lowerCAmelCase = str(bin(lowerCamelCase))[2:] # remove the leading "0b" __lowerCAmelCase = str(bin(lowerCamelCase))[2:] # remove the leading "0b" __lowerCAmelCase = max(len(lowerCamelCase), len(lowerCamelCase)) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''')) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase), b_binary.zfill(lowerCamelCase))) if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' import argparse import datetime def __magic_name__( lowerCamelCase): __lowerCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase) < 1_1: raise ValueError('''Must be 10 characters long''') # Get month __lowerCAmelCase = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''') __lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get day __lowerCAmelCase = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''') # Get second separator __lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get year __lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''') # Get datetime obj for validation __lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase)) # Start math if m <= 2: __lowerCAmelCase = y - 1 __lowerCAmelCase = m + 1_2 # maths var __lowerCAmelCase = int(str(lowerCamelCase)[:2]) __lowerCAmelCase = int(str(lowerCamelCase)[2:]) __lowerCAmelCase = int(2.6 * m - 5.39) __lowerCAmelCase = int(c / 4) __lowerCAmelCase = int(k / 4) __lowerCAmelCase = int(d + k) __lowerCAmelCase = int(t + u + v + x) __lowerCAmelCase = int(z - (2 * c)) __lowerCAmelCase = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''') # Response __lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : List[str] = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCAmelCase : Dict = parser.parse_args() zeller(args.date_input)
9
1
from __future__ import annotations def _a ( a :list , a :int | None = None , a :int | None = None ) -> None: if start is None: a = 0 if end is None: a = len(a ) - 1 if start >= end: return a = (start + end) // 2 slowsort(a , a , a ) slowsort(a , mid + 1 , a ) if sequence[end] < sequence[mid]: a , a = sequence[mid], sequence[end] slowsort(a , a , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {} class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''llama''' __snake_case = ['''past_key_values'''] def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any]=32_000 , __UpperCAmelCase : str=4_096 , __UpperCAmelCase : int=11_008 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Union[str, Any]="silu" , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Any=1e-6 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Tuple , ) ->str: """simple docstring""" a = vocab_size a = max_position_embeddings a = hidden_size a = intermediate_size a = num_hidden_layers a = num_attention_heads # for backward compatibility if num_key_value_heads is None: a = num_attention_heads a = num_key_value_heads a = hidden_act a = initializer_range a = rms_norm_eps a = pretraining_tp a = use_cache a = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , ) def __lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"""got {self.rope_scaling}""" ) a = self.rope_scaling.get('''type''' , __UpperCAmelCase ) a = self.rope_scaling.get('''factor''' , __UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
0
1
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup snake_case : int = logging.get_logger(__name__) class _snake_case ( snake_case ): def __init__( self , **_a ): requires_backends(self , ["bs4"] ) super().__init__(**_a ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Union[str, Any] = [] __magic_name__ : Optional[int] = [] __magic_name__ : int = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __magic_name__ : Union[str, Any] = parent.find_all(child.name , recursive=_a ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_a ) else next(i for i, s in enumerate(_a , 1 ) if s is child ) ) __magic_name__ : List[Any] = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Any = BeautifulSoup(_a , "html.parser" ) __magic_name__ : Union[str, Any] = [] __magic_name__ : int = [] __magic_name__ : int = [] for element in html_code.descendants: if type(_a ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __magic_name__ : Optional[Any] = html.unescape(_a ).strip() if not text_in_this_tag: continue all_doc_strings.append(_a ) __magic_name__ : List[Any] = self.xpath_soup(_a ) stringaxtag_seq.append(_a ) stringaxsubs_seq.append(_a ) if len(_a ) != len(_a ): raise ValueError("Number of doc strings and xtags does not correspond" ) if len(_a ) != len(_a ): raise ValueError("Number of doc strings and xsubs does not correspond" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : List[Any] = "" for tagname, subs in zip(_a , _a ): xpath += f'''/{tagname}''' if subs != 0: xpath += f'''[{subs}]''' return xpath def __call__( self , _a ): __magic_name__ : Dict = False # Check that strings has a valid type if isinstance(_a , _a ): __magic_name__ : Tuple = True elif isinstance(_a , (list, tuple) ): if len(_a ) == 0 or isinstance(html_strings[0] , _a ): __magic_name__ : List[str] = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " f'''but is of type {type(_a )}.''' ) __magic_name__ : List[str] = bool(isinstance(_a , (list, tuple) ) and (isinstance(html_strings[0] , _a )) ) if not is_batched: __magic_name__ : int = [html_strings] # Get nodes + xpaths __magic_name__ : Dict = [] __magic_name__ : str = [] for html_string in html_strings: __magic_name__ : List[str] = self.get_three_from_single(_a ) nodes.append(_a ) __magic_name__ : int = [] for node, tag_list, sub_list in zip(_a , _a , _a ): __magic_name__ : int = self.construct_xpath(_a , _a ) xpath_strings.append(_a ) xpaths.append(_a ) # return as Dict __magic_name__ : Optional[int] = {"nodes": nodes, "xpaths": xpaths} __magic_name__ : Union[str, Any] = BatchFeature(data=_a , tensor_type=_a ) return encoded_inputs
350
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast snake_case : Dict = datasets.utils.logging.get_logger(__name__) @dataclass class _snake_case ( datasets.BuilderConfig ): UpperCamelCase__ = 1_0000 UpperCamelCase__ = None UpperCamelCase__ = None class _snake_case ( datasets.ArrowBasedBuilder ): UpperCamelCase__ = ParquetConfig def SCREAMING_SNAKE_CASE ( self ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE ( self , _a ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __magic_name__ : Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): __magic_name__ : Dict = data_files if isinstance(_a , _a ): __magic_name__ : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __magic_name__ : Tuple = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] __magic_name__ : List[str] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): __magic_name__ : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __magic_name__ : Optional[int] = [dl_manager.iter_files(_a ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_a ): with open(_a , "rb" ) as f: __magic_name__ : str = datasets.Features.from_arrow_schema(pq.read_schema(_a ) ) break splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={"files": files} ) ) return splits def SCREAMING_SNAKE_CASE ( self , _a ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __magic_name__ : str = table_cast(_a , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Tuple = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ): with open(_a , "rb" ) as f: __magic_name__ : List[str] = pq.ParquetFile(_a ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __magic_name__ : Union[str, Any] = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'''{file_idx}_{batch_idx}''', self._cast_table(_a ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise
41
0
"""simple docstring""" import re from filelock import FileLock try: import nltk _a : int = True except (ImportError, ModuleNotFoundError): _a : Optional[Any] = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> str: re.sub("""<n>""" ,"""""" ,_lowerCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowerCamelCase ) )
44
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=False , a__=True , a__="None" , a__=3 , a__=4 , a__=None , ): _lowerCAmelCase : Dict = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : List[Any] = seq_length _lowerCAmelCase : Dict = is_training _lowerCAmelCase : Dict = use_input_mask _lowerCAmelCase : int = use_token_type_ids _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Tuple = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : List[str] = type_vocab_size _lowerCAmelCase : Tuple = type_sequence_label_size _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Union[str, Any] = num_labels _lowerCAmelCase : Optional[Any] = num_choices _lowerCAmelCase : Tuple = relative_attention _lowerCAmelCase : Tuple = position_biased_input _lowerCAmelCase : Dict = pos_att_type _lowerCAmelCase : Any = scope def __A ( self ): _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = None if self.use_input_mask: _lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _lowerCAmelCase : str = None if self.use_token_type_ids: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Any = None if self.use_labels: _lowerCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __A ( self , a__ ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Union[str, Any] = DebertaVaModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : List[Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ )[0] _lowerCAmelCase : List[Any] = model(a__ , token_type_ids=a__ )[0] _lowerCAmelCase : Any = model(a__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[str] = DebertaVaForMaskedLM(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = self.num_labels _lowerCAmelCase : int = DebertaVaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(a__ ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : str = DebertaVaForTokenClassification(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Any = DebertaVaForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Dict = model( a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Union[str, Any] = DebertaVaForMultipleChoice(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : List[str] = model( a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ): _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase : str = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : Optional[Any] = True _UpperCamelCase : List[Any] = False _UpperCamelCase : List[Any] = False _UpperCamelCase : Dict = False _UpperCamelCase : Tuple = False def __A ( self ): _lowerCAmelCase : Optional[Any] = DebertaVaModelTester(self ) _lowerCAmelCase : Any = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*a__ ) def __A ( self ): _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*a__ ) def __A ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*a__ ) def __A ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*a__ ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*a__ ) @slow def __A ( self ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Tuple = DebertaVaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def __A ( self ): pass @slow def __A ( self ): _lowerCAmelCase : Union[str, Any] = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) _lowerCAmelCase : Dict = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCAmelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(a__ , attention_mask=a__ )[0] # compare the actual values for a slice. _lowerCAmelCase : str = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a__ , atol=1e-4 ) , F"{output[:, 1:4, 1:4]}" )
44
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github lowerCAmelCase_ = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def __magic_name__ ( ) -> Union[str, Any]: snake_case = Github(os.environ['GITHUB_TOKEN'] ) snake_case = g.get_repo('huggingface/diffusers' ) snake_case = repo.get_issues(state='open' ) for issue in open_issues: snake_case = sorted(issue.get_comments() , key=lambda A : i.created_at , reverse=A ) snake_case = comments[0] if len(A ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
352
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int: snake_case = [0] snake_case = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case = 0 # the area corresponding to the grid that gives the product closest to target snake_case = 0 # an estimate of b, using the quadratic formula snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the triangle number corresponding to b_floor snake_case = 42 # the triangle number corresponding to b_ceil snake_case = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case = floor(A ) snake_case = ceil(A ) snake_case = triangle_numbers[b_floor] snake_case = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_first_guess * triangle_a snake_case = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_second_guess * triangle_a snake_case = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
332
0
'''simple docstring''' def lowerCamelCase__ ( _A = 100_0000 ): a : Any = 1 a : Tuple = 1 a : Optional[Any] = {1: 1} for inputa in range(2 , A__ ): a : Any = 0 a : List[Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: a : Dict = (3 * number) + 1 counter += 1 if inputa not in counters: a : List[str] = counter if counter > pre_counter: a : str = inputa a : int = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
297
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : List[Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
0
def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) SCREAMING_SNAKE_CASE__ = str(bin(_A ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE__ = str(bin(_A ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE__ = max(len(_A ) , len(_A ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
361
def UpperCAmelCase_ ( _A ): '''simple docstring''' if not isinstance(_A , _A ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = str(_A ) while len(_A ) != 1: SCREAMING_SNAKE_CASE__ = [int(_A ) for i in num_string] SCREAMING_SNAKE_CASE__ = 1 for i in range(0 , len(_A ) ): total *= numbers[i] SCREAMING_SNAKE_CASE__ = str(_A ) steps += 1 return steps def UpperCAmelCase_ ( _A ): '''simple docstring''' if not isinstance(_A , _A ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = str(_A ) while len(_A ) != 1: SCREAMING_SNAKE_CASE__ = [int(_A ) for i in num_string] SCREAMING_SNAKE_CASE__ = 0 for i in range(0 , len(_A ) ): total += numbers[i] SCREAMING_SNAKE_CASE__ = str(_A ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
218
0
def _UpperCamelCase ( lowercase__ , lowercase__ ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __SCREAMING_SNAKE_CASE : str = str(bin(lowercase__ ) )[2:] # remove the leading "0b" __SCREAMING_SNAKE_CASE : Union[str, Any] = str(bin(lowercase__ ) )[2:] # remove the leading "0b" __SCREAMING_SNAKE_CASE : List[Any] = max(len(lowercase__ ) , len(lowercase__ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(lowercase__ ) , b_binary.zfill(lowercase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
9
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowercase ( A__ ): '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :NestedDataStructureLike[PathLike] , lowerCAmelCase__ :Optional[NamedSplit] = None , lowerCAmelCase__ :Optional[Features] = None , lowerCAmelCase__ :str = None , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[int] = None , **lowerCAmelCase__ :Optional[int] , ) -> Tuple: super().__init__( lowerCAmelCase__ , split=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , streaming=lowerCAmelCase__ , num_proc=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[str] = path_or_paths if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else {self.split: path_or_paths} __SCREAMING_SNAKE_CASE : int = Text( cache_dir=lowerCAmelCase__ , data_files=lowerCAmelCase__ , features=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __magic_name__( self :Dict ) -> Tuple: # Build iterable dataset if self.streaming: __SCREAMING_SNAKE_CASE : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Tuple = None self.builder.download_and_prepare( download_config=lowerCAmelCase__ , download_mode=lowerCAmelCase__ , verification_mode=lowerCAmelCase__ , base_path=lowerCAmelCase__ , num_proc=self.num_proc , ) __SCREAMING_SNAKE_CASE : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
9
1
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class a__ ( ctypes.Structure ): # _fields is a specific attr expected by ctypes a : Tuple = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def SCREAMING_SNAKE_CASE ( ) -> List[str]: if os.name == "nt": a = CursorInfo() a = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(__UpperCamelCase , ctypes.byref(__UpperCamelCase)) a = False ctypes.windll.kernelaa.SetConsoleCursorInfo(__UpperCamelCase , ctypes.byref(__UpperCamelCase)) elif os.name == "posix": sys.stdout.write("\033[?25l") sys.stdout.flush() def SCREAMING_SNAKE_CASE ( ) -> List[Any]: if os.name == "nt": a = CursorInfo() a = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(__UpperCamelCase , ctypes.byref(__UpperCamelCase)) a = True ctypes.windll.kernelaa.SetConsoleCursorInfo(__UpperCamelCase , ctypes.byref(__UpperCamelCase)) elif os.name == "posix": sys.stdout.write("\033[?25h") sys.stdout.flush() @contextmanager def SCREAMING_SNAKE_CASE ( ) -> List[str]: try: hide_cursor() yield finally: show_cursor()
180
from manim import * class a__ ( UpperCamelCase__ ): def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = Rectangle(height=0.5 , width=0.5 ) a = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) a = Rectangle(height=0.2_5 , width=0.2_5 ) a = [mem.copy() for i in range(6 )] a = [mem.copy() for i in range(6 )] a = VGroup(*A ).arrange(A , buff=0 ) a = VGroup(*A ).arrange(A , buff=0 ) a = VGroup(A , A ).arrange(A , buff=0 ) a = Text("CPU" , font_size=24 ) a = Group(A , A ).arrange(A , buff=0.5 , aligned_edge=A ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A ) a = [mem.copy() for i in range(4 )] a = VGroup(*A ).arrange(A , buff=0 ) a = Text("GPU" , font_size=24 ) a = Group(A , A ).arrange(A , buff=0.5 , aligned_edge=A ) gpu.move_to([-1, -1, 0] ) self.add(A ) a = [mem.copy() for i in range(6 )] a = VGroup(*A ).arrange(A , buff=0 ) a = Text("Model" , font_size=24 ) a = Group(A , A ).arrange(A , buff=0.5 , aligned_edge=A ) model.move_to([3, -1.0, 0] ) self.add(A ) a = [] a = [] for i, rect in enumerate(A ): a = fill.copy().set_fill(A , opacity=0.8 ) target.move_to(A ) model_arr.append(A ) a = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(A , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A ) self.add(*A , *A ) a = [meta_mem.copy() for i in range(6 )] a = [meta_mem.copy() for i in range(6 )] a = VGroup(*A ).arrange(A , buff=0 ) a = VGroup(*A ).arrange(A , buff=0 ) a = VGroup(A , A ).arrange(A , buff=0 ) a = Text("Disk" , font_size=24 ) a = Group(A , A ).arrange(A , buff=0.5 , aligned_edge=A ) disk.move_to([-4, -1.2_5, 0] ) self.add(A , A ) a = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A , A ) a = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(A , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A ) a = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A ) ) a = Square(0.3 ) input.set_fill(A , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A , buff=0.5 ) self.play(Write(A ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A , buff=0.0_2 ) self.play(MoveToTarget(A ) ) self.play(FadeOut(A ) ) a = Arrow(start=A , end=A , color=A , buff=0.5 ) a.next_to(model_arr[0].get_left() , A , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) a = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A , run_time=3 ) ) a = {"run_time": 1, "fade_in": True, "fade_out": True, "buff": 0.0_2} self.play( Write(A ) , Circumscribe(model_arr[0] , color=A , **A ) , Circumscribe(model_cpu_arr[0] , color=A , **A ) , Circumscribe(gpu_rect[0] , color=A , **A ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) a = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.0_2 , A , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.0_2 ) a = AnimationGroup( FadeOut(A , run_time=0.5 ) , MoveToTarget(A , run_time=0.5 ) , FadeIn(A , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: a = 0.7 self.play( Circumscribe(model_arr[i] , **A ) , Circumscribe(cpu_left_col_base[i] , **A ) , Circumscribe(cpu_left_col_base[i + 1] , color=A , **A ) , Circumscribe(gpu_rect[0] , color=A , **A ) , Circumscribe(model_arr[i + 1] , color=A , **A ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.0_2 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A , **A ) , Circumscribe(cpu_left_col_base[-1] , color=A , **A ) , Circumscribe(gpu_rect[0] , color=A , **A ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) a = a_c a = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.0_2 , buff=0.5 ) self.play( FadeOut(A ) , FadeOut(A , run_time=0.5 ) , ) a = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A , run_time=3 ) , MoveToTarget(A ) ) self.wait()
180
1
"""simple docstring""" from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) a_ = '''pytorch_model.bin''' a_ = '''pytorch_model.bin.index.json''' a_ = '''adapter_config.json''' a_ = '''adapter_model.bin''' a_ = '''adapter_model.safetensors''' a_ = '''tf_model.h5''' a_ = '''tf_model.h5.index.json''' a_ = '''model.ckpt''' a_ = '''flax_model.msgpack''' a_ = '''flax_model.msgpack.index.json''' a_ = '''model.safetensors''' a_ = '''model.safetensors.index.json''' a_ = '''config.json''' a_ = '''preprocessor_config.json''' a_ = FEATURE_EXTRACTOR_NAME a_ = '''generation_config.json''' a_ = '''modelcard.json''' a_ = '''▁''' a_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility a_ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. a_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] a_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def __UpperCAmelCase ( __UpperCamelCase ): if version.parse(__UpperCamelCase ) < version.parse(__UpperCamelCase ): if "dev" in min_version: __lowercase : Dict = ( """This example requires a source install from HuggingFace Transformers (see """ """`https://huggingface.co/docs/transformers/installation#install-from-source`),""" ) else: __lowercase : int = f"""This example requires a minimum version of {min_version},""" error_message += f""" but the version found is {__version__}.\n""" raise ImportError( error_message + '''Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ''' '''versions of HuggingFace Transformers.''' )
249
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A : Union[str, Any] ={ '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[Any] =[ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _A : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 3_2 def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 16 ): """simple docstring""" lowercase__ : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) lowercase__ : Optional[Any] = DatasetDict( { "train": dataset["train"].select(lowerCamelCase__ ), "validation": dataset["train"].select(lowerCamelCase__ ), "test": dataset["validation"], } ) def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowercase__ : Dict = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Any = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : str = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : int = 16 elif accelerator.mixed_precision != "no": lowercase__ : Dict = 8 else: lowercase__ : str = None return tokenizer.pad( lowerCamelCase__ , padding="longest" , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_tensors="pt" , ) # Instantiate dataloaders. lowercase__ : int = DataLoader( tokenized_datasets["train"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) lowercase__ : Any = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) lowercase__ : Dict = DataLoader( tokenized_datasets["test"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader, test_dataloader def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = [] # Download the dataset lowercase__ : str = load_dataset("glue" , "mrpc" ) # Create our splits lowercase__ : Any = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowercase__ : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Dict = config["lr"] lowercase__ : Union[str, Any] = int(config["num_epochs"] ) lowercase__ : List[Any] = int(config["seed"] ) lowercase__ : Any = int(config["batch_size"] ) lowercase__ : Tuple = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation lowercase__ : Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase__ : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE lowercase__ : Union[str, Any] = MAX_GPU_BATCH_SIZE set_seed(lowerCamelCase__ ) # New Code # # Create our folds: lowercase__ : Union[str, Any] = kfold.split(np.zeros(datasets["train"].num_rows ) , datasets["train"]["label"] ) lowercase__ : Optional[int] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCamelCase__ ): lowercase__ , lowercase__ , lowercase__ : Dict = get_fold_dataloaders( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Any = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : List[Any] = AdamW(params=model.parameters() , lr=lowerCamelCase__ ) # Instantiate scheduler lowercase__ : Any = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Now we train the model for epoch in range(lowerCamelCase__ ): model.train() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : Dict = model(**lowerCamelCase__ ) lowercase__ : List[str] = outputs.loss lowercase__ : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Optional[Any] = model(**lowerCamelCase__ ) lowercase__ : Dict = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCamelCase__ , references=lowerCamelCase__ , ) lowercase__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCamelCase__ ) # New Code # # We also run predictions on the test set at the very end lowercase__ : Tuple = [] for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Optional[int] = model(**lowerCamelCase__ ) lowercase__ : Tuple = outputs.logits lowercase__ , lowercase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCamelCase__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowercase__ : Optional[Any] = torch.cat(lowerCamelCase__ , dim=0 ) lowercase__ : Optional[Any] = torch.stack(lowerCamelCase__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowercase__ : Dict = metric.compute(predictions=lowerCamelCase__ , references=lowerCamelCase__ ) accelerator.print("Average test metrics from all folds:" , lowerCamelCase__ ) def __lowerCamelCase ( ): """simple docstring""" lowercase__ : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCamelCase__ , default=lowerCamelCase__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) # New Code # parser.add_argument("--num_folds" , type=lowerCamelCase__ , default=3 , help="The number of splits to perform across the dataset" ) lowercase__ : List[Any] = parser.parse_args() lowercase__ : Any = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
358
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase__ = 1.054571817e-34 # unit of ℏ : J * s lowerCAmelCase__ = 3e8 # unit of c : m * s^-1 def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: lowercase__ : Optional[Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: lowercase__ : str = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowercase__ : Tuple = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
121
0
"""simple docstring""" def _A (__a , __a , __a ) -> Dict: """simple docstring""" if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(snake_case_ , snake_case_ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate SCREAMING_SNAKE_CASE_ : Optional[Any] = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly SCREAMING_SNAKE_CASE_ : Optional[int] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
91
"""simple docstring""" def lowercase__ ( snake_case_ :Union[str, Any] ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = max(snake_case_ ) __UpperCAmelCase = min(snake_case_ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , snake_case_ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , snake_case_ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowercase__ ( snake_case_ :str ): return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" _lowercase : int = input('Enter numbers separated by a comma:\n').strip() _lowercase : int = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
332
0
'''simple docstring''' import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets UpperCAmelCase : Optional[Any] = datasets.logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' UpperCAmelCase : Tuple = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' UpperCAmelCase : Dict = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' UpperCAmelCase : Tuple = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , ) def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] ) -> Dict: """simple docstring""" if self.config_name == "default": logger.warning( """Using default BLEURT-Base checkpoint for sequence maximum length 128. """ """You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').""" ) __SCREAMING_SNAKE_CASE = """bleurt-base-128""" if self.config_name.lower() in CHECKPOINT_URLS: __SCREAMING_SNAKE_CASE = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: __SCREAMING_SNAKE_CASE = self.config_name.upper() else: raise KeyError( f'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}' ) # download the model checkpoint specified by self.config_name and set up the scorer __SCREAMING_SNAKE_CASE = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) __SCREAMING_SNAKE_CASE = score.BleurtScorer(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scorer.score(references=__SCREAMING_SNAKE_CASE , candidates=__SCREAMING_SNAKE_CASE ) return {"scores": scores}
362
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( a , a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = AltDiffusionPipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) __SCREAMING_SNAKE_CASE = 77 __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[str]: """simple docstring""" if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder __SCREAMING_SNAKE_CASE = RobertaSeriesModelWithTransformation(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = text_encoder __SCREAMING_SNAKE_CASE = AltDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A photo of an astronaut""" __SCREAMING_SNAKE_CASE = alt_pipe(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder __SCREAMING_SNAKE_CASE = RobertaSeriesModelWithTransformation(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = text_encoder __SCREAMING_SNAKE_CASE = AltDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = alt_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=20 , output_type="""np""" ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) __SCREAMING_SNAKE_CASE = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = alt_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="""numpy""" ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
331
0
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor snake_case : Union[str, Any] = logging.get_logger(__name__) class _snake_case ( _snake_case ): def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
94
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase_( _snake_case : int , _snake_case : int ): """simple docstring""" __a =old_name if "patch_embed" in old_name: __a , __a , __a =old_name.split('.' ) if layer == "0": __a =old_name.replace('0' , 'convolution1' ) elif layer == "1": __a =old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": __a =old_name.replace('3' , 'convolution2' ) else: __a =old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(r'\d\.\d' , _snake_case ): __a =r'\b\d{2}\b' if bool(re.search(_snake_case , _snake_case ) ): __a =re.search(r'\d\.\d\d.' , _snake_case ).group() else: __a =re.search(r'\d\.\d.' , _snake_case ).group() if int(match[0] ) < 6: __a =old_name.replace(_snake_case , '' ) __a =trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) __a ='intermediate_stages.' + trimmed_name else: __a =old_name.replace(_snake_case , '' ) if int(match[2] ) < num_meta4D_last_stage: __a =trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: __a =str(int(match[2] ) - num_meta4D_last_stage ) __a =trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: __a =trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: __a =trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: __a =trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: __a =trimmed_name.replace('fc2' , 'linear_out' ) __a ='last_stage.' + trimmed_name elif "network" in old_name and re.search(r'.\d.' , _snake_case ): __a =old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: __a =new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __a =new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __a =new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: __a =new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: __a =new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: __a =new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: __a ='efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __a =new_name.replace('norm' , 'layernorm' ) __a ='efficientformer.' + new_name else: __a ='efficientformer.encoder.' + new_name return new_name def UpperCamelCase_( _snake_case : List[str] , _snake_case : Dict ): """simple docstring""" for key in checkpoint.copy().keys(): __a =checkpoint.pop(_snake_case ) __a =val return checkpoint def UpperCamelCase_( ): """simple docstring""" __a ='http://images.cocodataset.org/val2017/000000039769.jpg' __a =Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image def UpperCamelCase_( _snake_case : Path , _snake_case : Path , _snake_case : Path , _snake_case : bool ): """simple docstring""" __a =torch.load(_snake_case , map_location='cpu' )['model'] __a =EfficientFormerConfig.from_json_file(_snake_case ) __a =EfficientFormerForImageClassificationWithTeacher(_snake_case ) __a ='_'.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) __a =config.depths[-1] - config.num_metaad_blocks + 1 __a =convert_torch_checkpoint(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) model.eval() __a ={ 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image __a =prepare_img() __a =256 __a =224 __a =EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) __a =processor(images=_snake_case , return_tensors='pt' ).pixel_values # original processing pipeline __a =Compose( [ Resize(_snake_case , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(_snake_case ), ToTensor(), Normalize(_snake_case , _snake_case ), ] ) __a =image_transforms(_snake_case ).unsqueeze(0 ) assert torch.allclose(_snake_case , _snake_case ) __a =model(_snake_case ) __a =outputs.logits __a =(1, 1000) if "l1" in model_name: __a =torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :10] , _snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __a =torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :10] , _snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __a =torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( F'Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7' ) # Save Checkpoints Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) processor.save_pretrained(_snake_case ) print(F'Processor successfuly saved at {pytorch_dump_path}' ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='Add model' , use_temp_dir=_snake_case , ) processor.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='Add image processor' , use_temp_dir=_snake_case , ) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
218
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_albert""": ["""ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AlbertConfig""", """AlbertOnnxConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : int = ["""AlbertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""AlbertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = [ """ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """AlbertForMaskedLM""", """AlbertForMultipleChoice""", """AlbertForPreTraining""", """AlbertForQuestionAnswering""", """AlbertForSequenceClassification""", """AlbertForTokenClassification""", """AlbertModel""", """AlbertPreTrainedModel""", """load_tf_weights_in_albert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Tuple = [ """TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAlbertForMaskedLM""", """TFAlbertForMultipleChoice""", """TFAlbertForPreTraining""", """TFAlbertForQuestionAnswering""", """TFAlbertForSequenceClassification""", """TFAlbertForTokenClassification""", """TFAlbertMainLayer""", """TFAlbertModel""", """TFAlbertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """FlaxAlbertForMaskedLM""", """FlaxAlbertForMultipleChoice""", """FlaxAlbertForPreTraining""", """FlaxAlbertForQuestionAnswering""", """FlaxAlbertForSequenceClassification""", """FlaxAlbertForTokenClassification""", """FlaxAlbertModel""", """FlaxAlbertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys lowerCamelCase_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
223
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCamelCase_ : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCamelCase ( datasets.BuilderConfig ): '''simple docstring''' __UpperCamelCase : Optional[datasets.Features] = None __UpperCamelCase : str = "utf-8" __UpperCamelCase : Optional[str] = None __UpperCamelCase : Optional[str] = None __UpperCamelCase : bool = True # deprecated __UpperCamelCase : Optional[int] = None # deprecated __UpperCamelCase : int = 10 << 20 # 10MB __UpperCamelCase : Optional[bool] = None class _UpperCamelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' __UpperCamelCase : Tuple = JsonConfig def lowerCAmelCase__ ( self : int ): if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) UpperCamelCase_: List[str] = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self : Dict , snake_case_ : str ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) UpperCamelCase_: Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case_ , (str, list, tuple) ): UpperCamelCase_: List[Any] = data_files if isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: str = [files] UpperCamelCase_: Any = [dl_manager.iter_files(snake_case_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] UpperCamelCase_: Dict = [] for split_name, files in data_files.items(): if isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: Tuple = [files] UpperCamelCase_: Optional[int] = [dl_manager.iter_files(snake_case_ ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case_ , gen_kwargs={"""files""": files} ) ) return splits def lowerCAmelCase__ ( self : str , snake_case_ : pa.Table ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): UpperCamelCase_: Union[str, Any] = self.config.features.arrow_schema.field(snake_case_ ).type UpperCamelCase_: Tuple = pa_table.append_column(snake_case_ , pa.array([None] * len(snake_case_ ) , type=snake_case_ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example UpperCamelCase_: int = table_cast(snake_case_ , self.config.features.arrow_schema ) return pa_table def lowerCAmelCase__ ( self : Dict , snake_case_ : Optional[Any] ): for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case_ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(snake_case_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCamelCase_: Dict = json.load(snake_case_ ) # We keep only the field we are interested in UpperCamelCase_: Optional[int] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(snake_case_ , (list, tuple) ): UpperCamelCase_: Optional[int] = set().union(*[row.keys() for row in dataset] ) UpperCamelCase_: int = {col: [row.get(snake_case_ ) for row in dataset] for col in keys} else: UpperCamelCase_: Optional[int] = dataset UpperCamelCase_: List[str] = pa.Table.from_pydict(snake_case_ ) yield file_idx, self._cast_table(snake_case_ ) # If the file has one json object per line else: with open(snake_case_ , """rb""" ) as f: UpperCamelCase_: Optional[int] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small UpperCamelCase_: Optional[int] = max(self.config.chunksize // 32 , 16 << 10 ) UpperCamelCase_: Tuple = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: UpperCamelCase_: int = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(snake_case_ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": UpperCamelCase_: Tuple = batch.decode(self.config.encoding , errors=snake_case_ ).encode("""utf-8""" ) try: while True: try: UpperCamelCase_: Tuple = paj.read_json( io.BytesIO(snake_case_ ) , read_options=paj.ReadOptions(block_size=snake_case_ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(snake_case_ , pa.ArrowInvalid ) and "straddling" not in str(snake_case_ ) or block_size > len(snake_case_ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(snake_case_ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( snake_case_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCamelCase_: Optional[Any] = json.load(snake_case_ ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(snake_case_ , snake_case_ ): # list is the only sequence type supported in JSON try: UpperCamelCase_: Any = set().union(*[row.keys() for row in dataset] ) UpperCamelCase_: List[str] = {col: [row.get(snake_case_ ) for row in dataset] for col in keys} UpperCamelCase_: int = pa.Table.from_pydict(snake_case_ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(snake_case_ ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case_ ) batch_idx += 1
223
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = True , lowerCAmelCase_ = False ) -> Union[str, Any]: _A = scheduler _A = optimizers if isinstance(lowerCAmelCase_ , (list, tuple) ) else [optimizers] _A = split_batches _A = step_with_optimizer _A = GradientState() def UpperCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowerCAmelCase_ , **lowerCAmelCase_ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowerCAmelCase_ , **lowerCAmelCase_ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _A = AcceleratorState().num_processes for _ in range(lowerCAmelCase_ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , """total_steps""" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowerCAmelCase_ , **lowerCAmelCase_ ) else: self.scheduler.step(*lowerCAmelCase_ , **lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Dict: return self.scheduler.get_last_lr() def UpperCAmelCase ( self ) -> Tuple: return self.scheduler.state_dict() def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Any: self.scheduler.load_state_dict(lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> int: return self.scheduler.get_lr() def UpperCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> int: return self.scheduler.print_lr(*lowerCAmelCase_ , **lowerCAmelCase_ )
180
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: _A = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() _A = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } _A = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } _A = tempfile.mkdtemp() _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A = os.path.join(self.tmpdirname , lowerCAmelCase_ ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) # load decoder from hub _A = """hf-internal-testing/ngram-beam-search-decoder""" def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Tuple: _A = self.add_kwargs_tokens_map.copy() kwargs.update(lowerCAmelCase_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Any: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Any: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> Tuple: _A = self.get_tokenizer() _A = self.get_feature_extractor() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) _A = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _A = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCAmelCase ( self ) -> Optional[int]: _A = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(lowerCAmelCase_ , """include""" ): WavaVecaProcessorWithLM( tokenizer=lowerCAmelCase_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCAmelCase ( self ) -> Any: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = floats_list((3, 10_00) ) _A = feature_extractor(lowerCAmelCase_ , return_tensors="""np""" ) _A = processor(lowerCAmelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self ) -> Any: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = """This is a test string""" _A = processor(text=lowerCAmelCase_ ) _A = tokenizer(lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self , lowerCAmelCase_=(2, 10, 16) , lowerCAmelCase_=77 ) -> Tuple: np.random.seed(lowerCAmelCase_ ) return np.random.rand(*lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _A = processor.decode(lowerCAmelCase_ ) _A = decoder.decode_beams(lowerCAmelCase_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _A = processor.batch_decode(lowerCAmelCase_ ) else: with get_context(lowerCAmelCase_ ).Pool() as pool: _A = processor.batch_decode(lowerCAmelCase_ , lowerCAmelCase_ ) _A = list(lowerCAmelCase_ ) with get_context("""fork""" ).Pool() as p: _A = decoder.decode_beams_batch(lowerCAmelCase_ , lowerCAmelCase_ ) _A , _A , _A = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.logit_score ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.lm_score ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits() _A = 15 _A = -20.0 _A = -4.0 _A = processor.batch_decode( lowerCAmelCase_ , beam_width=lowerCAmelCase_ , beam_prune_logp=lowerCAmelCase_ , token_min_logp=lowerCAmelCase_ , ) _A = decoded_processor_out.text _A = list(lowerCAmelCase_ ) with get_context("""fork""" ).Pool() as pool: _A = decoder.decode_beams_batch( lowerCAmelCase_ , lowerCAmelCase_ , beam_width=lowerCAmelCase_ , beam_prune_logp=lowerCAmelCase_ , token_min_logp=lowerCAmelCase_ , ) _A = [d[0][0] for d in decoded_decoder_out] _A = [d[0][2] for d in decoded_decoder_out] _A = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , lowerCAmelCase_ ) self.assertTrue(np.array_equal(lowerCAmelCase_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , lowerCAmelCase_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(lowerCAmelCase_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , lowerCAmelCase_ , atol=1E-3 ) ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits() _A = 2.0 _A = 5.0 _A = -20.0 _A = True _A = processor.batch_decode( lowerCAmelCase_ , alpha=lowerCAmelCase_ , beta=lowerCAmelCase_ , unk_score_offset=lowerCAmelCase_ , lm_score_boundary=lowerCAmelCase_ , ) _A = decoded_processor_out.text _A = list(lowerCAmelCase_ ) decoder.reset_params( alpha=lowerCAmelCase_ , beta=lowerCAmelCase_ , unk_score_offset=lowerCAmelCase_ , lm_score_boundary=lowerCAmelCase_ , ) with get_context("""fork""" ).Pool() as pool: _A = decoder.decode_beams_batch( lowerCAmelCase_ , lowerCAmelCase_ , ) _A = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , lowerCAmelCase_ ) _A = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _A = os.listdir(lowerCAmelCase_ ) _A = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: _A = snapshot_download("""hf-internal-testing/processor_with_lm""" ) _A = WavaVecaProcessorWithLM.from_pretrained(lowerCAmelCase_ ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _A = os.listdir(lowerCAmelCase_ ) _A = os.listdir(lowerCAmelCase_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = floats_list((3, 10_00) ) _A = processor_wavaveca(lowerCAmelCase_ , return_tensors="""np""" ) _A = processor_auto(lowerCAmelCase_ , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _A = self._get_dummy_logits() _A = processor_wavaveca.batch_decode(lowerCAmelCase_ ) _A = processor_auto.batch_decode(lowerCAmelCase_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _A = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase ( self ) -> Any: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = self._get_dummy_logits()[0] _A = processor.decode(lowerCAmelCase_ , output_word_offsets=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def UpperCAmelCase ( self ) -> Any: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = self._get_dummy_logits() _A = processor.batch_decode(lowerCAmelCase_ , output_word_offsets=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(lowerCAmelCase_ , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCAmelCase ( self ) -> Any: import torch _A = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=lowerCAmelCase_ ) _A = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) _A = iter(lowerCAmelCase_ ) _A = next(lowerCAmelCase_ ) _A = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) _A = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _A = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): _A = model(lowerCAmelCase_ ).logits.cpu().numpy() _A = processor.decode(logits[0] , output_word_offsets=lowerCAmelCase_ ) _A = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _A = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] _A = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(lowerCAmelCase_ , """word""" ) ) , lowerCAmelCase_ ) self.assertEqual(""" """.join(self.get_from_offsets(lowerCAmelCase_ , """word""" ) ) , output.text ) # output times _A = torch.tensor(self.get_from_offsets(lowerCAmelCase_ , """start_time""" ) ) _A = torch.tensor(self.get_from_offsets(lowerCAmelCase_ , """end_time""" ) ) # fmt: off _A = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _A = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=0.01 ) ) self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=0.01 ) )
180
1
