code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def __UpperCAmelCase ( __a : Tuple ) -> List[Any]: """simple docstring""" _a : int = False while is_sorted is False: # Until all the indices are traversed keep looping _a : Tuple = True for i in range(0 ,len(__a ) - 1 ,2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: _a , _a : Optional[int] = input_list[i + 1], input_list[i] # swapping if elements not in order _a : Optional[int] = False for i in range(1 ,len(__a ) - 1 ,2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: _a , _a : Optional[Any] = input_list[i + 1], input_list[i] # swapping if elements not in order _a : Union[str, Any] = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') a__ = [int(x) for x in input().split()] # inputing elements of the list in one line a__ = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
235
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ : Optional[Any] = logging.getLogger() def a_ ( ): UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('-f' ) UpperCAmelCase__ = parser.parse_args() return args.f class snake_case ( __UpperCAmelCase ): """simple docstring""" def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ): UpperCAmelCase__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 ,'run_glue_deebert.py' ) with patch.object(lowerCamelCase__ ,'argv' ,lowerCamelCase__ ): UpperCAmelCase__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCamelCase__ ,0.6_6_6 ) @slow @require_torch_non_multi_gpu def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(lowerCamelCase__ ) UpperCAmelCase__ = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowerCamelCase__ ) UpperCAmelCase__ = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowerCamelCase__ )
98
0
"""simple docstring""" import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup lowerCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , **__a : Any ) -> Any: requires_backends(self , ["bs4"] ) super().__init__(**__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[Any] ) -> Union[str, Any]: _UpperCamelCase : int = [] _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Any = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _UpperCamelCase : Any = parent.find_all(child.name , recursive=__a ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__a ) else next(i for i, s in enumerate(__a , 1 ) if s is child ) ) _UpperCamelCase : List[Any] = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : List[Any] ) -> List[Any]: _UpperCamelCase : Any = BeautifulSoup(__a , "html.parser" ) _UpperCamelCase : Dict = [] _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : List[str] = [] for element in html_code.descendants: if type(__a ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _UpperCamelCase : List[str] = html.unescape(__a ).strip() if not text_in_this_tag: continue all_doc_strings.append(__a ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = self.xpath_soup(__a ) stringaxtag_seq.append(__a ) stringaxsubs_seq.append(__a ) if len(__a ) != len(__a ): raise ValueError("Number of doc strings and xtags does not correspond" ) if len(__a ) != len(__a ): raise ValueError("Number of doc strings and xsubs does not correspond" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Tuple , __a : int ) -> List[Any]: _UpperCamelCase : int = "" for tagname, subs in zip(__a , __a ): xpath += F'''/{tagname}''' if subs != 0: xpath += F'''[{subs}]''' return xpath def __call__( self : List[str] , __a : str ) -> BatchFeature: _UpperCamelCase : str = False # Check that strings has a valid type if isinstance(__a , __a ): _UpperCamelCase : int = True elif isinstance(__a , (list, tuple) ): if len(__a ) == 0 or isinstance(html_strings[0] , __a ): _UpperCamelCase : List[str] = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " F'''but is of type {type(__a )}.''' ) _UpperCamelCase : Optional[Any] = bool(isinstance(__a , (list, tuple) ) and (isinstance(html_strings[0] , __a )) ) if not is_batched: _UpperCamelCase : str = [html_strings] # Get nodes + xpaths _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Any = [] for html_string in html_strings: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : str = self.get_three_from_single(__a ) nodes.append(__a ) _UpperCamelCase : Any = [] for node, tag_list, sub_list in zip(__a , __a , __a ): _UpperCamelCase : Dict = self.construct_xpath(__a , __a ) xpath_strings.append(__a ) xpaths.append(__a ) # return as Dict _UpperCamelCase : Optional[Any] = {"nodes": nodes, "xpaths": xpaths} _UpperCamelCase : Any = BatchFeature(data=__a , tensor_type=__a ) return encoded_inputs
310
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : List[Any] , __a : str=13 , __a : Any=30 , __a : List[str]=2 , __a : Dict=3 , __a : Union[str, Any]=True , __a : Dict=True , __a : List[str]=32 , __a : Tuple=5 , __a : str=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : str=0.1 , __a : Optional[int]=0.1 , __a : Union[str, Any]=10 , __a : Optional[Any]=0.02 , __a : List[Any]=None , __a : str=2 , ) -> int: _UpperCamelCase : Tuple = parent _UpperCamelCase : str = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : List[str] = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : int = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Any = hidden_act _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = type_sequence_label_size _UpperCamelCase : int = initializer_range _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Any = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : Optional[int] = (image_size // patch_size) ** 2 _UpperCamelCase : Optional[int] = num_patches + 1 def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Union[str, Any] = None if self.use_labels: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : Any = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Optional[int] , __a : Union[str, Any] , __a : Tuple ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = ViTModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Tuple = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : str , __a : Optional[int] , __a : int ) -> Optional[int]: _UpperCamelCase : Tuple = ViTForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Any = model(__a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : Union[str, Any] = ViTForMaskedImageModeling(__a ) model.to(__a ) model.eval() _UpperCamelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : Dict = model(__a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Tuple , __a : int , __a : Dict ) -> int: _UpperCamelCase : Any = self.type_sequence_label_size _UpperCamelCase : Optional[Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : int = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase : Tuple = 1 _UpperCamelCase : Union[str, Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : List[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: _UpperCamelCase : Dict = self.prepare_config_and_inputs() ( ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ) : Union[str, Any] = config_and_inputs _UpperCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :Any = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :str = True SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :int = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase : Dict = ViTModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: pass def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : List[Any] = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase, _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(__a ) _UpperCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[str] = [*signature.parameters.keys()] _UpperCamelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : List[str] = ViTModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: _UpperCamelCase : List[Any] = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(__a ) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[Any] = prepare_img() _UpperCamelCase : Any = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : Dict = model(**__a ) # verify the logits _UpperCamelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) _UpperCamelCase : str = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _UpperCamelCase : List[str] = ViTModel.from_pretrained("facebook/dino-vits8" ).to(__a ) _UpperCamelCase : Union[str, Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : str = model(__a , interpolate_pos_encoding=__a ) # verify the logits _UpperCamelCase : int = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , __a ) _UpperCamelCase : int = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(__a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Tuple = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) _UpperCamelCase : int = self.default_image_processor _UpperCamelCase : Dict = prepare_img() _UpperCamelCase : Union[str, Any] = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCamelCase : int = model(__a )
310
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = """https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg""" __lowerCamelCase = Image.open(requests.get(A__ , stream=A__ ).raw ).convert("""RGB""" ) return image def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' __lowerCamelCase = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[Any] , A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = dct.pop(A__ ) __lowerCamelCase = val def lowerCamelCase__ ( A__ : str , A__ : int ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __lowerCamelCase = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) __lowerCamelCase = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict __lowerCamelCase = torch.cat((q_bias, torch.zeros_like(A__ , requires_grad=A__ ), v_bias) ) __lowerCamelCase = qkv_bias def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = 364 if """coco""" in model_name else 224 __lowerCamelCase = InstructBlipVisionConfig(image_size=A__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: __lowerCamelCase = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __lowerCamelCase = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: __lowerCamelCase = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" , vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: __lowerCamelCase = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" , vocab_size=32001 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 __lowerCamelCase = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() __lowerCamelCase = InstructBlipConfig(vision_config=A__ , text_config=A__ , qformer_config=A__ ) return config, image_size @torch.no_grad() def lowerCamelCase__ ( A__ : Any , A__ : str=None , A__ : Any=False ): '''simple docstring''' __lowerCamelCase = AutoTokenizer.from_pretrained("""bert-base-uncased""" , truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: __lowerCamelCase = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" , truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) __lowerCamelCase = LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""" , truncation_side="""left""" , bos_token="""</s>""" , unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) __lowerCamelCase, __lowerCamelCase = get_blipa_config(A__ ) __lowerCamelCase = InstructBlipForConditionalGeneration(A__ ).eval() __lowerCamelCase = { """instructblip-vicuna-7b""": ("""blip2_vicuna_instruct""", """vicuna7b"""), """instructblip-vicuna-13b""": ("""blip2_vicuna_instruct""", """vicuna13b"""), """instructblip-flan-t5-xl""": ("""blip2_t5_instruct""", """flant5xl"""), """instructblip-flan-t5-xxl""": ("""blip2_t5_instruct""", """flant5xxl"""), } __lowerCamelCase, __lowerCamelCase = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) __lowerCamelCase = """cuda:1""" if torch.cuda.is_available() else """cpu""" __lowerCamelCase = """cuda:2""" if torch.cuda.is_available() else """cpu""" __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = load_model_and_preprocess( name=A__ , model_type=A__ , is_eval=A__ , device=A__ ) original_model.eval() print("""Done!""" ) # update state dict keys __lowerCamelCase = original_model.state_dict() __lowerCamelCase = create_rename_keys(A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __lowerCamelCase = state_dict.pop(A__ ) if key.startswith("""Qformer.bert""" ): __lowerCamelCase = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: __lowerCamelCase = key.replace("""self""" , """attention""" ) if "llm_proj" in key: __lowerCamelCase = key.replace("""llm_proj""" , """language_projection""" ) if "t5_proj" in key: __lowerCamelCase = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""llm_model""" ): __lowerCamelCase = key.replace("""llm_model""" , """language_model""" ) if key.startswith("""t5""" ): __lowerCamelCase = key.replace("""t5""" , """language""" ) __lowerCamelCase = val # read in qv biases read_in_q_v_bias(A__ , A__ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(A__ , strict=A__ ) __lowerCamelCase = load_demo_image() __lowerCamelCase = """What is unusual about this image?""" # create processor __lowerCamelCase = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=A__ , image_std=A__ ) __lowerCamelCase = InstructBlipProcessor( image_processor=A__ , tokenizer=A__ , qformer_tokenizer=A__ , ) __lowerCamelCase = processor(images=A__ , text=A__ , return_tensors="""pt""" ).to(A__ ) # make sure processor creates exact same pixel values __lowerCamelCase = vis_processors["""eval"""](A__ ).unsqueeze(0 ).to(A__ ) __lowerCamelCase = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , A__ ) original_model.to(A__ ) hf_model.to(A__ ) with torch.no_grad(): if "vicuna" in model_name: __lowerCamelCase = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits __lowerCamelCase = hf_model(**A__ ).logits else: __lowerCamelCase = original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits __lowerCamelCase = tokenizer("""\n""" , return_tensors="""pt""" ).input_ids.to(A__ ) __lowerCamelCase = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) __lowerCamelCase = hf_model(**A__ , labels=A__ ).logits print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape __lowerCamelCase = 1E-4 if """vicuna""" in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , A__ , atol=A__ ) print("""Looks ok!""" ) print("""Generating with original model...""" ) __lowerCamelCase = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) __lowerCamelCase = hf_model.generate( **A__ , do_sample=A__ , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? __lowerCamelCase = 2 print("""Original generation:""" , A__ ) __lowerCamelCase = processor.batch_decode(A__ , skip_special_tokens=A__ ) __lowerCamelCase = [text.strip() for text in output_text] print("""HF generation:""" , A__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(A__ ) hf_model.save_pretrained(A__ ) if push_to_hub: processor.push_to_hub(f'Salesforce/{model_name}' ) hf_model.push_to_hub(f'Salesforce/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() UpperCAmelCase_ = [ 'instructblip-vicuna-7b', 'instructblip-vicuna-13b', 'instructblip-flan-t5-xl', 'instructblip-flan-t5-xxl', ] parser.add_argument( '--model_name', default='instructblip-flan-t5-xl', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) UpperCAmelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
12
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
1
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') SCREAMING_SNAKE_CASE_ : int = int(input('Enter number: ').strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
350
"""simple docstring""" import sys from collections import defaultdict class a : """simple docstring""" def __init__( self: Union[str, Any] ): """simple docstring""" A__ = [] def UpperCamelCase ( self: List[str] , UpperCamelCase: int ): """simple docstring""" return self.node_position[vertex] def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: str ): """simple docstring""" A__ = pos def UpperCamelCase ( self: Dict , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: str , UpperCamelCase: List[str] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A__ = 2 * start + 1 else: A__ = 2 * start + 2 if heap[smallest_child] < heap[start]: A__ , A__ = heap[smallest_child], positions[smallest_child] A__ , A__ = ( heap[start], positions[start], ) A__ , A__ = temp, tempa A__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , UpperCamelCase ) self.top_to_bottom(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: Tuple , UpperCamelCase: Tuple , UpperCamelCase: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Any ): """simple docstring""" A__ = position[index] while index != 0: A__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A__ = heap[parent] A__ = position[parent] self.set_position(position[parent] , UpperCamelCase ) else: A__ = val A__ = temp self.set_position(UpperCamelCase , UpperCamelCase ) break A__ = parent else: A__ = val A__ = temp self.set_position(UpperCamelCase , 0 ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: List[str] , UpperCamelCase: Optional[int] ): """simple docstring""" A__ = len(UpperCamelCase ) // 2 - 1 for i in range(UpperCamelCase , -1 , -1 ): self.top_to_bottom(UpperCamelCase , UpperCamelCase , len(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase ( self: Optional[int] , UpperCamelCase: str , UpperCamelCase: List[str] ): """simple docstring""" A__ = positions[0] A__ = sys.maxsize self.top_to_bottom(UpperCamelCase , 0 , len(UpperCamelCase ) , UpperCamelCase ) return temp def _snake_case ( UpperCAmelCase_ : Union[str, Any] ): A__ = Heap() A__ = [0] * len(UpperCAmelCase_ ) A__ = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A__ = [] # Heap of Distance of vertices from their neighboring vertex A__ = [] for vertex in range(len(UpperCAmelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase_ ) heap.node_position.append(UpperCAmelCase_ ) A__ = [] A__ = 1 A__ = sys.maxsize for neighbor, distance in adjacency_list[0]: A__ = 0 A__ = distance heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(1 , len(UpperCAmelCase_ ) ): A__ = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase_ )] ): A__ = distance heap.bottom_to_top( UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) A__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > SCREAMING_SNAKE_CASE_ : int = int(input('Enter number of edges: ').strip()) SCREAMING_SNAKE_CASE_ : str = defaultdict(list) for _ in range(edges_number): SCREAMING_SNAKE_CASE_ : Optional[int] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
69
0
def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : Optional[int] =[int(SCREAMING_SNAKE_CASE ) for i in ip_va_address.split("." ) if i.isdigit()] return len(SCREAMING_SNAKE_CASE ) == 4 and all(0 <= int(SCREAMING_SNAKE_CASE ) <= 254 for octet in octets ) if __name__ == "__main__": UpperCAmelCase : Optional[int] = input().strip() UpperCAmelCase : Optional[int] = """valid""" if is_ip_va_address_valid(ip) else """invalid""" print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
95
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 10**9 ): _snake_case = 1 _snake_case = 2 _snake_case = 0 _snake_case = 0 _snake_case = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _snake_case = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
341
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCamelCase__ : str = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase__ : Dict = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCamelCase__ : List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING UpperCamelCase__ : int = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> Any: """simple docstring""" a = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): a = True # Deal with multi-line cases elif ( re.search( rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""", snake_case_, ) is not None ): a = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: a = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files a = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] a = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed a = True if not attribute_used: a = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: a = True elif attribute in ["tie_word_embeddings"] and default_value is False: a = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: a = True elif attribute.endswith('''_token_id''' ): a = True # configuration class specific cases if not case_allowed: a = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, [] ) a = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[Any]: """simple docstring""" a = dict(inspect.signature(config_class.__init__ ).parameters ) a = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] a = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass a = {} if len(config_class.attribute_map ) > 0: a = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files a = inspect.getsourcefile(snake_case_ ) a = os.path.dirname(snake_case_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. a = [os.path.join(snake_case_, snake_case_ ) for fn in os.listdir(snake_case_ ) if fn.startswith('''modeling_''' )] # Get the source code strings a = [] for path in modeling_paths: if os.path.isfile(snake_case_ ): with open(snake_case_ ) as fp: modeling_sources.append(fp.read() ) a = [] for config_param, default_value in zip(snake_case_, snake_case_ ): # `attributes` here is all the variant names for `config_param` a = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(snake_case_, snake_case_, snake_case_, snake_case_ ): unused_attributes.append(attributes[0] ) return sorted(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: """simple docstring""" a = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) a = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ), lambda snake_case_ : inspect.isclass(snake_case_ ) and issubclass(snake_case_, snake_case_ ) and inspect.getmodule(snake_case_ ) == inspect.getmodule(_config_class ), ) ] for config_class in config_classes_in_module: a = check_config_attributes_being_used(snake_case_ ) if len(snake_case_ ) > 0: a = unused_attributes if len(snake_case_ ) > 0: a = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(snake_case_ ) if __name__ == "__main__": check_config_attributes()
354
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]: """simple docstring""" monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''', set() ) @pytest.fixture def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" class lowerCamelCase_ : def __init__( self : Dict ,__lowerCamelCase : List[str] ): '''simple docstring''' a = metric_id class lowerCamelCase_ : SCREAMING_SNAKE_CASE_ = [MetricMock(a_ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''', HfhMock() ) @pytest.mark.parametrize( '''func, args''', [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Tuple: """simple docstring""" if "tmp_path" in args: a = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(snake_case_, match='''https://huggingface.co/docs/evaluate''' ): func(*snake_case_ )
330
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } a_ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def a__ ( _UpperCamelCase : str ,_UpperCamelCase : Tuple ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Dict ): for attribute in key.split('''.''' ): __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ) if weight_type is not None: __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( _UpperCamelCase : Any ,_UpperCamelCase : Any ): __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hf_model.config.feat_extract_norm == '''group''' ,) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCamelCase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(_UpperCamelCase )[0].split('''.''' )[-2] __lowerCamelCase = mapped_key.replace('''*''' ,_UpperCamelCase ) if "weight_g" in name: __lowerCamelCase = '''weight_g''' elif "weight_v" in name: __lowerCamelCase = '''weight_v''' elif "bias" in name: __lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase = '''weight''' else: __lowerCamelCase = None set_recursively(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( _UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Dict ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ): __lowerCamelCase = full_name.split('''conv_layers.''' )[-1] __lowerCamelCase = name.split('''.''' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : List[str] ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : List[Any]=True ): if config_path is not None: __lowerCamelCase = UniSpeechSatConfig.from_pretrained(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatConfig() __lowerCamelCase = '''''' if is_finetuned: __lowerCamelCase = UniSpeechSatForCTC(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatForPreTraining(_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __lowerCamelCase = model[0].eval() recursively_load_weights(_UpperCamelCase ,_UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) a_ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
1
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __A = get_tests_dir("""fixtures""") __A = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") __A = get_tests_dir("""fixtures/dummy-config.json""") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = 0 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :List[str] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally lowerCAmelCase__ :Dict = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase ).to_dict() config_dict.pop('feature_extractor_type' ) lowerCAmelCase__ :Optional[Any] = WavaVecaFeatureExtractor(**__UpperCAmelCase ) # save in new folder model_config.save_pretrained(__UpperCAmelCase ) config.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :str = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase ) # make sure private variable is not incorrectly saved lowerCAmelCase__ :Optional[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCAmelCase__ :int = AutoFeatureExtractor.from_pretrained('bert-base' ) def snake_case ( self ): '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCAmelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase , revision='aaaaaa' ) def snake_case ( self ): '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): lowerCAmelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def snake_case ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ :Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=__UpperCAmelCase ) lowerCAmelCase__ :Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=__UpperCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :str = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase , trust_remote_code=__UpperCAmelCase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def snake_case ( self ): '''simple docstring''' try: AutoConfig.register('custom' , __UpperCAmelCase ) AutoFeatureExtractor.register(__UpperCAmelCase , __UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCAmelCase ): AutoFeatureExtractor.register(__UpperCAmelCase , __UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase__ :List[Any] = CustomFeatureExtractor.from_pretrained(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def snake_case ( self ): '''simple docstring''' class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :List[Any] = True try: AutoConfig.register('custom' , __UpperCAmelCase ) AutoFeatureExtractor.register(__UpperCAmelCase , __UpperCAmelCase ) # If remote code is not set, the default is to use local lowerCAmelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=__UpperCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=__UpperCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(__UpperCAmelCase , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
254
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) ->str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path lowerCAmelCase__ :Optional[int] = quote(_SCREAMING_SNAKE_CASE ) return hfh.hf_hub_url(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' , revision=_SCREAMING_SNAKE_CASE )
254
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed snake_case : str = '''true''' def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple=8_2 , __lowerCAmelCase : List[Any]=1_6 ): set_seed(4_2 ) a__ = RegressionModel() a__ = deepcopy(_lowerCamelCase ) a__ = RegressionDataset(length=_lowerCamelCase ) a__ = DataLoader(_lowerCamelCase , batch_size=_lowerCamelCase ) model.to(accelerator.device ) a__ = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) return model, ddp_model, dataloader def __lowercase ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : List[Any]=False ): a__ = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) a__ = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(__lowerCAmelCase : Optional[Any] ): a__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs with accelerator.main_process_first(): a__ = dataset.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) a__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__lowerCAmelCase : Optional[Any] ): if use_longest: return tokenizer.pad(_lowerCamelCase , padding='longest' , return_tensors='pt' ) return tokenizer.pad(_lowerCamelCase , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return DataLoader(_lowerCamelCase , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=1_6 ) def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] ): a__ = Accelerator(dispatch_batches=_lowerCamelCase , split_batches=_lowerCamelCase ) a__ = get_dataloader(_lowerCamelCase , not dispatch_batches ) a__ = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=_lowerCamelCase ) a__ = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ): a__ = [] for batch in dataloader: a__ = batch.values() with torch.no_grad(): a__ = model(_lowerCamelCase ) a__ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) a__ = [], [] for logit, targ in logits_and_targets: logits.append(_lowerCamelCase ) targs.append(_lowerCamelCase ) a__ = torch.cat(_lowerCamelCase ), torch.cat(_lowerCamelCase ) return logits, targs def __lowercase ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : Dict=8_2 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Any=1_6 ): a__ = get_basic_setup(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) a__ = generate_predictions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) assert ( len(_lowerCamelCase ) == num_samples ), F'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_lowerCamelCase )}' def __lowercase ( __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False ): a__ = evaluate.load('glue' , 'mrpc' ) a__ = get_mrpc_setup(_lowerCamelCase , _lowerCamelCase ) # First do baseline a__ = setup["""no"""] model.to(_lowerCamelCase ) model.eval() for batch in dataloader: batch.to(_lowerCamelCase ) with torch.inference_mode(): a__ = model(**_lowerCamelCase ) a__ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_lowerCamelCase , references=batch['labels'] ) a__ = metric.compute() # Then do distributed a__ = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): a__ = model(**_lowerCamelCase ) a__ = outputs.logits.argmax(dim=-1 ) a__ = batch["""labels"""] a__ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_lowerCamelCase , references=_lowerCamelCase ) a__ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def __lowercase ( ): a__ = Accelerator(split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(_lowerCamelCase , _lowerCamelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: a__ = Accelerator(split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase ) if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(_lowerCamelCase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) a__ = Accelerator() test_torch_metrics(_lowerCamelCase , 5_1_2 ) accelerator.state._reset_state() def __lowercase ( __lowerCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
240
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A( a , unittest.TestCase ): snake_case_ = KandinskyVaaPipeline snake_case_ = [ '''image_embeds''', '''negative_image_embeds''', ] snake_case_ = ['''image_embeds''', '''negative_image_embeds'''] snake_case_ = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] snake_case_ = False @property def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' return 100 @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) __a = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __a = UNetaDConditionModel(**_snake_case ) return model @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __a = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.dummy_unet __a = self.dummy_movq __a = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_snake_case , set_alpha_to_one=_snake_case , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_snake_case , ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=0 ) -> str: '''simple docstring''' __a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_snake_case ) ).to(_snake_case ) __a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _snake_case ) if str(_snake_case ).startswith('''mps''' ): __a = torch.manual_seed(_snake_case ) else: __a = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) __a = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = '''cpu''' __a = self.get_dummy_components() __a = self.pipeline_class(**_snake_case ) __a = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __a = pipe(**self.get_dummy_inputs(_snake_case ) ) __a = output.images __a = pipe( **self.get_dummy_inputs(_snake_case ) , return_dict=_snake_case , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array( [0.623_7976, 1.0, 0.3644_1332, 1.0, 0.7063_9634, 0.2987_7186, 0.8565_2125, 0.521_6843, 0.5445_4046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) __a = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_snake_case ) __a = KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) __a = pipeline.to(_snake_case ) pipeline.set_progress_bar_config(disable=_snake_case ) __a = '''red cat, 4k photo''' __a = torch.Generator(device='''cuda''' ).manual_seed(0 ) __a , __a = pipe_prior( _snake_case , generator=_snake_case , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __a = torch.Generator(device='''cuda''' ).manual_seed(0 ) __a = pipeline( image_embeds=_snake_case , negative_image_embeds=_snake_case , generator=_snake_case , num_inference_steps=100 , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_snake_case , _snake_case )
33
import logging from transformers.configuration_utils import PretrainedConfig A : Union[str, Any] = logging.getLogger(__name__) class __A( a ): snake_case_ = '''masked_bert''' def __init__( self , _snake_case=30_522 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3_072 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="topK" , _snake_case="constant" , _snake_case=0.0 , **_snake_case , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_snake_case , **_snake_case ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = pruning_method __a = mask_init __a = mask_scale
33
1
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : str , snake_case__ : list[str] ): """simple docstring""" _snake_case : int = """""" for word_or_phrase in separated: if not isinstance(snake_case__ , snake_case__ ): raise Exception("""join() accepts only strings to be joined""" ) joined += word_or_phrase + separator return joined.strip(snake_case__ ) if __name__ == "__main__": from doctest import testmod testmod()
64
"""simple docstring""" from math import factorial def UpperCAmelCase ( UpperCAmelCase = 20 ) -> int: snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case_ = n // 2 return int(factorial(UpperCAmelCase ) / (factorial(UpperCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __UpperCamelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number.''')