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name __snake_case = """ Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\") >>> pipe.to(\"cuda\") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save(\"cat.png\") ``` """ def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=8 ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 SCREAMING_SNAKE_CASE__ = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class lowercase__ ( _UpperCAmelCase ): def __init__( self : Optional[Any] , UpperCAmelCase_ : MultilingualCLIP , UpperCAmelCase_ : XLMRobertaTokenizer , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , UpperCAmelCase_ : VQModel , ): super().__init__() self.register_modules( text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , movq=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def A_ ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): if latents is None: SCREAMING_SNAKE_CASE__ = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) SCREAMING_SNAKE_CASE__ = latents.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = latents * scheduler.init_noise_sigma return latents def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=None , ): SCREAMING_SNAKE_CASE__ = len(UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE__ = self.tokenizer( UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , max_length=77 , return_attention_mask=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE__ = text_inputs.input_ids SCREAMING_SNAKE_CASE__ = self.tokenizer(UpperCAmelCase_ , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) SCREAMING_SNAKE_CASE__ = text_input_ids.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = text_inputs.attention_mask.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.text_encoder( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = prompt_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 ) SCREAMING_SNAKE_CASE__ = text_encoder_hidden_states.repeat_interleave(UpperCAmelCase_ , dim=0 ) SCREAMING_SNAKE_CASE__ = text_mask.repeat_interleave(UpperCAmelCase_ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE__ = 42 if negative_prompt is None: SCREAMING_SNAKE_CASE__ = [''] * batch_size elif type(UpperCAmelCase_ ) is not type(UpperCAmelCase_ ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(UpperCAmelCase_ )} !=' F' {type(UpperCAmelCase_ )}.' ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = [negative_prompt] elif batch_size != len(UpperCAmelCase_ ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(UpperCAmelCase_ )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ' the batch size of `prompt`.' ) else: SCREAMING_SNAKE_CASE__ = negative_prompt SCREAMING_SNAKE_CASE__ = self.tokenizer( UpperCAmelCase_ , padding='max_length' , max_length=77 , truncation=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE__ = uncond_input.input_ids.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = uncond_input.attention_mask.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.text_encoder( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE__ = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE__ = negative_prompt_embeds.repeat(1 , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = uncond_text_encoder_hidden_states.shape[1] SCREAMING_SNAKE_CASE__ = uncond_text_encoder_hidden_states.repeat(1 , UpperCAmelCase_ , 1 ) SCREAMING_SNAKE_CASE__ = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , UpperCAmelCase_ , -1 ) SCREAMING_SNAKE_CASE__ = uncond_text_mask.repeat_interleave(UpperCAmelCase_ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE__ = torch.cat([negative_prompt_embeds, prompt_embeds] ) SCREAMING_SNAKE_CASE__ = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) SCREAMING_SNAKE_CASE__ = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def A_ ( self : Optional[int] , UpperCAmelCase_ : Dict=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE__ = torch.device(F'cuda:{gpu_id}' ) SCREAMING_SNAKE_CASE__ = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Tuple , UpperCAmelCase_ : Tuple=0 ): if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE__ = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=UpperCAmelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE__ = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cpu_offload_with_hook(UpperCAmelCase_ , UpperCAmelCase_ , prev_module_hook=UpperCAmelCase_ ) if self.safety_checker is not None: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cpu_offload_with_hook(self.safety_checker , UpperCAmelCase_ , prev_module_hook=UpperCAmelCase_ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A_ ( self : str ): if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCAmelCase_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCAmelCase_ ) def __call__( self : str , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 100 , UpperCAmelCase_ : float = 4.0 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = 1 elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = len(UpperCAmelCase_ ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(UpperCAmelCase_ )}' ) SCREAMING_SNAKE_CASE__ = self._execution_device SCREAMING_SNAKE_CASE__ = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE__ = guidance_scale > 1.0 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._encode_prompt( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = torch.cat(UpperCAmelCase_ , dim=0 ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = torch.cat(UpperCAmelCase_ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE__ = image_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 ) SCREAMING_SNAKE_CASE__ = negative_image_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 ) SCREAMING_SNAKE_CASE__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=UpperCAmelCase_ ) self.scheduler.set_timesteps(UpperCAmelCase_ , device=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.unet.config.in_channels SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_new_h_w(UpperCAmelCase_ , UpperCAmelCase_ , self.movq_scale_factor ) # create initial latent SCREAMING_SNAKE_CASE__ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE__ = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} SCREAMING_SNAKE_CASE__ = self.unet( sample=UpperCAmelCase_ , timestep=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , added_cond_kwargs=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ , ).prev_sample # post-processing SCREAMING_SNAKE_CASE__ = self.movq.decode(UpperCAmelCase_ , force_not_quantize=UpperCAmelCase_ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE__ = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE__ = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase_ )
169
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __snake_case = 50_00_00 __snake_case ,__snake_case = os.path.split(__file__) __snake_case = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def _lowercase ( UpperCamelCase_ , **UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = dataset.map(**UpperCamelCase_ ) @get_duration def _lowercase ( UpperCamelCase_ , **UpperCamelCase_ ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = dataset.filter(**UpperCamelCase_ ) def _lowercase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) SCREAMING_SNAKE_CASE__ = generate_example_dataset( os.path.join(UpperCamelCase_ , 'dataset.arrow' ) , UpperCamelCase_ , num_examples=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=UpperCamelCase_ ) def tokenize(UpperCamelCase_ ): return tokenizer(examples['text'] ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , batched=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='numpy' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='pandas' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='torch' , columns='numbers' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=UpperCamelCase_ , batched=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = filter(UpperCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(UpperCamelCase_ , 'wb' ) as f: f.write(json.dumps(UpperCamelCase_ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
169
1
'''simple docstring''' def lowerCamelCase (_SCREAMING_SNAKE_CASE : list ): def merge(_SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_SCREAMING_SNAKE_CASE ) <= 1: return collection __a : int = len(_SCREAMING_SNAKE_CASE ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __lowercase : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() __lowercase : Optional[Any] = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
27
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase__ ( a ) -> int: _A: int = filter(lambda a : p.requires_grad , model.parameters() ) _A: Dict = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ : str = logging.getLogger(__name__) def lowerCamelCase__ ( a , a ) -> Dict: if metric == "rouge2": _A: Tuple = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": _A: List[str] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": _A: str = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) _A: List[str] = ModelCheckpoint( dirpath=a , filename=a , monitor=f"""val_{metric}""" , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase__ ( a , a ) -> Optional[Any]: return EarlyStopping( monitor=f"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=a , verbose=a , ) class UpperCAmelCase ( pl.Callback ): '''simple docstring''' def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Union[str, Any] = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCAmelCase_ ) @rank_zero_only def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : pl.LightningModule , lowerCAmelCase_ : str , lowerCAmelCase_ : Any=True ): """simple docstring""" logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _A: Tuple = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results _A: Tuple = Path(pl_module.hparams.output_dir ) if type_path == "test": _A: List[str] = od / '''test_results.txt''' _A: Optional[int] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A: Any = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" _A: Dict = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) generations_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) with open(lowerCAmelCase_ , '''a+''' ) as writer: for key in sorted(lowerCAmelCase_ ): if key in ["log", "progress_bar", "preds"]: continue _A: Optional[int] = metrics[key] if isinstance(lowerCAmelCase_ , torch.Tensor ): _A: List[str] = val.item() _A: List[Any] = F"""{key}: {val:.6f}\n""" writer.write(lowerCAmelCase_ ) if not save_generations: return if "preds" in metrics: _A: Optional[int] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(lowerCAmelCase_ ) @rank_zero_only def __magic_name__ ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" try: _A: Union[str, Any] = pl_module.model.model.num_parameters() except AttributeError: _A: Any = pl_module.model.num_parameters() _A: Optional[int] = count_trainable_parameters(lowerCAmelCase_ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __magic_name__ ( self : List[str] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : pl.LightningModule ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCAmelCase_ , lowerCAmelCase_ , '''test''' ) @rank_zero_only def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
121
0
'''simple docstring''' def snake_case_ (UpperCamelCase : int = 400_0000 ): '''simple docstring''' _a = [0, 1] _a = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 _a = 0 for j in range(len(UpperCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'''{solution() = }''')
179
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=_a ): lowercase_ = ['torch', 'scipy'] def __init__( self : Tuple , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Any ) -> Tuple: """simple docstring""" requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def __lowerCAmelCase ( cls : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : str ) -> Tuple: """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[int] , *lowerCAmelCase_ : str , **lowerCAmelCase_ : List[str] ) -> str: """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] )
179
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) UpperCAmelCase_ : int = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase_ : str = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } UpperCAmelCase_ : str = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } UpperCAmelCase_ : List[Any] = '''▁''' # Segments (not really needed) UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Any = 1 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : Optional[Any] = 4 class lowerCAmelCase__ ( lowercase__ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = """left""" __UpperCamelCase = XLNetTokenizer def __init__( self : Tuple , lowercase_ : Dict=None , lowercase_ : Optional[Any]=None , lowercase_ : Optional[Any]=False , lowercase_ : int=True , lowercase_ : Optional[Any]=False , lowercase_ : Dict="<s>" , lowercase_ : List[Any]="</s>" , lowercase_ : List[str]="<unk>" , lowercase_ : int="<sep>" , lowercase_ : Dict="<pad>" , lowercase_ : List[str]="<cls>" , lowercase_ : Tuple="<mask>" , lowercase_ : int=["<eop>", "<eod>"] , **lowercase_ : Optional[int] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = AddedToken(_A , lstrip=_A , rstrip=_A) if isinstance(_A , _A) else mask_token super().__init__( vocab_file=_A , tokenizer_file=_A , do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , additional_special_tokens=_A , **_A , ) SCREAMING_SNAKE_CASE_ : str = 3 SCREAMING_SNAKE_CASE_ : Tuple = do_lower_case SCREAMING_SNAKE_CASE_ : Union[str, Any] = remove_space SCREAMING_SNAKE_CASE_ : List[Any] = keep_accents SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_file SCREAMING_SNAKE_CASE_ : int = False if not self.vocab_file else True def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str , lowercase_ : Optional[str] = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''') if not os.path.isdir(_A): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_A): copyfile(self.vocab_file , _A) return (out_vocab_file,)
91
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :Union[str, Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
0
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _snake_case ( a_ ): '''simple docstring''' def __init__( self: str ,lowerCamelCase_: Optional[Any]=0.0_1 ,lowerCamelCase_: List[Any]=1000 ) -> Any: UpperCAmelCase_ : Any = p_stop UpperCAmelCase_ : Dict = max_length def __iter__( self: int ) -> str: UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : List[Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase_ : str = random.random() < self.p_stop class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[Any]=False ,lowerCamelCase_: List[str]=True ) -> int: UpperCAmelCase_ : Any = [ BatchSamplerShard(lowercase_ ,2 ,lowercase_ ,split_batches=lowercase_ ,even_batches=lowercase_ ) for i in range(2 ) ] UpperCAmelCase_ : List[str] = [list(lowercase_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowercase_ ) for shard in batch_sampler_shards] ,[len(lowercase_ ) for e in expected] ) self.assertListEqual(lowercase_ ,lowercase_ ) def A__ ( self: Optional[Any] ) -> Dict: UpperCAmelCase_ : Optional[int] = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=lowercase_ ) UpperCAmelCase_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ) UpperCAmelCase_ : int = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=lowercase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase_ ,lowercase_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase_ : Union[str, Any] = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=lowercase_ ) UpperCAmelCase_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ) UpperCAmelCase_ : Union[str, Any] = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=lowercase_ ) UpperCAmelCase_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase_ : Any = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=lowercase_ ) UpperCAmelCase_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ) UpperCAmelCase_ : Any = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=lowercase_ ) UpperCAmelCase_ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase_ : Union[str, Any] = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=lowercase_ ) UpperCAmelCase_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ) UpperCAmelCase_ : int = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=lowercase_ ) UpperCAmelCase_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ) # Check the shards when the dataset is very small. UpperCAmelCase_ : Any = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=lowercase_ ) UpperCAmelCase_ : Dict = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ) UpperCAmelCase_ : Optional[int] = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=lowercase_ ) UpperCAmelCase_ : Union[str, Any] = [[], []] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ) def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[Any] = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=lowercase_ ) UpperCAmelCase_ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,split_batches=lowercase_ ) UpperCAmelCase_ : Dict = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=lowercase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,split_batches=lowercase_ ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase_ : Optional[int] = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=lowercase_ ) UpperCAmelCase_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,split_batches=lowercase_ ) UpperCAmelCase_ : Dict = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=lowercase_ ) UpperCAmelCase_ : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,split_batches=lowercase_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase_ : Tuple = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=lowercase_ ) UpperCAmelCase_ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,split_batches=lowercase_ ) UpperCAmelCase_ : List[Any] = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=lowercase_ ) UpperCAmelCase_ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,split_batches=lowercase_ ) # Check the shards when the dataset is very small. UpperCAmelCase_ : Any = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=lowercase_ ) UpperCAmelCase_ : Union[str, Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,split_batches=lowercase_ ) UpperCAmelCase_ : Dict = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=lowercase_ ) UpperCAmelCase_ : Dict = [[], []] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,split_batches=lowercase_ ) def A__ ( self: Optional[int] ) -> List[Any]: UpperCAmelCase_ : str = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=lowercase_ ) UpperCAmelCase_ : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,even_batches=lowercase_ ) UpperCAmelCase_ : Dict = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=lowercase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,even_batches=lowercase_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase_ : Optional[Any] = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=lowercase_ ) UpperCAmelCase_ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,even_batches=lowercase_ ) UpperCAmelCase_ : Dict = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=lowercase_ ) UpperCAmelCase_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,even_batches=lowercase_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase_ : int = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=lowercase_ ) UpperCAmelCase_ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,even_batches=lowercase_ ) UpperCAmelCase_ : Union[str, Any] = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=lowercase_ ) UpperCAmelCase_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,even_batches=lowercase_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase_ : Any = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=lowercase_ ) UpperCAmelCase_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,even_batches=lowercase_ ) UpperCAmelCase_ : int = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=lowercase_ ) UpperCAmelCase_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,even_batches=lowercase_ ) # Check the shards when the dataset is very small. UpperCAmelCase_ : Union[str, Any] = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=lowercase_ ) UpperCAmelCase_ : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,even_batches=lowercase_ ) UpperCAmelCase_ : Tuple = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=lowercase_ ) UpperCAmelCase_ : Optional[int] = [[], []] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,even_batches=lowercase_ ) def A__ ( self: Optional[Any] ) -> Tuple: UpperCAmelCase_ : int = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=lowercase_ ) UpperCAmelCase_ : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,split_batches=lowercase_ ,even_batches=lowercase_ ) UpperCAmelCase_ : List[str] = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=lowercase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,split_batches=lowercase_ ,even_batches=lowercase_ ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase_ : Union[str, Any] = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=lowercase_ ) UpperCAmelCase_ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,split_batches=lowercase_ ,even_batches=lowercase_ ) UpperCAmelCase_ : Optional[Any] = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=lowercase_ ) UpperCAmelCase_ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,split_batches=lowercase_ ,even_batches=lowercase_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase_ : Dict = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=lowercase_ ) UpperCAmelCase_ : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,split_batches=lowercase_ ,even_batches=lowercase_ ) UpperCAmelCase_ : Any = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=lowercase_ ) UpperCAmelCase_ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,split_batches=lowercase_ ,even_batches=lowercase_ ) # Check the shards when the dataset is very small. UpperCAmelCase_ : Any = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=lowercase_ ) UpperCAmelCase_ : Tuple = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,split_batches=lowercase_ ,even_batches=lowercase_ ) UpperCAmelCase_ : List[str] = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=lowercase_ ) UpperCAmelCase_ : str = [[], []] self.check_batch_sampler_shards(lowercase_ ,lowercase_ ,split_batches=lowercase_ ,even_batches=lowercase_ ) def A__ ( self: Tuple ) -> Dict: UpperCAmelCase_ : str = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase_ : int = [BatchSamplerShard(lowercase_ ,2 ,lowercase_ ,even_batches=lowercase_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) ,3 ) self.assertEqual(len(batch_sampler_shards[1] ) ,2 ) self.assertListEqual(list(batch_sampler_shards[0] ) ,[[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) ,[[3, 4], [9, 10, 11]] ) def A__ ( self: Tuple ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: int ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[Any]=False ,lowerCamelCase_: Optional[int]=2 ,lowerCamelCase_: str=False ) -> List[Any]: random.seed(lowercase_ ) UpperCAmelCase_ : Optional[int] = list(lowercase_ ) UpperCAmelCase_ : int = [ IterableDatasetShard( lowercase_ ,batch_size=lowercase_ ,drop_last=lowercase_ ,num_processes=lowercase_ ,process_index=lowercase_ ,split_batches=lowercase_ ,) for i in range(lowercase_ ) ] UpperCAmelCase_ : List[Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowercase_ ) iterable_dataset_lists.append(list(lowercase_ ) ) UpperCAmelCase_ : List[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase_ : Any = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowercase_ ) ,len(lowercase_ ) ) self.assertTrue(len(lowercase_ ) % shard_batch_size == 0 ) UpperCAmelCase_ : int = [] for idx in range(0 ,len(lowercase_ ) ,lowercase_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowercase_ ) < len(lowercase_ ): reference += reference self.assertListEqual(lowercase_ ,reference[: len(lowercase_ )] ) def A__ ( self: Optional[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = 42 UpperCAmelCase_ : str = RandomIterableDataset() self.check_iterable_dataset_shards(lowercase_ ,lowercase_ ,batch_size=4 ,drop_last=lowercase_ ,split_batches=lowercase_ ) self.check_iterable_dataset_shards(lowercase_ ,lowercase_ ,batch_size=4 ,drop_last=lowercase_ ,split_batches=lowercase_ ) self.check_iterable_dataset_shards(lowercase_ ,lowercase_ ,batch_size=4 ,drop_last=lowercase_ ,split_batches=lowercase_ ) self.check_iterable_dataset_shards(lowercase_ ,lowercase_ ,batch_size=4 ,drop_last=lowercase_ ,split_batches=lowercase_ ) # Edge case with a very small dataset UpperCAmelCase_ : Union[str, Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(lowercase_ ,lowercase_ ,batch_size=4 ,drop_last=lowercase_ ,split_batches=lowercase_ ) self.check_iterable_dataset_shards(lowercase_ ,lowercase_ ,batch_size=4 ,drop_last=lowercase_ ,split_batches=lowercase_ ) self.check_iterable_dataset_shards(lowercase_ ,lowercase_ ,batch_size=4 ,drop_last=lowercase_ ,split_batches=lowercase_ ) self.check_iterable_dataset_shards(lowercase_ ,lowercase_ ,batch_size=4 ,drop_last=lowercase_ ,split_batches=lowercase_ ) def A__ ( self: List[Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = BatchSampler(range(16 ) ,batch_size=4 ,drop_last=lowercase_ ) UpperCAmelCase_ : List[str] = SkipBatchSampler(lowercase_ ,2 ) self.assertListEqual(list(lowercase_ ) ,[[8, 9, 10, 11], [12, 13, 14, 15]] ) def A__ ( self: List[str] ) -> Tuple: UpperCAmelCase_ : Dict = SkipDataLoader(list(range(16 ) ) ,batch_size=4 ,skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] ,[[8, 9, 10, 11], [12, 13, 14, 15]] ) def A__ ( self: Optional[int] ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = DataLoader(list(range(16 ) ) ,batch_size=4 ) UpperCAmelCase_ : Tuple = skip_first_batches(lowercase_ ,num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] ,[[8, 9, 10, 11], [12, 13, 14, 15]] ) def A__ ( self: Optional[Any] ) -> Dict: UpperCAmelCase_ : Tuple = DataLoaderShard(list(range(16 ) ) ,batch_size=4 ) for idx, _ in enumerate(lowercase_ ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowercase_ ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 ) def A__ ( self: int ) -> Optional[int]: Accelerator() UpperCAmelCase_ : Any = DataLoaderDispatcher(range(16 ) ,batch_size=4 ) for idx, _ in enumerate(lowercase_ ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowercase_ ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 )
364
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class _snake_case : '''simple docstring''' @staticmethod def A__ ( *lowerCamelCase_: List[Any] ,**lowerCamelCase_: Tuple ) -> Tuple: pass def lowerCamelCase_ ( _a : Image ): '''simple docstring''' UpperCAmelCase_ : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' A__ : Optional[Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Union[str, Any] ) -> int: UpperCAmelCase_ : Union[str, Any] = DepthEstimationPipeline(model=lowerCamelCase_ ,image_processor=lowerCamelCase_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def A__ ( self: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: str ) -> str: UpperCAmelCase_ : Tuple = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} ,lowerCamelCase_ ) import datasets UpperCAmelCase_ : Union[str, Any] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" ,"""image""" ,split="""test""" ) UpperCAmelCase_ : List[str] = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] ,lowerCamelCase_ ,) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def A__ ( self: List[str] ) -> Any: pass @slow @require_torch def A__ ( self: int ) -> List[Any]: UpperCAmelCase_ : Optional[int] = """Intel/dpt-large""" UpperCAmelCase_ : str = pipeline("""depth-estimation""" ,model=lowerCamelCase_ ) UpperCAmelCase_ : Dict = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) UpperCAmelCase_ : Dict = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) ,2_9.3_0_4 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) ,2.6_6_2 ) @require_torch def A__ ( self: List[str] ) -> Any: # This is highly irregular to have no small tests. self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
59
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) if is_vision_available(): import PIL class a_ ( _lowerCAmelCase ): __A = ["pixel_values"] def __init__( self : int , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : bool = True , **lowercase : Dict , ): """simple docstring""" super().__init__(**lowercase ) lowercase_ :Optional[int] = size if size is not None else {"shortest_edge": 224} lowercase_ :Tuple = get_size_dict(lowercase , default_to_square=lowercase ) lowercase_ :Optional[int] = crop_size if crop_size is not None else {"height": 224, "width": 224} lowercase_ :List[Any] = get_size_dict(lowercase , default_to_square=lowercase , param_name="crop_size" ) lowercase_ :List[str] = do_resize lowercase_ :Union[str, Any] = size lowercase_ :List[Any] = resample lowercase_ :List[str] = do_center_crop lowercase_ :Union[str, Any] = crop_size lowercase_ :str = do_rescale lowercase_ :int = rescale_factor lowercase_ :Any = do_normalize lowercase_ :Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase_ :Optional[Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowercase_ :Optional[int] = do_convert_rgb def lowercase__ ( self : List[str] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Optional[int] , ): """simple docstring""" lowercase_ :Optional[int] = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowercase_ :int = get_resize_output_image_size(lowercase , size=size["shortest_edge"] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def lowercase__ ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : str , ): """simple docstring""" lowercase_ :Union[str, Any] = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(lowercase , size=(size["height"], size["width"]) , data_format=lowercase , **lowercase ) def lowercase__ ( self : int , lowercase : np.ndarray , lowercase : Union[int, float] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Optional[Any] , ): """simple docstring""" return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def lowercase__ ( self : List[Any] , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] , ): """simple docstring""" return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def lowercase__ ( self : List[str] , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : int = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : bool = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowercase : Dict , ): """simple docstring""" lowercase_ :Optional[Any] = do_resize if do_resize is not None else self.do_resize lowercase_ :str = size if size is not None else self.size lowercase_ :int = get_size_dict(lowercase , param_name="size" , default_to_square=lowercase ) lowercase_ :List[str] = resample if resample is not None else self.resample lowercase_ :Dict = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ :Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase_ :str = get_size_dict(lowercase , param_name="crop_size" , default_to_square=lowercase ) lowercase_ :Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase_ :Dict = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ :Dict = do_normalize if do_normalize is not None else self.do_normalize lowercase_ :Optional[Any] = image_mean if image_mean is not None else self.image_mean lowercase_ :List[Any] = image_std if image_std is not None else self.image_std lowercase_ :List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ :List[str] = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ :Any = [convert_to_rgb(lowercase ) for image in images] # All transformations expect numpy arrays. lowercase_ :List[Any] = [to_numpy_array(lowercase ) for image in images] if do_resize: lowercase_ :Optional[Any] = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: lowercase_ :Optional[Any] = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: lowercase_ :Optional[int] = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: lowercase_ :Any = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] lowercase_ :Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] lowercase_ :Optional[Any] = {"pixel_values": images} return BatchFeature(data=lowercase , tensor_type=lowercase )
223
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( _lowerCAmelCase , unittest.TestCase ): __A = RobertaTokenizer __A = RobertaTokenizerFast __A = True __A = {"cls_token": "<s>"} def lowercase__ ( self : Dict ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ :List[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase_ :List[Any] = dict(zip(lowercase , range(len(lowercase ) ) ) ) lowercase_ :Optional[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase_ :Union[str, Any] = {"unk_token": "<unk>"} lowercase_ :Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase_ :Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase ) ) def lowercase__ ( self : str , **lowercase : List[str] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def lowercase__ ( self : int , **lowercase : int ): """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase ) def lowercase__ ( self : Optional[int] , lowercase : List[Any] ): """simple docstring""" lowercase_ :List[str] = "lower newer" lowercase_ :Any = "lower newer" return input_text, output_text def lowercase__ ( self : int ): """simple docstring""" lowercase_ :List[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase_ :Dict = "lower newer" lowercase_ :Dict = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] lowercase_ :int = tokenizer.tokenize(lowercase ) # , add_prefix_space=True) self.assertListEqual(lowercase , lowercase ) lowercase_ :Optional[Any] = tokens + [tokenizer.unk_token] lowercase_ :Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :Dict = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=lowercase ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=lowercase ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :Optional[Any] = self.tokenizer_class.from_pretrained("roberta-base" ) lowercase_ :Any = tokenizer.encode("sequence builders" , add_special_tokens=lowercase ) lowercase_ :str = tokenizer.encode("multi-sequence build" , add_special_tokens=lowercase ) lowercase_ :int = tokenizer.encode( "sequence builders" , add_special_tokens=lowercase , add_prefix_space=lowercase ) lowercase_ :Optional[int] = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=lowercase , add_prefix_space=lowercase ) lowercase_ :str = tokenizer.build_inputs_with_special_tokens(lowercase ) lowercase_ :Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :Optional[int] = self.get_tokenizer() lowercase_ :str = "Encode this sequence." lowercase_ :Tuple = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments lowercase_ :List[str] = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) lowercase_ :List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase , lowercase ) lowercase_ :List[str] = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) lowercase_ :List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase , lowercase ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) lowercase_ :List[str] = tokenizer.encode(lowercase , add_special_tokens=lowercase ) lowercase_ :Optional[int] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase , lowercase ) # Testing spaces after special tokens lowercase_ :Union[str, Any] = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase )} ) # mask token has a left space lowercase_ :Any = tokenizer.convert_tokens_to_ids(lowercase ) lowercase_ :Tuple = "Encode <mask> sequence" lowercase_ :int = "Encode <mask>sequence" lowercase_ :str = tokenizer.encode(lowercase ) lowercase_ :Any = encoded.index(lowercase ) lowercase_ :Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase , lowercase ) lowercase_ :str = tokenizer.encode(lowercase ) lowercase_ :int = encoded.index(lowercase ) lowercase_ :Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase , lowercase ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" pass def lowercase__ ( self : Dict ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase_ :List[Any] = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) lowercase_ :Dict = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) lowercase_ :str = "A, <mask> AllenNLP sentence." lowercase_ :Tuple = tokenizer_r.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) lowercase_ :str = tokenizer_p.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowercase_ :Any = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowercase_ :Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowercase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def lowercase__ ( self : Dict ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowercase_ :List[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :int = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowercase_ :Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , lowercase ) self.assertEqual(post_processor_state["add_prefix_space"] , lowercase ) self.assertEqual(post_processor_state["trim_offsets"] , lowercase ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase_ :Tuple = "hello" # `hello` is a token in the vocabulary of `pretrained_name` lowercase_ :Optional[Any] = F'{text_of_1_token} {text_of_1_token}' lowercase_ :int = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :Optional[int] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) lowercase_ :Dict = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :List[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) lowercase_ :Any = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :Optional[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) lowercase_ :List[str] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :List[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) lowercase_ :Dict = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowercase_ :Optional[Any] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :Optional[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ) + 1, 1 + len(lowercase ) + 1 + len(lowercase )) , ) lowercase_ :Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :Dict = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , ) lowercase_ :Optional[int] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :Dict = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , )
223
1
'''simple docstring''' # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __SCREAMING_SNAKE_CASE ( __snake_case ): _lowerCamelCase : torch.FloatTensor _lowerCamelCase : Optional[torch.FloatTensor] = None def UpperCAmelCase_ ( __lowercase : Optional[Any] , __lowercase : Optional[int]=0.999 , __lowercase : Optional[int]="cosine" , ) -> Tuple: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__lowercase : Optional[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowercase : Tuple ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_a ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_a ) / alpha_bar_fn(_a ) , _a ) ) return torch.tensor(_a , dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): _lowerCamelCase : str = 1 @register_to_config def __init__( self : int , snake_case_ : int = 1_0_0_0 , snake_case_ : float = 0.0_0_0_1 , snake_case_ : float = 0.0_2 , snake_case_ : str = "linear" , snake_case_ : Optional[Union[np.ndarray, List[float]]] = None , snake_case_ : bool = True , snake_case_ : bool = True , snake_case_ : int = 0 , snake_case_ : str = "epsilon" , snake_case_ : float = 1.0 , **snake_case_ : Optional[int] , ): if kwargs.get("set_alpha_to_one" , lowerCamelCase_ ) is not None: _UpperCAmelCase = ( """The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.""" ) deprecate("set_alpha_to_one" , "1.0.0" , lowerCamelCase_ , standard_warn=lowerCamelCase_ ) _UpperCAmelCase = kwargs["""set_alpha_to_one"""] if trained_betas is not None: _UpperCAmelCase = torch.tensor(lowerCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(lowerCamelCase_ ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , lowerCamelCase_ ).copy().astype(np.intaa ) ) def lowercase ( self : Union[str, Any] , snake_case_ : torch.FloatTensor , snake_case_ : Optional[int] = None ): return sample def lowercase ( self : Any , snake_case_ : int , snake_case_ : Union[str, torch.device] = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' f' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' f' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , lowerCamelCase_ ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) self.timesteps += self.config.steps_offset def lowercase ( self : Any , snake_case_ : torch.FloatTensor , snake_case_ : int , snake_case_ : torch.FloatTensor , snake_case_ : float = 0.0 , snake_case_ : bool = False , snake_case_ : Optional[torch.FloatTensor] = None , snake_case_ : bool = True , ): # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCamelCase_ , pred_original_sample=lowerCamelCase_ ) def __len__( self : List[str] ): return self.config.num_train_timesteps
365
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : list ) -> list: '''simple docstring''' for i in range(len(__lowercase ) - 1 , 0 , -1 ): _UpperCAmelCase = False for j in range(__lowercase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _UpperCAmelCase , _UpperCAmelCase = unsorted[j - 1], unsorted[j] _UpperCAmelCase = True for j in range(__lowercase ): if unsorted[j] > unsorted[j + 1]: _UpperCAmelCase , _UpperCAmelCase = unsorted[j + 1], unsorted[j] _UpperCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE :List[str] = input('''Enter numbers separated by a comma:\n''').strip() __SCREAMING_SNAKE_CASE :Any = [int(item) for item in user_input.split(''',''')] print(F"{cocktail_shaker_sort(unsorted) = }")
156
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCAmelCase : Optional[Any] = "pt" elif is_tf_available(): _lowerCAmelCase : List[str] = "tf" else: _lowerCAmelCase : Tuple = "jax" class _UpperCamelCase ( lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ = PerceiverTokenizer UpperCAmelCase_ = False def UpperCAmelCase_ ( self :Union[str, Any] ) -> Any: super().setUp() UpperCAmelCase__ = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase_ ( self :int ) -> Tuple: return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def UpperCAmelCase_ ( self :List[str] , **lowerCamelCase :Optional[Any] ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase ) def UpperCAmelCase_ ( self :List[Any] , lowerCamelCase :str , lowerCamelCase :Optional[int]=False , lowerCamelCase :List[str]=20 , lowerCamelCase :List[Any]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. UpperCAmelCase__ = [] for i in range(len(lowerCamelCase ) ): try: UpperCAmelCase__ = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCAmelCase__ = list(filter(lambda lowerCamelCase : re.match(r"^[ a-zA-Z]+$" , t[1] ) , lowerCamelCase ) ) UpperCAmelCase__ = list(filter(lambda lowerCamelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCamelCase ) , lowerCamelCase ) ) if max_length is not None and len(lowerCamelCase ) > max_length: UpperCAmelCase__ = toks[:max_length] if min_length is not None and len(lowerCamelCase ) < min_length and len(lowerCamelCase ) > 0: while len(lowerCamelCase ) < min_length: UpperCAmelCase__ = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase__ = [t[0] for t in toks] # Ensure consistency UpperCAmelCase__ = tokenizer.decode(lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase ) if " " not in output_txt and len(lowerCamelCase ) > 1: UpperCAmelCase__ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCamelCase ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCamelCase ) ) if with_prefix_space: UpperCAmelCase__ = " " + output_txt UpperCAmelCase__ = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) return output_txt, output_ids def UpperCAmelCase_ ( self :List[str] ) -> str: UpperCAmelCase__ = self.perceiver_tokenizer UpperCAmelCase__ = "Unicode €." UpperCAmelCase__ = tokenizer(lowerCamelCase ) UpperCAmelCase__ = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"] , lowerCamelCase ) # decoding UpperCAmelCase__ = tokenizer.decode(lowerCamelCase ) self.assertEqual(lowerCamelCase , "[CLS]Unicode €.[SEP]" ) UpperCAmelCase__ = tokenizer("e è é ê ë" ) UpperCAmelCase__ = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"] , lowerCamelCase ) # decoding UpperCAmelCase__ = tokenizer.decode(lowerCamelCase ) self.assertEqual(lowerCamelCase , "[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" ) def UpperCAmelCase_ ( self :Optional[int] ) -> Dict: UpperCAmelCase__ = self.perceiver_tokenizer UpperCAmelCase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off UpperCAmelCase__ = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on UpperCAmelCase__ = tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) if FRAMEWORK != "jax": UpperCAmelCase__ = list(batch.input_ids.numpy()[0] ) else: UpperCAmelCase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def UpperCAmelCase_ ( self :List[Any] ) -> List[str]: UpperCAmelCase__ = self.perceiver_tokenizer UpperCAmelCase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCAmelCase__ = tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , lowerCamelCase ) self.assertIn("attention_mask" , lowerCamelCase ) self.assertNotIn("decoder_input_ids" , lowerCamelCase ) self.assertNotIn("decoder_attention_mask" , lowerCamelCase ) def UpperCAmelCase_ ( self :List[Any] ) -> int: UpperCAmelCase__ = self.perceiver_tokenizer UpperCAmelCase__ = [ "Summary of the text.", "Another summary.", ] UpperCAmelCase__ = tokenizer( text_target=lowerCamelCase , max_length=32 , padding="max_length" , truncation=lowerCamelCase , return_tensors=lowerCamelCase ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def UpperCAmelCase_ ( self :List[str] ) -> Optional[int]: # safety check on max_len default value so we are sure the test works UpperCAmelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = " He is very happy, UNwant\u00E9d,running" UpperCAmelCase__ = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) UpperCAmelCase__ = tokenizer.__class__.from_pretrained(lowerCamelCase ) UpperCAmelCase__ = after_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) shutil.rmtree(lowerCamelCase ) UpperCAmelCase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) UpperCAmelCase__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase__ = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) UpperCAmelCase__ = tokenizer.__class__.from_pretrained(lowerCamelCase ) UpperCAmelCase__ = after_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase__ = tokenizer.__class__.from_pretrained(lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCamelCase ) def UpperCAmelCase_ ( self :Dict ) -> List[str]: UpperCAmelCase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase ) with open(os.path.join(lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase__ = json.load(lowerCamelCase ) with open(os.path.join(lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase__ = json.load(lowerCamelCase ) UpperCAmelCase__ = [f'''<extra_id_{i}>''' for i in range(125 )] UpperCAmelCase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] UpperCAmelCase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(lowerCamelCase , lowerCamelCase ) with open(os.path.join(lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(lowerCamelCase , lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase__ = tokenizer_class.from_pretrained( lowerCamelCase , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=lowerCamelCase )] UpperCAmelCase__ = tokenizer_class.from_pretrained( lowerCamelCase , additional_special_tokens=lowerCamelCase , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def UpperCAmelCase_ ( self :Union[str, Any] ) -> int: UpperCAmelCase__ = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , "�" ) def UpperCAmelCase_ ( self :Dict ) -> List[str]: pass def UpperCAmelCase_ ( self :Union[str, Any] ) -> Tuple: pass def UpperCAmelCase_ ( self :Optional[int] ) -> Dict: pass def UpperCAmelCase_ ( self :Dict ) -> int: pass def UpperCAmelCase_ ( self :int ) -> Tuple: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens UpperCAmelCase__ = self.get_tokenizers(fast=lowerCamelCase , do_lower_case=lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase__ = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] UpperCAmelCase__ = tokenizer.convert_tokens_to_string(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase )
169
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase : List[str] = 1_6 _lowerCAmelCase : List[Any] = 3_2 def lowerCAmelCase ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCAmelCase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCAmelCase : List[Any] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ = 8 else: UpperCAmelCase__ = None return tokenizer.pad( _lowerCAmelCase , padding="longest" , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. UpperCAmelCase__ = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) UpperCAmelCase__ = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCAmelCase : int = mocked_dataloaders # noqa: F811 def lowerCAmelCase ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCAmelCase ) == "1": UpperCAmelCase__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: UpperCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ = config["lr"] UpperCAmelCase__ = int(config["num_epochs"] ) UpperCAmelCase__ = int(config["seed"] ) UpperCAmelCase__ = int(config["batch_size"] ) set_seed(_lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler UpperCAmelCase__ = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase__ = os.path.split(_lowerCAmelCase )[-1].split("." )[0] accelerator.init_trackers(_lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase__ = 0 for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ = model(**_lowerCAmelCase ) UpperCAmelCase__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ = model(**_lowerCAmelCase ) UpperCAmelCase__ = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) UpperCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowerCAmelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(_lowerCAmelCase ), "epoch": epoch, } , step=_lowerCAmelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=_lowerCAmelCase , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
169
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A ( unittest.TestCase ): def lowercase__ ( self : Any , UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 250 lowerCAmelCase : Dict = ids_tensor((batch_size, length) , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = torch.ones((batch_size, length) , device=UpperCAmelCase_ , dtype=torch.float ) / length return input_ids, scores def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = self._get_tensors(5 ) lowerCAmelCase : Any = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : Tuple = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = MaxLengthCriteria(max_length=10 ) lowerCAmelCase : Any = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : Dict = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowerCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : Dict = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : Dict = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Any = self._get_tensors(5 ) lowerCAmelCase : int = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) def lowercase__ ( self : Optional[int] ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCAmelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) lowerCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCAmelCase_ ) , 1 )
363
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel a_ = logging.getLogger(__name__) def __lowercase ( snake_case_ : Tuple ,snake_case_ : Any ) ->Dict: '''simple docstring''' if os.path.exists(snake_case_ ): if os.path.exists(os.path.join(snake_case_ ,'''config.json''' ) ) and os.path.isfile( os.path.join(snake_case_ ,'''config.json''' ) ): os.remove(os.path.join(snake_case_ ,'''config.json''' ) ) if os.path.exists(os.path.join(snake_case_ ,'''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(snake_case_ ,'''pytorch_model.bin''' ) ): os.remove(os.path.join(snake_case_ ,'''pytorch_model.bin''' ) ) else: os.makedirs(snake_case_ ) model.save_pretrained(snake_case_ ) def __lowercase ( snake_case_ : str ,snake_case_ : Optional[Any]=False ) ->Any: '''simple docstring''' __A : Any = 2 if unlogit: __A : Dict = torch.pow(snake_case_ ,snake_case_ ) __A : str = p * torch.log(snake_case_ ) __A : Dict = 0 return -plogp.sum(dim=-1 ) def __lowercase ( snake_case_ : Dict ) ->List[str]: '''simple docstring''' logger.info('''lv, h >\t''' + '''\t'''.join(F"""{x + 1}""" for x in range(len(snake_case_ ) ) ) ) for row in range(len(snake_case_ ) ): if tensor.dtype != torch.long: logger.info(F"""layer {row + 1}:\t""" + '''\t'''.join(F"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(F"""layer {row + 1}:\t""" + '''\t'''.join(F"""{x:d}""" for x in tensor[row].cpu().data ) ) def __lowercase ( snake_case_ : Dict ,snake_case_ : Optional[Any] ,snake_case_ : Dict ,snake_case_ : Dict=True ,snake_case_ : str=True ,snake_case_ : List[str]=None ,snake_case_ : int=False ) ->str: '''simple docstring''' __A , __A : int = model.config.num_hidden_layers, model.config.num_attention_heads __A : Optional[Any] = torch.zeros(snake_case_ ,snake_case_ ).to(args.device ) __A : Union[str, Any] = torch.zeros(snake_case_ ,snake_case_ ).to(args.device ) if head_mask is None: __A : Union[str, Any] = torch.ones(snake_case_ ,snake_case_ ).to(args.device ) head_mask.requires_grad_(requires_grad=snake_case_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __A : str = None __A : str = 0.0 __A : str = 0.0 for step, inputs in enumerate(tqdm(snake_case_ ,desc='''Iteration''' ,disable=args.local_rank not in [-1, 0] ) ): __A : Optional[int] = tuple(t.to(args.device ) for t in inputs ) ((__A) , ) : Any = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __A : Union[str, Any] = model(snake_case_ ,labels=snake_case_ ,head_mask=snake_case_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __A , __A , __A : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(snake_case_ ): __A : Optional[int] = entropy(attn.detach() ,snake_case_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(snake_case_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __A : str = 2 __A : List[Any] = torch.pow(torch.pow(snake_case_ ,snake_case_ ).sum(-1 ) ,1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: __A : int = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(snake_case_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(snake_case_ ) logger.info('''Head ranked by importance scores''' ) __A : int = torch.zeros(head_importance.numel() ,dtype=torch.long ,device=args.device ) __A : Optional[int] = torch.arange( head_importance.numel() ,device=args.device ) __A : Union[str, Any] = head_ranks.view_as(snake_case_ ) print_ad_tensor(snake_case_ ) return attn_entropy, head_importance, total_loss def __lowercase ( snake_case_ : List[Any] ,snake_case_ : Tuple ,snake_case_ : int ) ->Dict: '''simple docstring''' __A , __A , __A : str = compute_heads_importance(snake_case_ ,snake_case_ ,snake_case_ ,compute_entropy=snake_case_ ) __A : Tuple = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' ,snake_case_ ,original_score * args.masking_threshold ) __A : Union[str, Any] = torch.ones_like(snake_case_ ) __A : Optional[Any] = max(1 ,int(new_head_mask.numel() * args.masking_amount ) ) __A : List[Any] = original_score while current_score >= original_score * args.masking_threshold: __A : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __A : Optional[int] = float('''Inf''' ) __A : str = head_importance.view(-1 ).sort()[1] if len(snake_case_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads __A : Union[str, Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' ,str(current_heads_to_mask.tolist() ) ) __A : Optional[Any] = new_head_mask.view(-1 ) __A : int = 0.0 __A : int = new_head_mask.view_as(snake_case_ ) __A : Dict = new_head_mask.clone().detach() print_ad_tensor(snake_case_ ) # Compute metric and head importance again __A , __A , __A : List[Any] = compute_heads_importance( snake_case_ ,snake_case_ ,snake_case_ ,compute_entropy=snake_case_ ,head_mask=snake_case_ ) __A : List[str] = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' ,snake_case_ ,new_head_mask.sum() ,new_head_mask.sum() / new_head_mask.numel() * 100 ,) logger.info('''Final head mask''' ) print_ad_tensor(snake_case_ ) np.save(os.path.join(args.output_dir ,'''head_mask.npy''' ) ,head_mask.detach().cpu().numpy() ) return head_mask def __lowercase ( snake_case_ : List[Any] ,snake_case_ : Any ,snake_case_ : Optional[int] ,snake_case_ : Tuple ) ->str: '''simple docstring''' __A : Any = datetime.now() __A , __A , __A : int = compute_heads_importance( snake_case_ ,snake_case_ ,snake_case_ ,compute_entropy=snake_case_ ,compute_importance=snake_case_ ,head_mask=snake_case_ ) __A : Optional[Any] = 1 / loss __A : Tuple = datetime.now() - before_time __A : int = sum(p.numel() for p in model.parameters() ) __A : int = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(snake_case_ ) ) } for k, v in heads_to_prune.items(): if isinstance(snake_case_ ,snake_case_ ): __A : Tuple = [ v, ] assert sum(len(snake_case_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(snake_case_ ) __A : Any = sum(p.numel() for p in model.parameters() ) __A : Dict = datetime.now() __A , __A , __A : Tuple = compute_heads_importance( snake_case_ ,snake_case_ ,snake_case_ ,compute_entropy=snake_case_ ,compute_importance=snake_case_ ,head_mask=snake_case_ ,actually_pruned=snake_case_ ,) __A : Optional[int] = 1 / loss __A : Any = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' ,snake_case_ ,snake_case_ ,pruned_num_params / original_num_params * 100 ,) logger.info('''Pruning: score with masking: %f score with pruning: %f''' ,snake_case_ ,snake_case_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' ,original_time / new_time * 100 ) save_model(snake_case_ ,args.output_dir ) def __lowercase ( ) ->str: '''simple docstring''' __A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' ,default=snake_case_ ,type=snake_case_ ,required=snake_case_ ,help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' ,) parser.add_argument( '''--model_name_or_path''' ,default=snake_case_ ,type=snake_case_ ,required=snake_case_ ,help='''Path to pretrained model or model identifier from huggingface.co/models''' ,) parser.add_argument( '''--output_dir''' ,default=snake_case_ ,type=snake_case_ ,required=snake_case_ ,help='''The output directory where the model predictions and checkpoints will be written.''' ,) # Other parameters parser.add_argument( '''--config_name''' ,default='''''' ,type=snake_case_ ,help='''Pretrained config name or path if not the same as model_name_or_path''' ,) parser.add_argument( '''--tokenizer_name''' ,default='''''' ,type=snake_case_ ,help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' ,) parser.add_argument( '''--cache_dir''' ,default=snake_case_ ,type=snake_case_ ,help='''Where do you want to store the pre-trained models downloaded from s3''' ,) parser.add_argument( '''--data_subset''' ,type=snake_case_ ,default=-1 ,help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' ,action='''store_true''' ,help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' ,action='''store_true''' ,help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' ,action='''store_true''' ,help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' ,action='''store_true''' ,help='''Don\'t normalize all importance scores between 0 and 1''' ,) parser.add_argument( '''--try_masking''' ,action='''store_true''' ,help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' ,default=0.9 ,type=snake_case_ ,help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' ,) parser.add_argument( '''--masking_amount''' ,default=0.1 ,type=snake_case_ ,help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' ,default='''acc''' ,type=snake_case_ ,help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' ,default=128 ,type=snake_case_ ,help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) ,) parser.add_argument('''--batch_size''' ,default=1 ,type=snake_case_ ,help='''Batch size.''' ) parser.add_argument('''--seed''' ,type=snake_case_ ,default=42 ) parser.add_argument('''--local_rank''' ,type=snake_case_ ,default=-1 ,help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' ,action='''store_true''' ,help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' ,type=snake_case_ ,default='''''' ,help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' ,type=snake_case_ ,default='''''' ,help='''Can be used for distant debugging.''' ) __A : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) ,redirect_output=snake_case_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __A : List[Any] = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) __A : Tuple = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __A : List[Any] = torch.device('''cuda''' ,args.local_rank ) __A : Union[str, Any] = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device ,args.n_gpu ,bool(args.local_rank != -1 ) ) ) __A : int = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __A : Union[str, Any] = nn.parallel.DistributedDataParallel( snake_case_ ,device_ids=[args.local_rank] ,output_device=args.local_rank ,find_unused_parameters=snake_case_ ) elif args.n_gpu > 1: __A : Union[str, Any] = nn.DataParallel(snake_case_ ) # Print/save training arguments os.makedirs(args.output_dir ,exist_ok=snake_case_ ) torch.save(snake_case_ ,os.path.join(args.output_dir ,'''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' ,snake_case_ ) # Prepare dataset __A : Tuple = np.concatenate( [ np.loadtxt(args.data_dir ,dtype=np.intaa ), ] ) __A : str = (torch.from_numpy(snake_case_ ),) __A : List[str] = TensorDataset(*snake_case_ ) __A : Tuple = RandomSampler(snake_case_ ) __A : int = DataLoader(snake_case_ ,sampler=snake_case_ ,batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(snake_case_ ,snake_case_ ,snake_case_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __A : List[str] = mask_heads(snake_case_ ,snake_case_ ,snake_case_ ) prune_heads(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) if __name__ == "__main__": main()
179
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """roberta""" def __init__( self , __lowerCamelCase=5_0265 , __lowerCamelCase=768 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=3072 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=512 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-1_2 , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , __lowerCamelCase="absolute" , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) __A : str = vocab_size __A : Any = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : List[Any] = hidden_act __A : Any = intermediate_size __A : List[str] = hidden_dropout_prob __A : List[Any] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : str = type_vocab_size __A : int = initializer_range __A : Tuple = layer_norm_eps __A : str = position_embedding_type __A : int = use_cache __A : Optional[int] = classifier_dropout class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCamelCase__( self ): '''simple docstring''' if self.task == "multiple-choice": __A : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __A : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
179
1
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def __snake_case ( __UpperCamelCase : str ): """simple docstring""" for char in word: A_ = ord(__UpperCamelCase ) if not _is_chinese_char(__UpperCamelCase ): return 0 return 1 def __snake_case ( __UpperCamelCase : List[str] ): """simple docstring""" A_ = set() for token in tokens: A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase ) if chinese_word: word_set.add(__UpperCamelCase ) A_ = list(__UpperCamelCase ) return word_list def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(__UpperCamelCase ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start ,__UpperCamelCase ) for i in range(__UpperCamelCase ,1 ,-1 ): A_ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 ,start + i ): A_ = "##" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ): """simple docstring""" A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0] A_ = [get_chinese_word(__UpperCamelCase ) for r in res] ltp_res.extend(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase ) input_tokens.append(__UpperCamelCase ) A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__UpperCamelCase ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ): ref_id.append(__UpperCamelCase ) ref_ids.append(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) return ref_ids def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" with open(args.file_name ,"r" ,encoding="utf-8" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) with open(args.save_path ,"w" ,encoding="utf-8" ) as f: A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids] f.writelines(__UpperCamelCase ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') __a :Dict = parser.parse_args() main(args)
329
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __a :str = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = RobertaPreLayerNormConfig.from_pretrained( __UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) ) A_ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue A_ = tensor_value A_ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) # convert tokenizer A_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a :Any = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
329
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Any = 'philschmid/bart-large-cnn-samsum' UpperCAmelCase__ : str = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) UpperCAmelCase__ : List[str] = 'summarizer' UpperCAmelCase__ : Tuple = AutoTokenizer UpperCAmelCase__ : Tuple = AutoModelForSeqaSeqLM UpperCAmelCase__ : Any = ['text'] UpperCAmelCase__ : List[str] = ['text'] def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Optional[int] ): return self.pre_processor(UpperCamelCase_ , return_tensors="""pt""" , truncation=UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Any] ): return self.model.generate(**UpperCamelCase_ )[0] def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[Any] ): return self.pre_processor.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ )
12
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCamelCase ( __lowerCamelCase : Dict[str, torch.Tensor] ): snake_case : List[str] = [] snake_case : Optional[int] = [] snake_case : Any = [] for rt in rc.restypes: snake_case : List[Any] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) snake_case : str = {name: i for i, name in enumerate(__lowerCamelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) snake_case : Optional[Any] = torch.tensor( __lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) snake_case : List[Any] = torch.tensor( __lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) snake_case : int = torch.tensor( __lowerCamelCase , dtype=torch.floataa , device=protein["aatype"].device , ) snake_case : int = protein["aatype"].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein snake_case : List[Any] = restype_atomaa_to_atomaa[protein_aatype] snake_case : str = restype_atomaa_mask[protein_aatype] snake_case : str = residx_atomaa_mask snake_case : Any = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back snake_case : List[str] = restype_atomaa_to_atomaa[protein_aatype] snake_case : List[Any] = residx_atomaa_to_atomaa.long() # create the corresponding mask snake_case : Union[str, Any] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["aatype"].device ) for restype, restype_letter in enumerate(rc.restypes ): snake_case : Optional[int] = rc.restype_atoa[restype_letter] snake_case : Any = rc.residue_atoms[restype_name] for atom_name in atom_names: snake_case : List[Any] = rc.atom_order[atom_name] snake_case : Optional[Any] = 1 snake_case : List[Any] = restype_atomaa_mask[protein_aatype] snake_case : int = residx_atomaa_mask return protein def UpperCamelCase ( __lowerCamelCase : Dict[str, torch.Tensor] ): snake_case : Dict = tree_map(lambda __lowerCamelCase : torch.tensor(__lowerCamelCase , device=batch["aatype"].device ) , __lowerCamelCase , np.ndarray ) snake_case : List[str] = tensor_tree_map(lambda __lowerCamelCase : np.array(__lowerCamelCase ) , make_atomaa_masks(__lowerCamelCase ) ) return out
59
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ ( __snake_case ): _lowerCamelCase = (DDIMParallelScheduler,) _lowerCamelCase = (('eta', 0.0), ('num_inference_steps', 50)) def UpperCamelCase ( self , **lowercase_ ): _snake_case : str = { "num_train_timesteps": 1_000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**lowercase_ ) return config def UpperCamelCase ( self , **lowercase_ ): _snake_case : Any = self.scheduler_classes[0] _snake_case : Dict = self.get_scheduler_config(**lowercase_ ) _snake_case : Dict = scheduler_class(**lowercase_ ) _snake_case : int = 10, 0.0 _snake_case : Union[str, Any] = self.dummy_model() _snake_case : int = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for t in scheduler.timesteps: _snake_case : Any = model(lowercase_ , lowercase_ ) _snake_case : Optional[int] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase ( self ): for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) _snake_case : str = self.scheduler_classes[0] _snake_case : Optional[int] = self.get_scheduler_config(steps_offset=1 ) _snake_case : Any = scheduler_class(**lowercase_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase_ ) def UpperCamelCase ( self ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowercase_ ) def UpperCamelCase ( self ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowercase_ ) def UpperCamelCase ( self ): self.check_over_configs(thresholding=lowercase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , ) def UpperCamelCase ( self ): for t in [1, 10, 49]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase ( self ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowercase_ , num_inference_steps=lowercase_ ) def UpperCamelCase ( self ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowercase_ , eta=lowercase_ ) def UpperCamelCase ( self ): _snake_case : Tuple = self.scheduler_classes[0] _snake_case : int = self.get_scheduler_config() _snake_case : str = scheduler_class(**lowercase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def UpperCamelCase ( self ): _snake_case : int = self.scheduler_classes[0] _snake_case : Optional[Any] = self.get_scheduler_config() _snake_case : Any = scheduler_class(**lowercase_ ) _snake_case : Optional[Any] = 10, 0.0 scheduler.set_timesteps(lowercase_ ) _snake_case : Optional[int] = self.dummy_model() _snake_case : Tuple = self.dummy_sample_deter _snake_case : str = self.dummy_sample_deter + 0.1 _snake_case : int = self.dummy_sample_deter - 0.1 _snake_case : List[Any] = samplea.shape[0] _snake_case : Dict = torch.stack([samplea, samplea, samplea] , dim=0 ) _snake_case : List[Any] = torch.arange(lowercase_ )[0:3, None].repeat(1 , lowercase_ ) _snake_case : Dict = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _snake_case : int = scheduler.batch_step_no_noise(lowercase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowercase_ ) _snake_case : Optional[int] = torch.sum(torch.abs(lowercase_ ) ) _snake_case : Optional[int] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def UpperCamelCase ( self ): _snake_case : Optional[Any] = self.full_loop() _snake_case : Optional[int] = torch.sum(torch.abs(lowercase_ ) ) _snake_case : Optional[Any] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def UpperCamelCase ( self ): _snake_case : Optional[Any] = self.full_loop(prediction_type="v_prediction" ) _snake_case : Optional[int] = torch.sum(torch.abs(lowercase_ ) ) _snake_case : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def UpperCamelCase ( self ): # We specify different beta, so that the first alpha is 0.99 _snake_case : str = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) _snake_case : List[str] = torch.sum(torch.abs(lowercase_ ) ) _snake_case : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def UpperCamelCase ( self ): # We specify different beta, so that the first alpha is 0.99 _snake_case : Any = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) _snake_case : Optional[int] = torch.sum(torch.abs(lowercase_ ) ) _snake_case : Optional[int] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
359
from __future__ import annotations def snake_case (__lowercase , __lowercase ) -> float: '''simple docstring''' _snake_case : Any = sorted(numsa + numsa ) _snake_case ,_snake_case : Any = divmod(len(__lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE : Union[str, Any] = [float(x) for x in input('Enter the elements of first array: ').split()] __SCREAMING_SNAKE_CASE : List[Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
284
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a : int = 16 a : Optional[Any] = 32 def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase = 16 ) -> str: '''simple docstring''' snake_case_ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case_ = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(__UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) snake_case_ = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=__UpperCAmelCase, max_length=__UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case_ = datasets.map( __UpperCAmelCase, batched=__UpperCAmelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(__UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case_ = 16 elif accelerator.mixed_precision != "no": snake_case_ = 8 else: snake_case_ = None return tokenizer.pad( __UpperCAmelCase, padding='''longest''', max_length=__UpperCAmelCase, pad_to_multiple_of=__UpperCAmelCase, return_tensors='''pt''', ) # Instantiate dataloaders. snake_case_ = DataLoader( tokenized_datasets['''train'''], shuffle=__UpperCAmelCase, collate_fn=__UpperCAmelCase, batch_size=__UpperCAmelCase ) snake_case_ = DataLoader( tokenized_datasets['''validation'''], shuffle=__UpperCAmelCase, collate_fn=__UpperCAmelCase, batch_size=__UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a : Dict = mocked_dataloaders # noqa: F811 def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> str: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''', __UpperCAmelCase ) == "1": snake_case_ = 2 # Initialize accelerator snake_case_ = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ = config['''lr'''] snake_case_ = int(config['''num_epochs'''] ) snake_case_ = int(config['''seed'''] ) snake_case_ = int(config['''batch_size'''] ) snake_case_ = evaluate.load('''glue''', '''mrpc''' ) # If the batch size is too big we use gradient accumulation snake_case_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case_ = batch_size // MAX_GPU_BATCH_SIZE snake_case_ = MAX_GPU_BATCH_SIZE set_seed(__UpperCAmelCase ) snake_case_ ,snake_case_ = get_dataloaders(__UpperCAmelCase, __UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=__UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ = model.to(accelerator.device ) # Instantiate optimizer snake_case_ = AdamW(params=model.parameters(), lr=__UpperCAmelCase ) # Instantiate scheduler snake_case_ = get_linear_schedule_with_warmup( optimizer=__UpperCAmelCase, num_warmup_steps=100, num_training_steps=(len(__UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ = accelerator.prepare( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) # Now we train the model for epoch in range(__UpperCAmelCase ): model.train() for step, batch in enumerate(__UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case_ = model(**__UpperCAmelCase ) snake_case_ = outputs.loss snake_case_ = loss / gradient_accumulation_steps accelerator.backward(__UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() snake_case_ = 0 for step, batch in enumerate(__UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ = model(**__UpperCAmelCase ) snake_case_ = outputs.logits.argmax(dim=-1 ) snake_case_ ,snake_case_ = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__UpperCAmelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples snake_case_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__UpperCAmelCase, references=__UpperCAmelCase, ) snake_case_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:", __UpperCAmelCase ) def __magic_name__ ( ) -> Tuple: '''simple docstring''' snake_case_ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=__UpperCAmelCase, default=__UpperCAmelCase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) snake_case_ = parser.parse_args() snake_case_ = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCAmelCase, __UpperCAmelCase ) if __name__ == "__main__": main()
56
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __lowerCAmelCase : List[Any] = logging.get_logger(__name__) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[str]: __lowercase : Optional[int] = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowercase : Union[str, Any] = to_pil_image(__lowerCAmelCase ) __lowercase , __lowercase : Any = pil_image.size __lowercase : Union[str, Any] = pytesseract.image_to_data(__lowerCAmelCase , lang=__lowerCAmelCase , output_type='''dict''' , config=__lowerCAmelCase ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : int = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowercase : str = [idx for idx, word in enumerate(__lowerCAmelCase ) if not word.strip()] __lowercase : List[Any] = [word for idx, word in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] __lowercase : Tuple = [coord for idx, coord in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] __lowercase : Any = [coord for idx, coord in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] __lowercase : str = [coord for idx, coord in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] __lowercase : str = [coord for idx, coord in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowercase : List[Any] = [] for x, y, w, h in zip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): __lowercase : int = [x, y, x + w, y + h] actual_boxes.append(__lowerCAmelCase ) # finally, normalize the bounding boxes __lowercase : str = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Dict = ['''pixel_values'''] def __init__( self : str , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : bool = True , _snake_case : Optional[str] = None , _snake_case : Optional[str] = "" , **_snake_case : Union[str, Any] , ): super().__init__(**_snake_case ) __lowercase : Optional[int] = size if size is not None else {'''height''': 224, '''width''': 224} __lowercase : Optional[int] = get_size_dict(_snake_case ) __lowercase : Optional[int] = do_resize __lowercase : List[str] = size __lowercase : Optional[Any] = resample __lowercase : str = apply_ocr __lowercase : List[Any] = ocr_lang __lowercase : Optional[int] = tesseract_config def snake_case_ ( self : str , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Any , ): __lowercase : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) __lowercase : Dict = (size['''height'''], size['''width''']) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def snake_case_ ( self : int , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = None , _snake_case : bool = None , _snake_case : Optional[str] = None , _snake_case : Optional[str] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : ChannelDimension = ChannelDimension.FIRST , **_snake_case : Optional[int] , ): __lowercase : str = do_resize if do_resize is not None else self.do_resize __lowercase : int = size if size is not None else self.size __lowercase : Dict = get_size_dict(_snake_case ) __lowercase : Union[str, Any] = resample if resample is not None else self.resample __lowercase : int = apply_ocr if apply_ocr is not None else self.apply_ocr __lowercase : List[str] = ocr_lang if ocr_lang is not None else self.ocr_lang __lowercase : Union[str, Any] = tesseract_config if tesseract_config is not None else self.tesseract_config __lowercase : Union[str, Any] = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowercase : Optional[int] = [to_numpy_array(_snake_case ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowercase : Optional[int] = [] __lowercase : Tuple = [] for image in images: __lowercase , __lowercase : Dict = apply_tesseract(_snake_case , _snake_case , _snake_case ) words_batch.append(_snake_case ) boxes_batch.append(_snake_case ) if do_resize: __lowercase : int = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowercase : Tuple = [flip_channel_order(_snake_case ) for image in images] __lowercase : int = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] __lowercase : Optional[Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_snake_case ) if apply_ocr: __lowercase : str = words_batch __lowercase : int = boxes_batch return data
156
0
"""simple docstring""" def lowerCamelCase ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] UpperCAmelCase : List[str] = generate_large_matrix() UpperCAmelCase : List[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCamelCase ( _UpperCamelCase : Optional[Any] ) -> None: '''simple docstring''' assert all(row == sorted(a__ , reverse=a__ ) for row in grid ) assert all(list(a__ ) == sorted(a__ , reverse=a__ ) for col in zip(*a__ ) ) def lowerCamelCase ( _UpperCamelCase : Tuple ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Tuple = len(a__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : Any = (left + right) // 2 __UpperCAmelCase : List[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : str = mid + 1 else: __UpperCAmelCase : Any = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(a__ ) def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : str = len(grid[0] ) for i in range(len(a__ ) ): __UpperCAmelCase : Optional[Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(a__ ) * len(grid[0] )) - total def lowerCamelCase ( _UpperCamelCase : Optional[int] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def lowerCamelCase ( _UpperCamelCase : Any ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 for row in grid: for i, number in enumerate(a__ ): if number < 0: total += len(a__ ) - i break return total def lowerCamelCase ( ) -> None: '''simple docstring''' from timeit import timeit print("""Running benchmarks""" ) __UpperCAmelCase : Optional[int] = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Optional[Any] = timeit(f'''{func}(grid=grid)''' , setup=a__ , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
369
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = LEDTokenizer __a = LEDTokenizerFast __a = True def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' super().setUp() __UpperCAmelCase : Tuple = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __UpperCAmelCase : str = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) __UpperCAmelCase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __UpperCAmelCase : Dict = {"""unk_token""": """<unk>"""} __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase ) ) def lowerCamelCase__ ( self : Tuple , **UpperCamelCase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : str , UpperCamelCase : Any ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self : str ): '''simple docstring''' return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __UpperCAmelCase : Union[str, Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Any = tokenizer(UpperCamelCase , max_length=len(UpperCamelCase ) , padding=UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __UpperCAmelCase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCamelCase , UpperCamelCase ) @require_torch def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[int] = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors="""pt""" ) self.assertIn("""input_ids""" , UpperCamelCase ) self.assertIn("""attention_mask""" , UpperCamelCase ) self.assertNotIn("""labels""" , UpperCamelCase ) self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase ) @require_torch def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[Any] = tokenizer(text_target=UpperCamelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : str = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization."""] __UpperCAmelCase : int = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Tuple = tokenizer(text_target=UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Optional[Any] = inputs["""input_ids"""] __UpperCAmelCase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Any = ["""Summary of the text.""", """Another summary."""] __UpperCAmelCase : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , padding=UpperCamelCase ) __UpperCAmelCase : str = [[0] * len(UpperCamelCase ) for x in encoded_output["""input_ids"""]] __UpperCAmelCase : List[Any] = tokenizer.pad(UpperCamelCase ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Any = """A, <mask> AllenNLP sentence.""" __UpperCAmelCase : Dict = tokenizer_r.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) __UpperCAmelCase : List[Any] = tokenizer_p.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __UpperCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __UpperCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
320
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :int ) -> Tuple: __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __SCREAMING_SNAKE_CASE : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : str = -1 __SCREAMING_SNAKE_CASE : int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Optional[Any] = model.generate(lowerCamelCase_ , max_new_tokens=10 , do_sample=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __SCREAMING_SNAKE_CASE : Union[str, Any] = TextStreamer(lowerCamelCase_ ) model.generate(lowerCamelCase_ , max_new_tokens=10 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __SCREAMING_SNAKE_CASE : Dict = cs.out[:-1] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __magic_name__( self :List[Any] ) -> str: __SCREAMING_SNAKE_CASE : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __SCREAMING_SNAKE_CASE : Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = -1 __SCREAMING_SNAKE_CASE : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Dict = model.generate(lowerCamelCase_ , max_new_tokens=10 , do_sample=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Any = tokenizer.decode(greedy_ids[0] ) __SCREAMING_SNAKE_CASE : Tuple = TextIteratorStreamer(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : str = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} __SCREAMING_SNAKE_CASE : Optional[Any] = Thread(target=model.generate , kwargs=lowerCamelCase_ ) thread.start() __SCREAMING_SNAKE_CASE : int = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __magic_name__( self :List[str] ) -> Any: __SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Dict = -1 __SCREAMING_SNAKE_CASE : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Tuple = model.generate(lowerCamelCase_ , max_new_tokens=10 , do_sample=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Dict = greedy_ids[:, input_ids.shape[1] :] __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __SCREAMING_SNAKE_CASE : Any = TextStreamer(lowerCamelCase_ , skip_prompt=lowerCamelCase_ ) model.generate(lowerCamelCase_ , max_new_tokens=10 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __SCREAMING_SNAKE_CASE : Union[str, Any] = cs.out[:-1] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __magic_name__( self :Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) __SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = -1 __SCREAMING_SNAKE_CASE : Any = torch.ones((1, 5) , device=lowerCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: __SCREAMING_SNAKE_CASE : Dict = TextStreamer(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) model.generate(lowerCamelCase_ , max_new_tokens=1 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __SCREAMING_SNAKE_CASE : List[str] = cs.out[:-1] # Remove the final "\n" __SCREAMING_SNAKE_CASE : List[Any] = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __magic_name__( self :Tuple ) -> Dict: __SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __SCREAMING_SNAKE_CASE : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = -1 __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = TextIteratorStreamer(lowerCamelCase_ , timeout=0.001 ) __SCREAMING_SNAKE_CASE : List[str] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} __SCREAMING_SNAKE_CASE : Any = Thread(target=model.generate , kwargs=lowerCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCamelCase_ ): __SCREAMING_SNAKE_CASE : Optional[Any] = """""" for new_text in streamer: streamer_text += new_text
9
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 5_02_57 , lowerCamelCase_ : int = 10_24 , lowerCamelCase_ : int = 7_68 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : str = "gelu_new" , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 1e-5 , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = prefix_inner_dim SCREAMING_SNAKE_CASE : List[str] = prefix_hidden_dim SCREAMING_SNAKE_CASE : Tuple = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE : str = ( nn.Linear(self.prefix_hidden_dim , lowerCamelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE : Any = GPTaConfig( vocab_size=lowerCamelCase_ , n_positions=lowerCamelCase_ , n_embd=lowerCamelCase_ , n_layer=lowerCamelCase_ , n_head=lowerCamelCase_ , n_inner=lowerCamelCase_ , activation_function=lowerCamelCase_ , resid_pdrop=lowerCamelCase_ , embd_pdrop=lowerCamelCase_ , attn_pdrop=lowerCamelCase_ , layer_norm_epsilon=lowerCamelCase_ , initializer_range=lowerCamelCase_ , scale_attn_weights=lowerCamelCase_ , use_cache=lowerCamelCase_ , scale_attn_by_inverse_layer_idx=lowerCamelCase_ , reorder_and_upcast_attn=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaLMHeadModel(lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.transformer.transformer.wte(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.encode_prefix(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.decode_prefix(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) SCREAMING_SNAKE_CASE : Dict = torch.cat((dummy_token, input_ids) , dim=1 ) SCREAMING_SNAKE_CASE : str = self.transformer(inputs_embeds=lowerCamelCase_ , labels=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : torch.device ): '''simple docstring''' return torch.zeros(lowerCamelCase_ , self.prefix_length , dtype=torch.intaa , device=lowerCamelCase_ ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return self.encode_prefix(lowerCamelCase_ ) @torch.no_grad() def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = torch.split(lowerCamelCase_ , 1 , dim=0 ) SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Tuple = [] for feature in features: SCREAMING_SNAKE_CASE : Optional[int] = self.decode_prefix(feature.to(lowerCamelCase_ ) ) # back to the clip feature # Only support beam search for now SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.generate_beam( input_embeds=lowerCamelCase_ , device=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = torch.stack(lowerCamelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : int=None , lowerCamelCase_ : int = 5 , lowerCamelCase_ : int = 67 , lowerCamelCase_ : float = 1.0 , lowerCamelCase_ : Optional[int] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = eos_token_id SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.int ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.bool ) if input_embeds is not None: SCREAMING_SNAKE_CASE : Dict = input_embeds else: SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(lowerCamelCase_ ) for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = self.transformer(inputs_embeds=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = outputs.logits SCREAMING_SNAKE_CASE : Optional[int] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) SCREAMING_SNAKE_CASE : Any = logits.softmax(-1 ).log() if scores is None: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = logits.topk(lowerCamelCase_ , -1 ) SCREAMING_SNAKE_CASE : Optional[Any] = generated.expand(lowerCamelCase_ , *generated.shape[1:] ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: SCREAMING_SNAKE_CASE : List[Any] = next_tokens else: SCREAMING_SNAKE_CASE : Dict = tokens.expand(lowerCamelCase_ , *tokens.shape[1:] ) SCREAMING_SNAKE_CASE : str = torch.cat((tokens, next_tokens) , dim=1 ) else: SCREAMING_SNAKE_CASE : Tuple = -float(np.inf ) SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = scores[:, None] + logits seq_lengths[~is_stopped] += 1 SCREAMING_SNAKE_CASE : List[str] = scores_sum / seq_lengths[:, None] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average.view(-1 ).topk(lowerCamelCase_ , -1 ) SCREAMING_SNAKE_CASE : str = next_tokens // scores_sum.shape[1] SCREAMING_SNAKE_CASE : Tuple = seq_lengths[next_tokens_source] SCREAMING_SNAKE_CASE : int = next_tokens % scores_sum.shape[1] SCREAMING_SNAKE_CASE : Dict = next_tokens.unsqueeze(1 ) SCREAMING_SNAKE_CASE : Dict = tokens[next_tokens_source] SCREAMING_SNAKE_CASE : Any = torch.cat((tokens, next_tokens) , dim=1 ) SCREAMING_SNAKE_CASE : List[str] = generated[next_tokens_source] SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average * seq_lengths SCREAMING_SNAKE_CASE : Any = is_stopped[next_tokens_source] SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) SCREAMING_SNAKE_CASE : str = torch.cat((generated, next_token_embed) , dim=1 ) SCREAMING_SNAKE_CASE : Dict = is_stopped + next_tokens.eq(lowerCamelCase_ ).squeeze() if is_stopped.all(): break SCREAMING_SNAKE_CASE : int = scores / seq_lengths SCREAMING_SNAKE_CASE : Dict = scores.argsort(descending=lowerCamelCase_ ) # tokens tensors are already padded to max_seq_length SCREAMING_SNAKE_CASE : Union[str, Any] = [tokens[i] for i in order] SCREAMING_SNAKE_CASE : Dict = torch.stack(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
323
0
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _snake_case : int = "scheduler_config.json" class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : Tuple = 2 __UpperCAmelCase : Union[str, Any] = 3 __UpperCAmelCase : List[Any] = 4 __UpperCAmelCase : Tuple = 5 @dataclass class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : jnp.ndarray class a : """simple docstring""" __UpperCAmelCase : Dict = SCHEDULER_CONFIG_NAME __UpperCAmelCase : Union[str, Any] = ["dtype"] __UpperCAmelCase : Tuple = [] __UpperCAmelCase : int = True @classmethod def __snake_case ( cls : List[str] , lowerCamelCase : Dict[str, Any] = None , lowerCamelCase : Optional[str] = None , lowerCamelCase : List[str]=False , **lowerCamelCase : Union[str, Any] , ) -> List[str]: __snake_case , __snake_case : List[str] = cls.load_config( pretrained_model_name_or_path=lowerCamelCase , subfolder=lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase , ) __snake_case , __snake_case : Dict = cls.from_config(lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase ) if hasattr(lowerCamelCase , "create_state" ) and getattr(lowerCamelCase , "has_state" , lowerCamelCase ): __snake_case : Tuple = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __snake_case ( self : Any , lowerCamelCase : Union[str, os.PathLike] , lowerCamelCase : bool = False , **lowerCamelCase : List[Any] ) -> int: self.save_config(save_directory=lowerCamelCase , push_to_hub=lowerCamelCase , **lowerCamelCase ) @property def __snake_case ( self : Tuple ) -> List[Any]: return self._get_compatibles() @classmethod def __snake_case ( cls : int ) -> Dict: __snake_case : Tuple = list(set([cls.__name__] + cls._compatibles ) ) __snake_case : int = importlib.import_module(__name__.split("." )[0] ) __snake_case : Tuple = [ getattr(lowerCamelCase , lowerCamelCase ) for c in compatible_classes_str if hasattr(lowerCamelCase , lowerCamelCase ) ] return compatible_classes def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): assert len(__lowerCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__lowerCamelCase ) - x.ndim) ) , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase=0.9_9_9 , __lowerCamelCase=jnp.floataa ): def alpha_bar(__lowerCamelCase ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __snake_case : List[Any] = [] for i in range(__lowerCamelCase ): __snake_case : Dict = i / num_diffusion_timesteps __snake_case : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(__lowerCamelCase ) / alpha_bar(__lowerCamelCase ) , __lowerCamelCase ) ) return jnp.array(__lowerCamelCase , dtype=__lowerCamelCase ) @flax.struct.dataclass class a : """simple docstring""" __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : jnp.ndarray @classmethod def __snake_case ( cls : Union[str, Any] , lowerCamelCase : int ) -> List[Any]: __snake_case : Dict = scheduler.config if config.trained_betas is not None: __snake_case : Dict = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __snake_case : Optional[int] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case : str = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case : Optional[Any] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) __snake_case : Any = 1.0 - betas __snake_case : int = jnp.cumprod(lowerCamelCase , axis=0 ) return cls( alphas=lowerCamelCase , betas=lowerCamelCase , alphas_cumprod=lowerCamelCase , ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : List[Any] = state.alphas_cumprod __snake_case : str = alphas_cumprod[timesteps] ** 0.5 __snake_case : Dict = sqrt_alpha_prod.flatten() __snake_case : str = broadcast_to_shape_from_left(__lowerCamelCase , original_samples.shape ) __snake_case : Tuple = (1 - alphas_cumprod[timesteps]) ** 0.5 __snake_case : str = sqrt_one_minus_alpha_prod.flatten() __snake_case : Tuple = broadcast_to_shape_from_left(__lowerCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case : Union[str, Any] = get_sqrt_alpha_prod(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __snake_case : List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case : Dict = get_sqrt_alpha_prod(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __snake_case : Optional[int] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
134
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[str] = ["image_processor", "tokenizer"] __UpperCAmelCase : str = "OwlViTImageProcessor" __UpperCAmelCase : Dict = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : str , lowerCamelCase : Any=None , lowerCamelCase : Any=None , **lowerCamelCase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self : Union[str, Any] , lowerCamelCase : Tuple=None , lowerCamelCase : int=None , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : List[str]="max_length" , lowerCamelCase : Dict="np" , **lowerCamelCase : str ) -> List[Any]: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(lowerCamelCase , lowerCamelCase ) or (isinstance(lowerCamelCase , lowerCamelCase ) and not isinstance(text[0] , lowerCamelCase )): __snake_case : Union[str, Any] = [self.tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase )] elif isinstance(lowerCamelCase , lowerCamelCase ) and isinstance(text[0] , lowerCamelCase ): __snake_case : Tuple = [] # Maximum number of queries across batch __snake_case : str = max([len(lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCamelCase ) != max_num_queries: __snake_case : Dict = t + [" "] * (max_num_queries - len(lowerCamelCase )) __snake_case : int = self.tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) encodings.append(lowerCamelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": __snake_case : Any = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __snake_case : Tuple = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __snake_case : List[Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __snake_case : Any = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __snake_case : int = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) __snake_case : int = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __snake_case : int = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) __snake_case : Dict = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) __snake_case : Any = BatchEncoding() __snake_case : Tuple = input_ids __snake_case : int = attention_mask if query_images is not None: __snake_case : List[Any] = BatchEncoding() __snake_case : Union[str, Any] = self.image_processor( lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ).pixel_values __snake_case : str = query_pixel_values if images is not None: __snake_case : Optional[int] = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif query_images is not None and images is not None: __snake_case : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase ) , tensor_type=lowerCamelCase ) def __snake_case ( self : Dict , *lowerCamelCase : List[Any] , **lowerCamelCase : Union[str, Any] ) -> str: return self.image_processor.post_process(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Union[str, Any] , *lowerCamelCase : str , **lowerCamelCase : List[str] ) -> Tuple: return self.image_processor.post_process_object_detection(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Optional[Any] , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Optional[Any] ) -> Any: return self.image_processor.post_process_image_guided_detection(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : List[Any] , *lowerCamelCase : Tuple , **lowerCamelCase : Optional[int] ) -> str: return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Union[str, Any] , *lowerCamelCase : Tuple , **lowerCamelCase : List[Any] ) -> Tuple: return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def __snake_case ( self : Any ) -> Dict: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCamelCase , ) return self.image_processor_class @property def __snake_case ( self : List[str] ) -> Union[str, Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCamelCase , ) return self.image_processor
134
1
def lowerCamelCase_ ( _a : str ): '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) UpperCAmelCase_ : Tuple = sorted(string.lower() ) return len(_a ) == len(set(_a ) ) if __name__ == "__main__": UpperCamelCase_ = input('''Enter a string ''').strip() UpperCamelCase_ = is_isogram(input_str) print(F"{input_str} is {'an' if isogram else 'not an'} isogram.")