69
0
from collections.abc import Callable import numpy as np def __lowercase ( a__ , a__ , a__ , a__ , a__ ) -> np.array: __SCREAMING_SNAKE_CASE = int(np.ceil((x_end - xa) / step_size ) ) __SCREAMING_SNAKE_CASE = np.zeros((n + 1,) ) __SCREAMING_SNAKE_CASE = ya __SCREAMING_SNAKE_CASE = xa for k in range(a__ ): __SCREAMING_SNAKE_CASE = y[k] + step_size * ode_func(a__ , y[k] ) __SCREAMING_SNAKE_CASE = y[k] + ( (step_size / 2) * (ode_func(a__ , y[k] ) + ode_func(x + step_size , a__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
118
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): lowerCAmelCase__ : Optional[int] =True from torch.cuda.amp import autocast lowerCAmelCase__ : List[Any] =logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase__ : Optional[str] = field( default=UpperCamelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase__ : Optional[bool] = field( default=UpperCamelCase_ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) UpperCamelCase__ : Optional[bool] = field( default=UpperCamelCase_ , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) UpperCamelCase__ : Optional[float] = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) UpperCamelCase__ : Optional[float] = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) UpperCamelCase__ : Optional[float] = field( default=0.9_9_9_9_9_5 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def __lowercase ( a__ , a__ ) -> Dict: logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __SCREAMING_SNAKE_CASE = logging.WARNING if model_args.verbose_logging: __SCREAMING_SNAKE_CASE = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): __SCREAMING_SNAKE_CASE = logging.INFO logger.setLevel(a__ ) @dataclass class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : str = field( default=UpperCamelCase_ , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase__ : Optional[str] = field( default=UpperCamelCase_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase__ : Optional[str] = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) UpperCamelCase__ : Optional[str] = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) UpperCamelCase__ : Optional[str] = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) UpperCamelCase__ : bool = field( default=UpperCamelCase_ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCamelCase__ : Optional[int] = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase__ : Optional[int] = field( default=UpperCamelCase_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase__ : Optional[float] = field( default=2_0.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : WavaVecaForPreTraining UpperCamelCase__ : WavaVecaFeatureExtractor UpperCamelCase__ : Union[bool, str] = "longest" UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[int] = None def __call__( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.feature_extractor.pad( _A , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __SCREAMING_SNAKE_CASE = self.model._get_feat_extract_output_lengths(batch['input_values'].shape[-1] ) __SCREAMING_SNAKE_CASE = batch['input_values'].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __SCREAMING_SNAKE_CASE = self.model._get_feat_extract_output_lengths(batch['attention_mask'].sum(-1 ) ).to( torch.long ) __SCREAMING_SNAKE_CASE = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['input_values'].device ) # these two operations makes sure that all values # before the output lengths indices are attended to __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices __SCREAMING_SNAKE_CASE = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_A , min_masks=2 , ) return batch class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , *_A , _A=1 , _A=0 , _A=1.0 , **_A ): '''simple docstring''' super().__init__(*_A , **_A ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = max_gumbel_temp __SCREAMING_SNAKE_CASE = min_gumbel_temp __SCREAMING_SNAKE_CASE = gumbel_temp_decay def _A ( self , _A , _A ): '''simple docstring''' model.train() __SCREAMING_SNAKE_CASE = self._prepare_inputs(_A ) if self.use_amp: with autocast(): __SCREAMING_SNAKE_CASE = self.compute_loss(_A , _A ) else: __SCREAMING_SNAKE_CASE = self.compute_loss(_A , _A ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __SCREAMING_SNAKE_CASE = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __SCREAMING_SNAKE_CASE = loss.sum() / (inputs['mask_time_indices']).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __SCREAMING_SNAKE_CASE = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def __lowercase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() configure_logger(a__ , a__ ) # Downloading and loading a dataset from the hub. __SCREAMING_SNAKE_CASE = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __SCREAMING_SNAKE_CASE = DatasetDict() __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __SCREAMING_SNAKE_CASE = DatasetDict() __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='validation' , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=a__ ) def prepare_dataset(a__ ): # check that all files have the correct sampling rate __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays __SCREAMING_SNAKE_CASE = datasets.map( a__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['train'].column_names ) # filter audio files that are too long __SCREAMING_SNAKE_CASE = vectorized_datasets.filter( lambda a__ : len(data['speech'] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(a__ ): return feature_extractor(batch['speech'] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` __SCREAMING_SNAKE_CASE = vectorized_datasets.map( a__ , batched=a__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['train'].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __SCREAMING_SNAKE_CASE = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( 'PreTraining is only supported for ``config.do_stable_layer_norm=True`` and' ' ``config.feat_extract_norm=\'layer\'' ) __SCREAMING_SNAKE_CASE = WavaVecaForPreTraining(a__ ) __SCREAMING_SNAKE_CASE = DataCollatorForWavaVecaPretraining(model=a__ , feature_extractor=a__ ) __SCREAMING_SNAKE_CASE = WavaVecaPreTrainer( model=a__ , data_collator=a__ , args=a__ , train_dataset=vectorized_datasets['train'] , eval_dataset=vectorized_datasets['validation'] , tokenizer=a__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
118
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=13 ,SCREAMING_SNAKE_CASE__=7 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=99 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=5 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=37 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=5_12 ,SCREAMING_SNAKE_CASE__=16 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=None ,) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = parent __SCREAMING_SNAKE_CASE :Tuple = batch_size __SCREAMING_SNAKE_CASE :List[str] = seq_length __SCREAMING_SNAKE_CASE :int = is_training __SCREAMING_SNAKE_CASE :Optional[Any] = use_input_mask __SCREAMING_SNAKE_CASE :Any = use_token_type_ids __SCREAMING_SNAKE_CASE :Any = use_labels __SCREAMING_SNAKE_CASE :int = vocab_size __SCREAMING_SNAKE_CASE :Optional[int] = hidden_size __SCREAMING_SNAKE_CASE :int = num_hidden_layers __SCREAMING_SNAKE_CASE :Optional[Any] = num_attention_heads __SCREAMING_SNAKE_CASE :Tuple = intermediate_size __SCREAMING_SNAKE_CASE :Optional[int] = hidden_act __SCREAMING_SNAKE_CASE :Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE :Any = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :Union[str, Any] = max_position_embeddings __SCREAMING_SNAKE_CASE :List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE :Dict = type_sequence_label_size __SCREAMING_SNAKE_CASE :List[str] = initializer_range __SCREAMING_SNAKE_CASE :Optional[Any] = num_labels __SCREAMING_SNAKE_CASE :Tuple = num_choices __SCREAMING_SNAKE_CASE :Any = scope def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __SCREAMING_SNAKE_CASE :int = None if self.use_input_mask: __SCREAMING_SNAKE_CASE :Dict = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE :Optional[Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE :Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __SCREAMING_SNAKE_CASE :List[Any] = None __SCREAMING_SNAKE_CASE :List[Any] = None __SCREAMING_SNAKE_CASE :Dict = None if self.use_labels: __SCREAMING_SNAKE_CASE :Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE :int = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __SCREAMING_SNAKE_CASE :Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) __SCREAMING_SNAKE_CASE :Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self ) -> str: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__UpperCAmelCase ,initializer_range=self.initializer_range ,use_stable_embedding=__UpperCAmelCase ,) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = OpenLlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE :Tuple = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Tuple = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :str = True __SCREAMING_SNAKE_CASE :Dict = OpenLlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE :Union[str, Any] = model( __UpperCAmelCase ,attention_mask=__UpperCAmelCase ,encoder_hidden_states=__UpperCAmelCase ,encoder_attention_mask=__UpperCAmelCase ,) __SCREAMING_SNAKE_CASE :int = model( __UpperCAmelCase ,attention_mask=__UpperCAmelCase ,encoder_hidden_states=__UpperCAmelCase ,) __SCREAMING_SNAKE_CASE :str = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = OpenLlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE :str = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = True __SCREAMING_SNAKE_CASE :int = True __SCREAMING_SNAKE_CASE :Dict = OpenLlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass __SCREAMING_SNAKE_CASE :List[Any] = model( __UpperCAmelCase ,attention_mask=__UpperCAmelCase ,encoder_hidden_states=__UpperCAmelCase ,encoder_attention_mask=__UpperCAmelCase ,use_cache=__UpperCAmelCase ,) __SCREAMING_SNAKE_CASE :str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __SCREAMING_SNAKE_CASE :int = ids_tensor((self.batch_size, 3) ,config.vocab_size ) __SCREAMING_SNAKE_CASE :Any = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and __SCREAMING_SNAKE_CASE :List[Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) __SCREAMING_SNAKE_CASE :Dict = torch.cat([input_mask, next_mask] ,dim=-1 ) __SCREAMING_SNAKE_CASE :Optional[int] = model( __UpperCAmelCase ,attention_mask=__UpperCAmelCase ,encoder_hidden_states=__UpperCAmelCase ,encoder_attention_mask=__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,)['''hidden_states'''][0] __SCREAMING_SNAKE_CASE :Union[str, Any] = model( __UpperCAmelCase ,attention_mask=__UpperCAmelCase ,encoder_hidden_states=__UpperCAmelCase ,encoder_attention_mask=__UpperCAmelCase ,past_key_values=__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,)['''hidden_states'''][0] # select random slice __SCREAMING_SNAKE_CASE :Union[str, Any] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE :Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __SCREAMING_SNAKE_CASE :int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1E-3 ) ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) , ) :Any = config_and_inputs __SCREAMING_SNAKE_CASE :Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Tuple = (OpenLlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : int = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : str = False def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :int = OpenLlamaModelTester(self ) __SCREAMING_SNAKE_CASE :Optional[Any] = ConfigTester(self ,config_class=__UpperCAmelCase ,hidden_size=37 ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE :Optional[Any] = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE :Dict = 3 __SCREAMING_SNAKE_CASE :str = input_dict['''input_ids'''] __SCREAMING_SNAKE_CASE :Tuple = input_ids.ne(1 ).to(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :List[str] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) __SCREAMING_SNAKE_CASE :List[str] = OpenLlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE :Optional[Any] = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :str = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE :Dict = 3 __SCREAMING_SNAKE_CASE :str = '''single_label_classification''' __SCREAMING_SNAKE_CASE :Tuple = input_dict['''input_ids'''] __SCREAMING_SNAKE_CASE :str = input_ids.ne(1 ).to(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Union[str, Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) __SCREAMING_SNAKE_CASE :Tuple = OpenLlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE :Optional[Any] = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Any = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE :Dict = 3 __SCREAMING_SNAKE_CASE :List[Any] = '''multi_label_classification''' __SCREAMING_SNAKE_CASE :int = input_dict['''input_ids'''] __SCREAMING_SNAKE_CASE :Optional[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) __SCREAMING_SNAKE_CASE :Any = OpenLlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE :Optional[int] = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE :Optional[Any] = ids_tensor([1, 10] ,config.vocab_size ) __SCREAMING_SNAKE_CASE :List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __SCREAMING_SNAKE_CASE :Any = OpenLlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() __SCREAMING_SNAKE_CASE :Union[str, Any] = original_model(__UpperCAmelCase ).last_hidden_state __SCREAMING_SNAKE_CASE :int = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __SCREAMING_SNAKE_CASE :Optional[Any] = {'''type''': scaling_type, '''factor''': 1_0.0} __SCREAMING_SNAKE_CASE :Dict = OpenLlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() __SCREAMING_SNAKE_CASE :Any = scaled_model(__UpperCAmelCase ).last_hidden_state __SCREAMING_SNAKE_CASE :Any = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1E-5 ) )
191
from __future__ import annotations from typing import Generic, TypeVar a_ = TypeVar("""T""") class __lowerCAmelCase ( Generic[T] ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = data __lowerCamelCase = self __lowerCamelCase = 0 class __lowerCAmelCase ( Generic[T] ): def __init__( self ): '''simple docstring''' # map from node name to the node object __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # create a new set with x as its member __lowerCamelCase = DisjointSetTreeNode(__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # find the set x belongs to (with path-compression) __lowerCamelCase = self.map[data] if elem_ref != elem_ref.parent: __lowerCamelCase = self.find_set(elem_ref.parent.data ) return elem_ref.parent def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # helper function for union operation if nodea.rank > nodea.rank: __lowerCamelCase = nodea else: __lowerCamelCase = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # merge 2 disjoint sets self.link(self.find_set(__UpperCAmelCase ) , self.find_set(__UpperCAmelCase ) ) class __lowerCAmelCase ( Generic[T] ): def __init__( self ): '''simple docstring''' # connections: map from the node to the neighbouring nodes (with weights) __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # add a node ONLY if its not present in the graph if node not in self.connections: __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # add an edge with the given weight self.add_node(__UpperCAmelCase ) self.add_node(__UpperCAmelCase ) __lowerCamelCase = weight __lowerCamelCase = weight def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __UpperCAmelCase : x[2] ) # creating the disjoint set __lowerCamelCase = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__UpperCAmelCase ) # MST generation __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = edges[index] index += 1 __lowerCamelCase = disjoint_set.find_set(__UpperCAmelCase ) __lowerCamelCase = disjoint_set.find_set(__UpperCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) disjoint_set.union(__UpperCAmelCase , __UpperCAmelCase ) return graph
330
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class _lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str=7 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : str=30 , UpperCamelCase__ : Optional[int]=400 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=[0.5, 0.5, 0.5] , UpperCamelCase__ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Optional[int]=1 / 255 , UpperCamelCase__ : Optional[int]=True , ) -> Dict: '''simple docstring''' __UpperCamelCase =size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =do_normalize __UpperCamelCase =image_mean __UpperCamelCase =image_std __UpperCamelCase =do_rescale __UpperCamelCase =rescale_factor __UpperCamelCase =do_pad def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict=False ) -> Union[str, Any]: '''simple docstring''' if not batched: __UpperCamelCase =image_inputs[0] if isinstance(UpperCamelCase__ , Image.Image ): __UpperCamelCase , __UpperCamelCase =image.size else: __UpperCamelCase , __UpperCamelCase =image.shape[1], image.shape[2] if w < h: __UpperCamelCase =int(self.size['''shortest_edge'''] * h / w ) __UpperCamelCase =self.size['''shortest_edge'''] elif w > h: __UpperCamelCase =self.size['''shortest_edge'''] __UpperCamelCase =int(self.size['''shortest_edge'''] * w / h ) else: __UpperCamelCase =self.size['''shortest_edge'''] __UpperCamelCase =self.size['''shortest_edge'''] else: __UpperCamelCase =[] for image in image_inputs: __UpperCamelCase , __UpperCamelCase =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCamelCase =max(UpperCamelCase__ , key=lambda UpperCamelCase__ : item[0] )[0] __UpperCamelCase =max(UpperCamelCase__ , key=lambda UpperCamelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowercase ( __a , unittest.TestCase ): """simple docstring""" lowercase__ = ConditionalDetrImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : str ) -> List[Any]: '''simple docstring''' __UpperCamelCase =ConditionalDetrImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : str ) -> List[str]: '''simple docstring''' __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''size''' ) ) def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , UpperCamelCase__ ) __UpperCamelCase =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase__ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase_ ( self : int ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __UpperCamelCase , __UpperCamelCase =self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase , __UpperCamelCase =self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) __UpperCamelCase =image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __UpperCamelCase , __UpperCamelCase =self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase =image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values __UpperCamelCase , __UpperCamelCase =self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __UpperCamelCase , __UpperCamelCase =self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase =image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values __UpperCamelCase , __UpperCamelCase =self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase_ ( self : int ) -> str: '''simple docstring''' __UpperCamelCase =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: __UpperCamelCase =json.loads(f.read() ) __UpperCamelCase ={'''image_id''': 39769, '''annotations''': target} # encode them __UpperCamelCase =ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) __UpperCamelCase =image_processing(images=UpperCamelCase__ , annotations=UpperCamelCase__ , return_tensors='''pt''' ) # verify pixel values __UpperCamelCase =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase__ ) __UpperCamelCase =torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase__ , atol=1E-4 ) ) # verify area __UpperCamelCase =torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase__ ) ) # verify boxes __UpperCamelCase =torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase__ ) __UpperCamelCase =torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase__ , atol=1E-3 ) ) # verify image_id __UpperCamelCase =torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase__ ) ) # verify is_crowd __UpperCamelCase =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase__ ) ) # verify class_labels __UpperCamelCase =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase__ ) ) # verify orig_size __UpperCamelCase =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase__ ) ) # verify size __UpperCamelCase =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase__ ) ) @slow def UpperCAmelCase_ ( self : Any ) -> Dict: '''simple docstring''' __UpperCamelCase =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: __UpperCamelCase =json.loads(f.read() ) __UpperCamelCase ={'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} __UpperCamelCase =pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them __UpperCamelCase =ConditionalDetrImageProcessor(format='''coco_panoptic''' ) __UpperCamelCase =image_processing(images=UpperCamelCase__ , annotations=UpperCamelCase__ , masks_path=UpperCamelCase__ , return_tensors='''pt''' ) # verify pixel values __UpperCamelCase =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase__ ) __UpperCamelCase =torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase__ , atol=1E-4 ) ) # verify area __UpperCamelCase =torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase__ ) ) # verify boxes __UpperCamelCase =torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase__ ) __UpperCamelCase =torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase__ , atol=1E-3 ) ) # verify image_id __UpperCamelCase =torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase__ ) ) # verify is_crowd __UpperCamelCase =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase__ ) ) # verify class_labels __UpperCamelCase =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase__ ) ) # verify masks __UpperCamelCase =822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCamelCase__ ) # verify orig_size __UpperCamelCase =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase__ ) ) # verify size __UpperCamelCase =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase__ ) )
85
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __lowercase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class _lowercase ( __a ): """simple docstring""" lowercase__ = '''albert''' def __init__( self : List[Any] , UpperCamelCase__ : List[Any]=30000 , UpperCamelCase__ : int=128 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Optional[Any]=12 , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : Union[str, Any]=64 , UpperCamelCase__ : Any=16384 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Optional[int]="gelu_new" , UpperCamelCase__ : int=0 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : Dict=512 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : Tuple=1E-12 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Dict="absolute" , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Optional[Any]=3 , **UpperCamelCase__ : List[str] , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase =vocab_size __UpperCamelCase =embedding_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_hidden_groups __UpperCamelCase =num_attention_heads __UpperCamelCase =inner_group_num __UpperCamelCase =hidden_act __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =classifier_dropout_prob __UpperCamelCase =position_embedding_type class _lowercase ( __a ): """simple docstring""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCamelCase ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
85
1
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : @staticmethod def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' pass @is_pipeline_test @require_vision class _A ( unittest.TestCase ): @require_torch def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) __UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : Union[str, Any] = image_classifier(__UpperCAmelCase , candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__UpperCAmelCase ) , [ [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}], [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}], ] , ) __UpperCAmelCase : List[str] = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, ], [ {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, ], [ {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, ], [ {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, ], [ {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, ], ] , ) @require_tf def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" ) __UpperCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : List[Any] = image_classifier(__UpperCAmelCase , candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}] , ) __UpperCAmelCase : List[str] = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, ], [ {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, ], [ {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, ], [ {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, ], [ {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, {"""score""": 0.333, """label""": ANY(__UpperCAmelCase )}, ], ] , ) @slow @require_torch def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : str = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes __UpperCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : Any = image_classifier(__UpperCAmelCase , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) __UpperCAmelCase : Optional[int] = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Any = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" ) # This is an image of 2 cats with remotes and no planes __UpperCAmelCase : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : List[Any] = image_classifier(__UpperCAmelCase , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) __UpperCAmelCase : List[str] = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , )
254
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int = 50 ): """simple docstring""" __UpperCAmelCase : Optional[int] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'{solution() = }')
254
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class A_ ( _UpperCAmelCase ): '''simple docstring''' UpperCAmelCase_ : List[str] = 'trocr' UpperCAmelCase_ : int = ['past_key_values'] UpperCAmelCase_ : Tuple = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self : Optional[int] , lowercase_ : Optional[int]=50_265 , lowercase_ : Tuple=1_024 , lowercase_ : Union[str, Any]=12 , lowercase_ : Tuple=16 , lowercase_ : Any=4_096 , lowercase_ : Optional[int]="gelu" , lowercase_ : int=512 , lowercase_ : Optional[Any]=0.1 , lowercase_ : Dict=0.0 , lowercase_ : str=0.0 , lowercase_ : Dict=2 , lowercase_ : Dict=0.02 , lowercase_ : str=0.0 , lowercase_ : Optional[int]=True , lowercase_ : str=False , lowercase_ : List[Any]=True , lowercase_ : List[Any]=True , lowercase_ : List[str]=1 , lowercase_ : Optional[int]=0 , lowercase_ : str=2 , **lowercase_ : Optional[Any] , ) -> Dict: UpperCAmelCase : Tuple = vocab_size UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = decoder_layers UpperCAmelCase : List[Any] = decoder_attention_heads UpperCAmelCase : Dict = decoder_ffn_dim UpperCAmelCase : Dict = activation_function UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : str = init_std UpperCAmelCase : Optional[int] = decoder_layerdrop UpperCAmelCase : List[Any] = use_cache UpperCAmelCase : Union[str, Any] = scale_embedding UpperCAmelCase : List[Any] = use_learned_position_embeddings UpperCAmelCase : str = layernorm_embedding super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
355
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowercase__ = 3 def UpperCamelCase( UpperCAmelCase_ ): print('Generating primitive root of p' ) while True: UpperCAmelCase : Union[str, Any] = random.randrange(3 , UpperCAmelCase_ ) if pow(UpperCAmelCase_ , 2 , UpperCAmelCase_ ) == 1: continue if pow(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) == 1: continue return g def UpperCamelCase( UpperCAmelCase_ ): print('Generating prime p...' ) UpperCAmelCase : str = rabin_miller.generate_large_prime(UpperCAmelCase_ ) # select large prime number. UpperCAmelCase : List[str] = primitive_root(UpperCAmelCase_ ) # one primitive root on modulo p. UpperCAmelCase : List[Any] = random.randrange(3 , UpperCAmelCase_ ) # private_key -> have to be greater than 2 for safety. UpperCAmelCase : List[Any] = cryptomath.find_mod_inverse(pow(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ ) UpperCAmelCase : Tuple = (key_size, e_a, e_a, p) UpperCAmelCase : Optional[int] = (key_size, d) return public_key, private_key def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() UpperCAmelCase , UpperCAmelCase : Dict = generate_key(UpperCAmelCase_ ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def UpperCamelCase( ): print('Making key files...' ) make_key_files('elgamal' , 20_48 ) print('Key files generation successful' ) if __name__ == "__main__": main()
280
0
"""simple docstring""" def lowercase ( __snake_case : int , __snake_case : int ): return int((input_a, input_a).count(0 ) != 0 ) def lowercase ( ): assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
33
"""simple docstring""" def lowercase ( __snake_case : int ): if not isinstance(__snake_case , __snake_case ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
33
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {"vocab_file": "vocab.txt"} UpperCamelCase__ = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } UpperCamelCase__ = { "openbmb/cpm-ant-10b": 1_024, } def _UpperCamelCase (a__ :Tuple ): """simple docstring""" UpperCamelCase__ = collections.OrderedDict() with open(a__ , """r""" , encoding="""utf-8""" ) as reader: UpperCamelCase__ = reader.readlines() for index, token in enumerate(a__ ): UpperCamelCase__ = token.rstrip("""\n""" ) UpperCamelCase__ = index return vocab class __SCREAMING_SNAKE_CASE ( _a ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase="<unk>" , __lowerCAmelCase=200 ): UpperCamelCase__ = vocab UpperCamelCase__ = unk_token UpperCamelCase__ = max_input_chars_per_word def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = list(__lowerCAmelCase ) if len(__lowerCAmelCase ) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase__ = 0 UpperCamelCase__ = [] while start < len(__lowerCAmelCase ): UpperCamelCase__ = len(__lowerCAmelCase ) UpperCamelCase__ = None while start < end: UpperCamelCase__ = """""".join(chars[start:end] ) if substr in self.vocab: UpperCamelCase__ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__lowerCAmelCase ) UpperCamelCase__ = end return sub_tokens class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Optional[int] = VOCAB_FILES_NAMES snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case : Optional[int] = ["""input_ids""", """attention_mask"""] snake_case : int = False def __init__( self , __lowerCAmelCase , __lowerCAmelCase="<d>" , __lowerCAmelCase="</d>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="</n>" , __lowerCAmelCase="</_>" , __lowerCAmelCase="left" , **__lowerCAmelCase , ): requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=__lowerCAmelCase , eod_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , line_token=__lowerCAmelCase , space_token=__lowerCAmelCase , padding_side=__lowerCAmelCase , **__lowerCAmelCase , ) UpperCamelCase__ = bod_token UpperCamelCase__ = eod_token UpperCamelCase__ = load_vocab(__lowerCAmelCase ) UpperCamelCase__ = self.encoder[space_token] UpperCamelCase__ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase__ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __lowerCAmelCase : x[1] ) ) UpperCamelCase__ = {v: k for k, v in self.encoder.items()} UpperCamelCase__ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _lowerCamelCase ( self ): return self.encoder[self.bod_token] @property def _lowerCamelCase ( self ): return self.encoder[self.eod_token] @property def _lowerCamelCase ( self ): return self.encoder["\n"] @property def _lowerCamelCase ( self ): return len(self.encoder ) def _lowerCamelCase ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = [] for x in jieba.cut(__lowerCAmelCase , cut_all=__lowerCAmelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__lowerCAmelCase ) ) return output_tokens def _lowerCamelCase ( self , __lowerCAmelCase , **__lowerCAmelCase ): UpperCamelCase__ = [i for i in token_ids if i >= 0] UpperCamelCase__ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase ): return token in self.encoder def _lowerCamelCase ( self , __lowerCAmelCase ): return "".join(__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase ): return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self , __lowerCAmelCase ): return self.decoder.get(__lowerCAmelCase , self.unk_token ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): if os.path.isdir(__lowerCAmelCase ): UpperCamelCase__ = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: UpperCamelCase__ = (filename_prefix + """-""" if filename_prefix else """""") + save_directory UpperCamelCase__ = 0 if " " in self.encoder: UpperCamelCase__ = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase__ = self.encoder["""\n"""] del self.encoder["\n"] UpperCamelCase__ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __lowerCAmelCase : x[1] ) ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" """ Please check that the vocabulary is not corrupted!""" ) UpperCamelCase__ = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase )) return [1] + ([0] * len(__lowerCAmelCase ))
87
0