345
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _snake_case ( unittest.TestCase ): '''simple docstring''' @property def A__ ( self: Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") ,up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") ,) return model @property def A__ ( self: Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=3 ,) return model @property def A__ ( self: Tuple ) -> Any: torch.manual_seed(0 ) UpperCAmelCase_ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(lowerCamelCase_ ) def A__ ( self: str ) -> Optional[Any]: UpperCAmelCase_ : str = self.dummy_uncond_unet UpperCAmelCase_ : List[Any] = DDIMScheduler() UpperCAmelCase_ : List[Any] = self.dummy_vq_model UpperCAmelCase_ : Optional[int] = LDMPipeline(unet=lowerCamelCase_ ,vqvae=lowerCamelCase_ ,scheduler=lowerCamelCase_ ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.manual_seed(0 ) UpperCAmelCase_ : int = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ).images UpperCAmelCase_ : List[str] = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ,return_dict=lowerCamelCase_ )[0] UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : str = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) UpperCAmelCase_ : Tuple = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = ldm(generator=lowerCamelCase_ ,num_inference_steps=5 ,output_type="""numpy""" ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ : int = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) UpperCAmelCase_ : Union[str, Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
345
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar _lowerCamelCase : int = TypeVar('''T''') def a_ ( __lowercase : int ) -> int: return (position - 1) // 2 def a_ ( __lowercase : int ) -> int: return (2 * position) + 1 def a_ ( __lowercase : int ) -> int: return (2 * position) + 2 class SCREAMING_SNAKE_CASE__ ( Generic[T] ): '''simple docstring''' def __init__( self : Optional[Any] ): '''simple docstring''' _snake_case = [] _snake_case = {} _snake_case = 0 def __len__( self : str ): '''simple docstring''' return self.elements def __repr__( self : Tuple ): '''simple docstring''' return str(self.heap ) def A ( self : Tuple ): '''simple docstring''' return self.elements == 0 def A ( self : List[str] , lowercase : T , lowercase : int ): '''simple docstring''' self.heap.append((elem, weight) ) _snake_case = self.elements self.elements += 1 self._bubble_up(lowercase ) def A ( self : List[str] ): '''simple docstring''' if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _snake_case , _snake_case = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _snake_case , _snake_case = self.heap[0] self._bubble_down(lowercase ) return elem def A ( self : Optional[Any] , lowercase : T , lowercase : int ): '''simple docstring''' _snake_case = self.position_map[elem] _snake_case = (elem, weight) if position > 0: _snake_case = get_parent_position(lowercase ) _snake_case , _snake_case = self.heap[parent_position] if parent_weight > weight: self._bubble_up(lowercase ) else: self._bubble_down(lowercase ) else: self._bubble_down(lowercase ) def A ( self : Any , lowercase : T ): '''simple docstring''' _snake_case = self.position_map[elem] if curr_pos == 0: return None _snake_case = get_parent_position(lowercase ) _snake_case , _snake_case = self.heap[curr_pos] _snake_case , _snake_case = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(lowercase , lowercase ) return self._bubble_up(lowercase ) return None def A ( self : Union[str, Any] , lowercase : T ): '''simple docstring''' _snake_case = self.position_map[elem] _snake_case , _snake_case = self.heap[curr_pos] _snake_case = get_child_left_position(lowercase ) _snake_case = get_child_right_position(lowercase ) if child_left_position < self.elements and child_right_position < self.elements: _snake_case , _snake_case = self.heap[child_left_position] _snake_case , _snake_case = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(lowercase , lowercase ) return self._bubble_down(lowercase ) if child_left_position < self.elements: _snake_case , _snake_case = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(lowercase , lowercase ) return self._bubble_down(lowercase ) else: return None if child_right_position < self.elements: _snake_case , _snake_case = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(lowercase , lowercase ) return self._bubble_down(lowercase ) return None def A ( self : List[Any] , lowercase : int , lowercase : int ): '''simple docstring''' _snake_case = self.heap[nodea_pos][0] _snake_case = self.heap[nodea_pos][0] _snake_case , _snake_case = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _snake_case = nodea_pos _snake_case = nodea_pos class SCREAMING_SNAKE_CASE__ ( Generic[T] ): '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' _snake_case = {} _snake_case = 0 def __repr__( self : Union[str, Any] ): '''simple docstring''' return str(self.connections ) def __len__( self : Union[str, Any] ): '''simple docstring''' return self.nodes def A ( self : Tuple , lowercase : T ): '''simple docstring''' if node not in self.connections: _snake_case = {} self.nodes += 1 def A ( self : Union[str, Any] , lowercase : T , lowercase : T , lowercase : int ): '''simple docstring''' self.add_node(lowercase ) self.add_node(lowercase ) _snake_case = weight _snake_case = weight def a_ ( __lowercase : GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: _snake_case = {node: maxsize for node in graph.connections} _snake_case = {node: None for node in graph.connections} _snake_case = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__lowercase , __lowercase ) if priority_queue.is_empty(): return dist, parent # initialization _snake_case = priority_queue.extract_min() _snake_case = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _snake_case = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour] ) _snake_case = node # running prim's algorithm while not priority_queue.is_empty(): _snake_case = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _snake_case = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour] ) _snake_case = node return dist, parent
369
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "canine" def __init__( self : int , lowercase : Optional[int]=768 , lowercase : Tuple=12 , lowercase : Union[str, Any]=12 , lowercase : Optional[int]=3_072 , lowercase : Tuple="gelu" , lowercase : Optional[Any]=0.1 , lowercase : Tuple=0.1 , lowercase : int=16_384 , lowercase : Optional[int]=16 , lowercase : Optional[int]=0.02 , lowercase : Optional[Any]=1E-12 , lowercase : Optional[Any]=0 , lowercase : Dict=0xE000 , lowercase : Optional[Any]=0xE001 , lowercase : Union[str, Any]=4 , lowercase : str=4 , lowercase : Optional[int]=8 , lowercase : List[str]=16_384 , lowercase : Union[str, Any]=128 , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = type_vocab_size _snake_case = layer_norm_eps # Character config: _snake_case = downsampling_rate _snake_case = upsampling_kernel_size _snake_case = num_hash_functions _snake_case = num_hash_buckets _snake_case = local_transformer_stride
130
0
"""simple docstring""" def _snake_case ( UpperCamelCase : str ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(lowerCAmelCase_ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
109
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _snake_case : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _snake_case : list[int] = [ord(letter) for letter in string.ascii_lowercase] _snake_case : set[int] = {ord(char) for char in VALID_CHARS} _snake_case : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def a_ ( lowerCAmelCase_ : list[int], lowerCAmelCase_ : tuple[int, ...] ): __lowerCAmelCase = "" __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(lowerCAmelCase_ ), lowerCAmelCase_ ): __lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowerCAmelCase_ ) return decoded def a_ ( lowerCAmelCase_ : list[int] ): __lowerCAmelCase = [] for key in product(lowerCAmelCase_, repeat=3 ): __lowerCAmelCase = try_key(lowerCAmelCase_, lowerCAmelCase_ ) if encoded is not None: possibles.append(lowerCAmelCase_ ) return possibles def a_ ( lowerCAmelCase_ : list[str], lowerCAmelCase_ : str ): return [possible for possible in possibles if common_word in possible.lower()] def a_ ( lowerCAmelCase_ : str = "p059_cipher.txt" ): __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = Path(lowerCAmelCase_ ).parent.joinpath(lowerCAmelCase_ ).read_text(encoding='utf-8' ) __lowerCAmelCase = [int(lowerCAmelCase_ ) for number in data.strip().split(',' )] __lowerCAmelCase = filter_valid_chars(lowerCAmelCase_ ) for common_word in COMMON_WORDS: __lowerCAmelCase = filter_common_word(lowerCAmelCase_, lowerCAmelCase_ ) if len(lowerCAmelCase_ ) == 1: break __lowerCAmelCase = possibles[0] return sum(ord(lowerCAmelCase_ ) for char in decoded_text ) if __name__ == "__main__": print(F"""{solution() = }""")
284
0
def UpperCAmelCase_ ( __UpperCAmelCase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: SCREAMING_SNAKE_CASE_ = set() # Replace all the whitespace in our sentence SCREAMING_SNAKE_CASE_ = input_str.replace(' ' , '' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__UpperCAmelCase ) == 26 def UpperCAmelCase_ ( __UpperCAmelCase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: SCREAMING_SNAKE_CASE_ = [False] * 26 for char in input_str: if char.islower(): SCREAMING_SNAKE_CASE_ = True elif char.isupper(): SCREAMING_SNAKE_CASE_ = True return all(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCAmelCase_ ( ) -> None: from timeit import timeit SCREAMING_SNAKE_CASE_ = 'from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest' print(timeit('is_pangram()' , setup=__UpperCAmelCase ) ) print(timeit('is_pangram_faster()' , setup=__UpperCAmelCase ) ) print(timeit('is_pangram_fastest()' , setup=__UpperCAmelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
210
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any=7 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : List[str]=18 , _lowerCAmelCase : Any=30 , _lowerCAmelCase : List[Any]=400 , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]=[0.5, 0.5, 0.5] , _lowerCAmelCase : Union[str, Any]=[0.5, 0.5, 0.5] , ): SCREAMING_SNAKE_CASE_ = size if size is not None else {'shortest_edge': 18} SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = do_center_crop SCREAMING_SNAKE_CASE_ = crop_size SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean SCREAMING_SNAKE_CASE_ = image_std def lowerCAmelCase_ ( self : List[Any] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = LevitImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = LevitImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'size' ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowerCAmelCase_ ( self : Dict ): pass def lowerCAmelCase_ ( self : int ): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCAmelCase_ ( self : str ): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCAmelCase_ ( self : Tuple ): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
210
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
63
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowerCamelCase : '''simple docstring''' @staticmethod def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: pass def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = np.array(_lowerCAmelCase ) _a = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : Any = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) A_ : str = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: _a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int: pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def _UpperCAmelCase ( self ) -> List[str]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> int: _a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) _a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871} ] , ) # fmt: on @require_torch @slow def _UpperCAmelCase ( self ) -> Any: _a = '''facebook/sam-vit-huge''' _a = pipeline('''mask-generation''' , model=__UpperCAmelCase ) _a = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, ] , )
320
0
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCamelCase__ ( lowercase__ ): """simple docstring""" __a = 0 __a = False __a = 3.0 class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCamelCase ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"""a""": 2, """c""": 2.25} ) @require_cuda def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : List[Any] = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __UpperCAmelCase : Union[str, Any] = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCAmelCase : Optional[Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _UpperCamelCase ) @require_multi_gpu def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Dict = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase : Union[str, Any] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) UpperCAmelCase : List[str] = Accelerator(kwargs_handlers=[ddp_scaler]) UpperCAmelCase : List[str] = torch.nn.Linear(100, 200) UpperCAmelCase : str = accelerator.prepare(model) # Check the values changed in kwargs UpperCAmelCase : str = '' UpperCAmelCase : List[Any] = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
358
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase__ ( *UpperCamelCase : Optional[Any] , **UpperCamelCase : Dict ): '''simple docstring''' pass def lowerCamelCase ( _UpperCamelCase : Image ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def lowerCamelCase ( _UpperCamelCase : Image ) -> Dict: '''simple docstring''' __UpperCAmelCase : Tuple = np.array(_UpperCamelCase ) __UpperCAmelCase : List[Any] = npimg.shape return {"hash": hashimage(_UpperCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __a = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __a = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = MaskGenerationPipeline(model=UpperCamelCase , image_processor=UpperCamelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass @slow @require_torch def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) __UpperCAmelCase : Any = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing __UpperCAmelCase : int = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ] , ) # fmt: on @require_torch @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Any = """facebook/sam-vit-huge""" __UpperCAmelCase : str = pipeline("""mask-generation""" , model=UpperCamelCase ) __UpperCAmelCase : int = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __UpperCAmelCase : Dict = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ] , )
320
0
'''simple docstring''' def __lowerCamelCase ( ) -> Dict: """simple docstring""" for n in range(1, 1_000_000 ): yield n * (n + 1) // 2 def __lowerCamelCase ( __snake_case : Any ) -> Optional[int]: """simple docstring""" A__ : Optional[int] =1 A__ : Any =2 while i * i <= n: A__ : Optional[int] =0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def __lowerCamelCase ( ) -> Dict: """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(__snake_case ) > 500 ) if __name__ == "__main__": print(solution())
134
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class lowerCamelCase : '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : MutableSequence[float] ) -> None: '''simple docstring''' if len(lowerCAmelCase_ ) != degree + 1: raise ValueError( """The number of coefficients should be equal to the degree + 1.""" ) A__ : list[float] =list(lowerCAmelCase_ ) A__ : Optional[int] =degree def __add__( self : Union[str, Any] , lowerCAmelCase_ : Polynomial ) -> Polynomial: '''simple docstring''' if self.degree > polynomial_a.degree: A__ : int =self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCAmelCase_ ) else: A__ : Any =polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCAmelCase_ ) def __sub__( self : str , lowerCAmelCase_ : Polynomial ) -> Polynomial: '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : List[Any] ) -> Polynomial: '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : str , lowerCAmelCase_ : Polynomial ) -> Polynomial: '''simple docstring''' A__ : list[float] =[0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCAmelCase_ ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : int | float ) -> int | float: '''simple docstring''' A__ : int | float =0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : List[str] ) -> str: '''simple docstring''' A__ : Optional[int] ="""""" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCAmelCase_ ) return polynomial def __repr__( self : Optional[Any] ) -> str: '''simple docstring''' return self.__str__() def lowercase__ ( self : str ) -> Polynomial: '''simple docstring''' A__ : list[float] =[0] * self.degree for i in range(self.degree ): A__ : Union[str, Any] =self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCAmelCase_ ) def lowercase__ ( self : Any , lowerCAmelCase_ : int | float = 0 ) -> Polynomial: '''simple docstring''' A__ : list[float] =[0] * (self.degree + 2) A__ : Any =constant for i in range(self.degree + 1 ): A__ : str =self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCAmelCase_ ) def __eq__( self : Optional[int] , lowerCAmelCase_ : object ) -> bool: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Optional[Any] , lowerCAmelCase_ : object ) -> bool: '''simple docstring''' return not self.__eq__(lowerCAmelCase_ )
134
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __UpperCamelCase : def __init__(self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict=1_3 , __SCREAMING_SNAKE_CASE : Any=7 , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Any=9_9 , __SCREAMING_SNAKE_CASE : str=3_2 , __SCREAMING_SNAKE_CASE : Dict=5 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : Any=3_7 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=5_1_2 , __SCREAMING_SNAKE_CASE : Any=1_6 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Tuple=0.0_2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : int=4 , __SCREAMING_SNAKE_CASE : Optional[int]=None , ): A = parent A = batch_size A = seq_length A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = scope def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length]) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size) A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) A = ids_tensor([self.batch_size] , self.num_choices) A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ (self : int): return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , use_stable_embedding=__SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE__ (self : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any]): A = OpenLlamaModel(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() A = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) A = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE__ (self : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , ): A = True A = OpenLlamaModel(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() A = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , ) A = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , ) A = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE__ (self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , ): A = OpenLlamaForCausalLM(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() A = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE__ (self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , ): A = True A = True A = OpenLlamaForCausalLM(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() # first forward pass A = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE , ) A = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A = ids_tensor((self.batch_size, 3) , config.vocab_size) A = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and A = torch.cat([input_ids, next_tokens] , dim=-1) A = torch.cat([input_mask, next_mask] , dim=-1) A = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )["hidden_states"][0] A = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )["hidden_states"][0] # select random slice A = ids_tensor((1,) , output_from_past.shape[-1]).item() A = output_from_no_past[:, -3:, random_slice_idx].detach() A = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3)) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( _A , _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = (OpenLlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ (self : Any): A = OpenLlamaModelTester(self) A = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=3_7) def SCREAMING_SNAKE_CASE__ (self : int): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ (self : Tuple): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Tuple): A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A , A = self.model_tester.prepare_config_and_inputs_for_common() A = 3 A = input_dict["input_ids"] A = input_ids.ne(1).to(__SCREAMING_SNAKE_CASE) A = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) A = OpenLlamaForSequenceClassification(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() A = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A , A = self.model_tester.prepare_config_and_inputs_for_common() A = 3 A = "single_label_classification" A = input_dict["input_ids"] A = input_ids.ne(1).to(__SCREAMING_SNAKE_CASE) A = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) A = OpenLlamaForSequenceClassification(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() A = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def SCREAMING_SNAKE_CASE__ (self : List[Any]): A , A = self.model_tester.prepare_config_and_inputs_for_common() A = 3 A = "multi_label_classification" A = input_dict["input_ids"] A = input_ids.ne(1).to(__SCREAMING_SNAKE_CASE) A = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) A = OpenLlamaForSequenceClassification(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() A = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip("Open-Llama buffers include complex numbers, which breaks this test") def SCREAMING_SNAKE_CASE__ (self : int): pass @parameterized.expand([("linear",), ("dynamic",)]) def SCREAMING_SNAKE_CASE__ (self : str , __SCREAMING_SNAKE_CASE : Any): A , A = self.model_tester.prepare_config_and_inputs_for_common() A = ids_tensor([1, 1_0] , config.vocab_size) A = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(4_2) # Fixed seed at init time so the two models get the same random weights A = OpenLlamaModel(__SCREAMING_SNAKE_CASE) original_model.to(__SCREAMING_SNAKE_CASE) original_model.eval() A = original_model(__SCREAMING_SNAKE_CASE).last_hidden_state A = original_model(__SCREAMING_SNAKE_CASE).last_hidden_state set_seed(4_2) # Fixed seed at init time so the two models get the same random weights A = {"type": scaling_type, "factor": 1_0.0} A = OpenLlamaModel(__SCREAMING_SNAKE_CASE) scaled_model.to(__SCREAMING_SNAKE_CASE) scaled_model.eval() A = scaled_model(__SCREAMING_SNAKE_CASE).last_hidden_state A = scaled_model(__SCREAMING_SNAKE_CASE).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-5)) else: self.assertFalse(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-5))
57
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" # Load configuration defined in the metadata file with open(lowercase__ ) as metadata_file: A = json.load(lowercase__ ) A = LukeConfig(use_entity_aware_attention=lowercase__ , **metadata["model_config"] ) # Load in the weights from the checkpoint_path A = torch.load(lowercase__ , map_location="cpu" ) # Load the entity vocab file A = load_entity_vocab(lowercase__ ) A = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks A = AddedToken("<ent>" , lstrip=lowercase__ , rstrip=lowercase__ ) A = AddedToken("<ent2>" , lstrip=lowercase__ , rstrip=lowercase__ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase__ ) with open(os.path.join(lowercase__ , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase__ , lowercase__ ) A = LukeTokenizer.from_pretrained(lowercase__ ) # Initialize the embeddings of the special tokens A = state_dict["embeddings.word_embeddings.weight"] A = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) A = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) A = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A = F"""encoder.layer.{layer_index}.attention.self.""" A = state_dict[prefix + matrix_name] A = state_dict[prefix + matrix_name] A = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A = state_dict["entity_embeddings.entity_embeddings.weight"] A = entity_emb[entity_vocab["[MASK]"]] A = LukeModel(config=lowercase__ ).eval() A , A = model.load_state_dict(lowercase__ , strict=lowercase__ ) if not (len(lowercase__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F"""Missing keys {", ".join(lowercase__ )}. Expected only missing embeddings.position_ids""" ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" F""" {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}""" ) # Check outputs A = LukeTokenizer.from_pretrained(lowercase__ , task="entity_classification" ) A = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) A = (39, 42) A = tokenizer(lowercase__ , entity_spans=[span] , add_prefix_space=lowercase__ , return_tensors="pt" ) A = model(**lowercase__ ) # Verify word hidden states if model_size == "large": A = torch.Size((1, 42, 1_024) ) A = torch.tensor( [[0.01_33, 0.08_65, 0.00_95], [0.30_93, -0.25_76, -0.74_18], [-0.17_20, -0.21_17, -0.28_69]] ) else: # base A = torch.Size((1, 42, 768) ) A = torch.tensor([[0.00_37, 0.13_68, -0.00_91], [0.10_99, 0.33_29, -0.10_95], [0.07_65, 0.53_35, 0.11_79]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": A = torch.Size((1, 1, 1_024) ) A = torch.tensor([[0.04_66, -0.01_06, -0.01_79]] ) else: # base A = torch.Size((1, 1, 768) ) A = torch.tensor([[0.14_57, 0.10_44, 0.01_74]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase__ , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase__ ) ) model.save_pretrained(lowercase__ ) def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = {} with open(lowercase__ , "r" , encoding="utf-8" ) as f: for index, line in enumerate(lowercase__ ): A , A = line.rstrip().split("\t" ) A = index return entity_vocab if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) __A : int = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
57
1
"""simple docstring""" from datetime import datetime as dt import os from github import Github __magic_name__ = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = Github(os.environ["""GITHUB_TOKEN"""] ) __SCREAMING_SNAKE_CASE = g.get_repo("""huggingface/transformers""" ) __SCREAMING_SNAKE_CASE = repo.get_issues(state="""open""" ) for issue in open_issues: __SCREAMING_SNAKE_CASE = sorted([comment for comment in issue.get_comments()] , key=lambda UpperCamelCase_ : i.created_at , reverse=lowerCamelCase__ ) __SCREAMING_SNAKE_CASE = comments[0] if len(lowerCamelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
100
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class snake_case__(_UpperCamelCase ): """simple docstring""" def snake_case ( self : Optional[Any] ): lowercase__ : str = tempfile.mkdtemp() lowercase__ : Optional[Any] = 8 # DPR tok lowercase__ : Dict = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowercase__ : List[Any] = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) lowercase__ : str = os.path.join(SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok lowercase__ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ : List[str] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) lowercase__ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : List[Any] = {"unk_token": "<unk>"} lowercase__ : Any = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : str = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Any ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def snake_case ( self : Any ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def snake_case ( self : Any ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def snake_case ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def snake_case ( self : Optional[int] ): lowercase__ : int = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def snake_case ( self : List[str] ): lowercase__ : Union[str, Any] = self.get_dummy_dataset() lowercase__ : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: lowercase__ : Union[str, Any] = dataset lowercase__ : List[str] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : bool ): lowercase__ : Union[str, Any] = self.get_dummy_dataset() lowercase__ : Optional[int] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: lowercase__ : Any = os.path.join(self.tmpdirname , "dataset" ) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset lowercase__ : Tuple = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: lowercase__ : Dict = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , SCREAMING_SNAKE_CASE ) , ) return retriever def snake_case ( self : Tuple ): lowercase__ : Optional[int] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) lowercase__ : Optional[int] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) lowercase__ : List[str] = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(SCREAMING_SNAKE_CASE , open(SCREAMING_SNAKE_CASE , "wb" ) ) lowercase__ : int = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) lowercase__ : Any = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def snake_case ( self : int ): lowercase__ : Any = 1 lowercase__ : str = self.get_dummy_canonical_hf_index_retriever() lowercase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : str ): lowercase__ : Dict = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: lowercase__ : Tuple = self.get_dummy_dataset() retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self : str ): lowercase__ : Union[str, Any] = 1 lowercase__ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Optional[Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : Union[str, Any] ): lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self : Union[str, Any] ): lowercase__ : Optional[Any] = 1 lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Dict = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : List[str] ): lowercase__ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : int = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : Dict = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self : Union[str, Any] ): lowercase__ : List[Any] = 1 lowercase__ : List[str] = self.get_dummy_legacy_index_retriever() lowercase__ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : Dict ): lowercase__ : Optional[int] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def snake_case ( self : Any ): import torch lowercase__ : List[Any] = 1 lowercase__ : Union[str, Any] = self.get_dummy_canonical_hf_index_retriever() lowercase__ : Tuple = [[5, 7], [10, 11]] lowercase__ : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : int = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ , lowercase__ : List[str] = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) lowercase__ : List[str] = retriever( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE , return_tensors="pt" , ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def snake_case ( self : int ): lowercase__ : List[Any] = self.get_dpr_ctx_encoder_tokenizer() lowercase__ : Optional[int] = 1 lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = [[5, 7], [10, 11]] lowercase__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : List[Any] = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual( len(SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
130
0
import heapq def UpperCamelCase_( _snake_case : dict ): """simple docstring""" __a =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_snake_case , [-1 * len(_snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices __a =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __a =heapq.heappop(_snake_case )[1][0] chosen_vertices.add(_snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __a =elem[1][1].index(_snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : int = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
364
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =model.config __a =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) __a =MBartConfig( is_decoder=_snake_case , is_encoder_decoder=_snake_case , add_cross_attention=_snake_case , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_snake_case , add_final_layer_norm=_snake_case , ) return encoder_config, decoder_config def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" if "encoder.model" in name: __a =name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: __a =name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: __a =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __a =name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: __a ='encoder.' + name if "attn.proj" in name: __a =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: __a =name.replace('attn' , 'attention.self' ) if "norm1" in name: __a =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __a =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __a =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __a =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __a ='encoder.layernorm.weight' if name == "encoder.norm.bias": __a ='encoder.layernorm.bias' return name def UpperCamelCase_( _snake_case : Tuple , _snake_case : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a =orig_state_dict.pop(_snake_case ) if "qkv" in key: __a =key.split('.' ) __a =int(key_split[3] ) __a =int(key_split[5] ) __a =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a =val[:dim, :] __a =val[dim : dim * 2, :] __a =val[-dim:, :] else: __a =val[:dim] __a =val[dim : dim * 2] __a =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __a =val return orig_state_dict def UpperCamelCase_( _snake_case : Tuple , _snake_case : Union[str, Any]=None , _snake_case : List[Any]=False ): """simple docstring""" __a =DonutModel.from_pretrained(_snake_case ).eval() # load HuggingFace model __a , __a =get_configs(_snake_case ) __a =DonutSwinModel(_snake_case ) __a =MBartForCausalLM(_snake_case ) __a =VisionEncoderDecoderModel(encoder=_snake_case , decoder=_snake_case ) model.eval() __a =original_model.state_dict() __a =convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # verify results on scanned document __a =load_dataset('hf-internal-testing/example-documents' ) __a =dataset['test'][0]['image'].convert('RGB' ) __a =XLMRobertaTokenizerFast.from_pretrained(_snake_case , from_slow=_snake_case ) __a =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __a =DonutProcessor(_snake_case , _snake_case ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __a ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' __a ='When is the coffee break?' __a =task_prompt.replace('{user_input}' , _snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __a ='<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __a ='<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __a ='s_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __a ='<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __a ='hello world' else: raise ValueError('Model name not supported' ) __a =original_model.decoder.tokenizer(_snake_case , add_special_tokens=_snake_case , return_tensors='pt' )[ 'input_ids' ] __a =original_model.encoder.model.patch_embed(_snake_case ) __a , __a =model.encoder.embeddings(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) # verify encoder hidden states __a =original_model.encoder(_snake_case ) __a =model.encoder(_snake_case ).last_hidden_state assert torch.allclose(_snake_case , _snake_case , atol=1e-2 ) # verify decoder hidden states __a =original_model(_snake_case , _snake_case , _snake_case ).logits __a =model(_snake_case , decoder_input_ids=_snake_case ).logits assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( lowercase = "isbn/0140328726" ): """simple docstring""" __lowercase = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: __lowercase = F"{olid} is not a valid Open Library olid" raise ValueError(lowercase ) return requests.get(F"https://openlibrary.org/{new_olid}.json" ).json() def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } __lowercase = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __lowercase = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] __lowercase = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(lowercase , lowercase ): __lowercase = ''', '''.join(lowercase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __a : int = input("""\nEnter the ISBN code to search (or 'quit' to stop): """).strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(F'''\nSearching Open Library for ISBN: {isbn}...\n''') try: __a : Any = summarize_book(get_openlibrary_data(F'''isbn/{isbn}''')) print("""\n""".join(F'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'''Sorry, there are no results for ISBN: {isbn}.''')
210
import csv import tweepy # Twitter API credentials __a : Union[str, Any] = """""" __a : Union[str, Any] = """""" __a : Union[str, Any] = """""" __a : List[Any] = """""" def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = tweepy.OAuthHandler(lowercase , lowercase ) auth.set_access_token(lowercase , lowercase ) __lowercase = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets __lowercase = [] # make initial request for most recent tweets (200 is the maximum allowed count) __lowercase = api.user_timeline(screen_name=lowercase , count=200 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one __lowercase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(F"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates __lowercase = api.user_timeline( screen_name=lowercase , count=200 , max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one __lowercase = alltweets[-1].id - 1 print(F"...{len(lowercase )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv __lowercase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"new_{screen_name}_tweets.csv" , '''w''' ) as f: __lowercase = csv.writer(lowercase ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
210
1
"""simple docstring""" import random class __A : '''simple docstring''' @staticmethod def UpperCAmelCase ( _snake_case : int ) -> tuple[list[int], list[int]]: """simple docstring""" lowercase__ : Dict = [ord(lowerCAmelCase_ ) for i in text] lowercase__ : Dict = [] lowercase__ : Optional[int] = [] for i in plain: lowercase__ : str = random.randint(1 ,300 ) lowercase__ : Dict = (i + k) * k cipher.append(lowerCAmelCase_ ) key.append(lowerCAmelCase_ ) return cipher, key @staticmethod def UpperCAmelCase ( _snake_case : Dict ,_snake_case : Any ) -> str: """simple docstring""" lowercase__ : Optional[int] = [] for i in range(len(lowerCAmelCase_ ) ): lowercase__ : Optional[int] = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowerCAmelCase_ ) ) return "".join(lowerCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase_ ,lowerCAmelCase_ = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
365
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
0
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowerCAmelCase_ = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict="<unk>" , _UpperCamelCase : List[str]="<s>" , _UpperCamelCase : Tuple="</s>" , _UpperCamelCase : Any="<pad>" , _UpperCamelCase : Any="[SEP]" , _UpperCamelCase : Optional[Any]="[MASK]" , _UpperCamelCase : Any="[CLS]" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) ->None: snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , sep_token=_UpperCamelCase , mask_token=_UpperCamelCase , cls_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def snake_case__( self : str ) ->List[Any]: return self.sp_model.get_piece_size() def snake_case__( self : int ) ->Union[str, Any]: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) ->Any: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : str , _UpperCamelCase : List[Any] ) ->List[str]: snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__( self : Optional[int] , _UpperCamelCase : str ) ->List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : List[str] ) ->Tuple: return self.sp_model.piece_to_id(_UpperCamelCase ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : str ) ->List[Any]: snake_case_ = self.sp_model.IdToPiece(_UpperCamelCase ) return token def snake_case__( self : Dict , _UpperCamelCase : Optional[int] ) ->List[str]: snake_case_ = [] snake_case_ = '''''' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : bool = False , _UpperCamelCase : bool = None , _UpperCamelCase : bool = True , **_UpperCamelCase : List[str] , ) ->str: snake_case_ = kwargs.pop('''use_source_tokenizer''' , _UpperCamelCase ) snake_case_ = self.convert_ids_to_tokens(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) snake_case_ = [] sub_texts.append(_UpperCamelCase ) else: current_sub_text.append(_UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(_UpperCamelCase ) ) else: snake_case_ = ''''''.join(_UpperCamelCase ) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(_UpperCamelCase ) return clean_text else: return text def snake_case__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def snake_case__( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case__( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def snake_case__( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
8
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'decision_transformer' A_ : Union[str, Any] = ['past_key_values'] A_ : str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]: _a = state_dim _a = act_dim _a = hidden_size _a = max_ep_len _a = action_tanh _a = vocab_size _a = n_positions _a = n_layer _a = n_head _a = n_inner _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = scale_attn_weights _a = use_cache _a = scale_attn_by_inverse_layer_idx _a = reorder_and_upcast_attn _a = bos_token_id _a = eos_token_id super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
320
0
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar __SCREAMING_SNAKE_CASE : int = TypeVar('_T') class __A (Generic[_T]): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Iterable[_T] | None = None ) ->None: """simple docstring""" snake_case_ = list(iterable or [] ) snake_case_ = [] def __len__( self : str ) ->int: """simple docstring""" return len(self._stacka ) + len(self._stacka ) def __repr__( self : Optional[Any] ) ->str: """simple docstring""" return F"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : _T ) ->None: """simple docstring""" self._stacka.append(UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict ) ->_T: """simple docstring""" snake_case_ = self._stacka.pop snake_case_ = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
233
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class __A : '''simple docstring''' __lowercase: Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""}) __lowercase: Optional[str] = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""}) __lowercase: Optional[str] = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""}) __lowercase: Optional[str] = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""}) __lowercase: Optional[int] = field(default=2 , metadata={"""help""": """Batch size for training."""}) __lowercase: Optional[int] = field(default=2 , metadata={"""help""": """Batch size for evaluation."""}) __lowercase: Optional[float] = field(default=0.1 , metadata={"""help""": """Value of weight decay."""}) __lowercase: Optional[int] = field( default=1_00_00 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""}) __lowercase: Optional[float] = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""}) __lowercase: Optional[str] = field(default="""cosine""" , metadata={"""help""": """Learning rate."""}) __lowercase: Optional[int] = field( default=7_50 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""}) __lowercase: Optional[int] = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""}) __lowercase: Optional[bool] = field( default=snake_case__ , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""}) __lowercase: Optional[int] = field(default=5_00_00 , metadata={"""help""": """Maximum number of training steps."""}) __lowercase: Optional[int] = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""}) __lowercase: Optional[int] = field(default=10_24 , metadata={"""help""": """Sequence lengths used for training."""}) __lowercase: Optional[int] = field(default=1 , metadata={"""help""": """Training seed."""}) __lowercase: Optional[int] = field( default=10_24 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __lowercase: Optional[str] = field( default=snake_case__ , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""}) __lowercase: Optional[bool] = field(default=snake_case__ , metadata={"""help""": """If True the data is pretokenized."""}) @dataclass class __A : '''simple docstring''' __lowercase: Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""}) __lowercase: Optional[str] = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""}) __lowercase: Optional[int] = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""}) __lowercase: Optional[int] = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""}) __lowercase: Optional[int] = field(default=10_24 , metadata={"""help""": """Length of sequences to be evaluated."""}) __lowercase: Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""}) @dataclass class __A : '''simple docstring''' __lowercase: Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""}) __lowercase: Optional[int] = field(default=snake_case__ , metadata={"""help""": """Number of workers used for code evaluation."""}) __lowercase: Optional[int] = field( default=snake_case__ , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __lowercase: Optional[bool] = field( default=snake_case__ , metadata={"""help""": """Sample from the language model's output distribution."""}) __lowercase: Optional[float] = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""}) __lowercase: Optional[int] = field(default=2_56 , metadata={"""help""": """Maximum number of newly generated tokens."""}) __lowercase: Optional[int] = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""}) __lowercase: Optional[float] = field(default=0.9_5 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""}) __lowercase: Optional[int] = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""}) __lowercase: Optional[int] = field( default=2_00 , metadata={"""help""": """Number of completions to generate for each sample."""}) __lowercase: Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""}) __lowercase: Optional[str] = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""}) __lowercase: Optional[str] = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""}) __lowercase: Optional[int] = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class __A : '''simple docstring''' __lowercase: Optional[int] = field( default=snake_case__ , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __lowercase: Optional[str] = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""}) __lowercase: Optional[str] = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""}) __lowercase: Optional[int] = field( default=10_00_00 , metadata={"""help""": """Number of files to save per JSON output file."""}) __lowercase: Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""}) __lowercase: Optional[float] = field( default=10_00 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""}) __lowercase: Optional[float] = field( default=1_00 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""}) __lowercase: Optional[float] = field( default=0.2_5 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""}) __lowercase: Optional[float] = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""}) __lowercase: Optional[float] = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""}) __lowercase: Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __lowercase: Optional[bool] = field( default=snake_case__ , metadata={"""help""": """If True, near-duplicate samples are removed."""}) __lowercase: Optional[float] = field( default=0.8_5 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""}) @dataclass class __A : '''simple docstring''' __lowercase: Optional[str] = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""}) __lowercase: Optional[str] = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""}) __lowercase: Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""}) __lowercase: Optional[int] = field(default=20_00_00 , metadata={"""help""": """Number of examples to train tokenizer on."""}) __lowercase: Optional[int] = field( default=3_27_68 , metadata={"""help""": """Number of examples to train the tokenizer on."""}) __lowercase: Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""}) __lowercase: Optional[bool] = field(default=snake_case__ , metadata={"""help""": """Push saved tokenizer to the hub."""}) @dataclass class __A : '''simple docstring''' __lowercase: Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""}) __lowercase: Optional[str] = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""}) __lowercase: Optional[str] = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""}) __lowercase: Optional[int] = field(default=snake_case__ , metadata={"""help""": """Number of workers used for code evaluation."""}) @dataclass class __A : '''simple docstring''' __lowercase: Optional[str] = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""}) __lowercase: Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""}) __lowercase: Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""}) __lowercase: Optional[bool] = field(default=snake_case__ , metadata={"""help""": """Push saved tokenizer to the hub."""})
233
1
"""simple docstring""" import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json A : Optional[int] = "sshleifer/mar_enro_6_3_student" class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def snake_case ( self ): super().setUp() __lowerCAmelCase = cached_path( "https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz" , extract_compressed_file=__a , ) __lowerCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def snake_case ( self ): MarianMTModel.from_pretrained(__a ) @slow @require_torch_gpu def snake_case ( self ): __lowerCAmelCase = { "$MAX_LEN": 64, "$BS": 64, "$GAS": 1, "$ENRO_DIR": self.data_dir, "facebook/mbart-large-cc25": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", "--learning_rate=3e-5": "--learning_rate 3e-4", "--num_train_epochs 6": "--num_train_epochs 1", } # Clean up bash script __lowerCAmelCase = (self.test_file_dir / "train_mbart_cc25_enro.sh").open().read().split("finetune.py" )[1].strip() __lowerCAmelCase = bash_script.replace("\\\n" , "" ).strip().replace("\"$@\"" , "" ) for k, v in env_vars_to_replace.items(): __lowerCAmelCase = bash_script.replace(__a , str(__a ) ) __lowerCAmelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") __lowerCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future __lowerCAmelCase = ["finetune.py"] + bash_script.split() + args with patch.object(__a , "argv" , __a ): __lowerCAmelCase = argparse.ArgumentParser() __lowerCAmelCase = pl.Trainer.add_argparse_args(__a ) __lowerCAmelCase = SummarizationModule.add_model_specific_args(__a , os.getcwd() ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = main(__a ) # Check metrics __lowerCAmelCase = load_json(model.metrics_save_path ) __lowerCAmelCase = metrics["val"][0] __lowerCAmelCase = metrics["val"][-1] self.assertEqual(len(metrics["val"] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , __a ) self.assertGreater(last_step_stats["val_avg_gen_time"] , 0.0_1 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["val_avg_gen_time"] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["val_avg_bleu"] - first_step_stats["val_avg_bleu"] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["val_avg_bleu"] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["val"][-1]["val_avg_bleu"] - metrics["test"][-1]["test_avg_bleu"] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict __lowerCAmelCase = os.listdir(__a ) __lowerCAmelCase = [x for x in contents if x.endswith(".ckpt" )][0] __lowerCAmelCase = os.path.join(args.output_dir , __a ) __lowerCAmelCase = torch.load(__a , map_location="cpu" ) __lowerCAmelCase = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __lowerCAmelCase = {os.path.basename(__a ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"] ) == 1 class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @timeout_decorator.timeout(6_00 ) @slow @require_torch_gpu def snake_case ( self ): __lowerCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro" __lowerCAmelCase = { "--fp16_opt_level=O1": "", "$MAX_LEN": 1_28, "$BS": 16, "$GAS": 1, "$ENRO_DIR": data_dir, "$m": "sshleifer/student_marian_en_ro_6_1", "val_check_interval=0.25": "val_check_interval=1.0", } # Clean up bash script __lowerCAmelCase = ( (self.test_file_dir / "distil_marian_no_teacher.sh").open().read().split("distillation.py" )[1].strip() ) __lowerCAmelCase = bash_script.replace("\\\n" , "" ).strip().replace("\"$@\"" , "" ) __lowerCAmelCase = bash_script.replace("--fp16 " , " " ) for k, v in env_vars_to_replace.items(): __lowerCAmelCase = bash_script.replace(__a , str(__a ) ) __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = bash_script.replace("--fp16" , "" ) __lowerCAmelCase = 6 __lowerCAmelCase = ( ["distillation.py"] + bash_script.split() + [ f"--output_dir={output_dir}", "--gpus=1", "--learning_rate=1e-3", f"--num_train_epochs={epochs}", "--warmup_steps=10", "--val_check_interval=1.0", "--do_predict", ] ) with patch.object(__a , "argv" , __a ): __lowerCAmelCase = argparse.ArgumentParser() __lowerCAmelCase = pl.Trainer.add_argparse_args(__a ) __lowerCAmelCase = SummarizationDistiller.add_model_specific_args(__a , os.getcwd() ) __lowerCAmelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu __lowerCAmelCase = distill_main(__a ) # Check metrics __lowerCAmelCase = load_json(model.metrics_save_path ) __lowerCAmelCase = metrics["val"][0] __lowerCAmelCase = metrics["val"][-1] assert len(metrics["val"] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.0_1 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , __a ) # check lightning ckpt can be loaded and has a reasonable statedict __lowerCAmelCase = os.listdir(__a ) __lowerCAmelCase = [x for x in contents if x.endswith(".ckpt" )][0] __lowerCAmelCase = os.path.join(args.output_dir , __a ) __lowerCAmelCase = torch.load(__a , map_location="cpu" ) __lowerCAmelCase = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __lowerCAmelCase = {os.path.basename(__a ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"] ) == 1
57
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class _UpperCamelCase : '''simple docstring''' pass
57
1
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case , 'tf_padding' ) ) self.parent.assertTrue(hasattr(_snake_case , 'depth_multiplier' ) ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=3 , _snake_case=32 , _snake_case=0.25 , _snake_case=8 , _snake_case=8 , _snake_case=6 , _snake_case=32 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case="relu6" , _snake_case=12_80 , _snake_case=0.1 , _snake_case=0.02 , _snake_case=True , _snake_case=True , _snake_case=10 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = depth_multiplier lowerCAmelCase = depth_divisible_by lowerCAmelCase = min_depth lowerCAmelCase = expand_ratio lowerCAmelCase = tf_padding lowerCAmelCase = output_stride lowerCAmelCase = first_layer_is_expansion lowerCAmelCase = finegrained_output lowerCAmelCase = hidden_act lowerCAmelCase = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) lowerCAmelCase = classifier_dropout_prob lowerCAmelCase = use_labels lowerCAmelCase = is_training lowerCAmelCase = num_labels lowerCAmelCase = initializer_range lowerCAmelCase = scope def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase__ ( self ): """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = MobileNetVaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = MobileNetVaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = MobileNetVaForSemanticSegmentation(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCAmelCase = model(_snake_case , labels=_snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = config_and_inputs lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) snake_case__ = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = MobileNetVaModelTester(self ) lowerCAmelCase = MobileNetVaConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" def check_hidden_states_output(_snake_case , _snake_case , _snake_case ): lowerCAmelCase = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(_snake_case , _snake_case ) ) lowerCAmelCase = outputs.hidden_states lowerCAmelCase = 16 self.assertEqual(len(_snake_case ) , _snake_case ) lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = MobileNetVaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(_snake_case ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=_snake_case , return_tensors='pt' ).to(_snake_case ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**_snake_case ) # verify the logits lowerCAmelCase = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape , _snake_case ) lowerCAmelCase = torch.tensor([0.2_445, -1.1_993, 0.1_905] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) lowerCAmelCase = model.to(_snake_case ) lowerCAmelCase = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=_snake_case , return_tensors='pt' ).to(_snake_case ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**_snake_case ) lowerCAmelCase = outputs.logits # verify the logits lowerCAmelCase = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , _snake_case ) lowerCAmelCase = torch.tensor( [ [[17.5_790, 17.7_581, 18.3_355], [18.3_257, 18.4_230, 18.8_973], [18.6_169, 18.8_650, 19.2_187]], [[-2.1_595, -2.0_977, -2.3_741], [-2.4_226, -2.3_028, -2.6_835], [-2.7_819, -2.5_991, -2.7_706]], [[4.2_058, 4.8_317, 4.7_638], [4.4_136, 5.0_361, 4.9_383], [4.5_028, 4.9_644, 4.8_734]], ] , device=_snake_case , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _snake_case , atol=1E-4 ) )
309
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ): lowerCAmelCase = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip('./' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return F'{i * " "}*' if i else "\n##" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}' ) return new_path def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): lowerCAmelCase = '' for filepath in sorted(good_file_paths(_UpperCAmelCase ) ): lowerCAmelCase ,lowerCAmelCase = os.path.split(_UpperCAmelCase ) if filepath != old_path: lowerCAmelCase = print_path(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase = F'{filepath}/{filename}'.replace(' ' , '%20' ) lowerCAmelCase = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F'{md_prefix(_UpperCAmelCase )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('''.''')