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowerCamelCase : """simple docstring""" def __init__( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : int = 13 , __magic_name__ : int = 64 , __magic_name__ : int = 2 , __magic_name__ : int = 3 , __magic_name__ : int = 3 , __magic_name__ : bool = True , __magic_name__ : bool = True , __magic_name__ : int = 128 , __magic_name__ : str=[16, 32, 64, 128] , __magic_name__ : int = 7 , __magic_name__ : int = 4 , __magic_name__ : int = 37 , __magic_name__ : str = "gelu" , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , __magic_name__ : int = 10 , __magic_name__ : float = 0.02 , __magic_name__ : int = 2 , __magic_name__ : int = 1 , __magic_name__ : int = 128 , __magic_name__ : List[int] = [2, 2, 2, 2] , __magic_name__ : int = 2 , __magic_name__ : int = 2 , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = encoder_stride SCREAMING_SNAKE_CASE_ = num_attention_outputs SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = embed_dim + 1 SCREAMING_SNAKE_CASE_ = resolution SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = dim SCREAMING_SNAKE_CASE_ = mlp_expansion_ratio def __A ( self : int ) -> Dict: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels def __A ( self : List[Any] ) -> Tuple: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def __A ( self : Dict , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = TFEfficientFormerModel(config=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ = TFEfficientFormerForImageClassification(__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = TFEfficientFormerForImageClassification(__magic_name__ ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowerCamelCase__ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __A ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = TFEfficientFormerModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester( self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def __A ( self : int ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def __A ( self : Dict ) -> Dict: pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def __A ( self : Union[str, Any] ) -> Union[str, Any]: pass def __A ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __A ( self : List[str] ) -> Dict: def check_hidden_states_output(__magic_name__ : Dict , __magic_name__ : int , __magic_name__ : List[str] ): SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) , training=__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__magic_name__ ) , __magic_name__ ) if hasattr(self.model_tester , "encoder_seq_length" ): SCREAMING_SNAKE_CASE_ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: SCREAMING_SNAKE_CASE_ = seq_length * self.model_tester.chunk_length else: SCREAMING_SNAKE_CASE_ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: SCREAMING_SNAKE_CASE_ = outputs.decoder_hidden_states self.asseretIsInstance(__magic_name__ , (list, tuple) ) self.assertEqual(len(__magic_name__ ) , __magic_name__ ) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , "seq_length" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , "decoder_seq_length" , __magic_name__ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def __A ( self : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int=False ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = super()._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def __A ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__magic_name__ ) def __A ( self : List[str] ) -> Any: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @slow def __A ( self : Tuple ) -> Optional[Any]: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = TFEfficientFormerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def __A ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , "seq_length" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , "encoder_seq_length" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , "key_length" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , "chunk_length" , __magic_name__ ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): SCREAMING_SNAKE_CASE_ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) , training=__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) , training=__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def __A ( self : Union[str, Any] ) -> List[str]: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes SCREAMING_SNAKE_CASE_ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=__magic_name__ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.assertTrue(outputs_dict is not None ) def a__ ( ): SCREAMING_SNAKE_CASE_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : Optional[int] ) -> int: return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def __A ( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="tf" ) # forward pass SCREAMING_SNAKE_CASE_ = model(**__magic_name__ , training=__magic_name__ ) # verify the logits SCREAMING_SNAKE_CASE_ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 ) ) @slow def __A ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE_ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="tf" ) # forward pass SCREAMING_SNAKE_CASE_ = model(**__magic_name__ , training=__magic_name__ ) # verify the logits SCREAMING_SNAKE_CASE_ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 ) )
118
def a__ ( __UpperCamelCase ): if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: SCREAMING_SNAKE_CASE_ = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 2 while digits < n: index += 1 SCREAMING_SNAKE_CASE_ = len(str(fibonacci(__UpperCamelCase ) ) ) return index def a__ ( __UpperCamelCase = 1_0_0_0 ): return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
118
1
from random import randint, random def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : int = 5 , ): __lowerCAmelCase = [[-1] * number_of_cells] # Create a highway without any car __lowerCAmelCase = 0 __lowerCAmelCase = max(__lowerCamelCase , 0 ) while i < number_of_cells: __lowerCAmelCase = ( randint(0 , __lowerCamelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _a ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int ): __lowerCAmelCase = 0 __lowerCAmelCase = highway_now[car_index + 1 :] for cell in range(len(__lowerCamelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(__lowerCamelCase , -1 ) def _a ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : int ): __lowerCAmelCase = len(__lowerCamelCase ) # Beforce calculations, the highway is empty __lowerCAmelCase = [-1] * number_of_cells for car_index in range(__lowerCamelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed __lowerCAmelCase = min(highway_now[car_index] + 1 , __lowerCamelCase ) # Number of empty cell before the next car __lowerCAmelCase = get_distance(__lowerCamelCase , __lowerCamelCase ) - 1 # We can't have the car causing an accident __lowerCAmelCase = min(next_highway[car_index] , __lowerCamelCase ) if random() < probability: # Randomly, a driver will slow down __lowerCAmelCase = max(next_highway[car_index] - 1 , 0 ) return next_highway def _a ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : int ): __lowerCAmelCase = len(highway[0] ) for i in range(__lowerCamelCase ): __lowerCAmelCase = update(highway[i] , __lowerCamelCase , __lowerCamelCase ) __lowerCAmelCase = [-1] * number_of_cells for car_index in range(__lowerCamelCase ): __lowerCAmelCase = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) __lowerCAmelCase = (car_index + speed) % number_of_cells # Commit the change of position __lowerCAmelCase = speed highway.append(__lowerCamelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
360
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class a__ : def __init__( self , _A , _A=1_4 , _A=7 , _A=True , _A=True , _A=False , _A=True , _A=9_9 , _A=3_2 , _A=4 , _A=4 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=0.02 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = rotary_dim __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = initializer_range __lowerCAmelCase = None __lowerCAmelCase = vocab_size - 1 __lowerCAmelCase = vocab_size - 1 __lowerCAmelCase = vocab_size - 1 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_A , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = 2_0 __lowerCAmelCase = model_class_name(_A ) __lowerCAmelCase = model.init_cache(input_ids.shape[0] , _A ) __lowerCAmelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" ) __lowerCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCAmelCase = model( input_ids[:, :-1] , attention_mask=_A , past_key_values=_A , position_ids=_A , ) __lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) __lowerCAmelCase = model( input_ids[:, -1:] , attention_mask=_A , past_key_values=outputs_cache.past_key_values , position_ids=_A , ) __lowerCAmelCase = model(_A ) __lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = 2_0 __lowerCAmelCase = model_class_name(_A ) __lowerCAmelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCAmelCase = model.init_cache(input_ids.shape[0] , _A ) __lowerCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCAmelCase = model( input_ids[:, :-1] , attention_mask=_A , past_key_values=_A , position_ids=_A , ) __lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) __lowerCAmelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_A , position_ids=_A , ) __lowerCAmelCase = model(_A , attention_mask=_A ) __lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) @require_flax class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : str = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () _a : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = FlaxGPTJModelTester(self ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_class_name in self.all_model_classes: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_A , _A , _A , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_class_name in self.all_model_classes: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _A , _A , _A , _A ) @tooslow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" ) __lowerCAmelCase = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=_A , truncation=_A ) __lowerCAmelCase = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" ) __lowerCAmelCase = False __lowerCAmelCase = model.config.eos_token_id __lowerCAmelCase = jax.jit(model.generate ) __lowerCAmelCase = jit_generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCAmelCase = tokenizer.batch_decode(_A , skip_special_tokens=_A ) __lowerCAmelCase = [ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(_A , _A ) @is_pt_flax_cross_test def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCAmelCase = self._prepare_for_class(_A , _A ) __lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase = getattr(_A , _A ) __lowerCAmelCase , __lowerCAmelCase = pt_inputs["input_ids"].shape __lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = pt_model_class(_A ).eval() __lowerCAmelCase = model_class(_A , dtype=jnp.floataa ) __lowerCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _A ) __lowerCAmelCase = fx_state with torch.no_grad(): __lowerCAmelCase = pt_model(**_A ).to_tuple() __lowerCAmelCase = fx_model(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_A , _A ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_A ) __lowerCAmelCase = model_class.from_pretrained(_A , from_pt=_A ) __lowerCAmelCase = fx_model_loaded(**_A ).to_tuple() self.assertEqual( len(_A ) , len(_A ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(_A , _A ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCAmelCase = self._prepare_for_class(_A , _A ) __lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase = getattr(_A , _A ) __lowerCAmelCase = pt_model_class(_A ).eval() __lowerCAmelCase = model_class(_A , dtype=jnp.floataa ) __lowerCAmelCase = load_flax_weights_in_pytorch_model(_A , fx_model.params ) __lowerCAmelCase , __lowerCAmelCase = pt_inputs["input_ids"].shape __lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 0 __lowerCAmelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCAmelCase = pt_model(**_A ).to_tuple() __lowerCAmelCase = fx_model(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_A , _A ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_A ) __lowerCAmelCase = pt_model_class.from_pretrained(_A , from_flax=_A ) with torch.no_grad(): __lowerCAmelCase = pt_model_loaded(**_A ).to_tuple() self.assertEqual( len(_A ) , len(_A ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_A , _A ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_class_name in self.all_model_classes: __lowerCAmelCase = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" ) __lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_A )
102
0
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self , a__ ) -> List[Any]: '''simple docstring''' snake_case_ = 3 snake_case_ = 250 snake_case_ = ids_tensor((batch_size, length) , a__ ) snake_case_ = torch.ones((batch_size, length) , device=a__ , dtype=torch.float ) / length return input_ids, scores def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ , snake_case_ = self._get_tensors(5 ) snake_case_ = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(a__ , a__ ) ) snake_case_ , snake_case_ = self._get_tensors(9 ) self.assertFalse(criteria(a__ , a__ ) ) snake_case_ , snake_case_ = self._get_tensors(10 ) self.assertTrue(criteria(a__ , a__ ) ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = MaxLengthCriteria(max_length=10 ) snake_case_ , snake_case_ = self._get_tensors(5 ) self.assertFalse(criteria(a__ , a__ ) ) snake_case_ , snake_case_ = self._get_tensors(9 ) self.assertFalse(criteria(a__ , a__ ) ) snake_case_ , snake_case_ = self._get_tensors(10 ) self.assertTrue(criteria(a__ , a__ ) ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) snake_case_ , snake_case_ = self._get_tensors(5 ) self.assertFalse(criteria(a__ , a__ ) ) snake_case_ , snake_case_ = self._get_tensors(9 ) self.assertFalse(criteria(a__ , a__ ) ) snake_case_ , snake_case_ = self._get_tensors(10 ) self.assertTrue(criteria(a__ , a__ ) ) snake_case_ = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ , snake_case_ = self._get_tensors(5 ) snake_case_ = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(a__ , a__ ) ) snake_case_ = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(a__ , a__ ) ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(a__ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) snake_case_ = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(a__ ) , 1 )
85
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE : Tuple = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = ["ConditionalDetrFeatureExtractor"] _SCREAMING_SNAKE_CASE : List[Any] = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowerCAmelCase_ = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Path , UpperCamelCase : Union[str, None] = None , UpperCamelCase : Union[List[str], None] = None , UpperCamelCase : Union[str, List[str], None] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : List[str] = [file for file in os.listdir(UpperCamelCase ) if os.path.isfile(os.path.join(UpperCamelCase , UpperCamelCase ) )] if identifier is not None: _snake_case : Tuple = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(UpperCamelCase , UpperCamelCase ): for n_ in n_identifier: _snake_case : Dict = [file for file in files if n_ not in file] else: _snake_case : Optional[int] = [file for file in files if n_identifier not in file] _snake_case : List[Any] = ignore_files or [] ignore_files.append('__init__.py' ) _snake_case : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , UpperCamelCase ) if only_modules: _snake_case : Any = file.split('.' )[0] try: _snake_case : List[Any] = getattr(UpperCamelCase , UpperCamelCase ) _snake_case : Any = doctest.DocTestSuite(UpperCamelCase ) _snake_case : Tuple = unittest.TextTestRunner().run(UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f"""{module_identifier} is not a module.""" ) else: _snake_case : Union[str, Any] = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Any = Path('src/transformers' ) _snake_case : Optional[int] = 'modeling' _snake_case : Optional[Any] = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(UpperCamelCase , identifier=UpperCamelCase , ignore_files=UpperCamelCase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : str = Path('src/transformers' ) _snake_case : Dict = 'tokenization' self.analyze_directory(UpperCamelCase , identifier=UpperCamelCase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = Path('src/transformers' ) _snake_case : Optional[int] = 'configuration' self.analyze_directory(UpperCamelCase , identifier=UpperCamelCase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Any = Path('src/transformers' ) _snake_case : List[str] = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(UpperCamelCase , n_identifier=UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = Path('docs/source' ) _snake_case : Optional[Any] = ['favicon.ico'] self.analyze_directory(UpperCamelCase , ignore_files=UpperCamelCase , only_modules=UpperCamelCase )
260
def lowerCamelCase_ ( lowerCAmelCase: int )-> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
260
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase : str = logging.get_logger(__name__) lowercase : List[str] = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class __snake_case ( lowerCAmelCase ): _a : str= "blip_2_vision_model" def __init__( self ,snake_case=1408 ,snake_case=6144 ,snake_case=39 ,snake_case=16 ,snake_case=224 ,snake_case=14 ,snake_case="gelu" ,snake_case=0.00_001 ,snake_case=0.0 ,snake_case=1e-10 ,snake_case=True ,**snake_case ,): '''simple docstring''' super().__init__(**snake_case ) lowercase : str = hidden_size lowercase : int = intermediate_size lowercase : int = num_hidden_layers lowercase : Any = num_attention_heads lowercase : str = patch_size lowercase : Union[str, Any] = image_size lowercase : List[Any] = initializer_range lowercase : Tuple = attention_dropout lowercase : Optional[int] = layer_norm_eps lowercase : List[Any] = hidden_act lowercase : str = qkv_bias @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,**snake_case ): '''simple docstring''' cls._set_token_in_kwargs(snake_case ) lowercase , lowercase : Union[str, Any] = cls.get_config_dict(snake_case ,**snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowercase : Optional[int] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(snake_case ,**snake_case ) class __snake_case ( lowerCAmelCase ): _a : List[str]= "blip_2_qformer" def __init__( self ,snake_case=30522 ,snake_case=768 ,snake_case=12 ,snake_case=12 ,snake_case=3072 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=0.02 ,snake_case=1e-12 ,snake_case=0 ,snake_case="absolute" ,snake_case=2 ,snake_case=1408 ,**snake_case ,): '''simple docstring''' super().__init__(pad_token_id=snake_case ,**snake_case ) lowercase : Optional[Any] = vocab_size lowercase : int = hidden_size lowercase : Union[str, Any] = num_hidden_layers lowercase : int = num_attention_heads lowercase : Optional[int] = hidden_act lowercase : Dict = intermediate_size lowercase : Dict = hidden_dropout_prob lowercase : Any = attention_probs_dropout_prob lowercase : Any = max_position_embeddings lowercase : Dict = initializer_range lowercase : str = layer_norm_eps lowercase : Union[str, Any] = position_embedding_type lowercase : List[str] = cross_attention_frequency lowercase : Union[str, Any] = encoder_hidden_size @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,**snake_case ): '''simple docstring''' cls._set_token_in_kwargs(snake_case ) lowercase , lowercase : Optional[int] = cls.get_config_dict(snake_case ,**snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowercase : Tuple = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(snake_case ,**snake_case ) class __snake_case ( lowerCAmelCase ): _a : Optional[int]= "blip-2" _a : Optional[Any]= True def __init__( self ,snake_case=None ,snake_case=None ,snake_case=None ,snake_case=32 ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) if vision_config is None: lowercase : List[str] = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: lowercase : str = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: lowercase : str = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) lowercase : str = BlipaVisionConfig(**snake_case ) lowercase : Union[str, Any] = BlipaQFormerConfig(**snake_case ) lowercase : Optional[Any] = text_config["""model_type"""] if """model_type""" in text_config else """opt""" lowercase : int = CONFIG_MAPPING[text_model_type](**snake_case ) lowercase : Optional[int] = self.text_config.tie_word_embeddings lowercase : Dict = self.text_config.is_encoder_decoder lowercase : List[Any] = num_query_tokens lowercase : int = self.vision_config.hidden_size lowercase : List[str] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase : List[str] = 1.0 lowercase : Union[str, Any] = 0.02 @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,snake_case ,snake_case ,**snake_case ,): '''simple docstring''' return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = copy.deepcopy(self.__dict__ ) lowercase : Dict = self.vision_config.to_dict() lowercase : Any = self.qformer_config.to_dict() lowercase : Any = self.text_config.to_dict() lowercase : int = self.__class__.model_type return output
20
def _SCREAMING_SNAKE_CASE ( a , a ) -> list[int]: __A : Optional[int] = int(a ) # Initialize Result __A : Optional[int] = [] # Traverse through all denomination for denomination in reversed(a ): # Find denominations while int(a ) >= int(a ): total_value -= int(a ) answer.append(a ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase : List[str] = [] UpperCAmelCase : Optional[int] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): UpperCAmelCase : List[Any] = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) UpperCAmelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase : Optional[int] = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] UpperCAmelCase : Tuple = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F"""Following is minimal change for {value}: """) UpperCAmelCase : Optional[int] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
280
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Dict = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE__ ( __SCREAMING_SNAKE_CASE ): lowercase__ = "swinv2" lowercase__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , lowerCAmelCase_ : List[Any]=2_2_4 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : List[str]=9_6 , lowerCAmelCase_ : Dict=[2, 2, 6, 2] , lowerCAmelCase_ : Union[str, Any]=[3, 6, 1_2, 2_4] , lowerCAmelCase_ : Tuple=7 , lowerCAmelCase_ : Dict=4.0 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : Any=1E-5 , lowerCAmelCase_ : Any=3_2 , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(**_snake_case) lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = depths lowercase_ = len(_snake_case) lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase_ = int(embed_dim * 2 ** (len(_snake_case) - 1)) lowercase_ = (0, 0, 0, 0)
351
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = None lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = True lowercase__ = None lowercase__ = 1 lowercase__ = None lowercase__ = False lowercase__ = None lowercase__ = None def _UpperCAmelCase ( self : int): """simple docstring""" return self.__class__(**{k: copy.deepcopy(lowerCAmelCase_) for k, v in self.__dict__.items()})
313
0
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __a ( *__lowerCamelCase ): with open(__lowerCamelCase, "r" ) as fh: fcntl.flock(__lowerCamelCase, fcntl.LOCK_EX ) try: print(*__lowerCamelCase ) finally: fcntl.flock(__lowerCamelCase, fcntl.LOCK_UN ) _a = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) _a = torch.device('cuda', local_rank) _a = socket.gethostname() _a = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group('nccl') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank _a = dist.get_rank() _a = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
61
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase = 256 class snake_case_ ( __A ): __A : str = ["melgan"] def __init__( self : str , lowercase_ : SpectrogramNotesEncoder , lowercase_ : SpectrogramContEncoder , lowercase_ : TaFilmDecoder , lowercase_ : DDPMScheduler , lowercase_ : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: super().__init__() # From MELGAN lowercase__ : List[Any] = math.log(1E-5 ) # Matches MelGAN training. lowercase__ : str = 4.0 # Largest value for most examples lowercase__ : Any = 1_28 self.register_modules( notes_encoder=lowercase_ , continuous_encoder=lowercase_ , decoder=lowercase_ , scheduler=lowercase_ , melgan=lowercase_ , ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=(-1.0, 1.0) , lowercase_ : Dict=False ) -> Optional[Any]: lowercase__ , lowercase__ : int = output_range if clip: lowercase__ : Optional[Any] = torch.clip(lowercase_ , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase__ : List[str] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __UpperCamelCase ( self : Optional[int] , lowercase_ : List[str] , lowercase_ : List[str]=(-1.0, 1.0) , lowercase_ : List[Any]=False ) -> Union[str, Any]: lowercase__ , lowercase__ : Tuple = input_range lowercase__ : Optional[Any] = torch.clip(lowercase_ , lowercase_ , lowercase_ ) if clip else outputs # Scale to [0, 1]. lowercase__ : Union[str, Any] = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __UpperCamelCase ( self : List[str] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Tuple ) -> List[str]: lowercase__ : Optional[Any] = input_tokens > 0 lowercase__ , lowercase__ : int = self.notes_encoder( encoder_input_tokens=lowercase_ , encoder_inputs_mask=lowercase_ ) lowercase__ , lowercase__ : List[Any] = self.continuous_encoder( encoder_inputs=lowercase_ , encoder_inputs_mask=lowercase_ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : str ) -> Tuple: lowercase__ : Union[str, Any] = noise_time if not torch.is_tensor(lowercase_ ): lowercase__ : Optional[Any] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(lowercase_ ) and len(timesteps.shape ) == 0: lowercase__ : Optional[Any] = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__ : int = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase__ : str = self.decoder( encodings_and_masks=lowercase_ , decoder_input_tokens=lowercase_ , decoder_noise_time=lowercase_ ) return logits @torch.no_grad() def __call__( self : List[str] , lowercase_ : List[List[int]] , lowercase_ : Optional[torch.Generator] = None , lowercase_ : int = 1_00 , lowercase_ : bool = True , lowercase_ : str = "numpy" , lowercase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase_ : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(lowercase_ )}.''' ) lowercase__ : str = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase__ : Optional[int] = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase__ : str = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=lowercase_ , device=self.device ) for i, encoder_input_tokens in enumerate(lowercase_ ): if i == 0: lowercase__ : Union[str, Any] = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase__ : List[str] = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=lowercase_ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase__ : str = ones lowercase__ : str = self.scale_features( lowercase_ , output_range=[-1.0, 1.0] , clip=lowercase_ ) lowercase__ : str = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=lowercase_ , continuous_mask=lowercase_ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase__ : List[str] = randn_tensor( shape=encoder_continuous_inputs.shape , generator=lowercase_ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(lowercase_ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : Optional[int] = self.decode( encodings_and_masks=lowercase_ , input_tokens=lowercase_ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase__ : Optional[Any] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample lowercase__ : Tuple = self.scale_to_features(lowercase_ , input_range=[-1.0, 1.0] ) lowercase__ : List[str] = mel[:1] lowercase__ : Optional[int] = mel.cpu().float().numpy() lowercase__ : str = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ ) logger.info("Generated segment" , lowercase_ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "numpy": lowercase__ : Union[str, Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase__ : Dict = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=lowercase_ )
87
0
import math def lowerCAmelCase_ (lowerCAmelCase__: float , lowerCAmelCase__: float ): """simple docstring""" if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 3_6_0: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(lowerCAmelCase__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
82
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer a : Optional[Any] = logging.get_logger(__name__) a : Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a : Dict = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } a : str = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } a : Optional[int] = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class _a ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_INIT_CONFIGURATION A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = SqueezeBertTokenizer def __init__(self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="[UNK]", SCREAMING_SNAKE_CASE_="[SEP]", SCREAMING_SNAKE_CASE_="[PAD]", SCREAMING_SNAKE_CASE_="[CLS]", SCREAMING_SNAKE_CASE_="[MASK]", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> int: super().__init__( SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, do_lower_case=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, tokenize_chinese_chars=SCREAMING_SNAKE_CASE_, strip_accents=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""", SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get("""strip_accents""", SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""", SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): UpperCAmelCase_: Optional[Any] = getattr(SCREAMING_SNAKE_CASE_, normalizer_state.pop("""type""" ) ) UpperCAmelCase_: Optional[Any] = do_lower_case UpperCAmelCase_: int = strip_accents UpperCAmelCase_: int = tokenize_chinese_chars UpperCAmelCase_: List[Any] = normalizer_class(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = do_lower_case def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Optional[Any]: UpperCAmelCase_: Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCAmelCase_: List[Any] = [self.sep_token_id] UpperCAmelCase_: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCAmelCase_: Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
82
1
import datasets from .evaluate import evaluate lowerCAmelCase_ = '''\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } ''' lowerCAmelCase_ = ''' This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. ''' lowerCAmelCase_ = ''' Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': the text of the answer references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the SQuAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}] >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}] >>> squad_metric = datasets.load_metric("squad") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : str ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : Any ) ->List[str]: snake_case_ = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} snake_case_ = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] snake_case_ = evaluate(dataset=_UpperCamelCase , predictions=_UpperCamelCase ) return score
8
"""simple docstring""" from __future__ import annotations def lowercase ( _snake_case : int | str ) ->bool: """simple docstring""" __snake_case : List[str] = str(_snake_case ) return n == n[::-1] def lowercase ( _snake_case : int = 1_000_000 ) ->str: """simple docstring""" __snake_case : Union[str, Any] = 0 for i in range(1 , _snake_case ): if is_palindrome(_snake_case ) and is_palindrome(bin(_snake_case ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
102
0
"""simple docstring""" import itertools import math def __lowerCamelCase ( __UpperCamelCase ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase_ : Tuple = 2 while True: if is_prime(__UpperCamelCase ): yield num num += 1 def __lowerCamelCase ( __UpperCamelCase = 10001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , __UpperCamelCase ) ) if __name__ == "__main__": print(F"""{solution() = }""")
161
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Union[str, Any] = """gpt_neo""" a_ : List[Any] = ["""past_key_values"""] a_ : Optional[Any] = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Optional[int] , a_ : List[str]=5_02_57 , a_ : List[str]=20_48 , a_ : Union[str, Any]=20_48 , a_ : Union[str, Any]=24 , a_ : Optional[int]=[[["global", "local"], 12]] , a_ : str=16 , a_ : Optional[Any]=None , a_ : str=2_56 , a_ : Union[str, Any]="gelu_new" , a_ : Optional[int]=0.0 , a_ : Optional[Any]=0.0 , a_ : List[Any]=0.0 , a_ : List[Any]=0.1 , a_ : Optional[Any]=1e-5 , a_ : Optional[Any]=0.02 , a_ : int=True , a_ : Optional[Any]=5_02_56 , a_ : Tuple=5_02_56 , **a_ : str , ): lowerCAmelCase_ : Optional[Any] = vocab_size lowerCAmelCase_ : str = max_position_embeddings lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Union[str, Any] = num_layers lowerCAmelCase_ : str = num_heads lowerCAmelCase_ : List[str] = intermediate_size lowerCAmelCase_ : Union[str, Any] = window_size lowerCAmelCase_ : Any = activation_function lowerCAmelCase_ : str = resid_dropout lowerCAmelCase_ : Union[str, Any] = embed_dropout lowerCAmelCase_ : Optional[Any] = attention_dropout lowerCAmelCase_ : Dict = classifier_dropout lowerCAmelCase_ : int = layer_norm_epsilon lowerCAmelCase_ : Dict = initializer_range lowerCAmelCase_ : List[Any] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : str = eos_token_id lowerCAmelCase_ : Optional[Any] = attention_types lowerCAmelCase_ : Optional[Any] = self.expand_attention_types_params(a_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=a_ , eos_token_id=a_ , **a_ ) @staticmethod def lowerCamelCase ( a_ : Optional[Any] ): lowerCAmelCase_ : int = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: """simple docstring""" import torch lowerCAmelCase_ : str = input.size() lowerCAmelCase_ : List[Any] = len(__UpperCamelCase ) lowerCAmelCase_ : Tuple = shape[dimension] lowerCAmelCase_ : Tuple = torch.arange(0 , __UpperCamelCase , __UpperCamelCase ) lowerCAmelCase_ : List[Any] = torch.div(sizedim - size , __UpperCamelCase , rounding_mode="floor" ) + 1 lowerCAmelCase_ : Dict = torch.arange(__UpperCamelCase ) + low_indices[:min_length][:, None] lowerCAmelCase_ : Tuple = [slice(__UpperCamelCase )] * rank lowerCAmelCase_ : List[str] = indices lowerCAmelCase_ : Dict = input[s] lowerCAmelCase_ : Tuple = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__UpperCamelCase ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Any: """simple docstring""" import torch lowerCAmelCase_ : Optional[int] = torch.arange(1 , __UpperCamelCase ) lowerCAmelCase_ : Tuple = torch.remainder(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase_ : Tuple = remainders == 0 lowerCAmelCase_ : List[Any] = candidates[divisor_indices] lowerCAmelCase_ : List[str] = torch.max(__UpperCamelCase ) return largest_divisor, torch.div(__UpperCamelCase , __UpperCamelCase , rounding_mode="floor" ) class __lowerCamelCase ( A__ ): '''simple docstring''' @property def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Any = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(a_ , direction="inputs" ) lowerCAmelCase_ : int = {0: "batch", 1: "past_sequence + sequence"} else: lowerCAmelCase_ : str = {0: "batch", 1: "sequence"} return common_inputs @property def lowerCamelCase ( self : int ): return self._config.num_heads def lowerCamelCase ( self : Optional[Any] , a_ : PreTrainedTokenizer , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional[TensorType] = None , ): lowerCAmelCase_ : int = super(a_ , self ).generate_dummy_inputs( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : str = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCAmelCase_ : str = seqlen + 2 lowerCAmelCase_ : Tuple = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(a_ ), torch.zeros(a_ )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Tuple = common_inputs["attention_mask"] if self.use_past: lowerCAmelCase_ : List[str] = ordered_inputs["attention_mask"].dtype lowerCAmelCase_ : Optional[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(a_ , a_ , dtype=a_ )] , dim=1 ) return ordered_inputs @property def lowerCamelCase ( self : Union[str, Any] ): return 13
161
1
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' random.seed(_SCREAMING_SNAKE_CASE ) np.random.seed(_SCREAMING_SNAKE_CASE ) torch.manual_seed(_SCREAMING_SNAKE_CASE ) torch.cuda.manual_seed_all(_SCREAMING_SNAKE_CASE ) # ^^ safe to call this function even if cuda is not available class _a : """simple docstring""" def __init__( self : List[Any] , __UpperCamelCase : Iterable[torch.nn.Parameter] , __UpperCamelCase : float = 0.9_9_9_9 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 0 , __UpperCamelCase : bool = False , __UpperCamelCase : Union[float, int] = 1.0 , __UpperCamelCase : Union[float, int] = 2 / 3 , __UpperCamelCase : Optional[Any] = None , __UpperCamelCase : Dict[str, Any] = None , **__UpperCamelCase : Any , )->List[Any]: if isinstance(__UpperCamelCase , torch.nn.Module ): _UpperCAmelCase = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase , ) _UpperCAmelCase = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _UpperCAmelCase = True if kwargs.get('''max_value''' , __UpperCamelCase ) is not None: _UpperCAmelCase = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''max_value'''] if kwargs.get('''min_value''' , __UpperCamelCase ) is not None: _UpperCAmelCase = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''min_value'''] _UpperCAmelCase = list(__UpperCamelCase ) _UpperCAmelCase = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , __UpperCamelCase ) is not None: _UpperCAmelCase = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) self.to(device=kwargs['''device'''] ) _UpperCAmelCase = None _UpperCAmelCase = decay _UpperCAmelCase = min_decay _UpperCAmelCase = update_after_step _UpperCAmelCase = use_ema_warmup _UpperCAmelCase = inv_gamma _UpperCAmelCase = power _UpperCAmelCase = 0 _UpperCAmelCase = None # set in `step()` _UpperCAmelCase = model_cls _UpperCAmelCase = model_config @classmethod def lowercase__ ( cls : int , __UpperCamelCase : Dict , __UpperCamelCase : int )->"EMAModel": _UpperCAmelCase , _UpperCAmelCase = model_cls.load_config(__UpperCamelCase , return_unused_kwargs=__UpperCamelCase ) _UpperCAmelCase = model_cls.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = cls(model.parameters() , model_cls=__UpperCamelCase , model_config=model.config ) ema_model.load_state_dict(__UpperCamelCase ) return ema_model def lowercase__ ( self : Any , __UpperCamelCase : Tuple )->List[str]: if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) _UpperCAmelCase = self.model_cls.from_config(self.model_config ) _UpperCAmelCase = self.state_dict() state_dict.pop('''shadow_params''' , __UpperCamelCase ) model.register_to_config(**__UpperCamelCase ) self.copy_to(model.parameters() ) model.save_pretrained(__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int )->float: _UpperCAmelCase = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _UpperCAmelCase = 1 - (1 + step / self.inv_gamma) ** -self.power else: _UpperCAmelCase = (1 + step) / (1_0 + step) _UpperCAmelCase = min(__UpperCamelCase , self.decay ) # make sure decay is not smaller than min_decay _UpperCAmelCase = max(__UpperCamelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Iterable[torch.nn.Parameter] )->int: if isinstance(__UpperCamelCase , torch.nn.Module ): _UpperCAmelCase = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase , ) _UpperCAmelCase = parameters.parameters() _UpperCAmelCase = list(__UpperCamelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _UpperCAmelCase = self.get_decay(self.optimization_step ) _UpperCAmelCase = decay _UpperCAmelCase = 1 - decay _UpperCAmelCase = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , __UpperCamelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _UpperCAmelCase = deepspeed.zero.GatheredParameters(__UpperCamelCase , modifier_rank=__UpperCamelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : Iterable[torch.nn.Parameter] )->None: _UpperCAmelCase = list(__UpperCamelCase ) for s_param, param in zip(self.shadow_params , __UpperCamelCase ): param.data.copy_(s_param.to(param.device ).data ) def lowercase__ ( self : Dict , __UpperCamelCase : Any=None , __UpperCamelCase : Tuple=None )->None: _UpperCAmelCase = [ p.to(device=__UpperCamelCase , dtype=__UpperCamelCase ) if p.is_floating_point() else p.to(device=__UpperCamelCase ) for p in self.shadow_params ] def lowercase__ ( self : str )->dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Iterable[torch.nn.Parameter] )->None: _UpperCAmelCase = [param.detach().cpu().clone() for param in parameters] def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Iterable[torch.nn.Parameter] )->None: if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , __UpperCamelCase ): param.data.copy_(c_param.data ) # Better memory-wise. _UpperCAmelCase = None def lowercase__ ( self : Optional[int] , __UpperCamelCase : dict )->None: _UpperCAmelCase = copy.deepcopy(__UpperCamelCase ) _UpperCAmelCase = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) _UpperCAmelCase = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , __UpperCamelCase ): raise ValueError('''Invalid min_decay''' ) _UpperCAmelCase = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , __UpperCamelCase ): raise ValueError('''Invalid optimization_step''' ) _UpperCAmelCase = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , __UpperCamelCase ): raise ValueError('''Invalid update_after_step''' ) _UpperCAmelCase = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , __UpperCamelCase ): raise ValueError('''Invalid use_ema_warmup''' ) _UpperCAmelCase = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) _UpperCAmelCase = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) _UpperCAmelCase = state_dict.get('''shadow_params''' , __UpperCamelCase ) if shadow_params is not None: _UpperCAmelCase = shadow_params if not isinstance(self.shadow_params , __UpperCamelCase ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(__UpperCamelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
260
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 __A : str = sys.version_info >= (3, 10) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = field(default="""toto""" , metadata={"""help""": """help message"""}) @dataclass class _a : """simple docstring""" UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = None class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """titi""" UpperCamelCase__ = """toto""" class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """titi""" UpperCamelCase__ = """toto""" UpperCamelCase__ = 42 @dataclass class _a : """simple docstring""" UpperCamelCase__ = "toto" def lowercase__ ( self : Tuple )->Optional[int]: _UpperCAmelCase = BasicEnum(self.foo ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = "toto" def lowercase__ ( self : List[str] )->List[Any]: _UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = None UpperCamelCase__ = field(default=lowerCAmelCase , metadata={"""help""": """help message"""}) UpperCamelCase__ = None UpperCamelCase__ = list_field(default=[]) UpperCamelCase__ = list_field(default=[]) @dataclass class _a : """simple docstring""" UpperCamelCase__ = list_field(default=[]) UpperCamelCase__ = list_field(default=[1, 2, 3]) UpperCamelCase__ = list_field(default=["""Hallo""", """Bonjour""", """Hello"""]) UpperCamelCase__ = list_field(default=[0.1, 0.2, 0.3]) @dataclass class _a : """simple docstring""" UpperCamelCase__ = field() UpperCamelCase__ = field() UpperCamelCase__ = field() def lowercase__ ( self : int )->str: _UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = field() UpperCamelCase__ = None UpperCamelCase__ = field(default="""toto""" , metadata={"""help""": """help message"""}) UpperCamelCase__ = list_field(default=["""Hallo""", """Bonjour""", """Hello"""]) if is_python_no_less_than_3_10: @dataclass class _a : """simple docstring""" UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = None @dataclass class _a : """simple docstring""" UpperCamelCase__ = None UpperCamelCase__ = field(default=lowerCAmelCase , metadata={"""help""": """help message"""}) UpperCamelCase__ = None UpperCamelCase__ = list_field(default=[]) UpperCamelCase__ = list_field(default=[]) class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : int , __UpperCamelCase : argparse.ArgumentParser , __UpperCamelCase : argparse.ArgumentParser )->Dict: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): _UpperCAmelCase = {k: v for k, v in vars(__UpperCamelCase ).items() if k != '''container'''} _UpperCAmelCase = {k: v for k, v in vars(__UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , __UpperCamelCase ) and yy.get('''choices''' , __UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](__UpperCamelCase ) , yy['''type'''](__UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : int )->str: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('''--bar''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('''--baz''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('''--flag''' , type=__UpperCamelCase , default=__UpperCamelCase , const=__UpperCamelCase , nargs='''?''' ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((_UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(__UpperCamelCase , look_for_args_file=__UpperCamelCase ) self.assertFalse(example.flag ) def lowercase__ ( self : Dict )->List[Any]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=__UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=__UpperCamelCase , help='''help message''' ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Tuple )->List[str]: _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__UpperCamelCase , default=__UpperCamelCase , const=__UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=__UpperCamelCase , default=__UpperCamelCase , const=__UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=__UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=__UpperCamelCase , default=__UpperCamelCase ) _UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCamelCase ) for dataclass_type in dataclass_types: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) def lowercase__ ( self : Optional[Any] )->str: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) _UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowercase__ ( self : List[str] )->List[str]: @dataclass class _a : """simple docstring""" UpperCamelCase__ = "toto" _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def lowercase__ ( self : int )->int: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=__UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=__UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=__UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual( __UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) _UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(__UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowercase__ ( self : Union[str, Any] )->Tuple: _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=__UpperCamelCase , type=__UpperCamelCase ) expected.add_argument('''--bar''' , default=__UpperCamelCase , type=__UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=__UpperCamelCase , type=__UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=__UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=__UpperCamelCase ) _UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCamelCase ) for dataclass_type in dataclass_types: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , bar=__UpperCamelCase , baz=__UpperCamelCase , ces=[] , des=[] ) ) _UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(__UpperCamelCase , Namespace(foo=1_2 , bar=3.1_4 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowercase__ ( self : Any )->int: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('''--required_str''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=__UpperCamelCase , ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : str )->List[Any]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=__UpperCamelCase , ) expected.add_argument('''--opt''' , type=__UpperCamelCase , default=__UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=__UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Optional[Any] )->Optional[int]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = { '''foo''': 1_2, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } _UpperCAmelCase = parser.parse_dict(__UpperCamelCase )[0] _UpperCAmelCase = BasicExample(**__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->List[str]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = { '''foo''': 1_2, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(__UpperCamelCase , parser.parse_dict , __UpperCamelCase , allow_extra_keys=__UpperCamelCase ) def lowercase__ ( self : Optional[Any] )->Optional[int]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = { '''foo''': 1_2, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = os.path.join(__UpperCamelCase , '''temp_json''' ) os.mkdir(__UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] _UpperCAmelCase = BasicExample(**__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = { '''foo''': 1_2, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = os.path.join(__UpperCamelCase , '''temp_yaml''' ) os.mkdir(__UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] _UpperCAmelCase = BasicExample(**__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : int )->List[str]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase )
260
1
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class _a : '''simple docstring''' def __init__( self , A__ , A__=13 , A__=7 , A__=True , A__=True , A__=True , A__=True , A__=99 , A__=32 , A__=2 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=512 , A__=16 , A__=2 , A__=0.0_2 , A__=3 , A__=4 , A__=None , A__=1000 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = seq_length A__ : Any = is_training A__ : List[str] = use_input_mask A__ : Optional[Any] = use_token_type_ids A__ : Optional[Any] = use_labels A__ : Optional[Any] = vocab_size A__ : str = hidden_size A__ : List[Any] = num_hidden_layers A__ : int = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : Any = hidden_act A__ : Any = hidden_dropout_prob A__ : str = attention_probs_dropout_prob A__ : Any = max_position_embeddings A__ : Dict = type_vocab_size A__ : Dict = type_sequence_label_size A__ : Optional[int] = initializer_range A__ : List[str] = num_labels A__ : Dict = num_choices A__ : Union[str, Any] = scope A__ : Any = range_bbox def __A ( self ): A__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment A__ : Dict = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A__ : Optional[int] = bbox[i, j, 3] A__ : Tuple = bbox[i, j, 1] A__ : List[str] = t if bbox[i, j, 2] < bbox[i, j, 0]: A__ : str = bbox[i, j, 2] A__ : Optional[int] = bbox[i, j, 0] A__ : str = t A__ : int = tf.convert_to_tensor(A__ ) A__ : str = None if self.use_input_mask: A__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) A__ : int = None if self.use_token_type_ids: A__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Any = None A__ : List[str] = None A__ : int = None if self.use_labels: A__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Any = TFLayoutLMModel(config=A__ ) A__ : Optional[Any] = model(A__ , A__ , attention_mask=A__ , token_type_ids=A__ ) A__ : Union[str, Any] = model(A__ , A__ , token_type_ids=A__ ) A__ : Dict = model(A__ , A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Optional[Any] = TFLayoutLMForMaskedLM(config=A__ ) A__ : str = model(A__ , A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Optional[int] = self.num_labels A__ : Optional[Any] = TFLayoutLMForSequenceClassification(config=A__ ) A__ : Optional[int] = model(A__ , A__ , attention_mask=A__ , token_type_ids=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Optional[int] = self.num_labels A__ : List[str] = TFLayoutLMForTokenClassification(config=A__ ) A__ : Tuple = model(A__ , A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Optional[Any] = TFLayoutLMForQuestionAnswering(config=A__ ) A__ : List[str] = model(A__ , A__ , attention_mask=A__ , token_type_ids=A__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self ): A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Any = config_and_inputs A__ : Any = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class _a (__magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Any = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) UpperCAmelCase__: Optional[int] = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__: Optional[Any] = False UpperCAmelCase__: Optional[Any] = True UpperCAmelCase__: Any = 10 def __A ( self ): A__ : List[Any] = TFLayoutLMModelTester(self ) A__ : Union[str, Any] = ConfigTester(self , config_class=A__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def __A ( self ): A__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__ ) def __A ( self ): A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__ ) def __A ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__ ) def __A ( self ): A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__ ) @slow def __A ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Optional[int] = TFLayoutLMModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @unittest.skip("""Onnx compliancy broke with TF 2.10""" ) def __A ( self ): pass def UpperCamelCase () -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off A__ : List[str] = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 A__ : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 A__ : Any = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 A__ : Union[str, Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) A__ : Dict = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class _a (unittest.TestCase ): '''simple docstring''' @slow def __A ( self ): A__ : Dict = TFLayoutLMModel.from_pretrained("""microsoft/layoutlm-base-uncased""" ) A__ , A__ , A__ , A__ , A__ : Union[str, Any] = prepare_layoutlm_batch_inputs() # forward pass A__ : Optional[int] = model(input_ids=A__ , bbox=A__ , attention_mask=A__ , token_type_ids=A__ ) # test the sequence output on [0, :3, :3] A__ : Any = tf.convert_to_tensor( [[0.1_7_8_5, -0.1_9_4_7, -0.0_4_2_5], [-0.3_2_5_4, -0.2_8_0_7, 0.2_5_5_3], [-0.5_3_9_1, -0.3_3_2_2, 0.3_3_6_4]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , A__ , atol=1e-3 ) ) # test the pooled output on [1, :3] A__ : Tuple = tf.convert_to_tensor([-0.6_5_8_0, -0.0_2_1_4, 0.8_5_5_2] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , A__ , atol=1e-3 ) ) @slow def __A ( self ): # initialize model with randomly initialized sequence classification head A__ : List[Any] = TFLayoutLMForSequenceClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=2 ) A__ , A__ , A__ , A__ , A__ : Tuple = prepare_layoutlm_batch_inputs() # forward pass A__ : Optional[int] = model( input_ids=A__ , bbox=A__ , attention_mask=A__ , token_type_ids=A__ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar A__ : int = outputs.loss A__ : Optional[Any] = (2,) self.assertEqual(loss.shape , A__ ) # test the shape of the logits A__ : str = outputs.logits A__ : Optional[int] = (2, 2) self.assertEqual(logits.shape , A__ ) @slow def __A ( self ): # initialize model with randomly initialized token classification head A__ : List[Any] = TFLayoutLMForTokenClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=13 ) A__ , A__ , A__ , A__ , A__ : List[Any] = prepare_layoutlm_batch_inputs() # forward pass A__ : Tuple = model( input_ids=A__ , bbox=A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) # test the shape of the logits A__ : Union[str, Any] = outputs.logits A__ : Union[str, Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , A__ ) @slow def __A ( self ): # initialize model with randomly initialized token classification head A__ : Optional[Any] = TFLayoutLMForQuestionAnswering.from_pretrained("""microsoft/layoutlm-base-uncased""" ) A__ , A__ , A__ , A__ , A__ : Union[str, Any] = prepare_layoutlm_batch_inputs() # forward pass A__ : List[Any] = model(input_ids=A__ , bbox=A__ , attention_mask=A__ , token_type_ids=A__ ) # test the shape of the logits A__ : List[str] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , A__ ) self.assertEqual(outputs.end_logits.shape , A__ )
141
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a (__magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Any = KandinskyVaaImgaImgPipeline UpperCAmelCase__: Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image'''] UpperCAmelCase__: str = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] UpperCAmelCase__: int = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCAmelCase__: Union[str, Any] = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 100 @property def __A ( self ): torch.manual_seed(0 ) A__ : Dict = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A__ : List[str] = UNetaDConditionModel(**A__ ) return model @property def __A ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __A ( self ): torch.manual_seed(0 ) A__ : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def __A ( self ): A__ : Optional[int] = self.dummy_unet A__ : Dict = self.dummy_movq A__ : List[Any] = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } A__ : List[str] = DDIMScheduler(**A__ ) A__ : List[str] = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __A ( self , A__ , A__=0 ): A__ : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A__ ) ).to(A__ ) A__ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A__ ) # create init_image A__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(A__ ) ).to(A__ ) A__ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : Dict = Image.fromarray(np.uinta(A__ ) ).convert("""RGB""" ).resize((256, 256) ) if str(A__ ).startswith("""mps""" ): A__ : Any = torch.manual_seed(A__ ) else: A__ : List[Any] = torch.Generator(device=A__ ).manual_seed(A__ ) A__ : Optional[int] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def __A ( self ): A__ : str = """cpu""" A__ : Any = self.get_dummy_components() A__ : Union[str, Any] = self.pipeline_class(**A__ ) A__ : List[str] = pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) A__ : Dict = pipe(**self.get_dummy_inputs(A__ ) ) A__ : Any = output.images A__ : List[str] = pipe( **self.get_dummy_inputs(A__ ) , return_dict=A__ , )[0] A__ : Optional[int] = image[0, -3:, -3:, -1] A__ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ : str = np.array( [0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): A__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) A__ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) A__ : str = """A red cartoon frog, 4k""" A__ : int = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(A__ ) A__ : List[Any] = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) A__ : List[str] = pipeline.to(A__ ) pipeline.set_progress_bar_config(disable=A__ ) A__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) A__ , A__ : Optional[Any] = pipe_prior( A__ , generator=A__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() A__ : str = pipeline( image=A__ , image_embeds=A__ , negative_image_embeds=A__ , generator=A__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) A__ : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A__ , A__ )
141
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __lowerCamelCase = """true""" def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any=82 , __lowerCamelCase : int=16 ): set_seed(42 ) snake_case : Optional[int] = RegressionModel() snake_case : Optional[Any] = deepcopy(__lowerCamelCase ) snake_case : Any = RegressionDataset(length=__lowerCamelCase ) snake_case : List[Any] = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase ) model.to(accelerator.device ) snake_case , snake_case : Tuple = accelerator.prepare(__lowerCamelCase , __lowerCamelCase ) return model, ddp_model, dataloader def UpperCamelCase ( __lowerCamelCase : Accelerator , __lowerCamelCase : List[str]=False ): snake_case : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) snake_case : Any = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(__lowerCamelCase : Optional[Any] ): snake_case : List[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs with accelerator.main_process_first(): snake_case : Optional[Any] = dataset.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) snake_case : Dict = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__lowerCamelCase : Any ): if use_longest: return tokenizer.pad(__lowerCamelCase , padding="longest" , return_tensors="pt" ) return tokenizer.pad(__lowerCamelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return DataLoader(__lowerCamelCase , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=16 ) def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict ): snake_case : Optional[Any] = Accelerator(dispatch_batches=__lowerCamelCase , split_batches=__lowerCamelCase ) snake_case : List[str] = get_dataloader(__lowerCamelCase , not dispatch_batches ) snake_case : List[Any] = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=__lowerCamelCase ) snake_case , snake_case : str = accelerator.prepare(__lowerCamelCase , __lowerCamelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): snake_case : Optional[Any] = [] for batch in dataloader: snake_case , snake_case : Optional[int] = batch.values() with torch.no_grad(): snake_case : List[Any] = model(__lowerCamelCase ) snake_case , snake_case : Union[str, Any] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) snake_case , snake_case : str = [], [] for logit, targ in logits_and_targets: logits.append(__lowerCamelCase ) targs.append(__lowerCamelCase ) snake_case , snake_case : Union[str, Any] = torch.cat(__lowerCamelCase ), torch.cat(__lowerCamelCase ) return logits, targs def UpperCamelCase ( __lowerCamelCase : Accelerator , __lowerCamelCase : Any=82 , __lowerCamelCase : int=False , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=16 ): snake_case , snake_case , snake_case : Optional[Any] = get_basic_setup(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) snake_case , snake_case : Dict = generate_predictions(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) assert ( len(__lowerCamelCase ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowerCamelCase )}""" def UpperCamelCase ( __lowerCamelCase : bool = False , __lowerCamelCase : bool = False ): snake_case : Union[str, Any] = evaluate.load("glue" , "mrpc" ) snake_case , snake_case : int = get_mrpc_setup(__lowerCamelCase , __lowerCamelCase ) # First do baseline snake_case , snake_case , snake_case : List[str] = setup["no"] model.to(__lowerCamelCase ) model.eval() for batch in dataloader: batch.to(__lowerCamelCase ) with torch.inference_mode(): snake_case : int = model(**__lowerCamelCase ) snake_case : Optional[int] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowerCamelCase , references=batch["labels"] ) snake_case : Tuple = metric.compute() # Then do distributed snake_case , snake_case , snake_case : Optional[int] = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): snake_case : str = model(**__lowerCamelCase ) snake_case : List[Any] = outputs.logits.argmax(dim=-1 ) snake_case : Optional[int] = batch["labels"] snake_case , snake_case : Dict = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowerCamelCase , references=__lowerCamelCase ) snake_case : Optional[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def UpperCamelCase ( ): snake_case : List[Any] = Accelerator(split_batches=__lowerCamelCase , dispatch_batches=__lowerCamelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(__lowerCamelCase , __lowerCamelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: snake_case : Optional[Any] = Accelerator(split_batches=__lowerCamelCase , dispatch_batches=__lowerCamelCase ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(__lowerCamelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) snake_case : Optional[int] = Accelerator() test_torch_metrics(__lowerCamelCase , 512 ) accelerator.state._reset_state() def UpperCamelCase ( __lowerCamelCase : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
59
from __future__ import annotations import math def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if len(a__ ) != 2 or len(a[0] ) != 2 or len(a__ ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) SCREAMING_SNAKE_CASE : Dict = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a__ ) ) ] def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a__ ) ) ] def UpperCAmelCase_( a__ ): """simple docstring""" if len(a__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) SCREAMING_SNAKE_CASE : str = len(a__ ) SCREAMING_SNAKE_CASE : Any = matrix_length // 2 SCREAMING_SNAKE_CASE : Tuple = [[a[i][j] for j in range(a__ , a__ )] for i in range(a__ )] SCREAMING_SNAKE_CASE : Optional[int] = [ [a[i][j] for j in range(a__ , a__ )] for i in range(a__ , a__ ) ] SCREAMING_SNAKE_CASE : Optional[Any] = [[a[i][j] for j in range(a__ )] for i in range(a__ )] SCREAMING_SNAKE_CASE : List[Any] = [[a[i][j] for j in range(a__ )] for i in range(a__ , a__ )] return top_left, top_right, bot_left, bot_right def UpperCAmelCase_( a__ ): """simple docstring""" return len(a__ ), len(matrix[0] ) def UpperCAmelCase_( a__ ): """simple docstring""" print('''\n'''.join(str(a__ ) for line in matrix ) ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if matrix_dimensions(a__ ) == (2, 2): return default_matrix_multiplication(a__ , a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(a__ ) SCREAMING_SNAKE_CASE : Dict = actual_strassen(a__ , matrix_subtraction(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = actual_strassen(matrix_addition(a__ , a__ ) , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = actual_strassen(matrix_addition(a__ , a__ ) , a__ ) SCREAMING_SNAKE_CASE : int = actual_strassen(a__ , matrix_subtraction(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Any = actual_strassen(matrix_addition(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_subtraction(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_subtraction(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = matrix_addition(matrix_subtraction(matrix_addition(a__ , a__ ) , a__ ) , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = matrix_addition(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = matrix_addition(a__ , a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = matrix_subtraction(matrix_subtraction(matrix_addition(a__ , a__ ) , a__ ) , a__ ) # construct the new matrix from our 4 quadrants SCREAMING_SNAKE_CASE : Optional[Any] = [] for i in range(len(a__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(a__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if matrix_dimensions(a__ )[1] != matrix_dimensions(a__ )[0]: SCREAMING_SNAKE_CASE : Any = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(a__ ) SCREAMING_SNAKE_CASE : str = matrix_dimensions(a__ ) SCREAMING_SNAKE_CASE : Tuple = matrix_dimensions(a__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] SCREAMING_SNAKE_CASE : str = max(*a__ , *a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(math.pow(2 , math.ceil(math.loga(a__ ) ) ) ) SCREAMING_SNAKE_CASE : Optional[int] = matrixa SCREAMING_SNAKE_CASE : Tuple = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , a__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) SCREAMING_SNAKE_CASE : Optional[Any] = actual_strassen(a__ , a__ ) # Removing the additional zeros for i in range(0 , a__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": a__ : Dict = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] a__ : Union[str, Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
313
0
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowercase_ = logging.get_logger(__name__) lowercase_ = {} lowercase_ = {} lowercase_ = {} def lowercase ( lowerCAmelCase__ : type , lowerCAmelCase__ : Optional[str] , lowerCAmelCase__ : Optional[List[str]] = None , ) -> List[Any]: __a = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) __a = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) __a = format_type def lowercase ( lowerCAmelCase__ : Exception , lowerCAmelCase__ : Optional[str] , lowerCAmelCase__ : Optional[List[str]] = None ) -> Any: __a = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): __a = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: lowercase_ = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: lowercase_ = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: lowercase_ = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def lowercase ( lowerCAmelCase__ : Optional[str] ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def lowercase ( lowerCAmelCase__ : Optional[str] , **lowerCAmelCase__ : Tuple ) -> Formatter: __a = get_format_type_from_alias(lowerCAmelCase__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**lowerCAmelCase__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