309
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _A = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def lowerCamelCase__ ( ) -> Optional[Any]: UpperCamelCase_ = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: UpperCamelCase_ = get_sagemaker_input() else: UpperCamelCase_ = get_cluster_input() return config def lowerCamelCase__ ( a__ : List[str]=None ) -> Union[str, Any]: if subparsers is not None: UpperCamelCase_ = subparsers.add_parser("""config""" , description=a__ ) else: UpperCamelCase_ = argparse.ArgumentParser("""Accelerate config command""" , description=a__ ) parser.add_argument( """--config_file""" , default=a__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have """ """such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed """ """with \'huggingface\'.""" ) , ) if subparsers is not None: parser.set_defaults(func=a__ ) return parser def lowerCamelCase__ ( a__ : Any ) -> List[Any]: UpperCamelCase_ = get_user_input() if args.config_file is not None: UpperCamelCase_ = args.config_file else: if not os.path.isdir(a__ ): os.makedirs(a__ ) UpperCamelCase_ = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(a__ ) else: config.to_yaml_file(a__ ) print(f'''accelerate configuration saved at {config_file}''' ) def lowerCamelCase__ ( ) -> str: UpperCamelCase_ = config_command_parser() UpperCamelCase_ = parser.parse_args() config_command(a__ ) if __name__ == "__main__": main()
122
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : Tuple , _A : List[Any]=1_024 , _A : str=1_024 , _A : str=3.6 ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = tokenizer lowercase : List[Any] = tokenizer.bos_token_id lowercase : Union[str, Any] = dataset lowercase : Union[str, Any] = seq_length lowercase : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ) -> int: """simple docstring""" lowercase : Dict = iter(self.dataset ) lowercase : Union[str, Any] = True while more_examples: lowercase , lowercase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase : List[str] = False break lowercase : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowercase : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowercase : int = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = {'''streaming''': True} lowercase : Dict = load_dataset(args.dataset_name , split='''train''' , **__magic_name__ ) lowercase : int = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase : Tuple = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def snake_case( __magic_name__ ) -> str: '''simple docstring''' model.eval() lowercase : str = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase : Union[str, Any] = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase : Tuple = torch.exp(__magic_name__ ) except OverflowError: lowercase : List[str] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
0
import torch from transformers import AutoModel class __magic_name__ ( torch.nn.Module ): def __init__( self , __snake_case="sayef/fsner-bert-base-uncased" ) -> Optional[int]: '''simple docstring''' super(__snake_case , self ).__init__() __a =AutoModel.from_pretrained(__snake_case , return_dict=__snake_case ) __a =torch.nn.CosineSimilarity(3 , 1e-08 ) __a =torch.nn.Softmax(dim=1 ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' return self.bert(**__snake_case ).last_hidden_state def __magic_name__ ( self , __snake_case ) -> Any: '''simple docstring''' return token_embeddings.sum(2 , keepdim=__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' return self.softmax(T * self.cos(__snake_case , __snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =W_supports['sizes'].tolist() __a =W_supports['start_token_id'].item() __a =W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __a =self.BERT(**__snake_case ) __a =self.BERT(**__snake_case ) __a =None __a =None __a =W_supports['input_ids'] == start_token_id __a =W_supports['input_ids'] == end_token_id for i, size in enumerate(__snake_case ): if i == 0: __a =0 else: __a =support_sizes[i - 1] __a =S[s : s + size][start_token_masks[s : s + size]] __a =S[s : s + size][end_token_masks[s : s + size]] __a =torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) __a =torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __a =torch.vstack((p_starts, p_start) ) __a =torch.vstack((p_ends, p_end) ) else: __a =p_start __a =p_end return p_starts, p_ends
308
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
1
"""simple docstring""" def _snake_case ( snake_case__ : List[str] ): A = 1 A = 2 while i * i <= n: A = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _snake_case ( ): A = 1 A = 1 while True: i += 1 t_num += i if count_divisors(snake_case__ ) > 500: break return t_num if __name__ == "__main__": print(solution())
74
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] ='autoformer' __lowerCamelCase : str ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : List[Any] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : str = "student_t" , __lowercase : str = "nll" , __lowercase : int = 1 , __lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowercase : bool = True , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : Optional[List[int]] = None , __lowercase : Optional[List[int]] = None , __lowercase : int = 64 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 32 , __lowercase : int = 32 , __lowercase : str = "gelu" , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : int = 100 , __lowercase : float = 0.02 , __lowercase : bool = True , __lowercase : List[Any]=True , __lowercase : int = 10 , __lowercase : int = 25 , __lowercase : int = 3 , **__lowercase : Optional[int] , ): '''simple docstring''' # time series specific configuration __a = prediction_length __a = context_length if context_length is not None else prediction_length __a = distribution_output __a = loss __a = input_size __a = num_time_features __a = lags_sequence __a = scaling __a = num_dynamic_real_features __a = num_static_real_features __a = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) __a = cardinality else: __a = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) __a = embedding_dimension else: __a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __a = num_parallel_samples # Transformer architecture configuration __a = input_size * len(self.lags_sequence ) + self._number_of_features __a = d_model __a = encoder_attention_heads __a = decoder_attention_heads __a = encoder_ffn_dim __a = decoder_ffn_dim __a = encoder_layers __a = decoder_layers __a = dropout __a = attention_dropout __a = activation_dropout __a = encoder_layerdrop __a = decoder_layerdrop __a = activation_function __a = init_std __a = use_cache # Autoformer __a = label_length __a = moving_average __a = autocorrelation_factor super().__init__(is_encoder_decoder=__lowercase , **__lowercase ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
302
0
"""simple docstring""" from math import asin, atan, cos, radians, sin, sqrt, tan lowerCAmelCase__ = 6_37_81_37.0 lowerCAmelCase__ = 6_35_67_52.31_42_45 lowerCAmelCase__ = 6_378_137 def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = (AXIS_A - AXIS_B) / AXIS_A UpperCamelCase = atan((1 - flattening) * tan(radians(_SCREAMING_SNAKE_CASE ) ) ) UpperCamelCase = atan((1 - flattening) * tan(radians(_SCREAMING_SNAKE_CASE ) ) ) UpperCamelCase = radians(_SCREAMING_SNAKE_CASE ) UpperCamelCase = radians(_SCREAMING_SNAKE_CASE ) # Equation UpperCamelCase = sin((phi_a - phi_a) / 2 ) UpperCamelCase = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda UpperCamelCase = sqrt(sin_sq_phi + (cos(_SCREAMING_SNAKE_CASE ) * cos(_SCREAMING_SNAKE_CASE ) * sin_sq_lambda) ) return 2 * RADIUS * asin(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
244
"""simple docstring""" import doctest from collections import deque import numpy as np class _lowerCamelCase : def __init__(self ) -> None: UpperCamelCase = [2, 1, 2, -1] UpperCamelCase = [1, 2, 3, 4] def snake_case_ (self ) -> list[float]: UpperCamelCase = len(self.first_signal ) UpperCamelCase = len(self.second_signal ) UpperCamelCase = max(__a , __a ) # create a zero matrix of max_length x max_length UpperCamelCase = [[0] * max_length for i in range(__a )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__a ): UpperCamelCase = deque(self.second_signal ) rotated_signal.rotate(__a ) for j, item in enumerate(__a ): matrix[i][j] += item # multiply the matrix with the first signal UpperCamelCase = np.matmul(np.transpose(__a ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__a , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
244
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCamelCase : List[Any] = 16 lowerCamelCase : Optional[int] = 32 def snake_case_ ( lowerCAmelCase_ : Accelerator , lowerCAmelCase_ : int = 16 , lowerCAmelCase_ : str = "bert-base-cased" ): __lowercase : Dict = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) __lowercase : List[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCAmelCase_ : List[str] ): # max_length=None => use the model max length (it's actually the default) __lowercase : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase : str = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCAmelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase : List[str] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase_ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowercase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) __lowercase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] ): # Initialize accelerator __lowercase : str = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase : Optional[Any] = config["""lr"""] __lowercase : str = int(config["""num_epochs"""] ) __lowercase : str = int(config["""seed"""] ) __lowercase : Optional[Any] = int(config["""batch_size"""] ) __lowercase : Any = args.model_name_or_path set_seed(lowerCAmelCase_ ) __lowercase , __lowercase : Any = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase : List[Any] = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) # Instantiate optimizer __lowercase : Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowercase : Optional[int] = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase_ ) if accelerator.state.deepspeed_plugin is not None: __lowercase : Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowercase : Optional[int] = 1 __lowercase : Dict = (len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowercase : List[Any] = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase_ , ) else: __lowercase : Optional[int] = DummyScheduler(lowerCAmelCase_ , total_num_steps=lowerCAmelCase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # We need to keep track of how many total steps we have iterated over __lowercase : int = 0 # We also need to keep track of the stating epoch so files are named properly __lowercase : List[str] = 0 # Now we train the model __lowercase : Any = evaluate.load("""glue""" , """mrpc""" ) __lowercase : int = 0 __lowercase : List[str] = {} for epoch in range(lowerCAmelCase_ , lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): __lowercase : Union[str, Any] = model(**lowerCAmelCase_ ) __lowercase : Optional[int] = outputs.loss __lowercase : Any = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __lowercase : Tuple = 0 for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowercase : Optional[Any] = model(**lowerCAmelCase_ ) __lowercase : Optional[int] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowercase , __lowercase : Optional[int] = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase_ ) - 1: __lowercase : Optional[Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowercase : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) __lowercase : List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , lowerCAmelCase_ ) __lowercase : Dict = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: __lowercase : Union[str, Any] = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( ): __lowercase : Union[str, Any] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowerCAmelCase_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCAmelCase_ , ) parser.add_argument( """--output_dir""" , type=lowerCAmelCase_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase_ , default=3 , help="""Number of train epochs.""" , ) __lowercase : List[str] = parser.parse_args() __lowercase : Dict = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
233
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = '''naver-clova-ix/donut-base-finetuned-docvqa''' _A : Any = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) _A : Tuple = '''document_qa''' _A : Dict = AutoProcessor _A : Tuple = VisionEncoderDecoderModel _A : Optional[int] = ['''image''', '''text'''] _A : Optional[int] = ['''text'''] def __init__( self : Any , *__a : List[str] , **__a : Any ) -> Optional[Any]: """simple docstring""" if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*__a , **__a ) def lowerCAmelCase ( self : List[Any] , __a : "Image" , __a : str ) -> List[str]: """simple docstring""" __lowercase : int = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" __lowercase : str = task_prompt.replace("""{user_input}""" , __a ) __lowercase : Union[str, Any] = self.pre_processor.tokenizer( __a , add_special_tokens=__a , return_tensors="""pt""" ).input_ids __lowercase : int = self.pre_processor(__a , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowerCAmelCase ( self : Optional[int] , __a : int ) -> int: """simple docstring""" return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__a , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__a , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__a , ).sequences def lowerCAmelCase ( self : Union[str, Any] , __a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.pre_processor.batch_decode(__a )[0] __lowercase : int = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) __lowercase : Union[str, Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) __lowercase : Optional[Any] = re.sub(r"""<.*?>""" , """""" , __a , count=1 ).strip() # remove first task start token __lowercase : Dict = self.pre_processor.tokenajson(__a ) return sequence["answer"]
233
1
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL A : Optional[Any] = logging.get_logger(__name__) def a__ ( __UpperCamelCase ): if isinstance(__UpperCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__UpperCamelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__UpperCamelCase ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = ['''pixel_values'''] def __init__( self : Dict , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 255 , __magic_name__ : bool = True , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , **__magic_name__ : List[Any] , ) -> None: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = size if size is not None else {"shortest_edge": 256} SCREAMING_SNAKE_CASE_ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE_ = get_size_dict(__magic_name__ , param_name="crop_size" ) SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = do_center_crop SCREAMING_SNAKE_CASE_ = crop_size SCREAMING_SNAKE_CASE_ = resample SCREAMING_SNAKE_CASE_ = do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor SCREAMING_SNAKE_CASE_ = offset SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self : Tuple , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : List[str] , ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" in size: SCREAMING_SNAKE_CASE_ = get_resize_output_image_size(__magic_name__ , size["shortest_edge"] , default_to_square=__magic_name__ ) elif "height" in size and "width" in size: SCREAMING_SNAKE_CASE_ = (size["height"], size["width"]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __A ( self : Tuple , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[int] , ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__magic_name__ , size=(size["height"], size["width"]) , data_format=__magic_name__ , **__magic_name__ ) def __A ( self : str , __magic_name__ : np.ndarray , __magic_name__ : Union[int, float] , __magic_name__ : bool = True , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Union[str, Any] , ) -> str: SCREAMING_SNAKE_CASE_ = image.astype(np.floataa ) if offset: SCREAMING_SNAKE_CASE_ = image - (scale / 2) return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __A ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[int] , ) -> np.ndarray: return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __A ( self : List[str] , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = None , __magic_name__ : float = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ = to_numpy_array(__magic_name__ ) if do_resize: SCREAMING_SNAKE_CASE_ = self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) if do_center_crop: SCREAMING_SNAKE_CASE_ = self.center_crop(__magic_name__ , size=__magic_name__ ) if do_rescale: SCREAMING_SNAKE_CASE_ = self.rescale(image=__magic_name__ , scale=__magic_name__ , offset=__magic_name__ ) if do_normalize: SCREAMING_SNAKE_CASE_ = self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) SCREAMING_SNAKE_CASE_ = to_channel_dimension_format(__magic_name__ , __magic_name__ ) return image def __A ( self : Dict , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = None , __magic_name__ : float = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> PIL.Image.Image: SCREAMING_SNAKE_CASE_ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ = offset if offset is not None else self.offset SCREAMING_SNAKE_CASE_ = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ = size if size is not None else self.size SCREAMING_SNAKE_CASE_ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ = get_size_dict(__magic_name__ , param_name="crop_size" ) if not valid_images(__magic_name__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) SCREAMING_SNAKE_CASE_ = make_batched(__magic_name__ ) SCREAMING_SNAKE_CASE_ = [ [ self._preprocess_image( image=__magic_name__ , do_resize=__magic_name__ , size=__magic_name__ , resample=__magic_name__ , do_center_crop=__magic_name__ , crop_size=__magic_name__ , do_rescale=__magic_name__ , rescale_factor=__magic_name__ , offset=__magic_name__ , do_normalize=__magic_name__ , image_mean=__magic_name__ , image_std=__magic_name__ , data_format=__magic_name__ , ) for img in video ] for video in videos ] SCREAMING_SNAKE_CASE_ = {"pixel_values": videos} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
305
from math import pi, sqrt, tan def a__ ( __UpperCamelCase ): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) SCREAMING_SNAKE_CASE_ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def a__ ( __UpperCamelCase , __UpperCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(__UpperCamelCase , 2 ) * torus_radius * tube_radius def a__ ( __UpperCamelCase , __UpperCamelCase ): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def a__ ( __UpperCamelCase ): if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) SCREAMING_SNAKE_CASE_ = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE_ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def a__ ( __UpperCamelCase , __UpperCamelCase ): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def a__ ( __UpperCamelCase , __UpperCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def a__ ( __UpperCamelCase , __UpperCamelCase ): if not isinstance(__UpperCamelCase , __UpperCamelCase ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
305
1
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a_ (_a ): __lowerCAmelCase : Dict = (DPMSolverSDEScheduler,) __lowerCAmelCase : Dict = 1_0 def __UpperCamelCase ( self , **snake_case_ ): _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**snake_case_ ) return config def __UpperCamelCase ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def __UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : Optional[Any] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : int = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : int = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : int = output.prev_sample _lowerCAmelCase : str = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[int] = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase : str = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : List[Any] = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma _lowerCAmelCase : Optional[int] = sample.to(snake_case_ ) for t in scheduler.timesteps: _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : int = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : str = output.prev_sample _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
309
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : list[int] , _lowerCamelCase : str ) -> list[int]: _lowerCAmelCase : List[Any] = int(_lowerCamelCase ) # Initialize Result _lowerCAmelCase : Any = [] # Traverse through all denomination for denomination in reversed(_lowerCamelCase ): # Find denominations while int(_lowerCamelCase ) >= int(_lowerCamelCase ): total_value -= int(_lowerCamelCase ) answer.append(_lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCamelCase_ = [] UpperCamelCase_ = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): UpperCamelCase_ = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'Denomination {i}: ').strip())) UpperCamelCase_ = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter UpperCamelCase_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] UpperCamelCase_ = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'Following is minimal change for {value}: ') UpperCamelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
309
1
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __A ( UpperCamelCase__ ): def _lowercase (self : str ): UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , "width_multiplier" ) ) class __A : def __init__(self : str , __a : int , __a : str=13 , __a : Optional[int]=64 , __a : Optional[int]=2 , __a : Any=3 , __a : int="swish" , __a : Union[str, Any]=3 , __a : List[str]=32 , __a : Tuple=0.1 , __a : str=0.02 , __a : Optional[int]=True , __a : List[Any]=True , __a : Union[str, Any]=10 , __a : int=None , __a : List[Any]=0.25 , __a : Optional[Any]=0.0 , __a : Union[str, Any]=0.0 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_ = hidden_act UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = output_stride UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = width_multiplier UpperCAmelCase_ = ffn_dropout UpperCAmelCase_ = attn_dropout def _lowercase (self : List[str] ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def _lowercase (self : Any ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _lowercase (self : str , __a : Union[str, Any] , __a : Union[str, Any] , __a : Any , __a : Tuple ): UpperCAmelCase_ = MobileViTVaModel(config=__a ) model.to(__a ) model.eval() UpperCAmelCase_ = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowercase (self : int , __a : Optional[Any] , __a : List[Any] , __a : int , __a : Any ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForImageClassification(__a ) model.to(__a ) model.eval() UpperCAmelCase_ = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase (self : Optional[Any] , __a : List[str] , __a : Any , __a : Any , __a : Optional[Any] ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() UpperCAmelCase_ = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowercase (self : Any ): UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a__ : str = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) a__ : Any = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) a__ : List[Any] = False a__ : str = False a__ : Union[str, Any] = False a__ : int = False def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = MobileViTVaModelTester(self ) UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=__a , has_text_modality=__a ) def _lowercase (self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def _lowercase (self : str ): pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def _lowercase (self : Optional[Any] ): pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def _lowercase (self : Any ): pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def _lowercase (self : List[str] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase (self : Union[str, Any] ): pass def _lowercase (self : List[str] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _lowercase (self : int ): def check_hidden_states_output(__a : List[Any] , __a : List[Any] , __a : Optional[int] ): UpperCAmelCase_ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 5 self.assertEqual(len(__a ) , __a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_ = 2 for i in range(len(__a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(__a , __a , __a ) def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def _lowercase (self : Dict ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def _lowercase (self : Any ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileViTVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __A ( unittest.TestCase ): @cached_property def _lowercase (self : Union[str, Any] ): return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def _lowercase (self : Dict ): UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( __a ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**__a ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) UpperCAmelCase_ = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(__a ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**__a ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __a ) UpperCAmelCase_ = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) ) @slow def _lowercase (self : List[str] ): UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(__a ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**__a ) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=__a , target_sizes=[(50, 60)] ) UpperCAmelCase_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __a ) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=__a ) UpperCAmelCase_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __a )
106
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE_: List[str] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[Any] ={ 't5-small': 'https://huggingface.co/t5-small/resolve/main/config.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/config.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/config.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/config.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/config.json', } class __A ( UpperCamelCase__ ): a__ : Dict = """t5""" a__ : List[str] = ["""past_key_values"""] a__ : Union[str, Any] = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__(self : List[str] , __a : Any=32128 , __a : Optional[int]=512 , __a : Union[str, Any]=64 , __a : List[str]=2048 , __a : Optional[int]=6 , __a : Union[str, Any]=None , __a : Union[str, Any]=8 , __a : Dict=32 , __a : List[Any]=128 , __a : Optional[Any]=0.1 , __a : List[Any]=1E-6 , __a : str=1.0 , __a : Dict="relu" , __a : int=True , __a : int=True , __a : Optional[Any]=0 , __a : Dict=1 , **__a : List[Any] , ): UpperCAmelCase_ = vocab_size UpperCAmelCase_ = d_model UpperCAmelCase_ = d_kv UpperCAmelCase_ = d_ff UpperCAmelCase_ = num_layers UpperCAmelCase_ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCAmelCase_ = num_heads UpperCAmelCase_ = relative_attention_num_buckets UpperCAmelCase_ = relative_attention_max_distance UpperCAmelCase_ = dropout_rate UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = initializer_factor UpperCAmelCase_ = feed_forward_proj UpperCAmelCase_ = use_cache UpperCAmelCase_ = self.feed_forward_proj.split("-" ) UpperCAmelCase_ = act_info[-1] UpperCAmelCase_ = act_info[0] == "gated" if len(__a ) > 1 and act_info[0] != "gated" or len(__a ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCAmelCase_ = "gelu_new" super().__init__( pad_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , **__a , ) class __A ( UpperCamelCase__ ): @property def _lowercase (self : str ): UpperCAmelCase_ = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: UpperCAmelCase_ = "past_encoder_sequence + sequence" UpperCAmelCase_ = {0: "batch"} UpperCAmelCase_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "decoder_sequence"} UpperCAmelCase_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__a , direction="inputs" ) return common_inputs @property def _lowercase (self : Optional[int] ): return 13
106
1
'''simple docstring''' import os import string import sys _A : List[Any] = 1 << 8 _A : Union[str, Any] = { """tab""": ord('''\t'''), """newline""": ord('''\r'''), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } _A : Optional[Any] = KEYMAP["""up"""] _A : Tuple = KEYMAP["""left"""] if sys.platform == "win32": _A : List[Any] = [] _A : int = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): _A : List[str] = ord(str(i)) def UpperCamelCase_ ( ) -> Optional[int]: '''simple docstring''' if os.name == "nt": import msvcrt __lowerCAmelCase = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_A ) == 0: # Read the keystroke __lowerCAmelCase = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __lowerCAmelCase = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __lowerCAmelCase = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(_A ) if ord(_A ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26 ) ) __lowerCAmelCase = chr(KEYMAP["""esc"""] ) except KeyError: __lowerCAmelCase = cha[1] else: __lowerCAmelCase = ch.decode(_A ) else: __lowerCAmelCase = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __lowerCAmelCase = sys.stdin.fileno() __lowerCAmelCase = termios.tcgetattr(_A ) try: tty.setraw(_A ) __lowerCAmelCase = sys.stdin.read(1 ) finally: termios.tcsetattr(_A , termios.TCSADRAIN , _A ) return ch def UpperCamelCase_ ( ) -> Union[str, Any]: '''simple docstring''' __lowerCAmelCase = get_raw_chars() if ord(_A ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_A ) == KEYMAP["esc"]: __lowerCAmelCase = get_raw_chars() if ord(_A ) == KEYMAP["mod_int"]: __lowerCAmelCase = get_raw_chars() if ord(_A ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_A ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_A ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
229
from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase : Tuple = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
def lowerCAmelCase (__UpperCamelCase : str , __UpperCamelCase : int ): """simple docstring""" __UpperCamelCase =word.split() def justify(__UpperCamelCase : list , __UpperCamelCase : int , __UpperCamelCase : int ) -> str: __UpperCamelCase =max_width - width __UpperCamelCase =len(__UpperCamelCase ) if len(__UpperCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: __UpperCamelCase =words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] __UpperCamelCase =spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] __UpperCamelCase =( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__UpperCamelCase ): num_spaces_between_words_list[i] += 1 __UpperCamelCase =[] for i in range(__UpperCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__UpperCamelCase ) __UpperCamelCase =[] __UpperCamelCase =[] __UpperCamelCase =0 for word in words: if width + len(__UpperCamelCase ) + len(__UpperCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__UpperCamelCase ) width += len(__UpperCamelCase ) else: # justify the line and add it to result answer.append(justify(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ) # reset new line and new width __UpperCamelCase , __UpperCamelCase =[word], len(__UpperCamelCase ) __UpperCamelCase =max_width - width - len(__UpperCamelCase ) answer.append(''' '''.join(__UpperCamelCase ) + (remaining_spaces + 1) * ''' ''' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
358
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : int = 3 , __UpperCamelCase : int = 7 , __UpperCamelCase : int = 1_0_0_0_0_0_0 ): """simple docstring""" __UpperCamelCase =0 __UpperCamelCase =1 for current_denominator in range(1 , limit + 1 ): __UpperCamelCase =current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __UpperCamelCase =current_numerator __UpperCamelCase =current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
85
0
from collections.abc import Callable class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ = None ): # Stores actual heap items. UpperCamelCase__ = [] # Stores indexes of each item for supporting updates and deletion. UpperCamelCase__ = {} # Stores current size of heap. UpperCamelCase__ = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. UpperCamelCase__ = key or (lambda SCREAMING_SNAKE_CASE_ : x) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): return int((i - 1) / 2 ) if i > 0 else None def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = int(2 * i + 1 ) return left if 0 < left < self.size else None def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = int(2 * i + 2 ) return right if 0 < right < self.size else None def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ , UpperCamelCase__ = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. UpperCamelCase__ , UpperCamelCase__ = self.arr[j], self.arr[i] def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return self.arr[i][1] < self.arr[j][1] def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self._left(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self._right(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = i if left is not None and not self._cmp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = left if right is not None and not self._cmp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = right return valid_parent def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self._parent(SCREAMING_SNAKE_CASE_ ) while parent is not None and not self._cmp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self._swap(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ = parent, self._parent(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self._get_valid_parent(SCREAMING_SNAKE_CASE_ ) while valid_parent != index: self._swap(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ = valid_parent, self._get_valid_parent(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if item not in self.pos_map: return UpperCamelCase__ = self.pos_map[item] UpperCamelCase__ = [item, self.key(SCREAMING_SNAKE_CASE_ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(SCREAMING_SNAKE_CASE_ ) self._heapify_down(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): if item not in self.pos_map: return UpperCamelCase__ = self.pos_map[item] del self.pos_map[item] UpperCamelCase__ = self.arr[self.size - 1] UpperCamelCase__ = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(SCREAMING_SNAKE_CASE_ ) self._heapify_down(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(SCREAMING_SNAKE_CASE_ )] ) else: UpperCamelCase__ = [item, self.key(SCREAMING_SNAKE_CASE_ )] UpperCamelCase__ = self.size self.size += 1 self._heapify_up(self.size - 1 ) def UpperCAmelCase_ (self ): return self.arr[0] if self.size else None def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def __magic_name__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
244
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __A( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True def UpperCAmelCase_ (self ): super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = """this is a test""" UpperCamelCase__ = """this is a test""" return input_text, output_text def UpperCAmelCase_ (self ): UpperCamelCase__ = """<pad>""" UpperCamelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 3_00_01 ) def UpperCAmelCase_ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """ \tHeLLo!how \n Are yoU? """ UpperCamelCase__ = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def UpperCAmelCase_ (self ): pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """ \tHeLLo!how \n Are yoU? """ UpperCamelCase__ = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """This is a test""" UpperCamelCase__ = [13, 1, 43_98, 25, 21, 12_89] UpperCamelCase__ = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] UpperCamelCase__ = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] UpperCamelCase__ = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] UpperCamelCase__ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode("""sequence builders""" ) UpperCamelCase__ = tokenizer.encode("""multi-sequence build""" ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , SCREAMING_SNAKE_CASE_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , SCREAMING_SNAKE_CASE_ , ) @slow def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = {"""input_ids""": [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
244
1
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE_ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE_ = direct_transformers_import(PATH_TO_TRANSFORMERS) SCREAMING_SNAKE_CASE_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` SCREAMING_SNAKE_CASE_ = re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)') SCREAMING_SNAKE_CASE_ = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = None # source code of `config_class` _UpperCAmelCase : int = inspect.getsource(lowerCAmelCase ) _UpperCAmelCase : Tuple = _re_checkpoint.findall(lowerCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): _UpperCAmelCase : Dict = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase : Any = F'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase : Union[str, Any] = ckpt_name break return checkpoint def __SCREAMING_SNAKE_CASE ( ) -> Dict: _UpperCAmelCase : Any = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _UpperCAmelCase : int = get_checkpoint_from_config_class(lowerCAmelCase ) _UpperCAmelCase : Tuple = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: _UpperCAmelCase : int = "\n".join(sorted(lowerCAmelCase ) ) raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
189
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: float | Decimal , lowerCAmelCase: float = 10**-10 ) -> float: _UpperCAmelCase : Optional[int] = a while True: _UpperCAmelCase : Tuple = Decimal(lowerCAmelCase ) - ( Decimal(eval(lowerCAmelCase ) ) / Decimal(eval(str(diff(lowerCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(lowerCAmelCase ) ) < precision: # noqa: S307 return float(lowerCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
189
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar A : Optional[Any] = TypeVar('T') def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" return (position - 1) // 2 def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" return (2 * position) + 1 def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" return (2 * position) + 2 class A ( Generic[T] ): '''simple docstring''' def __init__(self : Optional[int] ) -> None: """simple docstring""" lowercase__ = [] lowercase__ = {} lowercase__ = 0 def __len__(self : Optional[int] ) -> int: """simple docstring""" return self.elements def __repr__(self : Dict ) -> str: """simple docstring""" return str(self.heap ) def lowerCamelCase__ (self : Tuple ) -> bool: """simple docstring""" return self.elements == 0 def lowerCamelCase__ (self : Any , _UpperCAmelCase : T , _UpperCAmelCase : int ) -> None: """simple docstring""" self.heap.append((elem, weight) ) lowercase__ = self.elements self.elements += 1 self._bubble_up(_UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) lowercase__ , lowercase__ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowercase__ , lowercase__ = self.heap[0] self._bubble_down(_UpperCAmelCase ) return elem def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : T , _UpperCAmelCase : int ) -> None: """simple docstring""" lowercase__ = self.position_map[elem] lowercase__ = (elem, weight) if position > 0: lowercase__ = get_parent_position(_UpperCAmelCase ) lowercase__ , lowercase__ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : T ) -> None: """simple docstring""" lowercase__ = self.position_map[elem] if curr_pos == 0: return None lowercase__ = get_parent_position(_UpperCAmelCase ) lowercase__ , lowercase__ = self.heap[curr_pos] lowercase__ , lowercase__ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_up(_UpperCAmelCase ) return None def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : T ) -> None: """simple docstring""" lowercase__ = self.position_map[elem] lowercase__ , lowercase__ = self.heap[curr_pos] lowercase__ = get_child_left_position(_UpperCAmelCase ) lowercase__ = get_child_right_position(_UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: lowercase__ , lowercase__ = self.heap[child_left_position] lowercase__ , lowercase__ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) if child_left_position < self.elements: lowercase__ , lowercase__ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) else: return None if child_right_position < self.elements: lowercase__ , lowercase__ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) return None def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> None: """simple docstring""" lowercase__ = self.heap[nodea_pos][0] lowercase__ = self.heap[nodea_pos][0] lowercase__ , lowercase__ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowercase__ = nodea_pos lowercase__ = nodea_pos class A ( Generic[T] ): '''simple docstring''' def __init__(self : List[Any] ) -> None: """simple docstring""" lowercase__ = {} lowercase__ = 0 def __repr__(self : str ) -> str: """simple docstring""" return str(self.connections ) def __len__(self : Optional[Any] ) -> int: """simple docstring""" return self.nodes def lowerCamelCase__ (self : Dict , _UpperCAmelCase : T ) -> None: """simple docstring""" if node not in self.connections: lowercase__ = {} self.nodes += 1 def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : T , _UpperCAmelCase : T , _UpperCAmelCase : int ) -> None: """simple docstring""" self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) lowercase__ = weight lowercase__ = weight def UpperCamelCase ( __magic_name__ : GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: """simple docstring""" lowercase__ = {node: maxsize for node in graph.connections} lowercase__ = {node: None for node in graph.connections} lowercase__ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__magic_name__ , __magic_name__ ) if priority_queue.is_empty(): return dist, parent # initialization lowercase__ = priority_queue.extract_min() lowercase__ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowercase__ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__magic_name__ , dist[neighbour] ) lowercase__ = node # running prim's algorithm while not priority_queue.is_empty(): lowercase__ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowercase__ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__magic_name__ , dist[neighbour] ) lowercase__ = node return dist, parent
305
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
1
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" ,out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _SCREAMING_SNAKE_CASE = MaskFormerConfig(backbone_config=snake_case__ ) _SCREAMING_SNAKE_CASE = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok _SCREAMING_SNAKE_CASE = 8_47 _SCREAMING_SNAKE_CASE = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok _SCREAMING_SNAKE_CASE = 1_50 _SCREAMING_SNAKE_CASE = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok _SCREAMING_SNAKE_CASE = 1_71 _SCREAMING_SNAKE_CASE = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO _SCREAMING_SNAKE_CASE = 1_33 _SCREAMING_SNAKE_CASE = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok _SCREAMING_SNAKE_CASE = 19 _SCREAMING_SNAKE_CASE = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok _SCREAMING_SNAKE_CASE = 65 _SCREAMING_SNAKE_CASE = """mapillary-vistas-id2label.json""" _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(snake_case__ ,snake_case__ ,repo_type="""dataset""" ) ,"""r""" ) ) _SCREAMING_SNAKE_CASE = {int(snake_case__ ): v for k, v in idalabel.items()} return config def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = dct.pop(snake_case__ ) _SCREAMING_SNAKE_CASE = val def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _SCREAMING_SNAKE_CASE = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _SCREAMING_SNAKE_CASE = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) _SCREAMING_SNAKE_CASE = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _SCREAMING_SNAKE_CASE = in_proj_weight[:dim, :] _SCREAMING_SNAKE_CASE = in_proj_bias[: dim] _SCREAMING_SNAKE_CASE = in_proj_weight[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = in_proj_weight[ -dim :, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[-dim :] # fmt: on def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _SCREAMING_SNAKE_CASE = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) _SCREAMING_SNAKE_CASE = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _SCREAMING_SNAKE_CASE = in_proj_weight[: hidden_size, :] _SCREAMING_SNAKE_CASE = in_proj_bias[:config.hidden_size] _SCREAMING_SNAKE_CASE = in_proj_weight[hidden_size : hidden_size * 2, :] _SCREAMING_SNAKE_CASE = in_proj_bias[hidden_size : hidden_size * 2] _SCREAMING_SNAKE_CASE = in_proj_weight[-hidden_size :, :] _SCREAMING_SNAKE_CASE = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _SCREAMING_SNAKE_CASE = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) _SCREAMING_SNAKE_CASE = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _SCREAMING_SNAKE_CASE = in_proj_weight[: hidden_size, :] _SCREAMING_SNAKE_CASE = in_proj_bias[:config.hidden_size] _SCREAMING_SNAKE_CASE = in_proj_weight[hidden_size : hidden_size * 2, :] _SCREAMING_SNAKE_CASE = in_proj_bias[hidden_size : hidden_size * 2] _SCREAMING_SNAKE_CASE = in_proj_weight[-hidden_size :, :] _SCREAMING_SNAKE_CASE = in_proj_bias[-hidden_size :] # fmt: on def __lowerCamelCase ( ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" _SCREAMING_SNAKE_CASE = Image.open(requests.get(snake_case__ ,stream=snake_case__ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = False ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = get_maskformer_config(snake_case__ ) # load original state_dict with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ ) _SCREAMING_SNAKE_CASE = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _SCREAMING_SNAKE_CASE = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ ,snake_case__ ,snake_case__ ) read_in_swin_q_k_v(snake_case__ ,config.backbone_config ) read_in_decoder_q_k_v(snake_case__ ,snake_case__ ) # update to torch tensors for key, value in state_dict.items(): _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) # load 🤗 model _SCREAMING_SNAKE_CASE = MaskFormerForInstanceSegmentation(snake_case__ ) model.eval() for name, param in model.named_parameters(): print(snake_case__ ,param.shape ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model.load_state_dict(snake_case__ ,strict=snake_case__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(snake_case__ ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results _SCREAMING_SNAKE_CASE = prepare_img() if "vistas" in model_name: _SCREAMING_SNAKE_CASE = 65 elif "cityscapes" in model_name: _SCREAMING_SNAKE_CASE = 6_55_35 else: _SCREAMING_SNAKE_CASE = 2_55 _SCREAMING_SNAKE_CASE = True if """ade""" in model_name else False _SCREAMING_SNAKE_CASE = MaskFormerImageProcessor(ignore_index=snake_case__ ,reduce_labels=snake_case__ ) _SCREAMING_SNAKE_CASE = image_processor(snake_case__ ,return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = model(**snake_case__ ) print("""Logits:""" ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _SCREAMING_SNAKE_CASE = torch.tensor( [[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,snake_case__ ,atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
125
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ = 1_60_00 ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = int(round(sample_rate * max_length ) ) if len(snake_case__ ) <= sample_length: return wav _SCREAMING_SNAKE_CASE = randint(0 ,len(snake_case__ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCAmelCase : __snake_case : Optional[str] = field(default=_UpperCAmelCase ,metadata={"help": "Name of a dataset from the datasets package"} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "A file containing the training audio paths and labels."} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "A file containing the validation audio paths and labels."} ) __snake_case : str = field( default="train" ,metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } ,) __snake_case : str = field( default="validation" ,metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } ,) __snake_case : str = field( default="audio" ,metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} ,) __snake_case : str = field( default="label" ,metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) __snake_case : Optional[int] = field( default=_UpperCAmelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) __snake_case : Optional[int] = field( default=_UpperCAmelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) __snake_case : float = field( default=20 ,metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} ,) @dataclass class __UpperCAmelCase : __snake_case : str = field( default="facebook/wav2vec2-base" ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ,) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) __snake_case : str = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Name or path of preprocessor config."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) __snake_case : Optional[bool] = field( default=_UpperCAmelCase ,metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} ,) def UpperCamelCase ( self: List[str] ): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , UpperCAmelCase_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def __lowerCamelCase ( ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" ,snake_case__ ,snake_case__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(snake_case__ ) transformers.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. _SCREAMING_SNAKE_CASE = DatasetDict() _SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.train_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) _SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.eval_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' """Make sure to set `--audio_column_name` to the correct audio column - one of """ F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' """Make sure to set `--label_column_name` to the correct text column - one of """ F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path ,return_attention_mask=model_args.attention_mask ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _SCREAMING_SNAKE_CASE = raw_datasets.cast_column( data_args.audio_column_name ,datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _SCREAMING_SNAKE_CASE = feature_extractor.model_input_names[0] def train_transforms(snake_case__ ): _SCREAMING_SNAKE_CASE = [] for audio in batch[data_args.audio_column_name]: _SCREAMING_SNAKE_CASE = random_subsample( audio["""array"""] ,max_length=data_args.max_length_seconds ,sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(snake_case__ ) _SCREAMING_SNAKE_CASE = feature_extractor(snake_case__ ,sampling_rate=feature_extractor.sampling_rate ) _SCREAMING_SNAKE_CASE = {model_input_name: inputs.get(snake_case__ )} _SCREAMING_SNAKE_CASE = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(snake_case__ ): _SCREAMING_SNAKE_CASE = [audio["""array"""] for audio in batch[data_args.audio_column_name]] _SCREAMING_SNAKE_CASE = feature_extractor(snake_case__ ,sampling_rate=feature_extractor.sampling_rate ) _SCREAMING_SNAKE_CASE = {model_input_name: inputs.get(snake_case__ )} _SCREAMING_SNAKE_CASE = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features[data_args.label_column_name].names _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = {}, {} for i, label in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE = str(snake_case__ ) _SCREAMING_SNAKE_CASE = label # Load the accuracy metric from the datasets package _SCREAMING_SNAKE_CASE = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(snake_case__ ): _SCREAMING_SNAKE_CASE = np.argmax(eval_pred.predictions ,axis=1 ) return metric.compute(predictions=snake_case__ ,references=eval_pred.label_ids ) _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path ,num_labels=len(snake_case__ ) ,labelaid=snake_case__ ,idalabel=snake_case__ ,finetuning_task="""audio-classification""" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) _SCREAMING_SNAKE_CASE = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=snake_case__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _SCREAMING_SNAKE_CASE = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(snake_case__ ,output_all_columns=snake_case__ ) if training_args.do_eval: if data_args.max_eval_samples is not None: _SCREAMING_SNAKE_CASE = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(snake_case__ ,output_all_columns=snake_case__ ) # Initialize our trainer _SCREAMING_SNAKE_CASE = Trainer( model=snake_case__ ,args=snake_case__ ,train_dataset=raw_datasets["""train"""] if training_args.do_train else None ,eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None ,compute_metrics=snake_case__ ,tokenizer=snake_case__ ,) # Training if training_args.do_train: _SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: _SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: _SCREAMING_SNAKE_CASE = last_checkpoint _SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() trainer.log_metrics("""train""" ,train_result.metrics ) trainer.save_metrics("""train""" ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _SCREAMING_SNAKE_CASE = trainer.evaluate() trainer.log_metrics("""eval""" ,snake_case__ ) trainer.save_metrics("""eval""" ,snake_case__ ) # Write model card and (optionally) push to hub _SCREAMING_SNAKE_CASE = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case__ ) else: trainer.create_model_card(**snake_case__ ) if __name__ == "__main__": main()
125
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class SCREAMING_SNAKE_CASE ( a_ , a_ ): """simple docstring""" lowercase__ = "swin" lowercase__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : str ,lowercase_ : List[str]=2_2_4 ,lowercase_ : Union[str, Any]=4 ,lowercase_ : Dict=3 ,lowercase_ : Tuple=9_6 ,lowercase_ : Any=[2, 2, 6, 2] ,lowercase_ : Any=[3, 6, 1_2, 2_4] ,lowercase_ : str=7 ,lowercase_ : Optional[Any]=4.0 ,lowercase_ : Optional[int]=True ,lowercase_ : Union[str, Any]=0.0 ,lowercase_ : Optional[Any]=0.0 ,lowercase_ : int=0.1 ,lowercase_ : Dict="gelu" ,lowercase_ : Optional[Any]=False ,lowercase_ : Any=0.02 ,lowercase_ : str=1E-5 ,lowercase_ : str=3_2 ,lowercase_ : List[Any]=None ,lowercase_ : Union[str, Any]=None ,**lowercase_ : List[str] ,): super().__init__(**lowercase_ ) lowerCAmelCase__ : Union[str, Any] = image_size lowerCAmelCase__ : List[str] = patch_size lowerCAmelCase__ : Optional[Any] = num_channels lowerCAmelCase__ : str = embed_dim lowerCAmelCase__ : Optional[int] = depths lowerCAmelCase__ : Tuple = len(lowercase_ ) lowerCAmelCase__ : List[Any] = num_heads lowerCAmelCase__ : str = window_size lowerCAmelCase__ : str = mlp_ratio lowerCAmelCase__ : Optional[Any] = qkv_bias lowerCAmelCase__ : str = hidden_dropout_prob lowerCAmelCase__ : List[str] = attention_probs_dropout_prob lowerCAmelCase__ : List[str] = drop_path_rate lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : int = use_absolute_embeddings lowerCAmelCase__ : Tuple = layer_norm_eps lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : List[str] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase__ : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase__ : List[str] = ['''stem'''] + [F'stage{idx}' for idx in range(1 ,len(lowercase_ ) + 1 )] lowerCAmelCase__ ,lowerCAmelCase__ : Tuple = get_aligned_output_features_output_indices( out_features=lowercase_ ,out_indices=lowercase_ ,stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = version.parse("1.11" ) @property def __lowerCAmelCase ( self : Optional[Any] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self : str ): return 1E-4
106
"""simple docstring""" import os from collections.abc import Iterator def __SCREAMING_SNAKE_CASE ( A_ = "." ): for dir_path, dir_names, filenames in os.walk(A_ ): lowerCAmelCase__ : str = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(A_ )[1] in (".py", ".ipynb"): yield os.path.join(A_ , A_ ).lstrip('''./''' ) def __SCREAMING_SNAKE_CASE ( A_ ): return f'{i * " "}*' if i else "\n##" def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Optional[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(A_ ) or old_parts[i] != new_part) and new_part: print(f'{md_prefix(A_ )} {new_part.replace("_" , " " ).title()}' ) return new_path def __SCREAMING_SNAKE_CASE ( A_ = "." ): lowerCAmelCase__ : Any = '''''' for filepath in sorted(good_file_paths(A_ ) ): lowerCAmelCase__ ,lowerCAmelCase__ : str = os.path.split(A_ ) if filepath != old_path: lowerCAmelCase__ : str = print_path(A_ , A_ ) lowerCAmelCase__ : str = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase__ : Union[str, Any] = f'{filepath}/{filename}'.replace(''' ''' , '''%20''' ) lowerCAmelCase__ : List[str] = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(f'{md_prefix(A_ )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('''.''')
106
1
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ ( __a ): lowerCAmelCase__ = (DDPMScheduler,) def lowercase_ ( self : Optional[Any] , **_A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_A ) return config def lowercase_ ( self : Optional[int] ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_A ) def lowercase_ ( self : List[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def lowercase_ ( self : Dict ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def lowercase_ ( self : Dict ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_A ) def lowercase_ ( self : str ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def lowercase_ ( self : Dict ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def lowercase_ ( self : Tuple ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def lowercase_ ( self : Dict ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=_A ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.scheduler_classes[0] UpperCAmelCase__ : List[Any] = self.get_scheduler_config() UpperCAmelCase__ : int = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.scheduler_classes[0] UpperCAmelCase__ : Optional[int] = self.get_scheduler_config() UpperCAmelCase__ : Union[str, Any] = scheduler_class(**_A ) UpperCAmelCase__ : List[Any] = len(_A ) UpperCAmelCase__ : Union[str, Any] = self.dummy_model() UpperCAmelCase__ : List[Any] = self.dummy_sample_deter UpperCAmelCase__ : int = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual UpperCAmelCase__ : str = model(_A , _A ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase__ : List[Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCAmelCase__ : Optional[Any] = pred_prev_sample UpperCAmelCase__ : Dict = torch.sum(torch.abs(_A ) ) UpperCAmelCase__ : str = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase__ : Dict = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase__ : Tuple = scheduler_class(**_A ) UpperCAmelCase__ : List[Any] = len(_A ) UpperCAmelCase__ : int = self.dummy_model() UpperCAmelCase__ : Union[str, Any] = self.dummy_sample_deter UpperCAmelCase__ : str = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual UpperCAmelCase__ : Dict = model(_A , _A ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase__ : str = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCAmelCase__ : List[str] = pred_prev_sample UpperCAmelCase__ : Tuple = torch.sum(torch.abs(_A ) ) UpperCAmelCase__ : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase__ : int = self.get_scheduler_config() UpperCAmelCase__ : Union[str, Any] = scheduler_class(**_A ) UpperCAmelCase__ : Optional[Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_A ) UpperCAmelCase__ : Tuple = scheduler.timesteps for i, timestep in enumerate(_A ): if i == len(_A ) - 1: UpperCAmelCase__ : Union[str, Any] = -1 else: UpperCAmelCase__ : Optional[Any] = timesteps[i + 1] UpperCAmelCase__ : List[str] = scheduler.previous_timestep(_A ) UpperCAmelCase__ : Optional[Any] = prev_t.item() self.assertEqual(_A , _A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : str = self.scheduler_classes[0] UpperCAmelCase__ : str = self.get_scheduler_config() UpperCAmelCase__ : Union[str, Any] = scheduler_class(**_A ) UpperCAmelCase__ : int = [100, 87, 50, 51, 0] with self.assertRaises(_A , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Dict = self.scheduler_classes[0] UpperCAmelCase__ : List[Any] = self.get_scheduler_config() UpperCAmelCase__ : Tuple = scheduler_class(**_A ) UpperCAmelCase__ : List[str] = [100, 87, 50, 1, 0] UpperCAmelCase__ : Union[str, Any] = len(_A ) with self.assertRaises(_A , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = self.scheduler_classes[0] UpperCAmelCase__ : str = self.get_scheduler_config() UpperCAmelCase__ : str = scheduler_class(**_A ) UpperCAmelCase__ : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( _A , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_A )
299
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a__ ( lowerCAmelCase__ ) -> List[Any]: return 1 / (1 + np.exp(-z )) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: return (-y * np.log(lowerCAmelCase__ ) - (1 - y) * np.log(1 - h )).mean() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : str = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) return np.sum(y * scores - np.log(1 + np.exp(lowerCAmelCase__ ) ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=7_00_00 ) -> List[Any]: UpperCAmelCase__ : Tuple = np.zeros(x.shape[1] ) for iterations in range(lowerCAmelCase__ ): UpperCAmelCase__ : List[Any] = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : int = np.dot(x.T , h - y ) / y.size UpperCAmelCase__ : Optional[int] = theta - alpha * gradient # updating the weights UpperCAmelCase__ : Dict = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : int = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = cost_function(lowerCAmelCase__ , lowerCAmelCase__ ) if iterations % 1_00 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase__ = datasets.load_iris() UpperCamelCase__ = iris.data[:, :2] UpperCamelCase__ = (iris.target != 0) * 1 UpperCamelCase__ = 0.1 UpperCamelCase__ = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('''theta: ''', theta) # printing the theta i.e our weights vector def a__ ( lowerCAmelCase__ ) -> Dict: return sigmoid_function( np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase__ = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
299
1
import random from .binary_exp_mod import bin_exp_mod def lowerCamelCase_ ( _a : Union[str, Any] , _a : str=1000 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCAmelCase_ : str = n - 1 UpperCAmelCase_ : int = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCAmelCase_ : str = 0 while count < prec: UpperCAmelCase_ : Optional[int] = random.randint(2 , n - 1 ) UpperCAmelCase_ : List[str] = bin_exp_mod(_a , _a , _a ) if b != 1: UpperCAmelCase_ : str = True for _ in range(_a ): if b == n - 1: UpperCAmelCase_ : str = False break UpperCAmelCase_ : Any = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCamelCase_ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
345
'''simple docstring''' from statistics import mean, stdev def UpperCamelCase_( snake_case : list , snake_case : int = 3 ): '''simple docstring''' snake_case_ = min(snake_case ) snake_case_ = max(snake_case ) # normalize data return [round((x - x_min) / (x_max - x_min) , snake_case ) for x in data] def UpperCamelCase_( snake_case : list , snake_case : int = 3 ): '''simple docstring''' snake_case_ = mean(snake_case ) snake_case_ = stdev(snake_case ) # standardize data return [round((x - mu) / (sigma) , snake_case ) for x in data]
85
0
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model UpperCamelCase__ : Optional[Any] = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def UpperCAmelCase ( a_ , a_ , a_=None ) -> int: """simple docstring""" if rng is None: A_ : Any = random.Random() A_ : Optional[int] = 1 for dim in shape: total_dims *= dim A_ : Dict = [] for _ in range(lowerCAmelCase__ ): values.append(rng.randint(0 , vocab_size - 1 ) ) A_ : Dict = np.array(lowerCAmelCase__ , dtype=jnp.intaa ).reshape(lowerCAmelCase__ ) return output def UpperCAmelCase ( a_ , a_=None ) -> Any: """simple docstring""" A_ : Tuple = ids_tensor(lowerCAmelCase__ , vocab_size=2 , rng=lowerCAmelCase__ ) # make sure that at least one token is attended to for each batch A_ : Tuple = 1 return attn_mask @require_flax class _lowerCAmelCase : """simple docstring""" lowerCamelCase = None lowerCamelCase = () def UpperCAmelCase_ ( self ) -> str: A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 A_ : Tuple = 2 A_ : Tuple = inputs["""input_ids"""].shape[-1] // 2 A_ : Optional[Any] = inputs["""input_ids"""][:max_batch_size, :sequence_length] A_ : Tuple = jnp.ones_like(__UpperCAmelCase ) A_ : Any = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens A_ : Any = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` A_ : Optional[int] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def UpperCAmelCase_ ( self ) -> List[str]: A_ : Optional[Any] = self._get_input_ids_and_config() A_ : List[str] = False A_ : Optional[Any] = max_length A_ : int = 0 for model_class in self.all_generative_model_classes: A_ : int = model_class(__UpperCAmelCase ) A_ : List[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning A_ : Any = getattr(__UpperCAmelCase , __UpperCAmelCase ) A_ : str = pt_model_class(__UpperCAmelCase ).eval() A_ : Union[str, Any] = load_flax_weights_in_pytorch_model(__UpperCAmelCase , flax_model.params ) A_ : str = flax_model.generate(__UpperCAmelCase ).sequences A_ : int = pt_model.generate(torch.tensor(__UpperCAmelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: A_ : int = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def UpperCAmelCase_ ( self ) -> int: A_ : Union[str, Any] = self._get_input_ids_and_config() A_ : str = False A_ : Dict = max_length for model_class in self.all_generative_model_classes: A_ : List[Any] = model_class(__UpperCAmelCase ) A_ : Union[str, Any] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) A_ : Optional[Any] = jit(model.generate ) A_ : Dict = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Dict = self._get_input_ids_and_config() A_ : int = True A_ : Optional[int] = max_length for model_class in self.all_generative_model_classes: A_ : List[str] = model_class(__UpperCAmelCase ) A_ : Optional[int] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) A_ : Optional[int] = jit(model.generate ) A_ : Any = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Union[str, Any] = self._get_input_ids_and_config() A_ : Union[str, Any] = False A_ : Tuple = max_length A_ : Dict = 2 for model_class in self.all_generative_model_classes: A_ : List[Any] = model_class(__UpperCAmelCase ) A_ : Dict = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) A_ : Optional[Any] = jit(model.generate ) A_ : int = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase_ ( self ) -> str: A_ : str = self._get_input_ids_and_config() A_ : Optional[int] = False A_ : Union[str, Any] = max_length A_ : str = 2 A_ : Dict = 2 for model_class in self.all_generative_model_classes: A_ : List[Any] = model_class(__UpperCAmelCase ) A_ : Optional[Any] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def UpperCAmelCase_ ( self ) -> Any: A_ : Union[str, Any] = self._get_input_ids_and_config() A_ : Optional[Any] = True A_ : Tuple = max_length A_ : str = 0.8 A_ : str = 10 A_ : List[str] = 0.3 A_ : Optional[Any] = 1 A_ : Union[str, Any] = 8 A_ : Optional[Any] = 9 for model_class in self.all_generative_model_classes: A_ : Union[str, Any] = model_class(__UpperCAmelCase ) A_ : List[Any] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) A_ : List[str] = jit(model.generate ) A_ : Union[str, Any] = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase_ ( self ) -> int: A_ : str = self._get_input_ids_and_config() A_ : List[Any] = max_length A_ : List[str] = 1 A_ : Optional[int] = 8 A_ : List[Any] = 9 for model_class in self.all_generative_model_classes: A_ : int = model_class(__UpperCAmelCase ) A_ : Dict = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) A_ : List[Any] = jit(model.generate ) A_ : List[str] = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase_ ( self ) -> Any: A_ : Tuple = self._get_input_ids_and_config() A_ : Tuple = max_length A_ : List[Any] = 2 A_ : str = 1 A_ : Tuple = 8 A_ : int = 9 for model_class in self.all_generative_model_classes: A_ : str = model_class(__UpperCAmelCase ) A_ : Union[str, Any] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) A_ : List[Any] = jit(model.generate ) A_ : Optional[int] = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left A_ : Tuple = attention_mask.at[(0, 0)].set(0 ) A_ : Union[str, Any] = False A_ : List[str] = max_length for model_class in self.all_generative_model_classes: A_ : Any = model_class(__UpperCAmelCase ) A_ : str = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) A_ : Dict = jit(model.generate ) A_ : int = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase_ ( self ) -> int: A_ : int = self._get_input_ids_and_config() # pad attention mask on the left A_ : Union[str, Any] = attention_mask.at[(0, 0)].set(0 ) A_ : Optional[int] = True A_ : List[str] = max_length for model_class in self.all_generative_model_classes: A_ : List[str] = model_class(__UpperCAmelCase ) A_ : Any = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) A_ : int = jit(model.generate ) A_ : Union[str, Any] = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : Any = self._get_input_ids_and_config() # pad attention mask on the left A_ : str = attention_mask.at[(0, 0)].set(0 ) A_ : Optional[int] = 2 A_ : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: A_ : Any = model_class(__UpperCAmelCase ) A_ : List[Any] = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) A_ : Optional[Any] = jit(model.generate ) A_ : Dict = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ) -> Dict: A_ : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) A_ : Optional[Any] = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) A_ : Optional[Any] = """Hello world""" A_ : Optional[Any] = tokenizer(__UpperCAmelCase , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__UpperCAmelCase , """do_samples""" ): model.generate(__UpperCAmelCase , do_samples=__UpperCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__UpperCAmelCase , """foo""" ): A_ : Optional[Any] = {"""foo""": """bar"""} model.generate(__UpperCAmelCase , **__UpperCAmelCase )
366
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase__ : Any = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Union[str, Any] = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
164
0
from __future__ import annotations import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> str: return np.maximum(0 , __lowerCAmelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
189
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Tuple ={ '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] =[ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowerCamelCase : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
189
1
'''simple docstring''' import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase = 13 , _lowercase = 64 , _lowercase = 2 , _lowercase = 3 , _lowercase = 3 , _lowercase = True , _lowercase = True , _lowercase = 128 , _lowercase=[16, 32, 64, 128] , _lowercase = 7 , _lowercase = 4 , _lowercase = 37 , _lowercase = "gelu" , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 10 , _lowercase = 0.02 , _lowercase = 2 , _lowercase = 1 , _lowercase = 128 , _lowercase = [2, 2, 2, 2] , _lowercase = 2 , _lowercase = 2 , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = encoder_stride _lowerCAmelCase = num_attention_outputs _lowerCAmelCase = embed_dim _lowerCAmelCase = embed_dim + 1 _lowerCAmelCase = resolution _lowerCAmelCase = depths _lowerCAmelCase = hidden_sizes _lowerCAmelCase = dim _lowerCAmelCase = mlp_expansion_ratio def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def _lowercase ( self ): """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFEfficientFormerModel(config=_lowercase ) _lowerCAmelCase = model(_lowercase , training=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.type_sequence_label_size _lowerCAmelCase = TFEfficientFormerForImageClassification(_lowercase ) _lowerCAmelCase = model(_lowercase , labels=_lowercase , training=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase = 1 _lowerCAmelCase = TFEfficientFormerForImageClassification(_lowercase ) _lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : List[str] = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _lowercase : str = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _lowercase : Dict = False _lowercase : Optional[int] = False _lowercase : str = False _lowercase : str = False _lowercase : int = False def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFEfficientFormerModelTester(self ) _lowerCAmelCase = ConfigTester( self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) def _lowercase ( self ): """simple docstring""" def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) , training=_lowercase ) _lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) if hasattr(self.model_tester , """encoder_seq_length""" ): _lowerCAmelCase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: _lowerCAmelCase = seq_length * self.model_tester.chunk_length else: _lowerCAmelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: _lowerCAmelCase = outputs.decoder_hidden_states self.asseretIsInstance(_lowercase , (list, tuple) ) self.assertEqual(len(_lowercase ) , _lowercase ) _lowerCAmelCase = getattr(self.model_tester , """seq_length""" , _lowercase ) _lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , _lowercase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase=False ): """simple docstring""" _lowerCAmelCase = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @slow def _lowercase ( self ): """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TFEfficientFormerModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True _lowerCAmelCase = getattr(self.model_tester , """seq_length""" , _lowercase ) _lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , _lowercase ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) _lowerCAmelCase = getattr(self.model_tester , """chunk_length""" , _lowercase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): _lowerCAmelCase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) , training=_lowercase ) _lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) , training=_lowercase ) _lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _lowerCAmelCase = model_class(_lowercase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _lowerCAmelCase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowercase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } _lowerCAmelCase = model(_lowercase ) self.assertTrue(outputs_dict is not None ) def A (): _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self ): """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=_lowercase , return_tensors="""tf""" ) # forward pass _lowerCAmelCase = model(**_lowercase , training=_lowercase ) # verify the logits _lowerCAmelCase = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowercase ) _lowerCAmelCase = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 ) ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=_lowercase , return_tensors="""tf""" ) # forward pass _lowerCAmelCase = model(**_lowercase , training=_lowercase ) # verify the logits _lowerCAmelCase = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowercase ) _lowerCAmelCase = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 ) )
229
'''simple docstring''' import logging from transformers import PretrainedConfig _lowercase = logging.getLogger(__name__) _lowercase = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[Any] = '''bertabs''' def __init__( self , _lowercase=30_522 , _lowercase=512 , _lowercase=6 , _lowercase=512 , _lowercase=8 , _lowercase=512 , _lowercase=0.2 , _lowercase=6 , _lowercase=768 , _lowercase=8 , _lowercase=2_048 , _lowercase=0.2 , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = max_pos _lowerCAmelCase = enc_layers _lowerCAmelCase = enc_hidden_size _lowerCAmelCase = enc_heads _lowerCAmelCase = enc_ff_size _lowerCAmelCase = enc_dropout _lowerCAmelCase = dec_layers _lowerCAmelCase = dec_hidden_size _lowerCAmelCase = dec_heads _lowerCAmelCase = dec_ff_size _lowerCAmelCase = dec_dropout
229
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case_ : Optional[int] = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
125
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __a : __a : int = BlenderbotConfig __a : Any = {} __a : str = "gelu" def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=13 , __magic_name__ : Any=7 , __magic_name__ : Optional[Any]=True , __magic_name__ : str=False , __magic_name__ : Any=99 , __magic_name__ : List[Any]=32 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : List[Any]=4 , __magic_name__ : List[str]=37 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[str]=20 , __magic_name__ : List[str]=2 , __magic_name__ : Any=1 , __magic_name__ : Union[str, Any]=0 , ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : str = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : int = is_training UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Dict = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Union[str, Any] = pad_token_id UpperCAmelCase_ : Tuple = bos_token_id def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase_ : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ : str = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase_ : str = prepare_blenderbot_inputs_dict(__magic_name__ , __magic_name__ , __magic_name__ ) return config, inputs_dict def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[Any] = TFBlenderbotModel(config=__magic_name__ ).get_decoder() UpperCAmelCase_ : Union[str, Any] = inputs_dict['''input_ids'''] UpperCAmelCase_ : Any = input_ids[:1, :] UpperCAmelCase_ : Tuple = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase_ : List[str] = inputs_dict['''head_mask'''] UpperCAmelCase_ : Any = 1 # first forward pass UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ , head_mask=__magic_name__ , use_cache=__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : str = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase_ : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase_ : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ )[0] UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase_ : Union[str, Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase_ : Any = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-3 ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Optional[int]=None, SCREAMING_SNAKE_CASE__ : Optional[int]=None, SCREAMING_SNAKE_CASE__ : Optional[int]=None, SCREAMING_SNAKE_CASE__ : Tuple=None, SCREAMING_SNAKE_CASE__ : Any=None, ) -> Any: if attention_mask is None: UpperCAmelCase_ : List[str] = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: UpperCAmelCase_ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Tuple = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __a : Tuple = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __a : List[str] = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __a : List[str] = True __a : Any = False __a : Optional[int] = False def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" UpperCAmelCase_ : Any = TFBlenderbotModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ ) def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__magic_name__ ) @require_tokenizers @require_tf class __a (unittest.TestCase ): __a : Union[str, Any] = ["My friends are cool but they eat too many carbs."] __a : List[Any] = "facebook/blenderbot-400M-distill" @cached_property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[Any] = self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCAmelCase_ : List[Any] = self.model.generate( model_inputs.input_ids , ) UpperCAmelCase_ : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__magic_name__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
125
1
'''simple docstring''' def __a ( UpperCAmelCase = 4000000 ) ->int: """simple docstring""" A = [] A , A = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(UpperCAmelCase ) A , A = b, a + b return sum(UpperCAmelCase ) if __name__ == "__main__": print(f"{solution() = }")
337
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Any = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''perceiver''' def __init__(self : Dict , _lowerCAmelCase : List[str]=256 , _lowerCAmelCase : Any=1280 , _lowerCAmelCase : Dict=768 , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Optional[int]=26 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[Any]="kv" , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : Any=1e-12 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : int=262 , _lowerCAmelCase : int=2048 , _lowerCAmelCase : int=56 , _lowerCAmelCase : List[Any]=[368, 496] , _lowerCAmelCase : List[Any]=16 , _lowerCAmelCase : Any=1920 , _lowerCAmelCase : Optional[int]=16 , _lowerCAmelCase : List[Any]=[1, 16, 224, 224] , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = num_latents A = d_latents A = d_model A = num_blocks A = num_self_attends_per_block A = num_self_attention_heads A = num_cross_attention_heads A = qk_channels A = v_channels A = cross_attention_shape_for_attention A = self_attention_widening_factor A = cross_attention_widening_factor A = hidden_act A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = use_query_residual # masked language modeling attributes A = vocab_size A = max_position_embeddings # image classification attributes A = image_size # flow attributes A = train_size # multimodal autoencoding attributes A = num_frames A = audio_samples_per_frame A = samples_per_patch A = output_shape class __UpperCAmelCase ( A__ ): '''simple docstring''' @property def A (self : List[str] ): if self.task == "multiple-choice": A = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def A (self : Dict ): return 1e-4 def A (self : List[Any] , _lowerCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 40 , _lowerCAmelCase : int = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = preprocessor.num_special_tokens_to_add(_lowerCAmelCase ) A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence A = [""" """.join(["""a"""] ) * seq_length] * batch_size A = dict(preprocessor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""input_ids""" ) return inputs elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension(_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) A = self._generate_dummy_images(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A = dict(preprocessor(images=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
337
1
def A__ ( __lowerCamelCase ): return "".join(chr(ord(__lowerCamelCase ) - 32 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
299
import functools def A__ ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE_ = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
299
1
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase : List[str] = get_tests_dir("fixtures/test_sentencepiece.model") __UpperCAmelCase : Tuple = get_tests_dir("fixtures/test_sentencepiece_bpe.model") __UpperCAmelCase : str = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = CamembertTokenizer lowerCAmelCase__ = CamembertTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def UpperCAmelCase__ ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing __snake_case: Union[str, Any] = CamembertTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Any ): __snake_case: Optional[Any] = """<pad>""" __snake_case: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(A ) , 1_004 ) def UpperCAmelCase__ ( self : List[str] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_005 ) def UpperCAmelCase__ ( self : str ): __snake_case: int = CamembertTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) __snake_case: Dict = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __snake_case: Union[str, Any] = """I was born in 92000, and this is falsé.""" __snake_case: List[Any] = tokenizer.encode(A ) __snake_case: Tuple = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) __snake_case: Dict = tokenizer.encode(A , add_special_tokens=A ) __snake_case: Union[str, Any] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __snake_case: Tuple = tokenizer.convert_ids_to_tokens(A ) __snake_case: Any = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) def UpperCAmelCase__ ( self : List[str] ): if not self.test_rust_tokenizer: return __snake_case: Any = self.get_tokenizer() __snake_case: Tuple = self.get_rust_tokenizer() __snake_case: List[str] = """I was born in 92000, and this is falsé.""" __snake_case: Optional[int] = tokenizer.tokenize(A ) __snake_case: str = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) __snake_case: str = tokenizer.encode(A , add_special_tokens=A ) __snake_case: Dict = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) __snake_case: Tuple = self.get_rust_tokenizer() __snake_case: str = tokenizer.encode(A ) __snake_case: Any = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) @slow def UpperCAmelCase__ ( self : List[str] ): # fmt: off __snake_case: Tuple = {"""input_ids""": [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __snake_case: Optional[Any] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=A , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=A , )
293
import math def A__ ( SCREAMING_SNAKE_CASE__) -> int: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): __snake_case: Optional[int] = F'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE__) if number < 1: __snake_case: Optional[int] = F'''Input value of [number={number}] must be > 0''' raise ValueError(SCREAMING_SNAKE_CASE__) elif number == 1: return 3 elif number == 2: return 5 else: __snake_case: List[Any] = int(math.log(number // 3 , 2)) + 2 __snake_case: str = [3, 5] __snake_case: int = 2 __snake_case: List[str] = 3 for block in range(1 , SCREAMING_SNAKE_CASE__): for _ in range(SCREAMING_SNAKE_CASE__): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1]) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): __UpperCAmelCase : Optional[int] = 0 try: __UpperCAmelCase : int = proth(number) except ValueError: print(f'ValueError: there is no {number}th Proth number') continue print(f'The {number}th Proth number: {value}')
293
1
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : str = IFPipeline _UpperCAmelCase : Tuple = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} _UpperCAmelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def _SCREAMING_SNAKE_CASE ( self : str): return self._get_dummy_components() def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: int = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Optional[int] = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA") def _SCREAMING_SNAKE_CASE ( self : Dict): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1) def _SCREAMING_SNAKE_CASE ( self : Dict): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _SCREAMING_SNAKE_CASE ( self : int): self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : List[Any]): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _SCREAMING_SNAKE_CASE ( self : Dict): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # if SCREAMING_SNAKE_CASE_: str = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa) SCREAMING_SNAKE_CASE_: Optional[int] = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda") SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = pipe_a.encode_prompt("anime turtle" , device="cuda") del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() SCREAMING_SNAKE_CASE_: Any = None SCREAMING_SNAKE_CASE_: int = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img SCREAMING_SNAKE_CASE_: Any = IFImgaImgPipeline(**pipe_a.components) SCREAMING_SNAKE_CASE_: Optional[int] = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting SCREAMING_SNAKE_CASE_: Optional[int] = IFInpaintingPipeline(**pipe_a.components) SCREAMING_SNAKE_CASE_: Optional[Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple): # pipeline 1 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.Generator(device="cpu").manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = pipe_a( prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , num_inference_steps=2 , generator=lowerCAmelCase__ , output_type="np" , ) SCREAMING_SNAKE_CASE_: Optional[int] = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE_: Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 SCREAMING_SNAKE_CASE_: Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy") assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_: List[Any] = torch.Generator(device="cpu").manual_seed(0) SCREAMING_SNAKE_CASE_: Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = pipe_a( prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , ) SCREAMING_SNAKE_CASE_: str = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE_: Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy") assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int]): # pipeline 1 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = torch.Generator(device="cpu").manual_seed(0) SCREAMING_SNAKE_CASE_: List[Any] = pipe_a( prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , num_inference_steps=2 , generator=lowerCAmelCase__ , output_type="np" , ) SCREAMING_SNAKE_CASE_: str = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE_: List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE_: int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy") assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.Generator(device="cpu").manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = pipe_a( prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , original_image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , ) SCREAMING_SNAKE_CASE_: Any = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE_: Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE_: Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy") assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int): # pipeline 1 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_: List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = torch.Generator(device="cpu").manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = pipe_a( prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , num_inference_steps=2 , generator=lowerCAmelCase__ , output_type="np" , ) SCREAMING_SNAKE_CASE_: int = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE_: Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE_: Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy") assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_: Optional[Any] = torch.Generator(device="cpu").manual_seed(0) SCREAMING_SNAKE_CASE_: List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = pipe_a( prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , original_image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , ) SCREAMING_SNAKE_CASE_: Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE_: List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE_: List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy") assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__) def A_ ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
13
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
164
0
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case__ : Tuple = logging.getLogger(__name__) snake_case__ : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) snake_case__ : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase_ :Optional[str] = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) lowerCamelCase_ :Optional[str] = field( default=lowerCamelCase_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(lowerCamelCase_ )} , ) lowerCamelCase_ :Optional[str] = field( default=lowerCamelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCamelCase_ :Optional[str] = field( default=lowerCamelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCamelCase_ :Optional[str] = field( default=lowerCamelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase_ :Optional[str] = field( default=lowerCamelCase_ , metadata={'''help''': '''The input training data file (a text file).'''} ) lowerCamelCase_ :Optional[str] = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) lowerCamelCase_ :Optional[str] = field( default=lowerCamelCase_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) lowerCamelCase_ :Optional[str] = field( default=lowerCamelCase_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) lowerCamelCase_ :Optional[str] = field( default=lowerCamelCase_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) lowerCamelCase_ :bool = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) lowerCamelCase_ :bool = field( default=lowerCamelCase_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) lowerCamelCase_ :bool = field(default=lowerCamelCase_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) lowerCamelCase_ :float = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) lowerCamelCase_ :float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) lowerCamelCase_ :int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) lowerCamelCase_ :int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) lowerCamelCase_ :bool = field( default=lowerCamelCase_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _lowerCamelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): """simple docstring""" def _dataset(lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCamelCase ( ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase_ : int = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : int = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase_ : int = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.tokenizer_name: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name' ) if model_args.model_name_or_path: UpperCAmelCase_ : Dict = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch' ) UpperCAmelCase_ : Optional[int] = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).' ) if data_args.block_size <= 0: UpperCAmelCase_ : Optional[int] = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase_ : int = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase_ : Optional[Any] = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase_ : List[str] = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase_ : int = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase_ : Union[str, Any] = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase_ : Dict = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ : str = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: UpperCAmelCase_ : Optional[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : Dict = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) UpperCAmelCase_ : str = trainer.evaluate() UpperCAmelCase_ : Dict = math.exp(eval_output['eval_loss'] ) UpperCAmelCase_ : str = {'perplexity': perplexity} UpperCAmelCase_ : Tuple = os.path.join(training_args.output_dir , 'eval_results_lm.txt' ) if trainer.is_world_master(): with open(lowerCamelCase_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , lowerCamelCase_ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCamelCase ( lowerCamelCase_ : Dict ): """simple docstring""" main() if __name__ == "__main__": main()
274
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=True , snake_case_=9_9 , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=1_6 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Dict = seq_length UpperCAmelCase_ : Any = is_training UpperCAmelCase_ : List[Any] = use_input_mask UpperCAmelCase_ : Tuple = use_token_type_ids UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : List[Any] = type_vocab_size UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : Any = num_choices UpperCAmelCase_ : List[str] = scope def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[str] = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , use_stable_embedding=snake_case_ , ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : str = OpenLlamaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : str = model(snake_case_ , attention_mask=snake_case_ ) UpperCAmelCase_ : Dict = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Dict = OpenLlamaModel(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , ) UpperCAmelCase_ : Any = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , ) UpperCAmelCase_ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = OpenLlamaForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Tuple = OpenLlamaForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() # first forward pass UpperCAmelCase_ : Tuple = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , use_cache=snake_case_ , ) UpperCAmelCase_ : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase_ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase_ : List[Any] = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , output_hidden_states=snake_case_ , )['hidden_states'][0] UpperCAmelCase_ : List[str] = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , past_key_values=snake_case_ , output_hidden_states=snake_case_ , )['hidden_states'][0] # select random slice UpperCAmelCase_ : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : int = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Tuple = config_and_inputs UpperCAmelCase_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ :Tuple = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowerCamelCase_ :Tuple = (OpenLlamaForCausalLM,) if is_torch_available() else () lowerCamelCase_ :Union[str, Any] = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase_ :str = False lowerCamelCase_ :Optional[int] = False def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : List[str] = OpenLlamaModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def _UpperCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : int = type self.model_tester.create_and_check_model(*snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : Union[str, Any] = input_dict['input_ids'] UpperCAmelCase_ : int = input_ids.ne(1 ).to(snake_case_ ) UpperCAmelCase_ : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : Any = OpenLlamaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = 3 UpperCAmelCase_ : str = 'single_label_classification' UpperCAmelCase_ : List[str] = input_dict['input_ids'] UpperCAmelCase_ : Optional[Any] = input_ids.ne(1 ).to(snake_case_ ) UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = OpenLlamaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : List[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = 3 UpperCAmelCase_ : int = 'multi_label_classification' UpperCAmelCase_ : Dict = input_dict['input_ids'] UpperCAmelCase_ : int = input_ids.ne(1 ).to(snake_case_ ) UpperCAmelCase_ : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase_ : Union[str, Any] = OpenLlamaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : int = ids_tensor([1, 1_0] , config.vocab_size ) UpperCAmelCase_ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ : Tuple = OpenLlamaModel(snake_case_ ) original_model.to(snake_case_ ) original_model.eval() UpperCAmelCase_ : List[str] = original_model(snake_case_ ).last_hidden_state UpperCAmelCase_ : Any = original_model(snake_case_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ : Tuple = {'type': scaling_type, 'factor': 10.0} UpperCAmelCase_ : List[str] = OpenLlamaModel(snake_case_ ) scaled_model.to(snake_case_ ) scaled_model.eval() UpperCAmelCase_ : Tuple = scaled_model(snake_case_ ).last_hidden_state UpperCAmelCase_ : Optional[int] = scaled_model(snake_case_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) )
274
1
'''simple docstring''' import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _A : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class _lowercase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Tuple = BartphoTokenizer _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : int = True def a ( self : Tuple ) -> Optional[Any]: super().setUp() __lowerCAmelCase = ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] __lowerCAmelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCAmelCase = {"""unk_token""": """<unk>"""} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ) with open(self.monolingual_vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) __lowerCAmelCase = BartphoTokenizer(SCREAMING_SNAKE_CASE__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : str , **SCREAMING_SNAKE_CASE__ : Dict ) -> Tuple: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: __lowerCAmelCase = """This is a là test""" __lowerCAmelCase = """This is a<unk><unk> test""" return input_text, output_text def a ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase = BartphoTokenizer(SCREAMING_SNAKE_CASE__ , self.monolingual_vocab_file , **self.special_tokens_map ) __lowerCAmelCase = """This is a là test""" __lowerCAmelCase = """▁This ▁is ▁a ▁l à ▁t est""".split() __lowerCAmelCase = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
229
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class _lowercase ( datasets.BuilderConfig ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None class _lowercase ( datasets.ArrowBasedBuilder ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Union[str, Any] = PandasConfig def a ( self : Union[str, Any] ) -> int: return datasets.DatasetInfo(features=self.config.features ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE__ , (str, list, tuple) ): __lowerCAmelCase = data_files if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowerCAmelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __lowerCAmelCase = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowerCAmelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE__ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE__ , gen_kwargs={"""files""": files} ) ) return splits def a ( self : Any , SCREAMING_SNAKE_CASE__ : pa.Table ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __lowerCAmelCase = table_cast(SCREAMING_SNAKE_CASE__ , self.config.features.arrow_schema ) return pa_table def a ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: for i, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE__ ) ): with open(SCREAMING_SNAKE_CASE__ , """rb""" ) as f: __lowerCAmelCase = pa.Table.from_pandas(pd.read_pickle(SCREAMING_SNAKE_CASE__ ) ) yield i, self._cast_table(SCREAMING_SNAKE_CASE__ )
229
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCamelCase_ = pytest.mark.integration @require_faiss class _UpperCAmelCase ( __lowercase ): """simple docstring""" def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(UpperCAmelCase__ ) for x in np.arange(30 ).tolist()]} ) return dset def lowerCAmelCase ( self : List[str] ): '''simple docstring''' import faiss _A = self._create_dummy_dataset() _A = dset.map( lambda __UpperCAmelCase , __UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ ) _A = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) _A , _A = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' import faiss _A = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) _A , _A = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' import faiss _A = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase__ ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) _A , _A = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(UpperCAmelCase__ , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' from elasticsearch import Elasticsearch _A = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: _A = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) _A = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} _A = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=UpperCAmelCase__ ) _A , _A = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _UpperCAmelCase ( __lowercase ): """simple docstring""" def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' import faiss _A = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query _A = np.zeros(5 , dtype=np.floataa ) _A = 1 _A , _A = index.search(UpperCAmelCase__ ) self.assertRaises(UpperCAmelCase__ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries _A = np.eye(5 , dtype=np.floataa )[::-1] _A , _A = index.search_batch(UpperCAmelCase__ ) self.assertRaises(UpperCAmelCase__ , index.search_batch , queries[0] ) _A = [scores[0] for scores in total_scores] _A = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase__ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase__ ) def lowerCAmelCase ( self : str ): '''simple docstring''' import faiss _A = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) _A = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase__ ): _A = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def lowerCAmelCase ( self : Any ): '''simple docstring''' import faiss _A = faiss.IndexFlat(5 ) _A = FaissIndex(custom_index=UpperCAmelCase__ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def lowerCAmelCase ( self : int ): '''simple docstring''' import faiss _A = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase__ ) as tmp_file: index.save(tmp_file.name ) _A = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) _A = np.zeros(5 , dtype=np.floataa ) _A = 1 _A , _A = index.search(UpperCAmelCase__ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def __lowercase ( __lowercase ) -> Tuple: '''simple docstring''' import faiss _A = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) _A = "index.faiss" _A = F'''mock://{index_name}''' index.save(__lowercase , storage_options=mockfs.storage_options ) _A = FaissIndex.load(__lowercase , storage_options=mockfs.storage_options ) _A = np.zeros(5 , dtype=np.floataa ) _A = 1 _A , _A = index.search(__lowercase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _UpperCAmelCase ( __lowercase ): """simple docstring""" def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: _A = Elasticsearch() _A = {"acknowledged": True} _A = ElasticSearchIndex(es_client=UpperCAmelCase__ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query _A = "foo" _A = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} _A , _A = index.search(UpperCAmelCase__ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout _A = "foo" _A = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} _A , _A = index.search(UpperCAmelCase__ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries _A = ["foo", "bar", "foobar"] _A = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} _A , _A = index.search_batch(UpperCAmelCase__ ) _A = [scores[0] for scores in total_scores] _A = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase__ ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase__ ) # batched queries with timeout _A = ["foo", "bar", "foobar"] _A = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} _A , _A = index.search_batch(UpperCAmelCase__ , request_timeout=30 ) _A = [scores[0] for scores in total_scores] _A = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase__ ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase__ )