11
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[list[str]] , lowerCAmelCase__ : int , ) -> None: __a = len(lowerCAmelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowerCAmelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCAmelCase__ , lowerCAmelCase__ , ) def lowercase ( lowerCAmelCase__ : int ) -> None: __a = [] depth_first_search([] , [] , [] , lowerCAmelCase__ , lowerCAmelCase__ ) # Print all the boards for board in boards: for column in board: print(lowerCAmelCase__ ) print('''''' ) print(len(lowerCAmelCase__ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
11
1
A__ = [0, 2, 4, 6, 8] A__ = [1, 3, 5, 7, 9] def _UpperCAmelCase ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _lowerCAmelCase = 0 for digit in range(10 ): _lowerCAmelCase = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , snake_case , snake_case ) return result _lowerCAmelCase = 0 for digita in range(10 ): _lowerCAmelCase = digita if (remainder + digita) % 2 == 0: _lowerCAmelCase = ODD_DIGITS else: _lowerCAmelCase = EVEN_DIGITS for digita in other_parity_digits: _lowerCAmelCase = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , snake_case , snake_case , ) return result def _UpperCAmelCase ( snake_case = 9 ): """simple docstring""" _lowerCAmelCase = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(snake_case , 0 , [0] * length , snake_case ) return result if __name__ == "__main__": print(f"{solution() = }")
82
from __future__ import annotations def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = str(snake_case ) return n == n[::-1] def _UpperCAmelCase ( snake_case = 1_00_00_00 ): """simple docstring""" _lowerCAmelCase = 0 for i in range(1 , snake_case ): if is_palindrome(snake_case ) and is_palindrome(bin(snake_case ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
82
1
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(_A ) class a ( _A ): '''simple docstring''' def __init__( self : List[Any] , **__snake_case : Optional[Any] ): super().__init__(**__snake_case ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(__snake_case ) def lowerCamelCase_ ( self : Any , **__snake_case : Optional[Any] ): UpperCAmelCase_ = {} UpperCAmelCase_ = {} UpperCAmelCase_ = {} # preprocess args if "points_per_batch" in kwargs: UpperCAmelCase_ = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: UpperCAmelCase_ = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: UpperCAmelCase_ = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: UpperCAmelCase_ = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: UpperCAmelCase_ = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: UpperCAmelCase_ = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: UpperCAmelCase_ = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: UpperCAmelCase_ = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: UpperCAmelCase_ = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: UpperCAmelCase_ = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: UpperCAmelCase_ = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: UpperCAmelCase_ = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Optional[int] , __snake_case : Optional[int] , *__snake_case : Optional[int] , __snake_case : List[Any]=None , __snake_case : Tuple=None , **__snake_case : Dict ): return super().__call__(__snake_case , *__snake_case , num_workers=__snake_case , batch_size=__snake_case , **__snake_case ) def lowerCamelCase_ ( self : List[Any] , __snake_case : Dict , __snake_case : str=64 , __snake_case : int = 0 , __snake_case : float = 5_12 / 15_00 , __snake_case : Optional[int] = 32 , __snake_case : Optional[int] = 1 , ): UpperCAmelCase_ = load_image(__snake_case ) UpperCAmelCase_ = self.image_processor.size['''longest_edge'''] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor.generate_crop_boxes( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) UpperCAmelCase_ = self.image_processor(images=__snake_case , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": UpperCAmelCase_ = self.get_inference_context() with inference_context(): UpperCAmelCase_ = self._ensure_tensor_on_device(__snake_case , device=self.device ) UpperCAmelCase_ = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) UpperCAmelCase_ = image_embeddings UpperCAmelCase_ = grid_points.shape[1] UpperCAmelCase_ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , __snake_case , __snake_case ): UpperCAmelCase_ = grid_points[:, i : i + points_per_batch, :, :] UpperCAmelCase_ = input_labels[:, i : i + points_per_batch] UpperCAmelCase_ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowerCamelCase_ ( self : int , __snake_case : List[str] , __snake_case : int=0.88 , __snake_case : Union[str, Any]=0.95 , __snake_case : List[str]=0 , __snake_case : Dict=1 , ): UpperCAmelCase_ = model_inputs.pop('''input_boxes''' ) UpperCAmelCase_ = model_inputs.pop('''is_last''' ) UpperCAmelCase_ = model_inputs.pop('''original_sizes''' ).tolist() UpperCAmelCase_ = model_inputs.pop('''reshaped_input_sizes''' ).tolist() UpperCAmelCase_ = self.model(**__snake_case ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCAmelCase_ = model_outputs['''pred_masks'''] UpperCAmelCase_ = self.image_processor.post_process_masks( __snake_case , __snake_case , __snake_case , __snake_case , binarize=__snake_case ) UpperCAmelCase_ = model_outputs['''iou_scores'''] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __snake_case , __snake_case , __snake_case , __snake_case , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowerCamelCase_ ( self : Any , __snake_case : Optional[int] , __snake_case : Tuple=False , __snake_case : Optional[int]=False , __snake_case : List[str]=0.7 , ): UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) UpperCAmelCase_ = torch.cat(__snake_case ) UpperCAmelCase_ = torch.cat(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor.post_process_for_mask_generation( __snake_case , __snake_case , __snake_case , __snake_case ) UpperCAmelCase_ = defaultdict(__snake_case ) for output in model_outputs: for k, v in output.items(): extra[k].append(__snake_case ) UpperCAmelCase_ = {} if output_rle_mask: UpperCAmelCase_ = rle_mask if output_bboxes_mask: UpperCAmelCase_ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
177
import numpy as np def SCREAMING_SNAKE_CASE ( __UpperCamelCase : np.array ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
177
1
'''simple docstring''' import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase): # TODO: is there an appropriate internal test set? UpperCAmelCase__ : Optional[Any] = 'ssube/stable-diffusion-x4-upscaler-onnx' def lowercase_ ( self :Optional[Any] , _A :Any=0 ) -> Optional[Any]: '''simple docstring''' __A = floats_tensor((1, 3, 128, 128) , rng=random.Random(_A ) ) __A = torch.manual_seed(_A ) __A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self :Dict ) -> Dict: '''simple docstring''' __A = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=_A ) __A = self.get_dummy_inputs() __A = pipe(**_A ).images __A = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) __A = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowercase_ ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' __A = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __A = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_A ) pipe.set_progress_bar_config(disable=_A ) __A = self.get_dummy_inputs() __A = pipe(**_A ).images __A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __A = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowercase_ ( self :Dict ) -> Dict: '''simple docstring''' __A = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) __A = self.get_dummy_inputs() __A = pipe(**_A ).images __A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __A = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowercase_ ( self :List[str] ) -> List[str]: '''simple docstring''' __A = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) __A = self.get_dummy_inputs() __A = pipe(**_A ).images __A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __A = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowercase_ ( self :Tuple ) -> int: '''simple docstring''' __A = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) __A = self.get_dummy_inputs() __A = pipe(**_A ).images __A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __A = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase): @property def lowercase_ ( self :Tuple ) -> Optional[Any]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self :List[Any] ) -> int: '''simple docstring''' __A = ort.SessionOptions() __A = False return options def lowercase_ ( self :List[str] ) -> Optional[Any]: '''simple docstring''' __A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __A = init_image.resize((128, 128) ) # using the PNDM scheduler by default __A = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_A ) __A = 'A fantasy landscape, trending on artstation' __A = torch.manual_seed(0 ) __A = pipe( prompt=_A , image=_A , guidance_scale=7.5 , num_inference_steps=10 , generator=_A , output_type='np' , ) __A = output.images __A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) __A = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowercase_ ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' __A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __A = init_image.resize((128, 128) ) __A = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler' ) __A = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=_A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_A ) __A = 'A fantasy landscape, trending on artstation' __A = torch.manual_seed(0 ) __A = pipe( prompt=_A , image=_A , guidance_scale=7.5 , num_inference_steps=20 , generator=_A , output_type='np' , ) __A = output.images __A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) __A = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
161
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a__ : Any = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :List[str] , **_A :Any ) -> Tuple: '''simple docstring''' super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self :Any , _A :Union[str, List[str], "Image", List["Image"]] , **_A :Optional[int] ) -> Union[str, Any]: '''simple docstring''' return super().__call__(_A , **_A ) def lowercase_ ( self :Optional[int] , **_A :Dict ) -> Optional[Any]: '''simple docstring''' __A = {} if "candidate_labels" in kwargs: __A = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __A = kwargs['hypothesis_template'] return preprocess_params, {}, {} def lowercase_ ( self :Optional[int] , _A :str , _A :str=None , _A :Tuple="This is a photo of {}." ) -> Optional[int]: '''simple docstring''' __A = load_image(_A ) __A = self.image_processor(images=[image] , return_tensors=self.framework ) __A = candidate_labels __A = [hypothesis_template.format(_A ) for x in candidate_labels] __A = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __A = [text_inputs] return inputs def lowercase_ ( self :List[str] , _A :Tuple ) -> Tuple: '''simple docstring''' __A = model_inputs.pop('candidate_labels' ) __A = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __A = text_inputs[0] else: # Batching case. __A = text_inputs[0][0] __A = self.model(**_A , **_A ) __A = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def lowercase_ ( self :List[str] , _A :Optional[int] ) -> Dict: '''simple docstring''' __A = model_outputs.pop('candidate_labels' ) __A = model_outputs['logits'][0] if self.framework == "pt": __A = logits.softmax(dim=-1 ).squeeze(-1 ) __A = probs.tolist() if not isinstance(_A , _A ): __A = [scores] elif self.framework == "tf": __A = stable_softmax(_A , axis=-1 ) __A = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __A = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
161
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class snake_case ( unittest.TestCase ): def __init__( self : Optional[Any] , A : Optional[int] , A : List[str]=7 , A : int=3 , A : Optional[Any]=3_0 , A : Tuple=4_0_0 , A : int=True , A : Union[str, Any]=None , A : Any=True , A : Union[str, Any]=1 / 2_5_5 , A : Optional[Any]=True , A : Union[str, Any]=[0.5, 0.5, 0.5] , A : Optional[Any]=[0.5, 0.5, 0.5] , A : Any=True , ): '''simple docstring''' a : Dict = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} a : List[str] = parent a : Union[str, Any] = batch_size a : str = num_channels a : List[Any] = min_resolution a : List[str] = max_resolution a : Union[str, Any] = do_resize a : Tuple = size a : Union[str, Any] = do_rescale a : int = rescale_factor a : int = do_normalize a : Any = image_mean a : Dict = image_std a : Tuple = do_pad def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def lowerCamelCase__ ( self : List[Any] , A : Optional[Any] , A : str=False ): '''simple docstring''' if not batched: a : Tuple = image_inputs[0] if isinstance(A , Image.Image ): a : Union[str, Any] = image.size else: a : Optional[Any] = image.shape[1], image.shape[2] if w < h: a : Optional[Any] = int(self.size['shortest_edge'] * h / w ) a : Any = self.size['shortest_edge'] elif w > h: a : str = self.size['shortest_edge'] a : int = int(self.size['shortest_edge'] * w / h ) else: a : Dict = self.size['shortest_edge'] a : Tuple = self.size['shortest_edge'] else: a : Union[str, Any] = [] for image in image_inputs: a : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a : str = max(A , key=lambda A : item[0] )[0] a : Tuple = max(A , key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case ( UpperCAmelCase , unittest.TestCase ): __magic_name__ = DetrImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : Dict ): '''simple docstring''' a : List[str] = DetrImageProcessingTester(self ) @property def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : int ): '''simple docstring''' a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , 'image_mean' ) ) self.assertTrue(hasattr(A , 'image_std' ) ) self.assertTrue(hasattr(A , 'do_normalize' ) ) self.assertTrue(hasattr(A , 'do_rescale' ) ) self.assertTrue(hasattr(A , 'rescale_factor' ) ) self.assertTrue(hasattr(A , 'do_resize' ) ) self.assertTrue(hasattr(A , 'size' ) ) self.assertTrue(hasattr(A , 'do_pad' ) ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , A ) a : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=A ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2, 'longest_edge': 8_4} ) self.assertEqual(image_processor.do_pad , A ) def lowerCamelCase__ ( self : str ): '''simple docstring''' pass def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' a : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input a : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values a : List[Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a : List[str] = self.image_processor_tester.get_expected_values(A , batched=A ) a : Any = image_processing(A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input a : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values a : int = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a : Tuple = image_processing(A , return_tensors='pt' ).pixel_values a : Optional[Any] = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' a : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input a : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values a : List[Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a : List[str] = image_processing(A , return_tensors='pt' ).pixel_values a : Dict = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' a : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: a : List[Any] = json.loads(f.read() ) a : Tuple = {'image_id': 3_9_7_6_9, 'annotations': target} # encode them a : List[str] = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) a : Tuple = image_processing(images=A , annotations=A , return_tensors='pt' ) # verify pixel values a : List[str] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , A ) a : Tuple = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A , atol=1E-4 ) ) # verify area a : Optional[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A ) ) # verify boxes a : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , A ) a : Union[str, Any] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A , atol=1E-3 ) ) # verify image_id a : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A ) ) # verify is_crowd a : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A ) ) # verify class_labels a : Dict = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A ) ) # verify orig_size a : str = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A ) ) # verify size a : int = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A ) ) @slow def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' a : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: a : Dict = json.loads(f.read() ) a : Dict = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target} a : Dict = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them a : Dict = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) a : Union[str, Any] = image_processing(images=A , annotations=A , masks_path=A , return_tensors='pt' ) # verify pixel values a : Tuple = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , A ) a : Any = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A , atol=1E-4 ) ) # verify area a : Optional[int] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A ) ) # verify boxes a : str = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , A ) a : Dict = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A , atol=1E-3 ) ) # verify image_id a : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A ) ) # verify is_crowd a : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A ) ) # verify class_labels a : Dict = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A ) ) # verify masks a : Optional[Any] = 8_2_2_8_7_3 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , A ) # verify orig_size a : Optional[int] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A ) ) # verify size a : Dict = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A ) )
357
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class snake_case ( unittest.TestCase ): @slow def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' a : Optional[int] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) a : int = AutoTokenizer.from_pretrained('xlm-roberta-base' ) a : int = 'The dog is cute and lives in the garden house' a : List[Any] = jnp.array([tokenizer.encode(A )] ) a : int = (1, 1_2, 7_6_8) # batch_size, sequence_length, embedding_vector_dim a : Dict = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) a : Any = model(A )['last_hidden_state'] self.assertEqual(output.shape , A ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , A , atol=1E-3 ) )
186
0
'''simple docstring''' from collections import deque class lowerCAmelCase : def __init__( self : Tuple , __lowercase : str , __lowercase : int , __lowercase : int ): """simple docstring""" __lowercase =process_name # process name __lowercase =arrival_time # arrival time of the process # completion time of finished process or last interrupted time __lowercase =arrival_time __lowercase =burst_time # remaining burst time __lowercase =0 # total time of the process wait in ready queue __lowercase =0 # time from arrival time to completion time class lowerCAmelCase : def __init__( self : int , __lowercase : int , __lowercase : list[int] , __lowercase : deque[Process] , __lowercase : int , ): """simple docstring""" __lowercase =number_of_queues # time slice of queues that round robin algorithm applied __lowercase =time_slices # unfinished process is in this ready_queue __lowercase =queue # current time __lowercase =current_time # finished process is in this sequence queue __lowercase =deque() def snake_case ( self : Optional[int] ): """simple docstring""" __lowercase =[] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case ( self : Optional[Any] , __lowercase : list[Process] ): """simple docstring""" __lowercase =[] for i in range(len(__lowercase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case ( self : Tuple , __lowercase : list[Process] ): """simple docstring""" __lowercase =[] for i in range(len(__lowercase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case ( self : Tuple , __lowercase : list[Process] ): """simple docstring""" __lowercase =[] for i in range(len(__lowercase ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case ( self : List[str] , __lowercase : deque[Process] ): """simple docstring""" return [q.burst_time for q in queue] def snake_case ( self : str , __lowercase : Process ): """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case ( self : str , __lowercase : deque[Process] ): """simple docstring""" __lowercase =deque() # sequence deque of finished process while len(__lowercase ) != 0: __lowercase =ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__lowercase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __lowercase =0 # set the process's turnaround time because it is finished __lowercase =self.current_time - cp.arrival_time # set the completion time __lowercase =self.current_time # add the process to queue that has finished queue finished.append(__lowercase ) self.finish_queue.extend(__lowercase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case ( self : str , __lowercase : deque[Process] , __lowercase : int ): """simple docstring""" __lowercase =deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__lowercase ) ): __lowercase =ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__lowercase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __lowercase =self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__lowercase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __lowercase =0 # set the finish time __lowercase =self.current_time # update the process' turnaround time because it is finished __lowercase =self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__lowercase ) self.finish_queue.extend(__lowercase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case ( self : Optional[int] ): """simple docstring""" for i in range(self.number_of_queues - 1 ): __lowercase , __lowercase =self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest UpperCAmelCase = Process('''P1''', 0, 53) UpperCAmelCase = Process('''P2''', 0, 17) UpperCAmelCase = Process('''P3''', 0, 68) UpperCAmelCase = Process('''P4''', 0, 24) UpperCAmelCase = 3 UpperCAmelCase = [17, 25] UpperCAmelCase = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) UpperCAmelCase = Process('''P1''', 0, 53) UpperCAmelCase = Process('''P2''', 0, 17) UpperCAmelCase = Process('''P3''', 0, 68) UpperCAmelCase = Process('''P4''', 0, 24) UpperCAmelCase = 3 UpperCAmelCase = [17, 25] UpperCAmelCase = deque([Pa, Pa, Pa, Pa]) UpperCAmelCase = MLFQ(number_of_queues, time_slices, queue, 0) UpperCAmelCase = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
141
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : List[Any] ): '''simple docstring''' if isinstance(lowercase__, (list, tuple) ) and isinstance(videos[0], (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase__, (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase__ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class lowerCAmelCase ( A ): lowerCAmelCase_ = ["pixel_values"] def __init__( self : Union[str, Any] , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 255 , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Optional[Any] , ): """simple docstring""" super().__init__(**__lowercase ) __lowercase =size if size is not None else {'shortest_edge': 224} __lowercase =get_size_dict(__lowercase , default_to_square=__lowercase ) __lowercase =crop_size if crop_size is not None else {'height': 224, 'width': 224} __lowercase =get_size_dict(__lowercase , param_name='crop_size' ) __lowercase =do_resize __lowercase =size __lowercase =do_center_crop __lowercase =crop_size __lowercase =resample __lowercase =do_rescale __lowercase =rescale_factor __lowercase =do_normalize __lowercase =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase =image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case ( self : int , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ): """simple docstring""" __lowercase =get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" in size: __lowercase =get_resize_output_image_size(__lowercase , size['shortest_edge'] , default_to_square=__lowercase ) elif "height" in size and "width" in size: __lowercase =(size['height'], size['width']) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def snake_case ( self : Dict , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ): """simple docstring""" __lowercase =get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__lowercase , size=(size['height'], size['width']) , data_format=__lowercase , **__lowercase ) def snake_case ( self : str , __lowercase : np.ndarray , __lowercase : Union[int, float] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ): """simple docstring""" return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def snake_case ( self : Dict , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ): """simple docstring""" return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def snake_case ( self : Optional[Any] , __lowercase : ImageInput , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : bool = None , __lowercase : float = None , __lowercase : bool = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , ): """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowercase =to_numpy_array(__lowercase ) if do_resize: __lowercase =self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) if do_center_crop: __lowercase =self.center_crop(__lowercase , size=__lowercase ) if do_rescale: __lowercase =self.rescale(image=__lowercase , scale=__lowercase ) if do_normalize: __lowercase =self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) __lowercase =to_channel_dimension_format(__lowercase , __lowercase ) return image def snake_case ( self : Union[str, Any] , __lowercase : ImageInput , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : bool = None , __lowercase : float = None , __lowercase : bool = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : ChannelDimension = ChannelDimension.FIRST , **__lowercase : Tuple , ): """simple docstring""" __lowercase =do_resize if do_resize is not None else self.do_resize __lowercase =resample if resample is not None else self.resample __lowercase =do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase =do_rescale if do_rescale is not None else self.do_rescale __lowercase =rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase =do_normalize if do_normalize is not None else self.do_normalize __lowercase =image_mean if image_mean is not None else self.image_mean __lowercase =image_std if image_std is not None else self.image_std __lowercase =size if size is not None else self.size __lowercase =get_size_dict(__lowercase , default_to_square=__lowercase ) __lowercase =crop_size if crop_size is not None else self.crop_size __lowercase =get_size_dict(__lowercase , param_name='crop_size' ) if not valid_images(__lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) __lowercase =make_batched(__lowercase ) __lowercase =[ [ self._preprocess_image( image=__lowercase , do_resize=__lowercase , size=__lowercase , resample=__lowercase , do_center_crop=__lowercase , crop_size=__lowercase , do_rescale=__lowercase , rescale_factor=__lowercase , do_normalize=__lowercase , image_mean=__lowercase , image_std=__lowercase , data_format=__lowercase , ) for img in video ] for video in videos ] __lowercase ={'pixel_values': videos} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
141
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
365
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( __UpperCAmelCase , unittest.TestCase ): __A : Tuple = KandinskyVaaPipeline __A : Any = [ "image_embeds", "negative_image_embeds", ] __A : Tuple = ["image_embeds", "negative_image_embeds"] __A : Tuple = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __A : Union[str, Any] = False @property def __snake_case ( self : str ): '''simple docstring''' return 3_2 @property def __snake_case ( self : Any ): '''simple docstring''' return 3_2 @property def __snake_case ( self : List[Any] ): '''simple docstring''' return self.time_input_dim @property def __snake_case ( self : Any ): '''simple docstring''' return self.time_input_dim * 4 @property def __snake_case ( self : Optional[int] ): '''simple docstring''' return 1_0_0 @property def __snake_case ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase :Optional[Any] = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase :int = UNetaDConditionModel(**snake_case__ ) return model @property def __snake_case ( self : Dict ): '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __snake_case ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase :Tuple = VQModel(**self.dummy_movq_kwargs ) return model def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Optional[Any] = self.dummy_unet lowercase :List[Any] = self.dummy_movq lowercase :Optional[Any] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=snake_case__ , ) lowercase :str = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __snake_case ( self : str , snake_case__ : Any , snake_case__ : str=0 ): '''simple docstring''' lowercase :Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowercase :Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) if str(snake_case__ ).startswith('''mps''' ): lowercase :Optional[int] = torch.manual_seed(snake_case__ ) else: lowercase :Any = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowercase :List[Any] = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :List[Any] = '''cpu''' lowercase :Tuple = self.get_dummy_components() lowercase :Any = self.pipeline_class(**snake_case__ ) lowercase :List[str] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase :Optional[Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowercase :str = output.images lowercase :Dict = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowercase :Any = image[0, -3:, -3:, -1] lowercase :Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowercase :List[Any] = np.array( [0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __snake_case ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Any ): '''simple docstring''' lowercase :Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) lowercase :int = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowercase :Tuple = KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) lowercase :str = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowercase :int = '''red cat, 4k photo''' lowercase :str = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowercase , lowercase :Union[str, Any] = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowercase :Tuple = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowercase :List[Any] = pipeline( image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=1_0_0 , output_type='''np''' , ) lowercase :Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
172
0
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {} lowerCAmelCase__ = {} lowerCAmelCase__ = {} def _UpperCAmelCase (UpperCamelCase__ : type , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None , ): _A : Union[str, Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) _A : Dict = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) _A : Dict = format_type def _UpperCAmelCase (UpperCamelCase__ : Exception , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None ): _A : Union[str, Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _A : Union[str, Any] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: lowerCAmelCase__ = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: lowerCAmelCase__ = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: lowerCAmelCase__ = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def _UpperCAmelCase (UpperCamelCase__ : Optional[str] ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _UpperCAmelCase (UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : List[Any] ): _A : List[str] = get_format_type_from_alias(UpperCamelCase__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCamelCase__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
11
def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : bool = False ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _A : Optional[Any] = f"Expected string as input, found {type(UpperCamelCase__ )}" raise ValueError(UpperCamelCase__ ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _A : Union[str, Any] = f"Expected boolean as use_pascal parameter, found {type(UpperCamelCase__ )}" raise ValueError(UpperCamelCase__ ) _A : int = input_str.split("_" ) _A : str = 0 if use_pascal else 1 _A : str = words[start_index:] _A : Optional[Any] = [word[0].upper() + word[1:] for word in words_to_capitalize] _A : Any = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
11
1