361
'''simple docstring''' import os lowerCamelCase_ = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def __lowercase ( __lowercase ) -> int: '''simple docstring''' _A = 0 _A = 0 while index < len(__lowercase ) - 1: _A = SYMBOLS[numerals[index]] _A = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __lowercase ( __lowercase ) -> str: '''simple docstring''' _A = "" _A = num // 1000 numerals += m_count * "M" num %= 1000 _A = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _A = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __lowercase ( __lowercase = "/p089_roman.txt" ) -> int: '''simple docstring''' _A = 0 with open(os.path.dirname(__lowercase ) + roman_numerals_filename ) as filea: _A = filea.readlines() for line in lines: _A = line.strip() _A = parse_roman_numerals(__lowercase ) _A = generate_roman_numerals(__lowercase ) savings += len(__lowercase ) - len(__lowercase ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
174
0
def __lowercase ( _UpperCamelCase = 4000000 ) ->int: """simple docstring""" lowercase : int = [] lowercase , lowercase : str = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_UpperCamelCase ) lowercase , lowercase : Dict = b, a + b return sum(_UpperCamelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
337
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __SCREAMING_SNAKE_CASE ( A__ ): A : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
337
1
def _a ( a :Any = 3 , a :str = 7 , a :List[str] = 1_000_000 ) -> int: a = 0 a = 1 for current_denominator in range(1 , limit + 1 ): a = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: a = current_numerator a = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1000000))
366
UpperCAmelCase__ = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
26
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Dict = """camembert""" def __init__( self , __UpperCAmelCase=3_0_5_2_2 , __UpperCAmelCase=7_6_8 , __UpperCAmelCase=1_2 , __UpperCAmelCase=1_2 , __UpperCAmelCase=3_0_7_2 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ :List[str] = vocab_size lowerCAmelCase__ :int = hidden_size lowerCAmelCase__ :Union[str, Any] = num_hidden_layers lowerCAmelCase__ :Any = num_attention_heads lowerCAmelCase__ :Optional[int] = hidden_act lowerCAmelCase__ :List[str] = intermediate_size lowerCAmelCase__ :List[str] = hidden_dropout_prob lowerCAmelCase__ :int = attention_probs_dropout_prob lowerCAmelCase__ :Dict = max_position_embeddings lowerCAmelCase__ :List[Any] = type_vocab_size lowerCAmelCase__ :Optional[int] = initializer_range lowerCAmelCase__ :Tuple = layer_norm_eps lowerCAmelCase__ :int = position_embedding_type lowerCAmelCase__ :Tuple = use_cache lowerCAmelCase__ :Optional[Any] = classifier_dropout class _lowerCAmelCase ( a ): """simple docstring""" @property def snake_case ( self ): '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase__ :Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase__ :Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
293
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = 1_0 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = [1, 2, 3, 4] lowerCAmelCase__ :Tuple = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__UpperCAmelCase , self.block_size , 0 ) , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] lowerCAmelCase__ :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(__UpperCAmelCase , self.block_size , 0 ) , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] lowerCAmelCase__ :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(__UpperCAmelCase , self.block_size , 0 ) , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = process_story(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [] ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = '' lowerCAmelCase__ , lowerCAmelCase__ :Any = process_story(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [] ) self.assertEqual(__UpperCAmelCase , [] ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) lowerCAmelCase__ , lowerCAmelCase__ :str = process_story(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = ['It was the best of times.'] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = torch.tensor([1, 2, 3, 4] ) lowerCAmelCase__ :List[str] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) lowerCAmelCase__ :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCAmelCase , 2_3 ).numpy() , expected.numpy() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) lowerCAmelCase__ :Optional[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = 1_0_1 lowerCAmelCase__ :str = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) lowerCAmelCase__ :Any = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) lowerCAmelCase__ :List[Any] = compute_token_type_ids(__UpperCAmelCase , __UpperCAmelCase ) np.testing.assert_array_equal(__UpperCAmelCase , __UpperCAmelCase )
293
1
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": UpperCamelCase__ : Optional[int] = pd.read_csv("""sample_data.csv""", header=None) UpperCamelCase__ : Tuple = df.shape[:1][0] # If you're using some other dataset input the target column UpperCamelCase__ : List[Any] = df.iloc[:, 1:2] UpperCamelCase__ : Union[str, Any] = actual_data.values.reshape(len_data, 1) UpperCamelCase__ : List[Any] = MinMaxScaler().fit_transform(actual_data) UpperCamelCase__ : Optional[Any] = 10 UpperCamelCase__ : int = 5 UpperCamelCase__ : List[str] = 20 UpperCamelCase__ : Optional[int] = len_data - periods * look_back UpperCamelCase__ : Union[str, Any] = actual_data[:division] UpperCamelCase__ : str = actual_data[division - look_back :] UpperCamelCase__ : Union[str, Any] = [], [] UpperCamelCase__ : str = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) UpperCamelCase__ : List[str] = np.array(train_x) UpperCamelCase__ : Optional[Any] = np.array(test_x) UpperCamelCase__ : Tuple = np.array([list(i.ravel()) for i in train_y]) UpperCamelCase__ : Optional[Any] = np.array([list(i.ravel()) for i in test_y]) UpperCamelCase__ : Union[str, Any] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") UpperCamelCase__ : Tuple = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) UpperCamelCase__ : Tuple = model.predict(x_test)
351
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) a = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) a = '''The dog is cute and lives in the garden house''' a = jnp.array([tokenizer.encode(__lowerCamelCase )] ) a = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim a = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) a = model(__lowerCamelCase )['''last_hidden_state'''] self.assertEqual(output.shape ,__lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,__lowerCamelCase ,atol=1e-3 ) )
330
0
from random import randint from tempfile import TemporaryFile import numpy as np def __lowerCamelCase ( __a :Optional[Any] , __a :str , __a :Dict ) -> Union[str, Any]: """simple docstring""" A__ = 0 if start < end: A__ = randint(__a , __a ) A__ = a[end] A__ = a[pivot] A__ = temp A__ , A__ = _in_place_partition(__a , __a , __a ) count += _in_place_quick_sort(__a , __a , p - 1 ) count += _in_place_quick_sort(__a , p + 1 , __a ) return count def __lowerCamelCase ( __a :Optional[Any] , __a :Optional[Any] , __a :int ) -> List[str]: """simple docstring""" A__ = 0 A__ = randint(__a , __a ) A__ = a[end] A__ = a[pivot] A__ = temp A__ = start - 1 for index in range(__a , __a ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value A__ = new_pivot_index + 1 A__ = a[new_pivot_index] A__ = a[index] A__ = temp A__ = a[new_pivot_index + 1] A__ = a[end] A__ = temp return new_pivot_index + 1, count A : List[str] = TemporaryFile() A : Optional[Any] = 1_0_0 # 1000 elements are to be sorted A, A : Tuple = 0, 1 # mean and standard deviation A : Tuple = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array A : Dict = np.load(outfile) A : Optional[Any] = len(M) - 1 A : str = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
274
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time A : Dict = Lock() def __lowerCamelCase ( __a :Dict , __a :List[str] , __a :Optional[int] , __a :Optional[int] , __a :Optional[Any] , __a :Optional[int] , __a :int ) -> Dict: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__a ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A__ = min(__a , __a ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__a ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A__ = max(__a , __a ) # after all swaps are performed, send the values back to main result_pipe[1].send(__a ) def __lowerCamelCase ( __a :List[str] ) -> int: """simple docstring""" A__ = [] A__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A__ = Pipe() A__ = Pipe() process_array_.append( Process( target=__a , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A__ = temp_rs A__ = temp_rr for i in range(1 , len(__a ) - 1 ): A__ = Pipe() A__ = Pipe() process_array_.append( Process( target=__a , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A__ = temp_rs A__ = temp_rr process_array_.append( Process( target=__a , args=( len(__a ) - 1, arr[len(__a ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__a ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__a ) ): A__ = result_pipe[p][0].recv() process_array_[p].join() return arr def __lowerCamelCase ( ) -> str: """simple docstring""" A__ = list(range(1_0 , 0 , -1 ) ) print("""Initial List""" ) print(*__a ) A__ = odd_even_transposition(__a ) print("""Sorted List\n""" ) print(*__a ) if __name__ == "__main__": main()
274
1
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES snake_case_ = logging.get_logger(__name__) snake_case_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) snake_case_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) snake_case_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) snake_case_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) snake_case_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) snake_case_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) snake_case_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) snake_case_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) snake_case_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) snake_case_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) snake_case_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) snake_case_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) snake_case_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) snake_case_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) snake_case_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) snake_case_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) snake_case_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) snake_case_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) snake_case_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) snake_case_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) snake_case_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) snake_case_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) snake_case_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) snake_case_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) snake_case_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) snake_case_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) snake_case_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) snake_case_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : str = FLAX_MODEL_MAPPING snake_case_ = auto_class_update(FlaxAutoModel) class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : Dict = FLAX_MODEL_FOR_PRETRAINING_MAPPING snake_case_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING snake_case_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : Optional[int] = FLAX_MODEL_FOR_MASKED_LM_MAPPING snake_case_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : Optional[int] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING snake_case_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : Dict = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : Tuple = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING snake_case_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : Tuple = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING snake_case_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : str = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING snake_case_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : Union[str, Any] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING snake_case_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : Union[str, Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING snake_case_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : Tuple = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING snake_case_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : List[str] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING snake_case_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
363
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def snake_case__ ( SCREAMING_SNAKE_CASE_ : BertModel , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ : Tuple = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') lowercase__ : Dict = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) lowercase__ : str = model.state_dict() def to_tf_var_name(SCREAMING_SNAKE_CASE_ : str ): for patt, repl in iter(SCREAMING_SNAKE_CASE_ ): lowercase__ : Optional[int] = name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return f"""bert/{name}""" def create_tf_var(SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : tf.Session ): lowercase__ : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) lowercase__ : List[str] = tf.get_variable(dtype=SCREAMING_SNAKE_CASE_ , shape=tensor.shape , name=SCREAMING_SNAKE_CASE_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(SCREAMING_SNAKE_CASE_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase__ : Tuple = to_tf_var_name(SCREAMING_SNAKE_CASE_ ) lowercase__ : str = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase__ : str = torch_tensor.T lowercase__ : Any = create_tf_var(tensor=SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ , session=SCREAMING_SNAKE_CASE_ ) tf.keras.backend.set_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[int] = session.run(SCREAMING_SNAKE_CASE_ ) print(f"""Successfully created {tf_name}: {np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}""" ) lowercase__ : Tuple = tf.train.Saver(tf.trainable_variables() ) saver.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , model_name.replace('-' , '_' ) + '.ckpt' ) ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any]=None ): '''simple docstring''' lowercase__ : List[str] = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='Directory in which to save tensorflow model' ) lowercase__ : List[str] = parser.parse_args(SCREAMING_SNAKE_CASE_ ) lowercase__ : int = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=SCREAMING_SNAKE_CASE_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
216
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCamelCase : str = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __lowerCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
52
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowerCAmelCase = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } __lowerCAmelCase = F"""{src_lang}-{tgt_lang}""" __lowerCAmelCase = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(lowerCamelCase, exist_ok=lowerCamelCase) __lowerCAmelCase = os.path.join(lowerCamelCase, '''README.md''') print(F"""Generating {path}""") with open(lowerCamelCase, '''w''', encoding='''utf-8''') as f: f.write(lowerCamelCase) # make sure we are under the root of the project _UpperCAmelCase : Dict = Path(__file__).resolve().parent.parent.parent _UpperCAmelCase : Optional[int] = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = model_name.split("""-""") _UpperCAmelCase : Union[str, Any] = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
174
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a__ : List[Any] = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''}) __SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''}) __SCREAMING_SNAKE_CASE = field( default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''}) __SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''}) __SCREAMING_SNAKE_CASE = field(default=UpperCAmelCase_ , metadata={'''help''': '''Set this flag to use fast tokenization.'''}) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''}) __SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase_ , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , ) __SCREAMING_SNAKE_CASE = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''}) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) __UpperCamelCase = import_module("""tasks""" ) try: __UpperCamelCase = getattr(__A ,model_args.task_type ) __UpperCamelCase = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1 ) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" ,__A ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __UpperCamelCase = token_classification_task.get_labels(data_args.labels ) __UpperCamelCase = dict(enumerate(__A ) ) __UpperCamelCase = len(__A ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=__A ,idalabel=__A ,labelaid={label: i for i, label in enumerate(__A )} ,cache_dir=model_args.cache_dir ,) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast ,) __UpperCamelCase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=__A ,cache_dir=model_args.cache_dir ,) # Get datasets __UpperCamelCase = ( TokenClassificationDataset( token_classification_task=__A ,data_dir=data_args.data_dir ,tokenizer=__A ,labels=__A ,model_type=config.model_type ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,) if training_args.do_train else None ) __UpperCamelCase = ( TokenClassificationDataset( token_classification_task=__A ,data_dir=data_args.data_dir ,tokenizer=__A ,labels=__A ,model_type=config.model_type ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,) if training_args.do_eval else None ) def align_predictions(__A ,__A ) -> Tuple[List[int], List[int]]: __UpperCamelCase = np.argmax(__A ,axis=2 ) __UpperCamelCase , __UpperCamelCase = preds.shape __UpperCamelCase = [[] for _ in range(__A )] __UpperCamelCase = [[] for _ in range(__A )] for i in range(__A ): for j in range(__A ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__A ) -> Dict: __UpperCamelCase , __UpperCamelCase = align_predictions(p.predictions ,p.label_ids ) return { "accuracy_score": accuracy_score(__A ,__A ), "precision": precision_score(__A ,__A ), "recall": recall_score(__A ,__A ), "f1": fa_score(__A ,__A ), } # Data collator __UpperCamelCase = DataCollatorWithPadding(__A ,pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=__A ,args=__A ,train_dataset=__A ,eval_dataset=__A ,compute_metrics=__A ,data_collator=__A ,) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir ,"""eval_results.txt""" ) if trainer.is_world_process_zero(): with open(__A ,"""w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" ,__A ,__A ) writer.write("""%s = %s\n""" % (key, value) ) results.update(__A ) # Predict if training_args.do_predict: __UpperCamelCase = TokenClassificationDataset( token_classification_task=__A ,data_dir=data_args.data_dir ,tokenizer=__A ,labels=__A ,model_type=config.model_type ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.test ,) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = trainer.predict(__A ) __UpperCamelCase , __UpperCamelCase = align_predictions(__A ,__A ) __UpperCamelCase = os.path.join(training_args.output_dir ,"""test_results.txt""" ) if trainer.is_world_process_zero(): with open(__A ,"""w""" ) as writer: for key, value in metrics.items(): logger.info(""" %s = %s""" ,__A ,__A ) writer.write("""%s = %s\n""" % (key, value) ) # Save predictions __UpperCamelCase = os.path.join(training_args.output_dir ,"""test_predictions.txt""" ) if trainer.is_world_process_zero(): with open(__A ,"""w""" ) as writer: with open(os.path.join(data_args.data_dir ,"""test.txt""" ) ,"""r""" ) as f: token_classification_task.write_predictions_to_file(__A ,__A ,__A ) return results def _lowercase ( __A ): '''simple docstring''' main() if __name__ == "__main__": main()
243
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex a__ : Optional[Any] = logging.getLogger(__name__) class UpperCAmelCase__ : def __init__( self ) -> Union[str, Any]: __UpperCamelCase = False def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: if not self.initialized: __UpperCamelCase = RagRetriever( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = True def __lowerCamelCase ( self ) -> List[Any]: self.retriever.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(lowercase , lowercase ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> Optional[Any]: if index is not None and index.is_initialized() and len(lowercase ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase ) for worker in self.retrieval_workers ] ) def __lowerCamelCase ( self ) -> Optional[int]: logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(lowercase , lowercase ) ) else: __UpperCamelCase , __UpperCamelCase = self._main_retrieve(lowercase , lowercase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase=None , **lowercase ) -> Tuple: return super(lowercase , cls ).get_tokenizers(lowercase , lowercase , **lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase=None , **lowercase ) -> Dict: __UpperCamelCase = kwargs.pop("""config""" , lowercase ) or RagConfig.from_pretrained(lowercase , **lowercase ) __UpperCamelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase ) __UpperCamelCase = rag_tokenizer.question_encoder __UpperCamelCase = rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase = """custom""" __UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , lowercase ) else: __UpperCamelCase = cls._build_index(lowercase ) return cls( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
243
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __lowerCAmelCase ( unittest.TestCase ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _lowerCAmelCase = { """do_resize""": True, """size""": {"""height""": 224, """width""": 224}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], """do_convert_rgb""": True, } _lowerCAmelCase = os.path.join(self.tmpdirname , _snake_case ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_snake_case , _snake_case ) def snake_case ( self , **_snake_case ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def snake_case ( self , **_snake_case ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_snake_case ) def snake_case ( self , **_snake_case ): """simple docstring""" return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_snake_case ) def snake_case ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(_snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor_slow.save_pretrained(self.tmpdirname ) _lowerCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_snake_case ) _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor_fast.save_pretrained(self.tmpdirname ) _lowerCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _snake_case ) self.assertIsInstance(processor_fast.tokenizer , _snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _snake_case ) self.assertIsInstance(processor_fast.image_processor , _snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_tokenizer(cls_token="""(CLS)""" , sep_token="""(SEP)""" ) _lowerCAmelCase = self.get_image_processor(do_normalize=_snake_case ) _lowerCAmelCase = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="""(CLS)""" , sep_token="""(SEP)""" , do_normalize=_snake_case ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(_snake_case , return_tensors="""np""" ) _lowerCAmelCase = processor(images=_snake_case , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) _lowerCAmelCase = """Alexandra,T-shirt的价格是15便士。""" _lowerCAmelCase = processor(text=_snake_case ) _lowerCAmelCase = tokenizer(_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) _lowerCAmelCase = """Alexandra,T-shirt的价格是15便士。""" _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) _lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase = processor.batch_decode(_snake_case ) _lowerCAmelCase = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) _lowerCAmelCase = """Alexandra,T-shirt的价格是15便士。""" _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
82
from __future__ import annotations import numpy as np def lowerCAmelCase_ ( snake_case_ ): return np.maximum(0,snake_case_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
26
0
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = nn.functional.normalize(lowerCamelCase) __lowerCAmelCase = nn.functional.normalize(lowerCamelCase) return torch.mm(lowerCamelCase, normalized_text_embeds.t()) class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = CLIPConfig __UpperCamelCase : Optional[Any] = ['CLIPEncoderLayer'] def __init__(self , __lowercase ): super().__init__(__lowercase ) __lowerCAmelCase = CLIPVisionModel(config.vision_config ) __lowerCAmelCase = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__lowercase ) __lowerCAmelCase = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__lowercase ) __lowerCAmelCase = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__lowercase ) __lowerCAmelCase = nn.Parameter(torch.ones(17 ) , requires_grad=__lowercase ) __lowerCAmelCase = nn.Parameter(torch.ones(3 ) , requires_grad=__lowercase ) @torch.no_grad() def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = self.vision_model(__lowercase )[1] # pooled_output __lowerCAmelCase = self.visual_projection(__lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowerCAmelCase = cosine_distance(__lowercase , self.special_care_embeds ).cpu().float().numpy() __lowerCAmelCase = cosine_distance(__lowercase , self.concept_embeds ).cpu().float().numpy() __lowerCAmelCase = [] __lowerCAmelCase = image_embeds.shape[0] for i in range(__lowercase ): __lowerCAmelCase = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __lowerCAmelCase = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __lowerCAmelCase = special_cos_dist[i][concept_idx] __lowerCAmelCase = self.special_care_embeds_weights[concept_idx].item() __lowerCAmelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) __lowerCAmelCase = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): __lowerCAmelCase = cos_dist[i][concept_idx] __lowerCAmelCase = self.concept_embeds_weights[concept_idx].item() __lowerCAmelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__lowercase ) result.append(__lowercase ) __lowerCAmelCase = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = self.vision_model(__lowercase )[1] # pooled_output __lowerCAmelCase = self.visual_projection(__lowercase ) __lowerCAmelCase = cosine_distance(__lowercase , self.special_care_embeds ) __lowerCAmelCase = cosine_distance(__lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __lowerCAmelCase = 0.0 __lowerCAmelCase = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __lowerCAmelCase = torch.any(special_scores > 0 , dim=1 ) __lowerCAmelCase = special_care * 0.0_1 __lowerCAmelCase = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __lowerCAmelCase = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __lowerCAmelCase = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
363
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
0
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class A__ : lowerCAmelCase__ : str = BlenderbotSmallConfig lowerCAmelCase__ : int = {} lowerCAmelCase__ : str = "gelu" def __init__( self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=False , _UpperCAmelCase : Any=99 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Optional[Any]=37 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : List[Any]=20 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : Tuple=0 , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id def a__ ( self : str ) -> Tuple: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowercase = prepare_blenderbot_small_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def a__ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFBlenderbotSmallModel(config=__UpperCAmelCase ).get_decoder() __lowercase = inputs_dict['input_ids'] __lowercase = input_ids[:1, :] __lowercase = inputs_dict['attention_mask'][:1, :] __lowercase = inputs_dict['head_mask'] __lowercase = 1 # first forward pass __lowercase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) __lowercase , __lowercase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowercase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowercase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowercase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] __lowercase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowercase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowercase = output_from_no_past[:, -3:, random_slice_idx] __lowercase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1e-3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : str=None , ) -> Dict: if attention_mask is None: __lowercase = tf.cast(tf.math.not_equal(_UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowercase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Optional[int] = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) lowerCAmelCase__ : int = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase__ : Any = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase__ : Dict = True lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Tuple = False def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase = TFBlenderbotSmallModelTester(self ) __lowercase = ConfigTester(self , config_class=__UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) @require_tokenizers @require_tf class A__ ( unittest.TestCase ): lowerCAmelCase__ : Dict = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] lowerCAmelCase__ : List[Any] = "facebook/blenderbot_small-90M" @cached_property def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) @cached_property def a__ ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.tokenizer(self.src_text , return_tensors='tf' ) __lowercase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__UpperCAmelCase , ) __lowercase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__UpperCAmelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
325
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } a_ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def a__ ( _UpperCamelCase : str ,_UpperCamelCase : Tuple ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Dict ): for attribute in key.split('''.''' ): __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ) if weight_type is not None: __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( _UpperCamelCase : Any ,_UpperCamelCase : Any ): __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hf_model.config.feat_extract_norm == '''group''' ,) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCamelCase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(_UpperCamelCase )[0].split('''.''' )[-2] __lowerCamelCase = mapped_key.replace('''*''' ,_UpperCamelCase ) if "weight_g" in name: __lowerCamelCase = '''weight_g''' elif "weight_v" in name: __lowerCamelCase = '''weight_v''' elif "bias" in name: __lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase = '''weight''' else: __lowerCamelCase = None set_recursively(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( _UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Dict ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ): __lowerCamelCase = full_name.split('''conv_layers.''' )[-1] __lowerCamelCase = name.split('''.''' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : List[str] ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : List[Any]=True ): if config_path is not None: __lowerCamelCase = UniSpeechSatConfig.from_pretrained(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatConfig() __lowerCamelCase = '''''' if is_finetuned: __lowerCamelCase = UniSpeechSatForCTC(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatForPreTraining(_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __lowerCamelCase = model[0].eval() recursively_load_weights(_UpperCamelCase ,_UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) a_ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
0
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def __lowerCamelCase ( __lowerCAmelCase : List[str] ) -> Any: snake_case = VideoMAEConfig() set_architecture_configs(__lowerCAmelCase , __lowerCAmelCase ) if "finetuned" not in model_name: snake_case = False if "finetuned" in model_name: snake_case = """huggingface/label-files""" if "kinetics" in model_name: snake_case = 4_00 snake_case = """kinetics400-id2label.json""" elif "ssv2" in model_name: snake_case = 1_74 snake_case = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) snake_case = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} return config def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: if "small" in model_name: snake_case = 3_84 snake_case = 15_36 snake_case = 12 snake_case = 16 snake_case = 12 snake_case = 3 snake_case = 1_92 snake_case = 7_68 elif "large" in model_name: snake_case = 10_24 snake_case = 40_96 snake_case = 24 snake_case = 16 snake_case = 12 snake_case = 8 snake_case = 5_12 snake_case = 20_48 elif "huge" in model_name: snake_case = 12_80 snake_case = 51_20 snake_case = 32 snake_case = 16 snake_case = 12 snake_case = 8 snake_case = 6_40 snake_case = 25_60 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def __lowerCamelCase ( __lowerCAmelCase : str ) -> Union[str, Any]: if "encoder." in name: snake_case = name.replace("""encoder.""" , """""" ) if "cls_token" in name: snake_case = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: snake_case = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: snake_case = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: snake_case = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: snake_case = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: snake_case = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: snake_case = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: snake_case = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: snake_case = name.replace("""attn""" , """attention.self""" ) if "attn" in name: snake_case = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: snake_case = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: snake_case = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: snake_case = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: snake_case = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: snake_case = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: snake_case = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: snake_case = name.replace("""head""" , """classifier""" ) return name def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : str ) -> List[str]: for key in orig_state_dict.copy().keys(): snake_case = orig_state_dict.pop(__lowerCAmelCase ) if key.startswith("""encoder.""" ): snake_case = key.replace("""encoder.""" , """""" ) if "qkv" in key: snake_case = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): snake_case = config.decoder_hidden_size snake_case = int(key_split[2] ) snake_case = """decoder.decoder_layers.""" if "weight" in key: snake_case = val[:dim, :] snake_case = val[dim : dim * 2, :] snake_case = val[-dim:, :] else: snake_case = config.hidden_size snake_case = int(key_split[1] ) snake_case = """videomae.encoder.layer.""" if "weight" in key: snake_case = val[:dim, :] snake_case = val[dim : dim * 2, :] snake_case = val[-dim:, :] else: snake_case = val return orig_state_dict def __lowerCamelCase ( ) -> int: snake_case = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) snake_case = np.load(__lowerCAmelCase ) return list(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] ) -> Optional[Any]: snake_case = get_videomae_config(__lowerCAmelCase ) if "finetuned" in model_name: snake_case = VideoMAEForVideoClassification(__lowerCAmelCase ) else: snake_case = VideoMAEForPreTraining(__lowerCAmelCase ) # download original checkpoint, hosted on Google Drive snake_case = """pytorch_model.bin""" gdown.cached_download(__lowerCAmelCase , __lowerCAmelCase , quiet=__lowerCAmelCase ) snake_case = torch.load(__lowerCAmelCase , map_location="""cpu""" ) if "model" in files: snake_case = files["""model"""] else: snake_case = files["""module"""] snake_case = convert_state_dict(__lowerCAmelCase , __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # verify model on basic input snake_case = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) snake_case = prepare_video() snake_case = image_processor(__lowerCAmelCase , return_tensors="""pt""" ) if "finetuned" not in model_name: snake_case = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) snake_case = torch.load(__lowerCAmelCase ) snake_case = model(**__lowerCAmelCase ) snake_case = outputs.logits snake_case = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": snake_case = torch.Size([1, 4_00] ) snake_case = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": snake_case = torch.Size([1, 1_74] ) snake_case = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": snake_case = torch.Size([1, 14_08, 15_36] ) snake_case = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": snake_case = torch.Size([1, 14_08, 15_36] ) snake_case = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one snake_case = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": snake_case = torch.Size([1, 14_08, 15_36] ) snake_case = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": snake_case = torch.Size([1, 4_00] ) snake_case = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": snake_case = torch.Size([1, 4_00] ) snake_case = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": snake_case = torch.Size([1, 4_00] ) snake_case = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": snake_case = torch.Size([1, 4_00] ) snake_case = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": snake_case = torch.Size([1, 14_08, 15_36] ) snake_case = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": snake_case = torch.Size([1, 1_74] ) snake_case = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": snake_case = torch.Size([1, 14_08, 15_36] ) snake_case = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": snake_case = torch.Size([1, 1_74] ) snake_case = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": snake_case = outputs.loss assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(__lowerCAmelCase , organization="""nielsr""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4", type=str, help=( "URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct" " download link." ), ) parser.add_argument( "--pytorch_dump_folder_path", default="/Users/nielsrogge/Documents/VideoMAE/Test", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--model_name", default="videomae-base", type=str, help="Name of the model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
3
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = KandinskyVaaControlnetImgaImgPipeline snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case_ = False @property def lowerCAmelCase ( self : Dict )-> str: return 32 @property def lowerCAmelCase ( self : int )-> List[str]: return 32 @property def lowerCAmelCase ( self : List[Any] )-> str: return self.time_input_dim @property def lowerCAmelCase ( self : Optional[Any] )-> Any: return self.time_input_dim * 4 @property def lowerCAmelCase ( self : str )-> Union[str, Any]: return 1_00 @property def lowerCAmelCase ( self : Tuple )-> Optional[Any]: torch.manual_seed(0 ) snake_case = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def lowerCAmelCase ( self : List[Any] )-> str: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : str )-> List[str]: torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : int )-> Dict: snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } snake_case = DDIMScheduler(**__snake_case ) snake_case = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]: snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create hint snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith("""mps""" ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : Dict )-> Optional[int]: snake_case = """cpu""" snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = pipe(**self.get_dummy_inputs(__snake_case ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[str] )-> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] )-> Optional[int]: snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case = init_image.resize((5_12, 5_12) ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0 snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case = """A robot, 4k photo""" snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case , snake_case = pipe_prior( __snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple() snake_case = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
3
1
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : Tuple = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } UpperCAmelCase : int = { "allenai/led-base-16384": 1_6384, } class SCREAMING_SNAKE_CASE__ ( __lowercase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = LEDTokenizer lowercase__ = ["input_ids", "attention_mask"] def __init__( self : Tuple , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Union[str, Any]="replace" , lowerCAmelCase_ : Any="<s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Tuple="<unk>" , lowerCAmelCase_ : str="<pad>" , lowerCAmelCase_ : Union[str, Any]="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : str=True , **lowerCAmelCase_ : Dict , ): """simple docstring""" super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("""add_prefix_space""" , snake_case_) != add_prefix_space: lowercase_ = getattr(snake_case_ , pre_tok_state.pop("""type""")) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**snake_case_) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = '''post_processor''' lowercase_ = getattr(self.backend_tokenizer , snake_case_ , snake_case_) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["""sep"""]) if "cls" in state: lowercase_ = tuple(state["""cls"""]) lowercase_ = False if state.get("""add_prefix_space""" , snake_case_) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("""trim_offsets""" , snake_case_) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(snake_case_ , state.pop("""type""")) lowercase_ = component_class(**snake_case_) setattr(self.backend_tokenizer , snake_case_ , snake_case_) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""") return None return str(self._mask_token) @mask_token.setter def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_) if isinstance(snake_case_ , snake_case_) else value lowercase_ = value def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , snake_case_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._batch_encode_plus(*snake_case_ , **snake_case_) def _UpperCAmelCase ( self : List[Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , snake_case_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._encode_plus(*snake_case_ , **snake_case_) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" lowercase_ = self._tokenizer.model.save(snake_case_ , name=snake_case_) return tuple(snake_case_) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=None): """simple docstring""" lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None): """simple docstring""" lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ): """simple docstring""" lowercase_ = super()._pad( encoded_inputs=snake_case_ , max_length=snake_case_ , padding_strategy=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , ) # Load from model defaults if return_attention_mask is None: lowercase_ = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase_ = len(encoded_inputs["""global_attention_mask"""]) != len(snake_case_) if needs_to_be_padded: lowercase_ = len(snake_case_) - len(encoded_inputs["""global_attention_mask"""]) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase_ = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase_ = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side)) return encoded_inputs
136
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowercase__ =logging.get_logger(__name__) def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict ): __a : List[str] = os.path.abspath(lowerCAmelCase__ ) logger.info(f"Converting TensorFlow checkpoint from {tf_path}" ) # Load weights from TF model __a : Tuple = tf.train.list_variables(lowerCAmelCase__ ) __a : Optional[Any] = [] __a : Union[str, Any] = [] __a : str = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __a : Any = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"Skipping non-model layer {full_name}" ) continue if "optimizer" in full_name: logger.info(f"Skipping optimization layer {full_name}" ) continue if name[0] == "model": # ignore initial 'model' __a : Any = name[1:] # figure out how many levels deep the name is __a : List[Any] = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(lowerCAmelCase__ ) # read data __a : Tuple = tf.train.load_variable(lowerCAmelCase__ , lowerCAmelCase__ ) names.append('''/'''.join(lowerCAmelCase__ ) ) arrays.append(lowerCAmelCase__ ) logger.info(f"Read a total of {len(lowerCAmelCase__ ):,} layers" ) # Sanity check if len(set(lowerCAmelCase__ ) ) != 1: raise ValueError(f"Found layer names with different depths (layer depth {list(set(lowerCAmelCase__ ) )})" ) __a : int = list(set(lowerCAmelCase__ ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __a : int = full_name.split('''/''' ) __a : Tuple = model __a : Dict = [] for i, m_name in enumerate(lowerCAmelCase__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): __a : Union[str, Any] = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) __a : Union[str, Any] = getattr(lowerCAmelCase__ , '''embeddings''' ) __a : List[str] = getattr(lowerCAmelCase__ , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) __a : Dict = getattr(lowerCAmelCase__ , '''encoder''' ) __a : Union[str, Any] = getattr(lowerCAmelCase__ , '''layer''' ) __a : Any = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) __a : Any = getattr(lowerCAmelCase__ , '''pooler''' ) __a : Optional[int] = getattr(lowerCAmelCase__ , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) __a : int = getattr(lowerCAmelCase__ , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) __a : Optional[int] = getattr(lowerCAmelCase__ , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) __a : List[str] = getattr(lowerCAmelCase__ , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) __a : Optional[Any] = getattr(lowerCAmelCase__ , '''token_type_embeddings''' ) else: raise ValueError(f"Unknown embedding layer with name {full_name}" ) trace.append('''weight''' ) __a : Tuple = getattr(lowerCAmelCase__ , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) __a : Optional[Any] = getattr(lowerCAmelCase__ , '''attention''' ) __a : Union[str, Any] = getattr(lowerCAmelCase__ , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) __a : int = getattr(lowerCAmelCase__ , '''attention''' ) __a : List[Any] = getattr(lowerCAmelCase__ , '''output''' ) __a : List[Any] = getattr(lowerCAmelCase__ , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) __a : Optional[int] = getattr(lowerCAmelCase__ , '''attention''' ) __a : Optional[Any] = getattr(lowerCAmelCase__ , '''output''' ) __a : Any = getattr(lowerCAmelCase__ , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) __a : Tuple = getattr(lowerCAmelCase__ , '''output''' ) __a : str = getattr(lowerCAmelCase__ , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) __a : int = getattr(lowerCAmelCase__ , '''output''' ) __a : str = getattr(lowerCAmelCase__ , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) __a : Union[str, Any] = getattr(lowerCAmelCase__ , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) __a : Union[str, Any] = getattr(lowerCAmelCase__ , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) __a : Union[str, Any] = getattr(lowerCAmelCase__ , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) __a : Optional[Any] = getattr(lowerCAmelCase__ , '''intermediate''' ) __a : Optional[int] = getattr(lowerCAmelCase__ , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) __a : int = getattr(lowerCAmelCase__ , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) __a : Dict = getattr(lowerCAmelCase__ , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) __a : List[Any] = getattr(lowerCAmelCase__ , '''weight''' ) else: logger.warning(f"Ignored {m_name}" ) # for certain layers reshape is necessary __a : List[str] = '''.'''.join(lowerCAmelCase__ ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , lowerCAmelCase__ ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''' , lowerCAmelCase__ ): __a : str = array.reshape(pointer.data.shape ) if "kernel" in full_name: __a : Optional[Any] = array.transpose() if pointer.shape == array.shape: __a : str = torch.from_numpy(lowerCAmelCase__ ) else: raise ValueError( f"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:" f" {array.shape}" ) logger.info(f"Successfully set variable {full_name} to PyTorch layer {trace}" ) return model def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ): # Instantiate model logger.info(f"Loading model based on config from {config_path}..." ) __a : Dict = BertConfig.from_json_file(lowerCAmelCase__ ) __a : int = BertModel(lowerCAmelCase__ ) # Load weights from checkpoint logger.info(f"Loading weights from checkpoint {tf_checkpoint_path}..." ) load_tfa_weights_in_bert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model logger.info(f"Saving PyTorch model to {pytorch_dump_path}..." ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow 2.x checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model (must include filename).', ) lowercase__ =parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