from math import factorial class a__ : def __init__( self , A , A ) -> Tuple: '''simple docstring''' a = real if isinstance(A , A ): a = [1] * rank else: a = rank def __repr__( self ) -> Union[str, Any]: '''simple docstring''' return ( F'''{self.real}+''' F'''{"+".join(str(A )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' a = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , A ) def __add__( self , A ) -> Any: '''simple docstring''' if not isinstance(A , A ): return Dual(self.real + other , self.duals ) a = self.duals.copy() a = other.duals.copy() if len(A ) > len(A ): o_dual.extend([1] * (len(A ) - len(A )) ) elif len(A ) < len(A ): s_dual.extend([1] * (len(A ) - len(A )) ) a = [] for i in range(len(A ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , A ) a : Tuple = __add__ def __sub__( self , A ) -> Optional[Any]: '''simple docstring''' return self + other * -1 def __mul__( self , A ) -> int: '''simple docstring''' if not isinstance(A , A ): a = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , A ) a = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , A ) a : int = __mul__ def __truediv__( self , A ) -> Optional[int]: '''simple docstring''' if not isinstance(A , A ): a = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , A ) raise ValueError def __floordiv__( self , A ) -> List[str]: '''simple docstring''' if not isinstance(A , A ): a = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , A ) raise ValueError def __pow__( self , A ) -> Optional[Any]: '''simple docstring''' if n < 0 or isinstance(A , A ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self a = self for _ in range(n - 1 ): x *= self return x def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Optional[Any]: if not callable(__UpperCamelCase): raise ValueError("differentiate() requires a function as input for func") if not isinstance(__UpperCamelCase , (float, int)): raise ValueError("differentiate() requires a float as input for position") if not isinstance(__UpperCamelCase , __UpperCamelCase): raise ValueError("differentiate() requires an int as input for order") a = Dual(__UpperCamelCase , 1) a = func(__UpperCamelCase) if order == 0: return result.real return result.duals[order - 1] * factorial(__UpperCamelCase) if __name__ == "__main__": import doctest doctest.testmod() def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Optional[Any]: return y**2 * y**4 print(differentiate(f, 9, 2))
180
from math import isqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(__UpperCamelCase) + 1)) def SCREAMING_SNAKE_CASE ( __UpperCamelCase = 10**6) -> int: a = 0 a = 1 a = 7 while prime_candidate < max_prime: primes_count += is_prime(__UpperCamelCase) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'{solution() = }')
180
1
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __A = False class UpperCAmelCase (unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): lowercase__: Dict = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: List[str] = '''A painting of a squirrel eating a burger ''' lowercase__: str = torch.manual_seed(0 ) lowercase__: Union[str, Any] = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCAmelCase ) lowercase__: Optional[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained(_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = generator.manual_seed(0 ) lowercase__: List[str] = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _snake_case ( self ): lowercase__: Dict = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Tuple = '''A painting of a squirrel eating a burger ''' lowercase__: Optional[Any] = torch.manual_seed(0 ) lowercase__: Tuple = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images lowercase__: Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__: Any = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
177
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: # Initialise PyTorch model lowercase__: Optional[Any] = FunnelConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) lowercase__: List[Any] = FunnelBaseModel(__UpperCAmelCase ) if base_model else FunnelModel(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __UpperCAmelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
177
1
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __lowerCAmelCase = 1_0 def UpperCAmelCase_ (__a : int , __a : int , __a : list[int] , __a : int ): """simple docstring""" for i in range(__a , __a ): if array[i] == target: return i return -1 def UpperCAmelCase_ (__a : list[int] , __a : int ): """simple docstring""" _a : Union[str, Any] = 0 _a : List[Any] = len(__a ) while left <= right: if right - left < precision: return lin_search(__a , __a , __a , __a ) _a : Tuple = (left + right) // 3 + 1 _a : str = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _a : Optional[int] = one_third - 1 elif array[two_third] < target: _a : Tuple = two_third + 1 else: _a : Optional[Any] = one_third + 1 _a : Any = two_third - 1 else: return -1 def UpperCAmelCase_ (__a : int , __a : int , __a : list[int] , __a : int ): """simple docstring""" if left < right: if right - left < precision: return lin_search(__a , __a , __a , __a ) _a : List[str] = (left + right) // 3 + 1 _a : int = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__a , one_third - 1 , __a , __a ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __a , __a , __a ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __a , __a ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase = input("""Enter numbers separated by comma:\n""").strip() __lowerCAmelCase = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." __lowerCAmelCase = int(input("""Enter the number to be found in the list:\n""").strip()) __lowerCAmelCase = ite_ternary_search(collection, target) __lowerCAmelCase = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
353
'''simple docstring''' import sys def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : List[str] = len(__a ) _a : Dict = [[0 for x in range(__a )] for x in range(__a )] _a : Union[str, Any] = [[0 for x in range(__a )] for x in range(__a )] for chain_length in range(2 , __a ): for a in range(1 , n - chain_length + 1 ): _a : Tuple = a + chain_length - 1 _a : Any = sys.maxsize for c in range(__a , __a ): _a : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _a : Dict = cost _a : Any = c return matrix, sol def UpperCAmelCase_ (__a : Tuple , __a : List[str] , __a : Dict ): """simple docstring""" if i == j: print('A' + str(__a ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(__a , __a , optimal_solution[i][j] ) print_optiomal_solution(__a , optimal_solution[i][j] + 1 , __a ) print(')' , end=' ' ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] _a : Any = len(__a ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _a, _a : Union[str, Any] = matrix_chain_order(__a ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__a , 1 , n - 1 ) if __name__ == "__main__": main()
5
0
class snake_case : '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : List[str] = "" , lowerCAmelCase : str = False) -> None: """simple docstring""" _snake_case : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word _snake_case : Union[str, Any] = is_leaf _snake_case : Optional[Any] = prefix def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> tuple[str, str, str]: """simple docstring""" _snake_case : Optional[int] = 0 for q, w in zip(self.prefix , _SCREAMING_SNAKE_CASE): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCamelCase_ ( self : str , lowerCAmelCase : Optional[Any]) -> None: """simple docstring""" for word in words: self.insert(_SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self : Dict , lowerCAmelCase : List[str]) -> None: """simple docstring""" if self.prefix == word: _snake_case : List[str] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _snake_case : Any = RadixNode(prefix=_SCREAMING_SNAKE_CASE , is_leaf=_SCREAMING_SNAKE_CASE) else: _snake_case : Tuple = self.nodes[word[0]] _snake_case : Any = incoming_node.match( _SCREAMING_SNAKE_CASE) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_SCREAMING_SNAKE_CASE) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _snake_case : List[str] = remaining_prefix _snake_case : Dict = self.nodes[matching_string[0]] _snake_case : List[str] = RadixNode(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) _snake_case : Union[str, Any] = aux_node if remaining_word == "": _snake_case : Optional[Any] = True else: self.nodes[matching_string[0]].insert(_SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tuple) -> bool: """simple docstring""" _snake_case : Any = self.nodes.get(word[0] , _SCREAMING_SNAKE_CASE) if not incoming_node: return False else: _snake_case : str = incoming_node.match( _SCREAMING_SNAKE_CASE) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Union[str, Any]) -> bool: """simple docstring""" _snake_case : Optional[int] = self.nodes.get(word[0] , _SCREAMING_SNAKE_CASE) if not incoming_node: return False else: _snake_case : Tuple = incoming_node.match( _SCREAMING_SNAKE_CASE) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_SCREAMING_SNAKE_CASE) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: _snake_case : Optional[int] = list(self.nodes.values())[0] _snake_case : Any = merging_node.is_leaf self.prefix += merging_node.prefix _snake_case : Dict = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: _snake_case : Optional[Any] = False # If there is 1 edge, we merge it with its child else: _snake_case : Dict = list(incoming_node.nodes.values())[0] _snake_case : Optional[int] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _snake_case : Optional[Any] = merging_node.nodes return True def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Union[str, Any] = 0) -> None: """simple docstring""" if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""") for value in self.nodes.values(): value.print_tree(height + 1) def lowercase ( ) -> Any: _snake_case : Any = '''banana bananas bandana band apple all beast'''.split() _snake_case : List[str] = RadixNode() root.insert_many(SCREAMING_SNAKE_CASE__ ) assert all(root.find(SCREAMING_SNAKE_CASE__ ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def lowercase ( ) -> Dict: assert test_trie() def lowercase ( ) -> Any: _snake_case : str = RadixNode() _snake_case : Dict = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(SCREAMING_SNAKE_CASE__ ) print("""Words:""" , SCREAMING_SNAKE_CASE__ ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
317
from math import isclose, sqrt def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : List[str] = point_y / 4 / point_x A_ : Union[str, Any] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) A_ : int = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) A_ : List[str] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 A_ : List[str] = outgoing_gradient**2 + 4 A_ : List[str] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) A_ : Any = (point_y - outgoing_gradient * point_x) ** 2 - 100 A_ : str = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) A_ : Any = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point A_ : int = x_minus if isclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else x_plus A_ : Any = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = 1.4 , SCREAMING_SNAKE_CASE = -9.6 ): A_ : int = 0 A_ : float = first_x_coord A_ : float = first_y_coord A_ : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): A_ , A_ , A_ : List[str] = next_point(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F'''{solution() = }''')
186
0
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> bool: # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: # Base Case if curr_ind == len(_lowercase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_lowercase ) ): if valid_connection(_lowercase , _lowercase , _lowercase , _lowercase ): # Insert current vertex into path as next transition UpperCAmelCase : Optional[int] = next_ver # Validate created path if util_hamilton_cycle(_lowercase , _lowercase , curr_ind + 1 ): return True # Backtrack UpperCAmelCase : Union[str, Any] = -1 return False def __lowerCamelCase ( _lowercase , _lowercase = 0 ) -> list[int]: UpperCAmelCase : Tuple = [-1] * (len(_lowercase ) + 1) # initialize start and end of path with starting index UpperCAmelCase : Optional[int] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_lowercase , _lowercase , 1 ) else []
354
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
0
"""simple docstring""" from __future__ import annotations from fractions import Fraction def _lowerCAmelCase ( lowercase_ , lowercase_ ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = [] UpperCAmelCase = 11 UpperCAmelCase = int('1' + '0' * digit_len ) for num in range(lowercase_ , lowercase_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase_ , lowercase_ ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 UpperCAmelCase = 10 return solutions def _lowerCAmelCase ( lowercase_ = 2 ): UpperCAmelCase = 1.0 for fraction in fraction_list(lowercase_ ): UpperCAmelCase = Fraction(lowercase_ ) result *= frac.denominator / frac.numerator return int(lowercase_ ) if __name__ == "__main__": print(solution())
78
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _a : Any= "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
172
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCAmelCase = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["LayoutLMv2FeatureExtractor"] _lowerCAmelCase = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
363
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _lowerCAmelCase = get_tests_dir("fixtures") _lowerCAmelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _lowerCAmelCase = get_tests_dir("fixtures/dummy-config.json") class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def snake_case__ ( self : Union[str, Any] ): __magic_name__ = 0 def snake_case__ ( self : Optional[int] ): __magic_name__ = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(a__ , a__ ) def snake_case__ ( self : Optional[int] ): __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def snake_case__ ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ).to_dict() config_dict.pop('''feature_extractor_type''' ) __magic_name__ = WavaVecaFeatureExtractor(**a__ ) # save in new folder model_config.save_pretrained(a__ ) config.save_pretrained(a__ ) __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ) # make sure private variable is not incorrectly saved __magic_name__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(a__ , a__ ) def snake_case__ ( self : Optional[Any] ): __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def snake_case__ ( self : str ): with self.assertRaisesRegex( a__ , '''bert-base is not a local folder and is not a valid model identifier''' ): __magic_name__ = AutoFeatureExtractor.from_pretrained('''bert-base''' ) def snake_case__ ( self : str ): with self.assertRaisesRegex( a__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ , revision='''aaaaaa''' ) def snake_case__ ( self : Union[str, Any] ): with self.assertRaisesRegex( a__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __magic_name__ = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' ) def snake_case__ ( self : Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(a__ ): __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(a__ ): __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=a__ ) __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=a__ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(a__ ) __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ , trust_remote_code=a__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) def snake_case__ ( self : int ): try: AutoConfig.register('''custom''' , a__ ) AutoFeatureExtractor.register(a__ , a__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a__ ): AutoFeatureExtractor.register(a__ , a__ ) # Now that the config is registered, it can be used as any other config with the auto-API __magic_name__ = CustomFeatureExtractor.from_pretrained(a__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(a__ ) __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def snake_case__ ( self : int ): class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Optional[int] = True try: AutoConfig.register('''custom''' , a__ ) AutoFeatureExtractor.register(a__ , a__ ) # If remote code is not set, the default is to use local __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=a__ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=a__ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(not hasattr(a__ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
98
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _SCREAMING_SNAKE_CASE = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _SCREAMING_SNAKE_CASE = logging.getLogger() def snake_case ( ) -> List[str]: _A = argparse.ArgumentParser() parser.add_argument("""-f""") _A = parser.parse_args() return args.f def snake_case ( snake_case__ :Any , snake_case__ :Any="eval") -> List[str]: _A = os.path.join(snake_case__ , F'''{split}_results.json''') if os.path.exists(snake_case__): with open(snake_case__ , """r""") as f: return json.load(snake_case__) raise ValueError(F'''can\'t find {path}''') _SCREAMING_SNAKE_CASE = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class a ( __lowerCAmelCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[Any]: _A = self.get_auto_remove_tmp_dir() _A = F''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(lowerCAmelCase_ , """argv""" , lowerCAmelCase_ ): run_flax_glue.main() _A = get_results(lowerCAmelCase_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) @slow def UpperCAmelCase ( self ) -> Any: _A = self.get_auto_remove_tmp_dir() _A = F''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(lowerCAmelCase_ , """argv""" , lowerCAmelCase_ ): run_clm_flax.main() _A = get_results(lowerCAmelCase_ ) self.assertLess(result["""eval_perplexity"""] , 1_00 ) @slow def UpperCAmelCase ( self ) -> Tuple: _A = self.get_auto_remove_tmp_dir() _A = F''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(lowerCAmelCase_ , """argv""" , lowerCAmelCase_ ): run_summarization_flax.main() _A = get_results(lowerCAmelCase_ , split="""test""" ) self.assertGreaterEqual(result["""test_rouge1"""] , 10 ) self.assertGreaterEqual(result["""test_rouge2"""] , 2 ) self.assertGreaterEqual(result["""test_rougeL"""] , 7 ) self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 ) @slow def UpperCAmelCase ( self ) -> Optional[int]: _A = self.get_auto_remove_tmp_dir() _A = F''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(lowerCAmelCase_ , """argv""" , lowerCAmelCase_ ): run_mlm_flax.main() _A = get_results(lowerCAmelCase_ ) self.assertLess(result["""eval_perplexity"""] , 42 ) @slow def UpperCAmelCase ( self ) -> Dict: _A = self.get_auto_remove_tmp_dir() _A = F''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(lowerCAmelCase_ , """argv""" , lowerCAmelCase_ ): run_ta_mlm_flax.main() _A = get_results(lowerCAmelCase_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.42 ) @slow def UpperCAmelCase ( self ) -> str: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _A = 7 if get_gpu_count() > 1 else 2 _A = self.get_auto_remove_tmp_dir() _A = F''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(lowerCAmelCase_ , """argv""" , lowerCAmelCase_ ): run_flax_ner.main() _A = get_results(lowerCAmelCase_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertGreaterEqual(result["""eval_f1"""] , 0.3 ) @slow def UpperCAmelCase ( self ) -> Any: _A = self.get_auto_remove_tmp_dir() _A = F''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(lowerCAmelCase_ , """argv""" , lowerCAmelCase_ ): run_qa.main() _A = get_results(lowerCAmelCase_ ) self.assertGreaterEqual(result["""eval_f1"""] , 30 ) self.assertGreaterEqual(result["""eval_exact"""] , 30 )
180
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Optional[Any] = '''bridgetower_vision_model''' def __init__( self , lowerCAmelCase_=7_68 , lowerCAmelCase_=12 , lowerCAmelCase_=3 , lowerCAmelCase_=16 , lowerCAmelCase_=2_88 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-05 , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=False , **lowerCAmelCase_ , ) -> Any: super().__init__(**lowerCAmelCase_ ) _A = hidden_size _A = num_hidden_layers _A = num_channels _A = patch_size _A = image_size _A = initializer_factor _A = layer_norm_eps _A = stop_gradient _A = share_layernorm _A = remove_last_layer @classmethod def UpperCAmelCase ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ) -> "PretrainedConfig": _A , _A = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) if config_dict.get("""model_type""" ) == "bridgetower": _A = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Union[str, Any] = '''bridgetower_text_model''' def __init__( self , lowerCAmelCase_=5_02_65 , lowerCAmelCase_=7_68 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=1 , lowerCAmelCase_=30_72 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_14 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-05 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_="absolute" , lowerCAmelCase_=True , **lowerCAmelCase_ , ) -> Optional[Any]: super().__init__(**lowerCAmelCase_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = initializer_factor _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = pad_token_id _A = bos_token_id _A = eos_token_id @classmethod def UpperCAmelCase ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ) -> "PretrainedConfig": _A , _A = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) if config_dict.get("""model_type""" ) == "bridgetower": _A = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Optional[int] = '''bridgetower''' def __init__( self , lowerCAmelCase_=True , lowerCAmelCase_="gelu" , lowerCAmelCase_=7_68 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-05 , lowerCAmelCase_=False , lowerCAmelCase_="add" , lowerCAmelCase_=12 , lowerCAmelCase_=6 , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> int: # TODO: remove this once the Hub files are updated. _A = kwargs.pop("""text_config_dict""" , lowerCAmelCase_ ) _A = kwargs.pop("""vision_config_dict""" , lowerCAmelCase_ ) super().__init__(**lowerCAmelCase_ ) _A = share_cross_modal_transformer_layers _A = hidden_act _A = hidden_size _A = initializer_factor _A = layer_norm_eps _A = share_link_tower_layers _A = link_tower_type _A = num_attention_heads _A = num_hidden_layers _A = tie_word_embeddings _A = init_layernorm_from_vision_encoder if text_config is None: _A = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _A = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _A = BridgeTowerTextConfig(**lowerCAmelCase_ ) _A = BridgeTowerVisionConfig(**lowerCAmelCase_ ) @classmethod def UpperCAmelCase ( cls , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = copy.deepcopy(self.__dict__ ) _A = self.text_config.to_dict() _A = self.vision_config.to_dict() _A = self.__class__.model_type return output
180
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase_ = logging.get_logger(__name__) class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = ['''pixel_values'''] def __init__( self : Optional[Any] , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Dict[str, int]] = None , __lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 2_5_5 , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , **__lowerCamelCase : List[Any] , ): """simple docstring""" super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 2_5_6} _SCREAMING_SNAKE_CASE = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} _SCREAMING_SNAKE_CASE = get_size_dict(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = resample _SCREAMING_SNAKE_CASE = do_center_crop _SCREAMING_SNAKE_CASE = crop_size _SCREAMING_SNAKE_CASE = do_rescale _SCREAMING_SNAKE_CASE = rescale_factor _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self : int , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Dict , ): """simple docstring""" _SCREAMING_SNAKE_CASE = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _SCREAMING_SNAKE_CASE = get_resize_output_image_size(__lowerCamelCase , size=size["shortest_edge"] , default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase_ ( self : Tuple , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : List[Any] , ): """simple docstring""" _SCREAMING_SNAKE_CASE = get_size_dict(__lowerCamelCase ) return center_crop(__lowerCamelCase , size=(size["height"], size["width"]) , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase_ ( self : List[Any] , __lowerCamelCase : np.ndarray , __lowerCamelCase : float , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : List[Any] ): """simple docstring""" return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase_ ( self : Dict , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Optional[Any] , ): """simple docstring""" return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase_ ( self : Dict , __lowerCamelCase : ImageInput , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = None , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[float] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowerCamelCase : Union[str, Any] , ): """simple docstring""" _SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE = size if size is not None else self.size _SCREAMING_SNAKE_CASE = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop _SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size _SCREAMING_SNAKE_CASE = get_size_dict(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale _SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor _SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize _SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean _SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std _SCREAMING_SNAKE_CASE = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: _SCREAMING_SNAKE_CASE = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_center_crop: _SCREAMING_SNAKE_CASE = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images] if do_rescale: _SCREAMING_SNAKE_CASE = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: _SCREAMING_SNAKE_CASE = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] _SCREAMING_SNAKE_CASE = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] _SCREAMING_SNAKE_CASE = {"pixel_values": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
352
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCamelCase_ = logging.get_logger(__name__) class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = '''linear''' lowerCamelCase_ = '''cosine''' lowerCamelCase_ = '''cosine_with_restarts''' lowerCamelCase_ = '''polynomial''' lowerCamelCase_ = '''constant''' lowerCamelCase_ = '''constant_with_warmup''' lowerCamelCase_ = '''piecewise_constant''' def SCREAMING_SNAKE_CASE_ ( __A : Optimizer , __A : int = -1 ) -> Optional[int]: return LambdaLR(__A , lambda __A : 1 , last_epoch=__A ) def SCREAMING_SNAKE_CASE_ ( __A : Optimizer , __A : int , __A : int = -1 ) -> Dict: def lr_lambda(__A : int ): if current_step < num_warmup_steps: return float(__A ) / float(max(1.0 , __A ) ) return 1.0 return LambdaLR(__A , __A , last_epoch=__A ) def SCREAMING_SNAKE_CASE_ ( __A : Optimizer , __A : str , __A : int = -1 ) -> Tuple: _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = step_rules.split("," ) for rule_str in rule_list[:-1]: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = rule_str.split(":" ) _SCREAMING_SNAKE_CASE = int(__A ) _SCREAMING_SNAKE_CASE = float(__A ) _SCREAMING_SNAKE_CASE = value _SCREAMING_SNAKE_CASE = float(rule_list[-1] ) def create_rules_function(__A : Tuple , __A : List[Any] ): def rule_func(__A : int ) -> float: _SCREAMING_SNAKE_CASE = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__A ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _SCREAMING_SNAKE_CASE = create_rules_function(__A , __A ) return LambdaLR(__A , __A , last_epoch=__A ) def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] , __A : Optional[Any] , __A : List[str] , __A : Union[str, Any]=-1 ) -> str: def lr_lambda(__A : int ): if current_step < num_warmup_steps: return float(__A ) / float(max(1 , __A ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__A , __A , __A ) def SCREAMING_SNAKE_CASE_ ( __A : Optimizer , __A : int , __A : int , __A : float = 0.5 , __A : int = -1 ) -> Any: def lr_lambda(__A : int ): if current_step < num_warmup_steps: return float(__A ) / float(max(1 , __A ) ) _SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__A ) * 2.0 * progress )) ) return LambdaLR(__A , __A , __A ) def SCREAMING_SNAKE_CASE_ ( __A : Optimizer , __A : int , __A : int , __A : int = 1 , __A : int = -1 ) -> str: def lr_lambda(__A : Optional[int] ): if current_step < num_warmup_steps: return float(__A ) / float(max(1 , __A ) ) _SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__A ) * progress) % 1.0) )) ) return LambdaLR(__A , __A , __A ) def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Optional[Any] , __A : List[str] , __A : Any=1e-7 , __A : Optional[Any]=1.0 , __A : List[Any]=-1 ) -> Tuple: _SCREAMING_SNAKE_CASE = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(__A : int ): if current_step < num_warmup_steps: return float(__A ) / float(max(1 , __A ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _SCREAMING_SNAKE_CASE = lr_init - lr_end _SCREAMING_SNAKE_CASE = num_training_steps - num_warmup_steps _SCREAMING_SNAKE_CASE = 1 - (current_step - num_warmup_steps) / decay_steps _SCREAMING_SNAKE_CASE = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__A , __A , __A ) lowerCamelCase_ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def SCREAMING_SNAKE_CASE_ ( __A : Union[str, SchedulerType] , __A : Optimizer , __A : Optional[str] = None , __A : Optional[int] = None , __A : Optional[int] = None , __A : int = 1 , __A : float = 1.0 , __A : int = -1 , ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = SchedulerType(__A ) _SCREAMING_SNAKE_CASE = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__A , last_epoch=__A ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__A , step_rules=__A , last_epoch=__A ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__A , num_warmup_steps=__A , last_epoch=__A ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __A , num_warmup_steps=__A , num_training_steps=__A , num_cycles=__A , last_epoch=__A , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __A , num_warmup_steps=__A , num_training_steps=__A , power=__A , last_epoch=__A , ) return schedule_func( __A , num_warmup_steps=__A , num_training_steps=__A , last_epoch=__A )
111
0
def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : Dict = 2 while i * i <= n: SCREAMING_SNAKE_CASE : Optional[Any] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = 1 SCREAMING_SNAKE_CASE : Any = 1 while True: i += 1 t_num += i if count_divisors(__snake_case ) > 500: break return t_num if __name__ == "__main__": print(solution())
313
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' from __future__ import annotations from random import choice def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" return choice(lowerCAmelCase ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = random_pivot(lowerCAmelCase ) # partition based on pivot # linear time _lowerCAmelCase = [e for e in lst if e < pivot] _lowerCAmelCase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(lowerCAmelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(lowerCAmelCase ) < k - 1: return kth_number(lowerCAmelCase , k - len(lowerCAmelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
220
'''simple docstring''' import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase : @staticmethod def lowercase__ ( *__snake_case : Optional[Any] , **__snake_case : Any ) -> Tuple: pass @is_pipeline_test @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): _lowercase: Union[str, Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowercase__ ( self : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] ) -> int: _lowerCAmelCase = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) _lowerCAmelCase = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def lowercase__ ( self : Any , __snake_case : List[Any] , __snake_case : List[Any] ) -> Union[str, Any]: _lowerCAmelCase = vqa_pipeline(__snake_case , top_k=1 ) self.assertEqual( __snake_case , [ [{"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case )}], [{"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case )}], ] , ) @require_torch def lowercase__ ( self : str ) -> int: _lowerCAmelCase = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) _lowerCAmelCase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" _lowerCAmelCase = """How many cats are there?""" _lowerCAmelCase = vqa_pipeline(image=__snake_case , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( __snake_case , [{"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case )}, {"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case )}] ) _lowerCAmelCase = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( __snake_case , [{"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case )}, {"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case )}] ) @slow @require_torch def lowercase__ ( self : List[Any] ) -> List[str]: _lowerCAmelCase = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) _lowerCAmelCase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" _lowerCAmelCase = """How many cats are there?""" _lowerCAmelCase = vqa_pipeline(image=__snake_case , question=__snake_case , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [{"""score""": 0.87_99, """answer""": """2"""}, {"""score""": 0.2_96, """answer""": """1"""}] ) _lowerCAmelCase = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [{"""score""": 0.87_99, """answer""": """2"""}, {"""score""": 0.2_96, """answer""": """1"""}] ) _lowerCAmelCase = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [[{"""score""": 0.87_99, """answer""": """2"""}, {"""score""": 0.2_96, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: pass
220
1
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0,snake_case_ = 0 ): _A : Optional[int] = right or len(snake_case_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(snake_case_,snake_case_,left + 1,right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
26