216
0
import random from .binary_exp_mod import bin_exp_mod def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=1_000 ) -> str: """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd snake_case_ : int = n - 1 snake_case_ : Union[str, Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) snake_case_ : List[Any] = 0 while count < prec: snake_case_ : Tuple = random.randint(2 , n - 1 ) snake_case_ : List[Any] = bin_exp_mod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if b != 1: snake_case_ : Any = True for _ in range(_UpperCamelCase ): if b == n - 1: snake_case_ : Tuple = False break snake_case_ : List[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase_ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
279
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __lowerCAmelCase ( _a ): lowerCamelCase_ : Optional[Any] = ['''image_processor''', '''tokenizer'''] lowerCamelCase_ : List[Any] = '''BlipImageProcessor''' lowerCamelCase_ : Union[str, Any] = '''AutoTokenizer''' def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' super().__init__(__magic_name__ , __magic_name__ ) # add QFormer tokenizer snake_case_ : Optional[Any] = qformer_tokenizer def __call__(self , __magic_name__ = None , __magic_name__ = None , __magic_name__ = True , __magic_name__ = False , __magic_name__ = None , __magic_name__ = None , __magic_name__ = 0 , __magic_name__ = None , __magic_name__ = None , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = True , __magic_name__ = None , **__magic_name__ , ) -> BatchFeature: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) snake_case_ : Tuple = BatchFeature() if text is not None: snake_case_ : Tuple = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_token_type_ids=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) encoding.update(__magic_name__ ) snake_case_ : Optional[Any] = self.qformer_tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_token_type_ids=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) snake_case_ : Optional[int] = qformer_text_encoding.pop('''input_ids''' ) snake_case_ : Tuple = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: snake_case_ : Any = self.image_processor(__magic_name__ , return_tensors=__magic_name__ ) encoding.update(__magic_name__ ) return encoding def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = self.tokenizer.model_input_names snake_case_ : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCamelCase (self , __magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' if os.path.isfile(__magic_name__ ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) snake_case_ : Any = os.path.join(__magic_name__ , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(__magic_name__ ) return super().save_pretrained(__magic_name__ , **__magic_name__ ) @classmethod def lowerCamelCase (cls , __magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = AutoTokenizer.from_pretrained(__magic_name__ , subfolder='''qformer_tokenizer''' ) snake_case_ : str = cls._get_arguments_from_pretrained(__magic_name__ , **__magic_name__ ) args.append(__magic_name__ ) return cls(*__magic_name__ )
279
1
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(SCREAMING_SNAKE_CASE_ ) , """Tatoeba directory does not exist.""" ) class snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self) ->int: a_ = tempfile.mkdtemp() return TatoebaConverter(save_dir=__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->Union[str, Any]: self.resolver.convert_models(["heb-eng"]) @slow def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ , a_ = self.resolver.write_model_card("opus-mt-he-en" , dry_run=__UpperCAmelCase) assert mmeta["long_pair"] == "heb-eng"
243
"""simple docstring""" import math import os import sys def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" a_ = "" try: with open(UpperCAmelCase , "rb" ) as binary_file: a_ = binary_file.read() for dat in data: a_ = F'''{dat:08b}''' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" lexicon.pop(UpperCAmelCase ) a_ = last_match_id if math.loga(UpperCAmelCase ).is_integer(): for curr_key in lexicon: a_ = "0" + lexicon[curr_key] a_ = bin(UpperCAmelCase )[2:] def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" a_ = {"0": "0", "1": "1"} a_ , a_ = "", "" a_ = len(UpperCAmelCase ) for i in range(len(UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue a_ = lexicon[curr_string] result += last_match_id add_key_to_lexicon(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) index += 1 a_ = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": a_ = lexicon[curr_string] result += last_match_id return result def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" a_ = os.path.getsize(UpperCAmelCase ) a_ = bin(UpperCAmelCase )[2:] a_ = len(UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" a_ = 8 try: with open(UpperCAmelCase , "wb" ) as opened_file: a_ = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCAmelCase ) , UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(UpperCAmelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" a_ = read_file_binary(UpperCAmelCase ) a_ = compress_data(UpperCAmelCase ) a_ = add_file_length(UpperCAmelCase , UpperCAmelCase ) write_file_binary(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
243
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction def UpperCamelCase ( a , a ) -> bool: '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCamelCase ( a ) -> list[str]: '''simple docstring''' __magic_name__ = [] __magic_name__ = 11 __magic_name__ = int('''1''' + '''0''' * digit_len ) for num in range(a , a ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(a , a ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 __magic_name__ = 10 return solutions def UpperCamelCase ( a = 2 ) -> int: '''simple docstring''' __magic_name__ = 1.0 for fraction in fraction_list(a ): __magic_name__ = Fraction(a ) result *= frac.denominator / frac.numerator return int(a ) if __name__ == "__main__": print(solution())
359
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): __SCREAMING_SNAKE_CASE :List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __SCREAMING_SNAKE_CASE :Any = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def snake_case__ ( self : Tuple , a__ : Tuple , a__ : int , a__ : int ): __magic_name__ = TextaTextGenerationPipeline(model=a__ , tokenizer=a__ ) return generator, ["Something to write", "Something else"] def snake_case__ ( self : List[str] , a__ : List[Any] , a__ : List[str] ): __magic_name__ = generator('''Something there''' ) self.assertEqual(a__ , [{'''generated_text''': ANY(a__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) __magic_name__ = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=a__ ) self.assertEqual( a__ , [ [{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}], [{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}], ] , ) __magic_name__ = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=a__ ) self.assertEqual( a__ , [ [{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}], [{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}], ] , ) with self.assertRaises(a__ ): generator(4 ) @require_torch def snake_case__ ( self : Any ): __magic_name__ = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility __magic_name__ = generator('''Something there''' , do_sample=a__ ) self.assertEqual(a__ , [{'''generated_text''': ''''''}] ) __magic_name__ = 3 __magic_name__ = generator( '''Something there''' , num_return_sequences=a__ , num_beams=a__ , ) __magic_name__ = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(a__ , a__ ) __magic_name__ = generator('''This is a test''' , do_sample=a__ , num_return_sequences=2 , return_tensors=a__ ) self.assertEqual( a__ , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) __magic_name__ = generator.model.config.eos_token_id __magic_name__ = '''<pad>''' __magic_name__ = generator( ['''This is a test''', '''This is a second test'''] , do_sample=a__ , num_return_sequences=2 , batch_size=2 , return_tensors=a__ , ) self.assertEqual( a__ , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def snake_case__ ( self : int ): __magic_name__ = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility __magic_name__ = generator('''Something there''' , do_sample=a__ ) self.assertEqual(a__ , [{'''generated_text''': ''''''}] )
98
0
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCamelCase__ = '\\n Text data.\n Second line of data.' lowerCamelCase__ = 'file' @pytest.fixture(scope='session' ) def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : List[str] = tmp_path_factory.mktemp('data' ) / (FILE_PATH + '''.zstd''') __lowerCAmelCase : Union[str, Any] = bytes(lowercase__ , 'utf-8' ) with zstd.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture def __lowerCAmelCase (_UpperCamelCase ): with open(os.path.join(tmpfs.local_root_dir , lowercase__ ) , 'w' ) as f: f.write(lowercase__ ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Optional[int] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} __lowerCAmelCase : str = input_paths[compression_format] __lowerCAmelCase : Tuple = tmp_path / '''cache''' __lowerCAmelCase : Any = DownloadConfig(cache_dir=lowercase__ , extract_compressed_file=lowercase__ ) __lowerCAmelCase : Union[str, Any] = cached_path(lowercase__ , download_config=lowercase__ ) with open(lowercase__ ) as f: __lowerCAmelCase : Any = f.read() with open(lowercase__ ) as f: __lowerCAmelCase : int = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : List[str] = '''custom_cache''' __lowerCAmelCase : Optional[Any] = '''custom_extracted_dir''' __lowerCAmelCase : int = tmp_path / '''custom_extracted_path''' if default_extracted: __lowerCAmelCase : List[Any] = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , lowercase__ ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(lowercase__ ) ) __lowerCAmelCase : List[Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __lowerCAmelCase : int = xz_file __lowerCAmelCase : int = ( DownloadConfig(extract_compressed_file=lowercase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowercase__ ) ) __lowerCAmelCase : Optional[int] = cached_path(lowercase__ , download_config=lowercase__ ) assert Path(lowercase__ ).parent.parts[-2:] == expected def __lowerCAmelCase (_UpperCamelCase ): # absolute path __lowerCAmelCase : Dict = str(Path(lowercase__ ).resolve() ) assert cached_path(lowercase__ ) == text_file # relative path __lowerCAmelCase : str = str(Path(lowercase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowercase__ ) == text_file def __lowerCAmelCase (_UpperCamelCase ): # absolute path __lowerCAmelCase : int = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(lowercase__ ): cached_path(lowercase__ ) # relative path __lowerCAmelCase : Dict = '''./__missing_file__.txt''' with pytest.raises(lowercase__ ): cached_path(lowercase__ ) def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Tuple = get_from_cache(F"tmp://{tmpfs_file}" ) with open(lowercase__ ) as f: __lowerCAmelCase : Tuple = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , lowercase__ ) def __lowerCAmelCase (): with pytest.raises(lowercase__ ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , lowercase__ ) def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = tmp_path_factory.mktemp('data' ) / '''file.html''' with pytest.raises(lowercase__ ): http_get('https://huggingface.co' , temp_file=lowercase__ ) with pytest.raises(lowercase__ ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , lowercase__ ) def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Optional[Any] = tmp_path_factory.mktemp('data' ) / '''file.html''' with pytest.raises(lowercase__ ): ftp_get('ftp://huggingface.co' , temp_file=lowercase__ ) with pytest.raises(lowercase__ ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , lowercase__ ) def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : str = tmp_path_factory.mktemp('data' ) / '''file.html''' with pytest.raises(lowercase__ ): fsspec_get('s3://huggingface.co' , temp_file=lowercase__ ) with pytest.raises(lowercase__ ): fsspec_head('s3://huggingface.co' )
86
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int=13 , lowerCAmelCase__ :List[str]=7 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[Any]=99 , lowerCAmelCase__ :List[str]=32 , lowerCAmelCase__ :Any=5 , lowerCAmelCase__ :List[str]=4 , lowerCAmelCase__ :int=37 , lowerCAmelCase__ :Optional[int]="gelu" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Optional[Any]=512 , lowerCAmelCase__ :Union[str, Any]=16 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :Tuple=0.02 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Tuple=4 , lowerCAmelCase__ :int=None , ) -> int: __SCREAMING_SNAKE_CASE : Dict = parent __SCREAMING_SNAKE_CASE : Any = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length __SCREAMING_SNAKE_CASE : Optional[Any] = is_training __SCREAMING_SNAKE_CASE : int = use_token_type_ids __SCREAMING_SNAKE_CASE : Any = use_labels __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : Tuple = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices __SCREAMING_SNAKE_CASE : Union[str, Any] = scope __SCREAMING_SNAKE_CASE : Union[str, Any] = self.vocab_size - 1 def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Optional[int] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , *lowerCAmelCase__ :Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , *lowerCAmelCase__ :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = OpenAIGPTLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] , *lowerCAmelCase__ :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str , *lowerCAmelCase__ :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels __SCREAMING_SNAKE_CASE : List[Any] = OpenAIGPTForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : List[str] = config_and_inputs __SCREAMING_SNAKE_CASE : List[str] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : str = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE__ : str = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> Tuple: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __magic_name__( self :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :int=False ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __SCREAMING_SNAKE_CASE : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Tuple = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : Dict = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__( self :Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = OpenAIGPTModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=37 ) def __magic_name__( self :Any ) -> Optional[Any]: self.config_tester.run_common_tests() def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ ) def __magic_name__( self :int ) -> int: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :Any ) -> List[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Dict = OpenAIGPTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__( self :Union[str, Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=lowerCAmelCase__ ) # the president is __SCREAMING_SNAKE_CASE : Dict = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the __SCREAMING_SNAKE_CASE : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase__ )
9
0
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _snake_case ( ): _lowerCamelCase : Optional[int] = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg' _lowerCamelCase : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('RGB' ) return image def _snake_case ( lowercase__ ): _lowerCamelCase : str = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : int = dct.pop(lowercase__ ) _lowerCamelCase : Optional[int] = val def _snake_case ( lowercase__ , lowercase__ ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCamelCase : Optional[int] = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) _lowerCamelCase : int = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict _lowerCamelCase : Tuple = torch.cat((q_bias, torch.zeros_like(lowercase__ , requires_grad=lowercase__ ), v_bias) ) _lowerCamelCase : List[Any] = qkv_bias def _snake_case ( lowercase__ ): _lowerCamelCase : List[str] = 364 if 'coco' in model_name else 224 _lowerCamelCase : int = InstructBlipVisionConfig(image_size=lowercase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: _lowerCamelCase : Union[str, Any] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCamelCase : Dict = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: _lowerCamelCase : str = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: _lowerCamelCase : str = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=32001 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 _lowerCamelCase : Optional[int] = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() _lowerCamelCase : Optional[int] = InstructBlipConfig(vision_config=lowercase__ , text_config=lowercase__ , qformer_config=lowercase__ ) return config, image_size @torch.no_grad() def _snake_case ( lowercase__ , lowercase__=None , lowercase__=False ): _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: _lowerCamelCase : List[Any] = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) _lowerCamelCase : int = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) _lowerCamelCase, _lowerCamelCase : Any = get_blipa_config(lowercase__ ) _lowerCamelCase : Dict = InstructBlipForConditionalGeneration(lowercase__ ).eval() _lowerCamelCase : Optional[Any] = { 'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'), 'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'), 'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'), 'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'), } _lowerCamelCase, _lowerCamelCase : int = model_name_to_original[model_name] # load original model print('Loading original model...' ) _lowerCamelCase : Dict = 'cuda:1' if torch.cuda.is_available() else 'cpu' _lowerCamelCase : int = 'cuda:2' if torch.cuda.is_available() else 'cpu' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = load_model_and_preprocess( name=lowercase__ , model_type=lowercase__ , is_eval=lowercase__ , device=lowercase__ ) original_model.eval() print('Done!' ) # update state dict keys _lowerCamelCase : List[Any] = original_model.state_dict() _lowerCamelCase : str = create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCamelCase : List[str] = state_dict.pop(lowercase__ ) if key.startswith('Qformer.bert' ): _lowerCamelCase : Optional[Any] = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: _lowerCamelCase : Optional[int] = key.replace('self' , 'attention' ) if "llm_proj" in key: _lowerCamelCase : Dict = key.replace('llm_proj' , 'language_projection' ) if "t5_proj" in key: _lowerCamelCase : List[Any] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('llm_model' ): _lowerCamelCase : int = key.replace('llm_model' , 'language_model' ) if key.startswith('t5' ): _lowerCamelCase : Optional[Any] = key.replace('t5' , 'language' ) _lowerCamelCase : Optional[int] = val # read in qv biases read_in_q_v_bias(lowercase__ , lowercase__ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(lowercase__ , strict=lowercase__ ) _lowerCamelCase : Any = load_demo_image() _lowerCamelCase : str = 'What is unusual about this image?' # create processor _lowerCamelCase : List[str] = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=lowercase__ , image_std=lowercase__ ) _lowerCamelCase : List[Any] = InstructBlipProcessor( image_processor=lowercase__ , tokenizer=lowercase__ , qformer_tokenizer=lowercase__ , ) _lowerCamelCase : List[str] = processor(images=lowercase__ , text=lowercase__ , return_tensors='pt' ).to(lowercase__ ) # make sure processor creates exact same pixel values _lowerCamelCase : List[Any] = vis_processors['eval'](lowercase__ ).unsqueeze(0 ).to(lowercase__ ) _lowerCamelCase : Any = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , lowercase__ ) original_model.to(lowercase__ ) hf_model.to(lowercase__ ) with torch.no_grad(): if "vicuna" in model_name: _lowerCamelCase : List[Any] = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits _lowerCamelCase : List[str] = hf_model(**lowercase__ ).logits else: _lowerCamelCase : Dict = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits _lowerCamelCase : Tuple = tokenizer('\n' , return_tensors='pt' ).input_ids.to(lowercase__ ) _lowerCamelCase : List[str] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) _lowerCamelCase : Dict = hf_model(**lowercase__ , labels=lowercase__ ).logits print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape _lowerCamelCase : str = 1E-4 if 'vicuna' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , lowercase__ , atol=lowercase__ ) print('Looks ok!' ) print('Generating with original model...' ) _lowerCamelCase : str = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) _lowerCamelCase : Optional[int] = hf_model.generate( **lowercase__ , do_sample=lowercase__ , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? _lowerCamelCase : Tuple = 2 print('Original generation:' , lowercase__ ) _lowerCamelCase : Tuple = processor.batch_decode(lowercase__ , skip_special_tokens=lowercase__ ) _lowerCamelCase : List[Any] = [text.strip() for text in output_text] print('HF generation:' , lowercase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if push_to_hub: processor.push_to_hub(f'''Salesforce/{model_name}''' ) hf_model.push_to_hub(f'''Salesforce/{model_name}''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() lowercase__ = [ """instructblip-vicuna-7b""", """instructblip-vicuna-13b""", """instructblip-flan-t5-xl""", """instructblip-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""instructblip-flan-t5-xl""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) lowercase__ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
12
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
1
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Dict = VideoMAEConfig() set_architecture_configs(snake_case__ , snake_case__ ) if "finetuned" not in model_name: A : int = False if "finetuned" in model_name: A : List[Any] = '''huggingface/label-files''' if "kinetics" in model_name: A : int = 400 A : str = '''kinetics400-id2label.json''' elif "ssv2" in model_name: A : Dict = 174 A : Dict = '''something-something-v2-id2label.json''' else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' ) A : Optional[int] = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) ) A : int = {int(snake_case__ ): v for k, v in idalabel.items()} A : Union[str, Any] = idalabel A : Tuple = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if "small" in model_name: A : int = 384 A : Tuple = 1536 A : Optional[Any] = 12 A : List[str] = 16 A : Optional[Any] = 12 A : Optional[Any] = 3 A : List[Any] = 192 A : List[str] = 768 elif "large" in model_name: A : Optional[int] = 1024 A : Optional[Any] = 4096 A : Tuple = 24 A : List[Any] = 16 A : Tuple = 12 A : Union[str, Any] = 8 A : Optional[int] = 512 A : str = 2048 elif "huge" in model_name: A : List[Any] = 1280 A : Tuple = 5120 A : Tuple = 32 A : Optional[Any] = 16 A : Dict = 12 A : List[str] = 8 A : str = 640 A : Optional[int] = 2560 elif "base" not in model_name: raise ValueError('''Model name should include either "small", "base", "large", or "huge"''' ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if "encoder." in name: A : List[str] = name.replace('''encoder.''' , '''''' ) if "cls_token" in name: A : Any = name.replace('''cls_token''' , '''videomae.embeddings.cls_token''' ) if "decoder_pos_embed" in name: A : Dict = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: A : Tuple = name.replace('''pos_embed''' , '''videomae.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: A : List[str] = name.replace('''patch_embed.proj''' , '''videomae.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: A : int = name.replace('''patch_embed.norm''' , '''videomae.embeddings.norm''' ) if "decoder.blocks" in name: A : List[Any] = name.replace('''decoder.blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: A : Union[str, Any] = name.replace('''blocks''' , '''videomae.encoder.layer''' ) if "attn.proj" in name: A : Tuple = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "bias" not in name: A : str = name.replace('''attn''' , '''attention.self''' ) if "attn" in name: A : Any = name.replace('''attn''' , '''attention.attention''' ) if "norm1" in name: A : Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: A : List[str] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: A : List[str] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: A : Dict = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: A : Tuple = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: A : int = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: A : List[str] = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: A : List[str] = name.replace('''norm.weight''' , '''videomae.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: A : str = name.replace('''norm.bias''' , '''videomae.layernorm.bias''' ) if "head" in name and "decoder" not in name: A : Tuple = name.replace('''head''' , '''classifier''' ) return name def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): A : List[Any] = orig_state_dict.pop(snake_case__ ) if key.startswith('''encoder.''' ): A : str = key.replace('''encoder.''' , '''''' ) if "qkv" in key: A : List[Any] = key.split('''.''' ) if key.startswith('''decoder.blocks''' ): A : str = config.decoder_hidden_size A : List[str] = int(key_split[2] ) A : Any = '''decoder.decoder_layers.''' if "weight" in key: A : Optional[Any] = val[:dim, :] A : Union[str, Any] = val[dim : dim * 2, :] A : List[str] = val[-dim:, :] else: A : str = config.hidden_size A : str = int(key_split[1] ) A : Dict = '''videomae.encoder.layer.''' if "weight" in key: A : str = val[:dim, :] A : Tuple = val[dim : dim * 2, :] A : List[str] = val[-dim:, :] else: A : Union[str, Any] = val return orig_state_dict def lowerCAmelCase_ ( ): '''simple docstring''' A : Dict = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) A : Any = np.load(snake_case__ ) return list(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = get_videomae_config(snake_case__ ) if "finetuned" in model_name: A : int = VideoMAEForVideoClassification(snake_case__ ) else: A : List[str] = VideoMAEForPreTraining(snake_case__ ) # download original checkpoint, hosted on Google Drive A : str = '''pytorch_model.bin''' gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ ) A : Tuple = torch.load(snake_case__ , map_location='''cpu''' ) if "model" in files: A : Optional[Any] = files['''model'''] else: A : Tuple = files['''module'''] A : Dict = convert_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # verify model on basic input A : Union[str, Any] = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) A : Any = prepare_video() A : Union[str, Any] = image_processor(snake_case__ , return_tensors='''pt''' ) if "finetuned" not in model_name: A : str = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) A : Optional[Any] = torch.load(snake_case__ ) A : List[str] = model(**snake_case__ ) A : Optional[int] = outputs.logits A : List[str] = [ '''videomae-small-finetuned-kinetics''', '''videomae-small-finetuned-ssv2''', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) '''videomae-base-short''', '''videomae-base-short-finetuned-kinetics''', '''videomae-base''', '''videomae-base-finetuned-kinetics''', '''videomae-large''', '''videomae-large-finetuned-kinetics''', '''videomae-huge-finetuned-kinetics''', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) '''videomae-base-short-ssv2''', '''videomae-base-short-finetuned-ssv2''', '''videomae-base-ssv2''', '''videomae-base-finetuned-ssv2''', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": A : int = torch.Size([1, 400] ) A : List[Any] = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": A : Any = torch.Size([1, 174] ) A : Union[str, Any] = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": A : List[str] = torch.Size([1, 1408, 1536] ) A : Union[str, Any] = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": A : List[str] = torch.Size([1, 1408, 1536] ) A : Optional[Any] = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one A : List[str] = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": A : List[str] = torch.Size([1, 1408, 1536] ) A : Any = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": A : Any = torch.Size([1, 400] ) A : str = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": A : Optional[int] = torch.Size([1, 400] ) A : str = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": A : List[Any] = torch.Size([1, 400] ) A : List[Any] = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": A : Union[str, Any] = torch.Size([1, 400] ) A : List[Any] = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": A : Any = torch.Size([1, 1408, 1536] ) A : List[str] = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": A : Optional[Any] = torch.Size([1, 174] ) A : Optional[Any] = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": A : str = torch.Size([1, 1408, 1536] ) A : Union[str, Any] = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": A : Optional[int] = torch.Size([1, 174] ) A : str = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(F'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , snake_case__ , atol=1E-4 ) else: print('''Logits:''' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1E-4 ) print('''Logits ok!''' ) # verify loss, if applicable if model_name == "videomae-base-short": A : List[str] = outputs.loss assert torch.allclose(snake_case__ , snake_case__ , atol=1E-4 ) print('''Loss ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) model.save_pretrained(snake_case__ ) if push_to_hub: print('''Pushing to the hub...''' ) model.push_to_hub(snake_case__ , organization='''nielsr''' ) if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowercase : List[Any] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
3
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowercase : Union[str, Any] = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } lowercase : Tuple = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def lowerCAmelCase_ ( snake_case__ , snake_case__=False ): '''simple docstring''' A, A : Tuple = create_model( '''HTSAT-tiny''' , '''roberta''' , snake_case__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=snake_case__ , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Dict = {} A : str = R'''.*sequential.(\d+).*''' A : Union[str, Any] = R'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: A : Any = key.replace(snake_case__ , snake_case__ ) if re.match(snake_case__ , snake_case__ ): # replace sequential layers with list A : Any = re.match(snake_case__ , snake_case__ ).group(1 ) A : List[str] = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(snake_case__ )//3}.linear.' ) elif re.match(snake_case__ , snake_case__ ): A : Union[str, Any] = int(re.match(snake_case__ , snake_case__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... A : str = 1 if projecton_layer == 0 else 2 A : Optional[Any] = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value A : int = value A : List[Any] = mixed_qkv.size(0 ) // 3 A : Union[str, Any] = mixed_qkv[:qkv_dim] A : Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] A : Optional[int] = mixed_qkv[qkv_dim * 2 :] A : Tuple = query_layer A : Union[str, Any] = key_layer A : Optional[int] = value_layer else: A : Dict = value return model_state_dict def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' A, A : int = init_clap(snake_case__ , enable_fusion=snake_case__ ) clap_model.eval() A : str = clap_model.state_dict() A : Union[str, Any] = rename_state_dict(snake_case__ ) A : Tuple = ClapConfig() A : str = enable_fusion A : str = ClapModel(snake_case__ ) # ignore the spectrogram embedding layer model.load_state_dict(snake_case__ , strict=snake_case__ ) model.save_pretrained(snake_case__ ) transformers_config.save_pretrained(snake_case__ ) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') lowercase : Tuple = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
3
1
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=10 , __UpperCAmelCase=3 , __UpperCAmelCase=32 * 8 , __UpperCAmelCase=32 * 8 , __UpperCAmelCase=4 , __UpperCAmelCase=64 , ) -> Optional[int]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =is_training _lowerCAmelCase =use_auxiliary_loss _lowerCAmelCase =num_queries _lowerCAmelCase =num_channels _lowerCAmelCase =min_size _lowerCAmelCase =max_size _lowerCAmelCase =num_labels _lowerCAmelCase =hidden_dim _lowerCAmelCase =hidden_dim def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _A ) _lowerCAmelCase =torch.ones([self.batch_size, self.min_size, self.max_size] , device=_A ) _lowerCAmelCase =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_A ) > 0.5 ).float() _lowerCAmelCase =(torch.rand((self.batch_size, self.num_labels) , device=_A ) > 0.5).long() _lowerCAmelCase =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =MaskaFormerConfig( hidden_size=self.hidden_dim , ) _lowerCAmelCase =self.num_queries _lowerCAmelCase =self.num_labels _lowerCAmelCase =[1, 1, 1, 1] _lowerCAmelCase =self.num_channels _lowerCAmelCase =64 _lowerCAmelCase =1_28 _lowerCAmelCase =self.hidden_dim _lowerCAmelCase =self.hidden_dim _lowerCAmelCase =self.hidden_dim return config def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase ={'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: _lowerCAmelCase =output.encoder_hidden_states _lowerCAmelCase =output.pixel_decoder_hidden_states _lowerCAmelCase =output.transformer_decoder_hidden_states self.parent.assertTrue(len(_A ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_A ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_A ) , config.decoder_layers ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> List[str]: with torch.no_grad(): _lowerCAmelCase =MaskaFormerModel(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase =model(pixel_values=_A , pixel_mask=_A ) _lowerCAmelCase =model(_A , output_hidden_states=_A ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_A , _A ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: _lowerCAmelCase =MaskaFormerForUniversalSegmentation(config=_A ) model.to(_A ) model.eval() def comm_check_on_output(__UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _lowerCAmelCase =model(pixel_values=_A , pixel_mask=_A ) _lowerCAmelCase =model(_A ) comm_check_on_output(_A ) _lowerCAmelCase =model( pixel_values=_A , pixel_mask=_A , mask_labels=_A , class_labels=_A ) comm_check_on_output(_A ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowerCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def _lowerCAmelCase ( self ) -> Optional[int]: _lowerCAmelCase =MaskaFormerModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=_A , has_text_modality=_A ) def _lowerCAmelCase ( self ) -> Any: self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_A , **_A , output_hidden_states=_A ) def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_A ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def _lowerCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def _lowerCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def _lowerCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def _lowerCAmelCase ( self ) -> str: pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`""" ) def _lowerCAmelCase ( self ) -> Tuple: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowerCAmelCase ( self ) -> List[str]: pass def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(_A ) _lowerCAmelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase =[*signature.parameters.keys()] _lowerCAmelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _lowerCAmelCase =MaskaFormerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =(self.model_tester.min_size,) * 2 _lowerCAmelCase ={ 'pixel_values': torch.randn((2, 3, *size) , device=_A ), 'mask_labels': torch.randn((2, 10, *size) , device=_A ), 'class_labels': torch.zeros(2 , 10 , device=_A ).long(), } _lowerCAmelCase =self.model_tester.get_config() _lowerCAmelCase =MaskaFormerForUniversalSegmentation(_A ).to(_A ) _lowerCAmelCase =model(**_A ) self.assertTrue(outputs.loss is not None ) def _lowerCAmelCase ( self ) -> Optional[int]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_A , **_A , output_hidden_states=_A ) def _lowerCAmelCase ( self ) -> Dict: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(_A ).to(_A ) _lowerCAmelCase =model(**_A , output_attentions=_A ) self.assertTrue(outputs.attentions is not None ) def _lowerCAmelCase ( self ) -> Union[str, Any]: if not self.model_tester.is_training: return _lowerCAmelCase =self.all_model_classes[1] _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() _lowerCAmelCase =model_class(_A ) model.to(_A ) model.train() _lowerCAmelCase =model(_A , mask_labels=_A , class_labels=_A ).loss loss.backward() def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =self.all_model_classes[1] _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() _lowerCAmelCase =True _lowerCAmelCase =True _lowerCAmelCase =model_class(_A ).to(_A ) model.train() _lowerCAmelCase =model(_A , mask_labels=_A , class_labels=_A ) _lowerCAmelCase =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _lowerCAmelCase =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _lowerCAmelCase =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _lowerCAmelCase =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_A ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A = 1E-4 def _lowerCamelCase() -> List[Any]: _lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase ( self ) -> Any: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _lowerCAmelCase ( self ) -> Any: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_A ) _lowerCAmelCase =self.default_image_processor _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(_A , return_tensors="""pt""" ).to(_A ) _lowerCAmelCase =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A , (1, 3, 3_84, 3_84) ) with torch.no_grad(): _lowerCAmelCase =model(**_A ) _lowerCAmelCase =torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_A ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _A , atol=_A ) ) _lowerCAmelCase =torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_A ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _A , atol=_A ) ) _lowerCAmelCase =torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_A ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _A , atol=_A ) ) def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_A ).eval() _lowerCAmelCase =self.default_image_processor _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(_A , return_tensors="""pt""" ).to(_A ) _lowerCAmelCase =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A , (1, 3, 3_84, 3_84) ) with torch.no_grad(): _lowerCAmelCase =model(**_A ) # masks_queries_logits _lowerCAmelCase =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _lowerCAmelCase =[ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] _lowerCAmelCase =torch.tensor(_A ).to(_A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _A , atol=_A ) ) # class_queries_logits _lowerCAmelCase =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _lowerCAmelCase =torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _A , atol=_A ) ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_A ).eval() _lowerCAmelCase =self.default_image_processor _lowerCAmelCase =image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) _lowerCAmelCase =inputs['pixel_values'].to(_A ) _lowerCAmelCase =[el.to(_A ) for el in inputs['mask_labels']] _lowerCAmelCase =[el.to(_A ) for el in inputs['class_labels']] with torch.no_grad(): _lowerCAmelCase =model(**_A ) self.assertTrue(outputs.loss is not None )
357
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = None lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = None lowerCamelCase = None lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = True lowerCamelCase = None lowerCamelCase = 1 lowerCamelCase = None lowerCamelCase = False lowerCamelCase = None lowerCamelCase = None def _lowerCAmelCase ( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
341
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowerCAmelCase_ = logging.get_logger(__name__) @dataclass class __lowerCAmelCase : def __init__(self , __magic_name__=False , __magic_name__=False , __magic_name__=6.0 , __magic_name__=None , __magic_name__=False , __magic_name__=False , __magic_name__=None , __magic_name__="fp4" , __magic_name__=False , **__magic_name__ , ) -> Optional[int]: '''simple docstring''' snake_case_ : List[Any] = load_in_abit snake_case_ : Optional[int] = load_in_abit snake_case_ : str = llm_inta_threshold snake_case_ : List[str] = llm_inta_skip_modules snake_case_ : Optional[int] = llm_inta_enable_fpaa_cpu_offload snake_case_ : List[Any] = llm_inta_has_fpaa_weight snake_case_ : int = bnb_abit_quant_type snake_case_ : List[Any] = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: snake_case_ : Tuple = torch.floataa elif isinstance(__magic_name__ , __magic_name__ ): snake_case_ : List[str] = getattr(__magic_name__ , __magic_name__ ) elif isinstance(__magic_name__ , torch.dtype ): snake_case_ : Any = bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''' ) self.post_init() def lowerCamelCase (self ) -> str: '''simple docstring''' if not isinstance(self.llm_inta_threshold , __magic_name__ ): raise ValueError('''llm_int8_threshold must be a float''' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , __magic_name__ ): raise ValueError('''llm_int8_skip_modules must be a list of strings''' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , __magic_name__ ): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''' ) if not isinstance(self.llm_inta_has_fpaa_weight , __magic_name__ ): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''' ) if not isinstance(self.bnb_abit_quant_type , __magic_name__ ): raise ValueError('''bnb_4bit_quant_type must be a string''' ) if not isinstance(self.bnb_abit_use_double_quant , __magic_name__ ): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''' ) if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''' ) ) >= version.parse( '''0.39.0''' ): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''' ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' return self.load_in_abit or self.load_in_abit def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def lowerCamelCase (cls , __magic_name__ , __magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' snake_case_ : Tuple = cls(**__magic_name__ ) snake_case_ : Dict = [] for key, value in kwargs.items(): if hasattr(__magic_name__ , __magic_name__ ): setattr(__magic_name__ , __magic_name__ , __magic_name__ ) to_remove.append(__magic_name__ ) for key in to_remove: kwargs.pop(__magic_name__ , __magic_name__ ) if return_unused_kwargs: return config, kwargs else: return config def lowerCamelCase (self , __magic_name__ ) -> Optional[int]: '''simple docstring''' with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer: snake_case_ : Tuple = self.to_dict() snake_case_ : List[Any] = json.dumps(__magic_name__ , indent=2 , sort_keys=__magic_name__ ) + '''\n''' writer.write(__magic_name__ ) def lowerCamelCase (self ) -> Dict[str, Any]: '''simple docstring''' snake_case_ : Tuple = copy.deepcopy(self.__dict__ ) snake_case_ : Any = str(output['''bnb_4bit_compute_dtype'''] ).split('''.''' )[1] return output def __repr__(self ) -> Optional[Any]: '''simple docstring''' return F'''{self.__class__.__name__} {self.to_json_string()}''' def lowerCamelCase (self , __magic_name__ = True ) -> str: '''simple docstring''' if use_diff is True: snake_case_ : Tuple = self.to_diff_dict() else: snake_case_ : List[Any] = self.to_dict() return json.dumps(__magic_name__ , indent=2 , sort_keys=__magic_name__ ) + "\n" def lowerCamelCase (self ) -> Dict[str, Any]: '''simple docstring''' snake_case_ : Optional[Any] = self.to_dict() # get the default config dict snake_case_ : Dict = BitsAndBytesConfig().to_dict() snake_case_ : str = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: snake_case_ : Optional[int] = value return serializable_config_dict
279
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Any = BioGptTokenizer lowerCamelCase_ : Optional[Any] = False def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ : Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] snake_case_ : Union[str, Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) snake_case_ : Union[str, Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] snake_case_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__magic_name__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__magic_name__ ) ) def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' snake_case_ : str = '''lower newer''' snake_case_ : Dict = '''lower newer''' return input_text, output_text def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = BioGptTokenizer(self.vocab_file , self.merges_file ) snake_case_ : Union[str, Any] = '''lower''' snake_case_ : Optional[int] = ['''low''', '''er</w>'''] snake_case_ : Any = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) snake_case_ : Optional[int] = tokens + ['''<unk>'''] snake_case_ : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) @slow def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ : List[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__magic_name__ ) snake_case_ : str = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__magic_name__ ) snake_case_ : str = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) snake_case_ : List[str] = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
279
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : str = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) a = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) a = '''The dog is cute and lives in the garden house''' a = jnp.array([tokenizer.encode(__lowerCamelCase )] ) a = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim a = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) a = model(__lowerCamelCase )['''last_hidden_state'''] self.assertEqual(output.shape ,__lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,__lowerCamelCase ,atol=1e-3 ) )
330
1