from ...processing_utils import ProcessorMixin class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = ["""image_processor""", """feature_extractor"""] UpperCAmelCase_ : Optional[int] = """TvltImageProcessor""" UpperCAmelCase_ : Optional[int] = """TvltFeatureExtractor""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[int]: super().__init__(image_processor=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = image_processor lowerCAmelCase = feature_extractor def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) ->List[Any]: if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''' ) lowerCAmelCase = None if images is not None: lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , mask_pixel=__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if images_mixed is not None: lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , is_mixed=__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if audio is not None: lowerCAmelCase = self.feature_extractor( __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , mask_audio=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCAmelCase = {} if audio is not None: output_dict.update(__SCREAMING_SNAKE_CASE ) if images is not None: output_dict.update(__SCREAMING_SNAKE_CASE ) if images_mixed_dict is not None: output_dict.update(__SCREAMING_SNAKE_CASE ) return output_dict @property def SCREAMING_SNAKE_CASE_ ( self ) ->Any: lowerCAmelCase = self.image_processor.model_input_names lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
338
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=13 ,_lowerCamelCase=32 ,_lowerCamelCase=3 ,_lowerCamelCase=4 ,_lowerCamelCase=[10, 20, 30, 40] ,_lowerCamelCase=[2, 2, 3, 2] ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=37 ,_lowerCamelCase="gelu" ,_lowerCamelCase=10 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=["stage2", "stage3", "stage4"] ,_lowerCamelCase=[2, 3, 4] ,_lowerCamelCase=None ,) -> str: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = num_stages __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_labels __lowercase = initializer_range __lowercase = out_features __lowercase = out_indices __lowercase = scope def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=_lowerCamelCase ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = ConvNextVaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = ConvNextVaForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ,labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = ConvNextVaBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowercase = None __lowercase = ConvNextVaBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Optional[Any] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) a : Union[str, Any] = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) a : List[str] = False a : List[str] = False a : int = False a : Union[str, Any] = False a : int = False def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = ConvNextVaModelTester(self ) __lowercase = ConfigTester(self ,config_class=_lowerCamelCase ,has_text_modality=_lowerCamelCase ,hidden_size=37 ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_with_labels() __lowercase = True if model_class.__name__ in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ]: continue __lowercase = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() __lowercase = self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ,return_labels=_lowerCamelCase ) __lowercase = model(**_lowerCamelCase ).loss loss.backward() def _UpperCAmelCase (self ) -> int: '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_with_labels() __lowercase = False __lowercase = True if ( model_class.__name__ in [*get_values(_lowerCamelCase ), *get_values(_lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue __lowercase = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.gradient_checkpointing_enable() model.train() __lowercase = self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ,return_labels=_lowerCamelCase ) __lowercase = model(**_lowerCamelCase ).loss loss.backward() def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCamelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ): __lowercase = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) ,expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _UpperCAmelCase (self ) -> str: '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = ConvNextVaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _lowerCAmelCase ( ): __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(_lowerCamelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = preprocessor(images=_lowerCamelCase ,return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCamelCase ) # verify the logits __lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_lowerCamelCase ) __lowercase = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_lowerCamelCase ,atol=1E-4 ) )
217
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=sys.maxsize ) -> Optional[Any]: '''simple docstring''' __lowercase = '''bilinear''' __lowercase = max_size __lowercase = short_edge_length def __call__(self ,_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = [] for img in imgs: __lowercase , __lowercase = img.shape[:2] # later: provide list and randomly choose index for resize __lowercase = np.random.randint(self.short_edge_length[0] ,self.short_edge_length[1] + 1 ) if size == 0: return img __lowercase = size * 1.0 / min(_lowerCamelCase ,_lowerCamelCase ) if h < w: __lowercase , __lowercase = size, scale * w else: __lowercase , __lowercase = scale * h, size if max(_lowerCamelCase ,_lowerCamelCase ) > self.max_size: __lowercase = self.max_size * 1.0 / max(_lowerCamelCase ,_lowerCamelCase ) __lowercase = newh * scale __lowercase = neww * scale __lowercase = int(neww + 0.5 ) __lowercase = int(newh + 0.5 ) if img.dtype == np.uinta: __lowercase = Image.fromarray(_lowerCamelCase ) __lowercase = pil_image.resize((neww, newh) ,PILImageResampling.BILINEAR ) __lowercase = np.asarray(_lowerCamelCase ) else: __lowercase = img.permute(2 ,0 ,1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw __lowercase = nn.functional.interpolate( _lowerCamelCase ,(newh, neww) ,mode=self.interp_method ,align_corners=_lowerCamelCase ).squeeze(0 ) img_augs.append(_lowerCamelCase ) return img_augs class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] ,cfg.INPUT.MAX_SIZE_TEST ) __lowercase = cfg.INPUT.FORMAT __lowercase = cfg.SIZE_DIVISIBILITY __lowercase = cfg.PAD_VALUE __lowercase = cfg.INPUT.MAX_SIZE_TEST __lowercase = cfg.MODEL.DEVICE __lowercase = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) ,1 ,1 ) __lowercase = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) ,1 ,1 ) __lowercase = lambda _lowerCamelCase : (x - self.pixel_mean) / self.pixel_std def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = tuple(max(_lowerCamelCase ) for s in zip(*[img.shape for img in images] ) ) __lowercase = [im.shape[-2:] for im in images] __lowercase = [ nn.functional.pad( _lowerCamelCase ,[0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] ,value=self.pad_value ,) for size, im in zip(_lowerCamelCase ,_lowerCamelCase ) ] return torch.stack(_lowerCamelCase ), torch.tensor(_lowerCamelCase ) def __call__(self ,_lowerCamelCase ,_lowerCamelCase=False ) -> Tuple: '''simple docstring''' with torch.no_grad(): if not isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [images] if single_image: assert len(_lowerCamelCase ) == 1 for i in range(len(_lowerCamelCase ) ): if isinstance(images[i] ,torch.Tensor ): images.insert(_lowerCamelCase ,images.pop(_lowerCamelCase ).to(self.device ).float() ) elif not isinstance(images[i] ,torch.Tensor ): images.insert( _lowerCamelCase ,torch.as_tensor(img_tensorize(images.pop(_lowerCamelCase ) ,input_format=self.input_format ) ) .to(self.device ) .float() ,) # resize smallest edge __lowercase = torch.tensor([im.shape[:2] for im in images] ) __lowercase = self.aug(_lowerCamelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __lowercase = [self.normalizer(_lowerCamelCase ) for x in images] # now pad them to do the following operations __lowercase , __lowercase = self.pad(_lowerCamelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __lowercase = torch.true_divide(_lowerCamelCase ,_lowerCamelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Tuple[int, int] ): assert torch.isfinite(lowerCamelCase_ ).all(), "Box tensor contains infinite or NaN!" __lowercase , __lowercase = box_size tensor[:, 0].clamp_(min=0 , max=lowerCamelCase_ ) tensor[:, 1].clamp_(min=0 , max=lowerCamelCase_ ) tensor[:, 2].clamp_(min=0 , max=lowerCamelCase_ ) tensor[:, 3].clamp_(min=0 , max=lowerCamelCase_ )
217
1
"""simple docstring""" import numpy class _UpperCAmelCase : def __init__( self : List[Any] , A : numpy.ndarray , A : numpy.ndarray ) -> None: lowercase_ : Union[str, Any] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowercase_ : Optional[int] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowercase_ : Optional[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowercase_ : Optional[Any] = numpy.random.rand(3 , 1 ) # Real output values provided. lowercase_ : str = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowercase_ : Dict = numpy.zeros(output_array.shape ) def A ( self : Union[str, Any] ) -> numpy.ndarray: lowercase_ : List[Any] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowercase_ : str = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowercase_ : Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def A ( self : Optional[int] ) -> None: lowercase_ : Any = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowercase_ : int = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowercase_ : Dict = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def A ( self : str , A : numpy.ndarray , A : int , A : bool ) -> None: for iteration in range(1 , iterations + 1 ): lowercase_ : int = self.feedforward() self.back_propagation() if give_loss: lowercase_ : Optional[Any] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def A ( self : Optional[Any] , A : numpy.ndarray ) -> int: lowercase_ : Optional[int] = input_arr lowercase_ : int = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowercase_ : Dict = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowercase_ : int = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowercase ( __snake_case : numpy.ndarray ): return 1 / (1 + numpy.exp(-value )) def lowercase ( __snake_case : numpy.ndarray ): return (value) * (1 - (value)) def lowercase ( ): lowercase_ : List[str] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowercase_ : int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowercase_ : str = TwoHiddenLayerNeuralNetwork( input_array=__snake_case , output_array=__snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=__snake_case , iterations=1_0 , give_loss=__snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
33
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : int = logging.get_logger(__name__) lowerCAmelCase__ : str = { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/config.json', # See all XGLM models at https://huggingface.co/models?filter=xglm } class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = "xglm" snake_case__ = ["past_key_values"] snake_case__ = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self : Any ,lowerCamelCase__ : Any=256_008 ,lowerCamelCase__ : Optional[Any]=2_048 ,lowerCamelCase__ : List[str]=1_024 ,lowerCamelCase__ : List[str]=4_096 ,lowerCamelCase__ : Tuple=24 ,lowerCamelCase__ : Optional[int]=16 ,lowerCamelCase__ : int="gelu" ,lowerCamelCase__ : Dict=0.1 ,lowerCamelCase__ : int=0.1 ,lowerCamelCase__ : List[Any]=0.0 ,lowerCamelCase__ : List[str]=0.0 ,lowerCamelCase__ : Optional[Any]=0.0_2 ,lowerCamelCase__ : List[str]=True ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : str=2 ,lowerCamelCase__ : Dict=1 ,lowerCamelCase__ : Optional[int]=0 ,lowerCamelCase__ : Tuple=2 ,**lowerCamelCase__ : List[Any] ,): UpperCAmelCase__ = vocab_size UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = d_model UpperCAmelCase__ = ffn_dim UpperCAmelCase__ = num_layers UpperCAmelCase__ = attention_heads UpperCAmelCase__ = activation_function UpperCAmelCase__ = dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = layerdrop UpperCAmelCase__ = init_std UpperCAmelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase__ = use_cache super().__init__( pad_token_id=lowerCamelCase__ ,bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,decoder_start_token_id=lowerCamelCase__ ,**lowerCamelCase__ ,)
98
0
'''simple docstring''' import sys __lowercase : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): __a : List[str] = 1 for digit in s: product *= int(_SCREAMING_SNAKE_CASE ) return product def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = N ): __a : Optional[int] = -sys.maxsize - 1 __a : Optional[Any] = n[:13] __a : int = 13 while cur_index < len(_SCREAMING_SNAKE_CASE ) - 13: if int(n[cur_index] ) >= int(substr[0] ): __a : List[Any] = substr[1:] + n[cur_index] cur_index += 1 else: __a : Dict = max(_SCREAMING_SNAKE_CASE , str_eval(_SCREAMING_SNAKE_CASE ) ) __a : Optional[Any] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
362
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): if is_torch_version('<' , '2.0.0' ) or not hasattr(_SCREAMING_SNAKE_CASE , '_dynamo' ): return False return isinstance(_SCREAMING_SNAKE_CASE , torch._dynamo.eval_frame.OptimizedModule ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : bool = True ): __a : int = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __a : Any = is_compiled_module(_SCREAMING_SNAKE_CASE ) if is_compiled: __a : List[Any] = model __a : Union[str, Any] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __a : Union[str, Any] = model.module if not keep_fpaa_wrapper: __a : Optional[Any] = getattr(_SCREAMING_SNAKE_CASE , 'forward' ) __a : str = model.__dict__.pop('_original_forward' , _SCREAMING_SNAKE_CASE ) if original_forward is not None: while hasattr(_SCREAMING_SNAKE_CASE , '__wrapped__' ): __a : Any = forward.__wrapped__ if forward == original_forward: break __a : str = forward if getattr(_SCREAMING_SNAKE_CASE , '_converted_to_transformer_engine' , _SCREAMING_SNAKE_CASE ): convert_model(_SCREAMING_SNAKE_CASE , to_transformer_engine=_SCREAMING_SNAKE_CASE ) if is_compiled: __a : List[str] = model __a : Optional[int] = compiled_model return model def lowerCamelCase (): PartialState().wait_for_everyone() def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple ): if PartialState().distributed_type == DistributedType.TPU: xm.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif PartialState().local_process_index == 0: torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @contextmanager def lowerCamelCase (**_SCREAMING_SNAKE_CASE : Tuple ): for key, value in kwargs.items(): __a : Optional[int] = str(_SCREAMING_SNAKE_CASE ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict ): if not hasattr(_SCREAMING_SNAKE_CASE , '__qualname__' ) and not hasattr(_SCREAMING_SNAKE_CASE , '__name__' ): __a : List[Any] = getattr(_SCREAMING_SNAKE_CASE , '__class__' , _SCREAMING_SNAKE_CASE ) if hasattr(_SCREAMING_SNAKE_CASE , '__qualname__' ): return obj.__qualname__ if hasattr(_SCREAMING_SNAKE_CASE , '__name__' ): return obj.__name__ return str(_SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ): for key, value in source.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __a : int = destination.setdefault(_SCREAMING_SNAKE_CASE , {} ) merge_dicts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __a : Tuple = value return destination def lowerCamelCase (_SCREAMING_SNAKE_CASE : int = None ): if port is None: __a : List[str] = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
294
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__ : int = logging.get_logger(__name__) A__ : Optional[int] = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __snake_case ( __lowerCamelCase ): _a = '''deformable_detr''' _a = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[str] , A_ : Optional[int]=True , A_ : List[Any]=None , A_ : List[str]=3 , A_ : str=3_0_0 , A_ : List[Any]=1_0_2_4 , A_ : int=6 , A_ : Union[str, Any]=1_0_2_4 , A_ : str=8 , A_ : Union[str, Any]=6 , A_ : Union[str, Any]=1_0_2_4 , A_ : Any=8 , A_ : str=0.0 , A_ : Any=True , A_ : Dict="relu" , A_ : List[str]=2_5_6 , A_ : Any=0.1 , A_ : Optional[Any]=0.0 , A_ : Optional[Any]=0.0 , A_ : str=0.02 , A_ : Tuple=1.0 , A_ : List[Any]=True , A_ : Any=False , A_ : int="sine" , A_ : Optional[Any]="resnet50" , A_ : Tuple=True , A_ : Dict=False , A_ : Tuple=4 , A_ : str=4 , A_ : int=4 , A_ : Union[str, Any]=False , A_ : Union[str, Any]=3_0_0 , A_ : Optional[int]=False , A_ : List[str]=1 , A_ : str=5 , A_ : str=2 , A_ : Optional[Any]=1 , A_ : Any=1 , A_ : List[str]=5 , A_ : List[str]=2 , A_ : Any=0.1 , A_ : Union[str, Any]=0.25 , A_ : List[Any]=False , **A_ : List[str] , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') lowerCAmelCase_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=['''stage4''']) elif isinstance(A_ , A_): lowerCAmelCase_ : int = backbone_config.get('''model_type''') lowerCAmelCase_ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ : str = config_class.from_dict(A_) lowerCAmelCase_ : Optional[int] = use_timm_backbone lowerCAmelCase_ : Optional[Any] = backbone_config lowerCAmelCase_ : Tuple = num_channels lowerCAmelCase_ : Dict = num_queries lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Any = d_model lowerCAmelCase_ : Dict = encoder_ffn_dim lowerCAmelCase_ : Any = encoder_layers lowerCAmelCase_ : str = encoder_attention_heads lowerCAmelCase_ : Tuple = decoder_ffn_dim lowerCAmelCase_ : Optional[Any] = decoder_layers lowerCAmelCase_ : int = decoder_attention_heads lowerCAmelCase_ : Tuple = dropout lowerCAmelCase_ : Tuple = attention_dropout lowerCAmelCase_ : List[Any] = activation_dropout lowerCAmelCase_ : Any = activation_function lowerCAmelCase_ : Dict = init_std lowerCAmelCase_ : Optional[int] = init_xavier_std lowerCAmelCase_ : int = encoder_layerdrop lowerCAmelCase_ : str = auxiliary_loss lowerCAmelCase_ : List[Any] = position_embedding_type lowerCAmelCase_ : List[Any] = backbone lowerCAmelCase_ : Optional[Any] = use_pretrained_backbone lowerCAmelCase_ : List[str] = dilation # deformable attributes lowerCAmelCase_ : Optional[Any] = num_feature_levels lowerCAmelCase_ : int = encoder_n_points lowerCAmelCase_ : Any = decoder_n_points lowerCAmelCase_ : Optional[Any] = two_stage lowerCAmelCase_ : Dict = two_stage_num_proposals lowerCAmelCase_ : Any = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''') # Hungarian matcher lowerCAmelCase_ : int = class_cost lowerCAmelCase_ : Any = bbox_cost lowerCAmelCase_ : Any = giou_cost # Loss coefficients lowerCAmelCase_ : List[Any] = mask_loss_coefficient lowerCAmelCase_ : Any = dice_loss_coefficient lowerCAmelCase_ : List[Any] = bbox_loss_coefficient lowerCAmelCase_ : Union[str, Any] = giou_loss_coefficient lowerCAmelCase_ : Optional[Any] = eos_coefficient lowerCAmelCase_ : Optional[int] = focal_alpha lowerCAmelCase_ : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=A_ , **A_) @property def UpperCAmelCase__ ( self : str): return self.encoder_attention_heads @property def UpperCAmelCase__ ( self : List[Any]): return self.d_model def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : Dict = copy.deepcopy(self.__dict__) if self.backbone_config is not None: lowerCAmelCase_ : List[Any] = self.backbone_config.to_dict() lowerCAmelCase_ : List[Any] = self.__class__.model_type return output
103
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Any , A : Union[str, Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): __snake_case: Dict = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(A ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: List[Any] = """sshleifer/tiny-gpt2""" __snake_case: Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=A , multi_process=A , ) __snake_case: Dict = TensorFlowBenchmark(A ) __snake_case: List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Optional[int] = """sgugger/tiny-distilbert-classification""" __snake_case: str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , only_pretrain_model=A , ) __snake_case: Any = TensorFlowBenchmark(A ) __snake_case: List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : int ): __snake_case: Dict = """sshleifer/tiny-gpt2""" __snake_case: Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: int = TensorFlowBenchmark(A ) __snake_case: str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: List[Any] = """sshleifer/tiny-gpt2""" __snake_case: int = AutoConfig.from_pretrained(A ) __snake_case: Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=A , multi_process=A , ) __snake_case: Union[str, Any] = TensorFlowBenchmark(A , [config] ) __snake_case: Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Any ): __snake_case: Optional[int] = """sshleifer/tiny-gpt2""" __snake_case: Tuple = AutoConfig.from_pretrained(A ) __snake_case: Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: str = TensorFlowBenchmark(A , [config] ) __snake_case: str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Any ): __snake_case: Tuple = """sshleifer/tiny-gpt2""" __snake_case: str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: Tuple = TensorFlowBenchmark(A ) __snake_case: Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : int ): __snake_case: Dict = """sshleifer/tiny-gpt2""" __snake_case: Union[str, Any] = AutoConfig.from_pretrained(A ) __snake_case: Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: List[str] = TensorFlowBenchmark(A , [config] ) __snake_case: Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : List[str] ): __snake_case: List[Any] = """patrickvonplaten/t5-tiny-random""" __snake_case: List[str] = AutoConfig.from_pretrained(A ) __snake_case: List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: Optional[int] = TensorFlowBenchmark(A , configs=[config] ) __snake_case: Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[Any] = """sshleifer/tiny-gpt2""" __snake_case: List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , use_xla=A , multi_process=A , ) __snake_case: Union[str, Any] = TensorFlowBenchmark(A ) __snake_case: List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: List[str] = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: __snake_case: int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=A , save_to_csv=A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(A , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(A , """env.csv""" ) , multi_process=A , ) __snake_case: Tuple = TensorFlowBenchmark(A ) benchmark.run() self.assertTrue(Path(os.path.join(A , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(A , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(A , """env.csv""" ) ).exists() ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Any = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(A : Union[str, Any] ): self.assertTrue(hasattr(A , """sequential""" ) ) self.assertTrue(hasattr(A , """cumulative""" ) ) self.assertTrue(hasattr(A , """current""" ) ) self.assertTrue(hasattr(A , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case: Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A , """log.txt""" ) , log_print=A , trace_memory_line_by_line=A , eager_mode=A , multi_process=A , ) __snake_case: Dict = TensorFlowBenchmark(A ) __snake_case: List[str] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(A , """log.txt""" ) ).exists() )
111
0
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): """simple docstring""" warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase )
192
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
192
1
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class a ( a_ ): def __init__( self , _lowerCamelCase ): super().__init__() lowercase = nn.ModuleList(_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = True , ): for i, (image, scale, controlnet) in enumerate(zip(_lowerCamelCase , _lowerCamelCase , self.nets ) ): lowercase , lowercase = controlnet( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) # merge samples if i == 0: lowercase , lowercase = down_samples, mid_sample else: lowercase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(_lowerCamelCase , _lowerCamelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , ): lowercase = 0 lowercase = save_directory for controlnet in self.nets: controlnet.save_pretrained( _lowerCamelCase , is_main_process=_lowerCamelCase , save_function=_lowerCamelCase , safe_serialization=_lowerCamelCase , variant=_lowerCamelCase , ) idx += 1 lowercase = model_path_to_save + F'_{idx}' @classmethod def UpperCamelCase_ ( cls , _lowerCamelCase , **_lowerCamelCase ): lowercase = 0 lowercase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowercase = pretrained_model_path while os.path.isdir(_lowerCamelCase ): lowercase = ControlNetModel.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) controlnets.append(_lowerCamelCase ) idx += 1 lowercase = pretrained_model_path + F'_{idx}' logger.info(F'{len(_lowerCamelCase )} controlnets loaded from {pretrained_model_path}.' ) if len(_lowerCamelCase ) == 0: raise ValueError( F'No ControlNets found under {os.path.dirname(_lowerCamelCase )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(_lowerCamelCase )
220
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class a ( a_ ): def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase ): lowercase = parent lowercase = config_class lowercase = has_text_modality lowercase = kwargs lowercase = common_properties def UpperCamelCase_ ( self ): lowercase = self.config_class(**self.inputs_dict ) lowercase = ( ['hidden_size', 'num_attention_heads', 'num_hidden_layers'] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['vocab_size'] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) , msg=F'`{prop}` does not exist' ) # Test that config has the common properties as setter for idx, name in enumerate(_lowerCamelCase ): try: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F'`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowerCamelCase ): try: lowercase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F'`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCamelCase_ ( self ): lowercase = self.config_class(**self.inputs_dict ) lowercase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase = os.path.join(_lowerCamelCase , 'config.json' ) config_first.to_json_file(_lowerCamelCase ) lowercase = self.config_class.from_json_file(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCamelCase_ ( self ): lowercase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowerCamelCase ) lowercase = self.config_class.from_pretrained(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCamelCase_ ( self ): lowercase = self.config_class(**self.inputs_dict ) lowercase = 'test' with tempfile.TemporaryDirectory() as tmpdirname: lowercase = os.path.join(_lowerCamelCase , _lowerCamelCase ) config_first.save_pretrained(_lowerCamelCase ) lowercase = self.config_class.from_pretrained(_lowerCamelCase , subfolder=_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCamelCase_ ( self ): lowercase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) lowercase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCamelCase_ ( self ): if self.config_class.is_composition: return lowercase = self.config_class() self.parent.assertIsNotNone(_lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = copy.deepcopy(_lowerCamelCase ) lowercase = self.config_class(**_lowerCamelCase ) lowercase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('torch_dtype', config.torch_dtype, torch.floataa) ) elif getattr(_lowerCamelCase , _lowerCamelCase ) != value: wrong_values.append((key, getattr(_lowerCamelCase , _lowerCamelCase ), value) ) if len(_lowerCamelCase ) > 0: lowercase = '\n'.join([F'- {v[0]}: got {v[1]} instead of {v[2]}' for v in wrong_values] ) raise ValueError(F'The following keys were not properly set in the config:\n{errors}' ) def UpperCamelCase_ ( self ): self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
220
1
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase = '''▁''' __lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : int = BertGenerationTokenizer a__ : Dict = False a__ : str = True def UpperCamelCase__ ( self) -> List[str]: super().setUp() __UpperCamelCase :Optional[Any] = BertGenerationTokenizer(__lowercase , keep_accents=__lowercase) tokenizer.save_pretrained(self.tmpdirname) def UpperCamelCase__ ( self) -> int: __UpperCamelCase :Dict = '''<s>''' __UpperCamelCase :Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase) , __lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase) , __lowercase) def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''<pad>''') self.assertEqual(len(__lowercase) , 1_002) def UpperCamelCase__ ( self) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 1_000) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :str = BertGenerationTokenizer(__lowercase , keep_accents=__lowercase) __UpperCamelCase :Optional[Any] = tokenizer.tokenize('''This is a test''') self.assertListEqual(__lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase) , [285, 46, 10, 170, 382] , ) __UpperCamelCase :List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __UpperCamelCase :Any = tokenizer.convert_tokens_to_ids(__lowercase) self.assertListEqual( __lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __UpperCamelCase :Tuple = tokenizer.convert_ids_to_tokens(__lowercase) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase__ ( self) -> int: return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''') @slow def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Optional[Any] = '''Hello World!''' __UpperCamelCase :Optional[int] = [18_536, 2_260, 101] self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase)) @slow def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Optional[Any] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __UpperCamelCase :Union[str, Any] = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase)) @require_torch @slow def UpperCamelCase__ ( self) -> Optional[int]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __UpperCamelCase :Optional[Any] = list(self.big_tokenizer.get_vocab().keys())[:10] __UpperCamelCase :Optional[int] = ''' '''.join(__lowercase) __UpperCamelCase :Optional[int] = self.big_tokenizer.encode_plus(__lowercase , return_tensors='''pt''' , return_token_type_ids=__lowercase) __UpperCamelCase :List[str] = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__lowercase) __UpperCamelCase :List[Any] = BertGenerationConfig() __UpperCamelCase :Optional[Any] = BertGenerationEncoder(__lowercase) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__lowercase) model(**__lowercase) @slow def UpperCamelCase__ ( self) -> Dict: # fmt: off __UpperCamelCase :List[str] = {'''input_ids''': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
353
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase , ) -> Optional[Any]: __UpperCamelCase :Optional[int] = parent __UpperCamelCase :Optional[int] = 13 __UpperCamelCase :Dict = 7 __UpperCamelCase :Optional[int] = True __UpperCamelCase :List[str] = True __UpperCamelCase :List[Any] = True __UpperCamelCase :Union[str, Any] = True __UpperCamelCase :Any = True __UpperCamelCase :Optional[int] = False __UpperCamelCase :Any = False __UpperCamelCase :str = False __UpperCamelCase :Optional[Any] = 2 __UpperCamelCase :Optional[int] = 99 __UpperCamelCase :Any = 0 __UpperCamelCase :List[Any] = 32 __UpperCamelCase :int = 2 __UpperCamelCase :Optional[Any] = 4 __UpperCamelCase :Dict = 0.1 __UpperCamelCase :Optional[Any] = 0.1 __UpperCamelCase :str = 512 __UpperCamelCase :Any = 16 __UpperCamelCase :str = 2 __UpperCamelCase :Dict = 0.02 __UpperCamelCase :List[Any] = 3 __UpperCamelCase :Optional[int] = 4 __UpperCamelCase :Tuple = '''last''' __UpperCamelCase :Any = True __UpperCamelCase :Union[str, Any] = None __UpperCamelCase :Tuple = 0 def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCamelCase :Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa) __UpperCamelCase :Tuple = None if self.use_input_lengths: __UpperCamelCase :List[str] = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase :Any = None if self.use_token_type_ids: __UpperCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) __UpperCamelCase :Dict = None __UpperCamelCase :List[str] = None __UpperCamelCase :Union[str, Any] = None if self.use_labels: __UpperCamelCase :Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCamelCase :List[str] = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa) __UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) __UpperCamelCase :Optional[int] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Optional[Any]: __UpperCamelCase :str = TFFlaubertModel(config=__lowercase) __UpperCamelCase :List[str] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} __UpperCamelCase :Optional[int] = model(__lowercase) __UpperCamelCase :Optional[int] = [input_ids, input_mask] __UpperCamelCase :Union[str, Any] = model(__lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> int: __UpperCamelCase :str = TFFlaubertWithLMHeadModel(__lowercase) __UpperCamelCase :List[str] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} __UpperCamelCase :Optional[int] = model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Any: __UpperCamelCase :Any = TFFlaubertForQuestionAnsweringSimple(__lowercase) __UpperCamelCase :str = {'''input_ids''': input_ids, '''lengths''': input_lengths} __UpperCamelCase :int = model(__lowercase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Any: __UpperCamelCase :int = TFFlaubertForSequenceClassification(__lowercase) __UpperCamelCase :List[Any] = {'''input_ids''': input_ids, '''lengths''': input_lengths} __UpperCamelCase :Any = model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Tuple: __UpperCamelCase :Optional[int] = self.num_labels __UpperCamelCase :int = TFFlaubertForTokenClassification(config=__lowercase) __UpperCamelCase :Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCamelCase :Optional[Any] = model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> List[Any]: __UpperCamelCase :Any = self.num_choices __UpperCamelCase :Any = TFFlaubertForMultipleChoice(config=__lowercase) __UpperCamelCase :List[str] = tf.tile(tf.expand_dims(__lowercase , 1) , (1, self.num_choices, 1)) __UpperCamelCase :Optional[Any] = tf.tile(tf.expand_dims(__lowercase , 1) , (1, self.num_choices, 1)) __UpperCamelCase :Tuple = tf.tile(tf.expand_dims(__lowercase , 1) , (1, self.num_choices, 1)) __UpperCamelCase :Any = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __UpperCamelCase :List[Any] = model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Optional[int] = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) :Any = config_and_inputs __UpperCamelCase :int = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : List[Any] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) a__ : Tuple = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable a__ : Tuple = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) a__ : Tuple = False a__ : Any = False def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Any: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :int = TFFlaubertModelTester(self) __UpperCamelCase :Dict = ConfigTester(self , config_class=__lowercase , emb_dim=37) def UpperCamelCase__ ( self) -> str: self.config_tester.run_common_tests() def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__lowercase) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__lowercase) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__lowercase) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__lowercase) def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__lowercase) @slow def UpperCamelCase__ ( self) -> Union[str, Any]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase :Any = TFFlaubertModel.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :List[Any] = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''') __UpperCamelCase :Tuple = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase :Union[str, Any] = model(__lowercase)[0] __UpperCamelCase :str = tf.TensorShape((1, 8, 512)) self.assertEqual(output.shape , __lowercase) # compare the actual values for a slice. __UpperCamelCase :Optional[int] = tf.convert_to_tensor( [ [ [-1.8_76_87_73, -1.56_65_55, 0.27_07_24_18], [-1.6_92_00_38, -0.5_87_35_05, 1.9_32_95_99], [-2.9_56_39_85, -1.6_99_38_35, 1.7_97_20_52], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
105
0
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class snake_case : def __init__( self : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int]=sys.maxsize)-> str: '''simple docstring''' __lowerCAmelCase: Optional[Any] = "bilinear" __lowerCAmelCase: Dict = max_size __lowerCAmelCase: List[Any] = short_edge_length def __call__( self : Any , UpperCamelCase__ : int)-> str: '''simple docstring''' __lowerCAmelCase: Any = [] for img in imgs: __lowerCAmelCase , __lowerCAmelCase: int = img.shape[:2] # later: provide list and randomly choose index for resize __lowerCAmelCase: Tuple = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __lowerCAmelCase: List[Any] = size * 1.0 / min(UpperCamelCase__ , UpperCamelCase__) if h < w: __lowerCAmelCase , __lowerCAmelCase: Tuple = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase: str = scale * h, size if max(UpperCamelCase__ , UpperCamelCase__) > self.max_size: __lowerCAmelCase: Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase__ , UpperCamelCase__) __lowerCAmelCase: Optional[int] = newh * scale __lowerCAmelCase: str = neww * scale __lowerCAmelCase: Union[str, Any] = int(neww + 0.5) __lowerCAmelCase: int = int(newh + 0.5) if img.dtype == np.uinta: __lowerCAmelCase: List[Any] = Image.fromarray(UpperCamelCase__) __lowerCAmelCase: str = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __lowerCAmelCase: List[Any] = np.asarray(UpperCamelCase__) else: __lowerCAmelCase: int = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __lowerCAmelCase: Tuple = nn.functional.interpolate( UpperCamelCase__ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase__).squeeze(0) img_augs.append(UpperCamelCase__) return img_augs class snake_case : def __init__( self : int , UpperCamelCase__ : List[str])-> List[str]: '''simple docstring''' __lowerCAmelCase: Tuple = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __lowerCAmelCase: Optional[int] = cfg.INPUT.FORMAT __lowerCAmelCase: Union[str, Any] = cfg.SIZE_DIVISIBILITY __lowerCAmelCase: Dict = cfg.PAD_VALUE __lowerCAmelCase: List[str] = cfg.INPUT.MAX_SIZE_TEST __lowerCAmelCase: List[Any] = cfg.MODEL.DEVICE __lowerCAmelCase: Any = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __lowerCAmelCase: Dict = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __lowerCAmelCase: Union[str, Any] = lambda UpperCamelCase__: (x - self.pixel_mean) / self.pixel_std def lowercase_ ( self : Any , UpperCamelCase__ : Optional[Any])-> List[str]: '''simple docstring''' __lowerCAmelCase: str = tuple(max(UpperCamelCase__) for s in zip(*[img.shape for img in images])) __lowerCAmelCase: Optional[Any] = [im.shape[-2:] for im in images] __lowerCAmelCase: Optional[Any] = [ nn.functional.pad( UpperCamelCase__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase__ , UpperCamelCase__) ] return torch.stack(UpperCamelCase__), torch.tensor(UpperCamelCase__) def __call__( self : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : int=False)-> Optional[Any]: '''simple docstring''' with torch.no_grad(): if not isinstance(UpperCamelCase__ , UpperCamelCase__): __lowerCAmelCase: List[Any] = [images] if single_image: assert len(UpperCamelCase__) == 1 for i in range(len(UpperCamelCase__)): if isinstance(images[i] , torch.Tensor): images.insert(UpperCamelCase__ , images.pop(UpperCamelCase__).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( UpperCamelCase__ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase__) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __lowerCAmelCase: Tuple = torch.tensor([im.shape[:2] for im in images]) __lowerCAmelCase: Optional[int] = self.aug(UpperCamelCase__) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __lowerCAmelCase: Optional[Any] = [self.normalizer(UpperCamelCase__) for x in images] # now pad them to do the following operations __lowerCAmelCase , __lowerCAmelCase: List[str] = self.pad(UpperCamelCase__) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __lowerCAmelCase: str = torch.true_divide(UpperCamelCase__ , UpperCamelCase__) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: assert torch.isfinite(__SCREAMING_SNAKE_CASE ).all(), "Box tensor contains infinite or NaN!" __lowerCAmelCase , __lowerCAmelCase: str = box_size tensor[:, 0].clamp_(min=0 , max=__SCREAMING_SNAKE_CASE ) tensor[:, 1].clamp_(min=0 , max=__SCREAMING_SNAKE_CASE ) tensor[:, 2].clamp_(min=0 , max=__SCREAMING_SNAKE_CASE ) tensor[:, 3].clamp_(min=0 , max=__SCREAMING_SNAKE_CASE )
217
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = """switch_transformers""" SCREAMING_SNAKE_CASE_ : Tuple = ["""past_key_values"""] SCREAMING_SNAKE_CASE_ : Any = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : List[str] , UpperCamelCase__ : List[str]=3_2_1_2_8 , UpperCamelCase__ : str=7_6_8 , UpperCamelCase__ : Union[str, Any]=6_4 , UpperCamelCase__ : Optional[int]=2_0_4_8 , UpperCamelCase__ : Dict=6_4 , UpperCamelCase__ : List[str]=1_2 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : Any=1_2 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : Dict=1_2 , UpperCamelCase__ : List[str]=8 , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Optional[int]=0.01 , UpperCamelCase__ : Optional[int]="float32" , UpperCamelCase__ : Any=False , UpperCamelCase__ : Dict=3_2 , UpperCamelCase__ : Union[str, Any]=1_2_8 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Optional[int]=1e-6 , UpperCamelCase__ : Optional[Any]=0.001 , UpperCamelCase__ : Dict=0.001 , UpperCamelCase__ : int=1.0 , UpperCamelCase__ : str="relu" , UpperCamelCase__ : int=True , UpperCamelCase__ : Any=False , UpperCamelCase__ : str=True , UpperCamelCase__ : Tuple=0 , UpperCamelCase__ : str=1 , **UpperCamelCase__ : Tuple , )-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: int = vocab_size __lowerCAmelCase: str = d_model __lowerCAmelCase: str = d_kv __lowerCAmelCase: str = d_ff __lowerCAmelCase: List[str] = num_sparse_encoder_layers __lowerCAmelCase: List[Any] = num_layers __lowerCAmelCase: Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowerCAmelCase: Tuple = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __lowerCAmelCase: int = self.num_layers // self.num_sparse_encoder_layers else: __lowerCAmelCase: Union[str, Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __lowerCAmelCase: Dict = self.num_decoder_layers // self.num_sparse_decoder_layers else: __lowerCAmelCase: Any = self.num_decoder_layers # HACK: this will create 0 sparse layers __lowerCAmelCase: Dict = num_heads __lowerCAmelCase: Dict = num_experts __lowerCAmelCase: Any = expert_capacity __lowerCAmelCase: List[Any] = router_bias __lowerCAmelCase: int = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}") __lowerCAmelCase: Dict = router_dtype __lowerCAmelCase: Optional[Any] = router_ignore_padding_tokens __lowerCAmelCase: Union[str, Any] = relative_attention_num_buckets __lowerCAmelCase: str = relative_attention_max_distance __lowerCAmelCase: Optional[int] = dropout_rate __lowerCAmelCase: Optional[Any] = layer_norm_epsilon __lowerCAmelCase: int = initializer_factor __lowerCAmelCase: Tuple = feed_forward_proj __lowerCAmelCase: int = use_cache __lowerCAmelCase: int = add_router_probs __lowerCAmelCase: Optional[Any] = router_z_loss_coef __lowerCAmelCase: Dict = router_aux_loss_coef __lowerCAmelCase: Union[str, Any] = self.feed_forward_proj.split("-") __lowerCAmelCase: Tuple = act_info[-1] __lowerCAmelCase: str = act_info[0] == "gated" if len(UpperCamelCase__) > 1 and act_info[0] != "gated" or len(UpperCamelCase__) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'") # for backwards compatibility if feed_forward_proj == "gated-gelu": __lowerCAmelCase: List[str] = "gelu_new" super().__init__( pad_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ , )
217
1
'''simple docstring''' def a_ ( __snake_case : bytes ) -> str: """simple docstring""" return "".join([hex(__snake_case )[2:].zfill(2 ).upper() for byte in list(__snake_case )] ) def a_ ( __snake_case : str ) -> bytes: """simple docstring""" # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(__snake_case ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__snake_case ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(__snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' from itertools import product def a_ ( __snake_case : int , __snake_case : int ) -> list[int]: """simple docstring""" lowerCamelCase_ =sides_number lowerCamelCase_ =max_face_number * dice_number lowerCamelCase_ =[0] * (max_total + 1) lowerCamelCase_ =1 lowerCamelCase_ =range(__snake_case , max_face_number + 1 ) for dice_numbers in product(__snake_case , repeat=__snake_case ): lowerCamelCase_ =sum(__snake_case ) totals_frequencies[total] += 1 return totals_frequencies def a_ ( ) -> float: """simple docstring""" lowerCamelCase_ =total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCamelCase_ =total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCamelCase_ =0 lowerCamelCase_ =9 lowerCamelCase_ =4 * 9 lowerCamelCase_ =6 for peter_total in range(__snake_case , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCamelCase_ =(4**9) * (6**6) lowerCamelCase_ =peter_wins_count / total_games_number lowerCamelCase_ =round(__snake_case , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
6
1
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _snake_case ( snake_case_ ): _A : Optional[Any] = '''gptj''' _A : Optional[Any] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Dict ,SCREAMING_SNAKE_CASE__ : Optional[int]=50_400 ,SCREAMING_SNAKE_CASE__ : Tuple=2_048 ,SCREAMING_SNAKE_CASE__ : Optional[int]=4_096 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=28 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=16 ,SCREAMING_SNAKE_CASE__ : str=64 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=None ,SCREAMING_SNAKE_CASE__ : Tuple="gelu_new" ,SCREAMING_SNAKE_CASE__ : Any=0.0 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.0 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0 ,SCREAMING_SNAKE_CASE__ : List[Any]=1e-5 ,SCREAMING_SNAKE_CASE__ : List[str]=0.02 ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=50_256 ,SCREAMING_SNAKE_CASE__ : Dict=50_256 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ,): SCREAMING_SNAKE_CASE:Optional[Any] = vocab_size SCREAMING_SNAKE_CASE:Union[str, Any] = n_positions SCREAMING_SNAKE_CASE:Any = n_embd SCREAMING_SNAKE_CASE:List[Any] = n_layer SCREAMING_SNAKE_CASE:str = n_head SCREAMING_SNAKE_CASE:str = n_inner SCREAMING_SNAKE_CASE:Dict = rotary_dim SCREAMING_SNAKE_CASE:List[str] = activation_function SCREAMING_SNAKE_CASE:Optional[Any] = resid_pdrop SCREAMING_SNAKE_CASE:Any = embd_pdrop SCREAMING_SNAKE_CASE:int = attn_pdrop SCREAMING_SNAKE_CASE:Union[str, Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE:Dict = initializer_range SCREAMING_SNAKE_CASE:Dict = use_cache SCREAMING_SNAKE_CASE:Dict = bos_token_id SCREAMING_SNAKE_CASE:int = eos_token_id super().__init__( bos_token_id=UpperCAmelCase__ ,eos_token_id=UpperCAmelCase__ ,tie_word_embeddings=UpperCAmelCase__ ,**UpperCAmelCase__ ) class _snake_case ( snake_case_ ): def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : PretrainedConfig ,SCREAMING_SNAKE_CASE__ : str = "default" ,SCREAMING_SNAKE_CASE__ : List[PatchingSpec] = None ,SCREAMING_SNAKE_CASE__ : bool = False ,): super().__init__(UpperCAmelCase__ ,task=UpperCAmelCase__ ,patching_specs=UpperCAmelCase__ ,use_past=UpperCAmelCase__ ) if not getattr(self._config ,"pad_token_id" ,UpperCAmelCase__ ): # TODO: how to do that better? SCREAMING_SNAKE_CASE:List[Any] = 0 @property def __UpperCamelCase ( self : Dict ): SCREAMING_SNAKE_CASE:Tuple = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase__ ,direction="inputs" ) SCREAMING_SNAKE_CASE:Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: SCREAMING_SNAKE_CASE:Union[str, Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def __UpperCamelCase ( self : Optional[Any] ): return self._config.n_layer @property def __UpperCamelCase ( self : List[Any] ): return self._config.n_head def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : PreTrainedTokenizer ,SCREAMING_SNAKE_CASE__ : int = -1 ,SCREAMING_SNAKE_CASE__ : int = -1 ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : Optional[TensorType] = None ,): SCREAMING_SNAKE_CASE:Tuple = super(UpperCAmelCase__ ,self ).generate_dummy_inputs( UpperCAmelCase__ ,batch_size=UpperCAmelCase__ ,seq_length=UpperCAmelCase__ ,is_pair=UpperCAmelCase__ ,framework=UpperCAmelCase__ ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE:str = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE:int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE:Optional[int] = seqlen + 2 SCREAMING_SNAKE_CASE:Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE:str = [ (torch.zeros(UpperCAmelCase__ ), torch.zeros(UpperCAmelCase__ )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE:int = common_inputs["""attention_mask"""] if self.use_past: SCREAMING_SNAKE_CASE:Tuple = ordered_inputs["""attention_mask"""].dtype SCREAMING_SNAKE_CASE:Optional[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(UpperCAmelCase__ ,UpperCAmelCase__ ,dtype=UpperCAmelCase__ )] ,dim=1 ) return ordered_inputs @property def __UpperCamelCase ( self : List[Any] ): return 13
139
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = torch.device('cpu') def lowerCAmelCase__ ( ): '''simple docstring''' _a : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" _a : Dict = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03e00, 2.11_07e00, -2.08_11e00, 8.86_85e-01, 2.43_60e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36e-01, 2.34_78e-01, -1.69_63e00, -1.73_81e00, -8.63_37e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68e-01, -4.74_29e-01, -1.08_97e00, -1.02_48e00, 3.55_23e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30e-01, 2.42_11e-01, -6.01_85e-01, -8.27_89e-01, -6.04_46e-02] ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Any = dct.pop(UpperCamelCase__ ) _a : Dict = val def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Tuple = [] for k in state_dict.keys(): _a : Any = k if ".pwconv" in k: _a : int = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: _a : List[str] = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: _a : Optional[int] = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: _a : Tuple = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: _a : int = k_new.split(""".""" ) if ls[2].isdigit(): _a : Union[str, Any] = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: _a : Tuple = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Tuple = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size _a : Optional[int] = 1_0_0_0 _a : Optional[Any] = """huggingface/label-files""" _a : Optional[Any] = """imagenet-1k-id2label.json""" _a : List[str] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) _a : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _a : Dict = idalabel _a : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": _a : Any = [3, 3, 6, 4] _a : int = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": _a : Any = [3, 3, 9, 6] _a : List[str] = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": _a : List[Any] = [4, 3, 1_0, 5] _a : Optional[int] = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": _a : List[Any] = [4, 4, 1_2, 6] _a : Optional[Any] = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): _a : Tuple = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location="""cpu""" , check_hash=UpperCamelCase__ ) else: _a : Dict = torch.load(UpperCamelCase__ , map_location="""cpu""" ) _a : int = checkpoint _a : Optional[Any] = create_rename_keys(UpperCamelCase__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # load HuggingFace model _a : Any = SwiftFormerForImageClassification(UpperCamelCase__ ).eval() hf_model.load_state_dict(UpperCamelCase__ ) # prepare test inputs _a : Any = prepare_img() _a : Union[str, Any] = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) _a : Optional[int] = processor(images=UpperCamelCase__ , return_tensors="""pt""" ) # compare outputs from both models _a : Dict = get_expected_output(UpperCamelCase__ ) _a : int = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , UpperCamelCase__ , atol=1e-3 ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _snake_case = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
294
0
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split SCREAMING_SNAKE_CASE :Optional[Any] = datasets.load_iris() SCREAMING_SNAKE_CASE :Dict = np.array(data["""data"""]) SCREAMING_SNAKE_CASE :Dict = np.array(data["""target"""]) SCREAMING_SNAKE_CASE :Optional[Any] = data["""target_names"""] SCREAMING_SNAKE_CASE :int = train_test_split(X, y) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: """simple docstring""" return np.linalg.norm(np.array(SCREAMING_SNAKE_CASE_ ) - np.array(SCREAMING_SNAKE_CASE_ ) ) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=5 )-> Tuple: """simple docstring""" UpperCamelCase_ = zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # List of distances of all points from the point to be classified UpperCamelCase_ = [] for data_point in data: UpperCamelCase_ = euclidean_distance(data_point[0] , SCREAMING_SNAKE_CASE_ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. UpperCamelCase_ = [i[1] for i in sorted(SCREAMING_SNAKE_CASE_ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified UpperCamelCase_ = Counter(SCREAMING_SNAKE_CASE_ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
371
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False )-> str: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = f"Expected string as input, found {type(SCREAMING_SNAKE_CASE_ )}" raise ValueError(SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = f"Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE_ )}" raise ValueError(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = input_str.split("_" ) UpperCamelCase_ = 0 if use_pascal else 1 UpperCamelCase_ = words[start_index:] UpperCamelCase_ = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCamelCase_ = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
60
0
from typing import TYPE_CHECKING from ...utils import _LazyModule A_ : Tuple = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys A_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
192
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase (lowercase_: int , lowercase_: Dict , lowercase_: Tuple ) -> Any: # Construct model if gpta_config_file == "": A__ : Dict = GPTaConfig() else: A__ : List[Any] = GPTaConfig.from_json_file(lowercase_ ) A__ : Tuple = GPTaModel(lowercase_ ) # Load weights from numpy load_tf_weights_in_gpta(lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model A__ : Optional[Any] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME A__ : Optional[Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , lowercase_ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) A_ : str = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
192
1
import fire from utils import calculate_rouge, save_json def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , **UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = [x.strip() for x in open(UpperCamelCase__ ).readlines()] _a : int = [x.strip() for x in open(UpperCamelCase__ ).readlines()][: len(UpperCamelCase__ )] _a : int = calculate_rouge(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) if save_path is not None: save_json(UpperCamelCase__ , UpperCamelCase__ , indent=UpperCamelCase__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
371
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
324
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
250
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , ) -> int: super().__init__() self.register_modules(transformer=lowerCAmelCase__ , vae=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) # create a imagenet -> id dictionary for easier use a : str = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): a : int = int(lowerCAmelCase__ ) a : Any = dict(sorted(self.labels.items() ) ) def __a ( self , lowerCAmelCase__ ) -> List[int]: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Optional[Any] = list(lowerCAmelCase__ ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = 4.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = 50 , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ) -> Union[ImagePipelineOutput, Tuple]: a : Dict = len(lowerCAmelCase__ ) a : Tuple = self.transformer.config.sample_size a : Tuple = self.transformer.config.in_channels a : Optional[int] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowerCAmelCase__ , device=self.device , dtype=self.transformer.dtype , ) a : Tuple = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents a : List[str] = torch.tensor(lowerCAmelCase__ , device=self.device ).reshape(-1 ) a : str = torch.tensor([1000] * batch_size , device=self.device ) a : Dict = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: a : Any = latent_model_input[: len(lowerCAmelCase__ ) // 2] a : Tuple = torch.cat([half, half] , dim=0 ) a : List[str] = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) a : Dict = t if not torch.is_tensor(lowerCAmelCase__ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) a : Optional[int] = latent_model_input.device.type == "mps" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Union[str, Any] = torch.floataa if is_mps else torch.floataa else: a : str = torch.intaa if is_mps else torch.intaa a : List[str] = torch.tensor([timesteps] , dtype=lowerCAmelCase__ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: a : List[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML a : Dict = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output a : Union[str, Any] = self.transformer( lowerCAmelCase__ , timestep=lowerCAmelCase__ , class_labels=lowerCAmelCase__ ).sample # perform guidance if guidance_scale > 1: a, a : Any = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] a, a : Union[str, Any] = torch.split(lowerCAmelCase__ , len(lowerCAmelCase__ ) // 2 , dim=0 ) a : Dict = uncond_eps + guidance_scale * (cond_eps - uncond_eps) a : Optional[int] = torch.cat([half_eps, half_eps] , dim=0 ) a : Optional[int] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: a, a : str = torch.split(lowerCAmelCase__ , lowerCAmelCase__ , dim=1 ) else: a : Any = noise_pred # compute previous image: x_t -> x_t-1 a : Optional[int] = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample if guidance_scale > 1: a, a : Tuple = latent_model_input.chunk(2 , dim=0 ) else: a : Tuple = latent_model_input a : Optional[Any] = 1 / self.vae.config.scaling_factor * latents a : Any = self.vae.decode(lowerCAmelCase__ ).sample a : Tuple = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 a : Optional[Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a : int = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCAmelCase__ )
105
0
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _a : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(_lowerCAmelCase ) class __A ( _lowerCAmelCase ): def __init__( self , **a__ ): super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self , a__ , **a__ ): return super().__call__(_lowercase , **_lowercase ) def __A ( self , **a__ ): _lowerCAmelCase : Tuple = {} if "candidate_labels" in kwargs: _lowerCAmelCase : Any = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase : List[Any] = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def __A ( self , a__ , a__=None , a__="This is a sound of {}." ): if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase : Any = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase : List[Any] = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase : int = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase : Dict = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase : int = candidate_labels _lowerCAmelCase : List[str] = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase : List[Any] = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase : List[Any] = [text_inputs] return inputs def __A ( self , a__ ): _lowerCAmelCase : str = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase : Optional[Any] = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase : Tuple = text_inputs[0] else: # Batching case. _lowerCAmelCase : Optional[Any] = text_inputs[0][0] _lowerCAmelCase : int = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase : Union[str, Any] = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def __A ( self , a__ ): _lowerCAmelCase : Optional[int] = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase : int = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase : List[Any] = logits.softmax(dim=0 ) _lowerCAmelCase : Optional[int] = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase : int = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda a__ : -x[0] ) ] return result
370
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] )
126
0
def __lowerCAmelCase ( a__ ) -> str: return "".join([hex(a__ )[2:].zfill(2 ).upper() for byte in list(a__ )] ) def __lowerCAmelCase ( a__ ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(a__ ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(a__ ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(a__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
6
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Optional[int] = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class __A( a ): snake_case_ = '''levit''' def __init__( self , _snake_case=224 , _snake_case=3 , _snake_case=3 , _snake_case=2 , _snake_case=1 , _snake_case=16 , _snake_case=[128, 256, 384] , _snake_case=[4, 8, 12] , _snake_case=[4, 4, 4] , _snake_case=[16, 16, 16] , _snake_case=0 , _snake_case=[2, 2, 2] , _snake_case=[2, 2, 2] , _snake_case=0.02 , **_snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_snake_case ) __a = image_size __a = num_channels __a = kernel_size __a = stride __a = padding __a = hidden_sizes __a = num_attention_heads __a = depths __a = key_dim __a = drop_path_rate __a = patch_size __a = attention_ratio __a = mlp_ratio __a = initializer_range __a = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-4
6
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process SCREAMING_SNAKE_CASE :int = logging.getLogger(__name__) @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case_ = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) snake_case_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case_ = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) snake_case_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) snake_case_ = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" __A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __A , __A , __A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __A , __A , __A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) __A = import_module("tasks" ) try: __A = getattr(a_ , model_args.task_type ) __A = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , a_ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __A = token_classification_task.get_labels(data_args.labels ) __A = dict(enumerate(a_ ) ) __A = len(a_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a_ , idalabel=a_ , labelaid={label: i for i, label in enumerate(a_ )} , cache_dir=model_args.cache_dir , ) __A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __A = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=a_ , cache_dir=model_args.cache_dir , ) # Get datasets __A = ( TokenClassificationDataset( token_classification_task=a_ , data_dir=data_args.data_dir , tokenizer=a_ , labels=a_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __A = ( TokenClassificationDataset( token_classification_task=a_ , data_dir=data_args.data_dir , tokenizer=a_ , labels=a_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(a_ , a_ ) -> Tuple[List[int], List[int]]: __A = np.argmax(a_ , axis=2 ) __A , __A = preds.shape __A = [[] for _ in range(a_ )] __A = [[] for _ in range(a_ )] for i in range(a_ ): for j in range(a_ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(a_ ) -> Dict: __A , __A = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(a_ , a_ ), "precision": precision_score(a_ , a_ ), "recall": recall_score(a_ , a_ ), "f1": fa_score(a_ , a_ ), } # Data collator __A = DataCollatorWithPadding(a_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __A = Trainer( model=a_ , args=a_ , train_dataset=a_ , eval_dataset=a_ , compute_metrics=a_ , data_collator=a_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __A = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __A = trainer.evaluate() __A = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(a_ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , a_ , a_ ) writer.write("%s = %s\n" % (key, value) ) results.update(a_ ) # Predict if training_args.do_predict: __A = TokenClassificationDataset( token_classification_task=a_ , data_dir=data_args.data_dir , tokenizer=a_ , labels=a_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __A , __A , __A = trainer.predict(a_ ) __A , __A = align_predictions(a_ , a_ ) __A = os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(a_ , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , a_ , a_ ) writer.write("%s = %s\n" % (key, value) ) # Save predictions __A = os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(a_ , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(a_ , a_ , a_ ) return results def UpperCAmelCase ( a_ ) -> int: """simple docstring""" main() if __name__ == "__main__": main()
124
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE :int = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Dict = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :int = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys SCREAMING_SNAKE_CASE :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
124
1
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: __UpperCAmelCase = ksize + 1 __UpperCAmelCase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_snake_case ): for x in range(_snake_case ): # distance from center __UpperCAmelCase = x - ksize // 2 __UpperCAmelCase = y - ksize // 2 # degree to radiant __UpperCAmelCase = theta / 1_8_0 * np.pi __UpperCAmelCase = np.cos(_theta ) __UpperCAmelCase = np.sin(_theta ) # get kernel x __UpperCAmelCase = cos_theta * px + sin_theta * py # get kernel y __UpperCAmelCase = -sin_theta * px + cos_theta * py # fill kernel __UpperCAmelCase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image A_ : List[str] = imread('../image_data/lena.jpg') # turn image in gray scale value A_ : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges A_ : Any = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: A_ : Any = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) A_ : Tuple = out / out.max() * 255 A_ : Optional[Any] = out.astype(np.uinta) imshow('Original', gray) imshow('Gabor filter with 20x20 mask and 6 directions', out) waitKey(0)
333
"""simple docstring""" import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case_( unittest.TestCase ): def __init__( self : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : int = 3_2 , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , UpperCamelCase_ : Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[int]=7 , UpperCamelCase_ : int=3_0 , UpperCamelCase_ : str=4_0_0 , UpperCamelCase_ : List[Any]=3 , ): lowerCAmelCase : Union[str, Any] = parent lowerCAmelCase : Union[str, Any] = do_resize lowerCAmelCase : List[str] = size if size is not None else {'''shortest_edge''': 2_8_8} lowerCAmelCase : int = size_divisor lowerCAmelCase : List[str] = do_rescale lowerCAmelCase : Optional[Any] = rescale_factor lowerCAmelCase : Dict = do_normalize lowerCAmelCase : Any = do_center_crop lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Optional[Any] = image_std lowerCAmelCase : Union[str, Any] = do_pad lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : Any = num_channels lowerCAmelCase : Union[str, Any] = min_resolution lowerCAmelCase : int = max_resolution def lowerCamelCase__ ( self : Dict ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=False ): if not batched: lowerCAmelCase : Dict = self.size['''shortest_edge'''] lowerCAmelCase : Dict = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): lowerCAmelCase, lowerCAmelCase : Optional[int] = image.size else: lowerCAmelCase, lowerCAmelCase : List[Any] = image.shape[1], image.shape[2] lowerCAmelCase : Union[str, Any] = size / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowerCAmelCase, lowerCAmelCase : Dict = size, scale * w else: lowerCAmelCase, lowerCAmelCase : Optional[int] = scale * h, size lowerCAmelCase : List[Any] = int((1_3_3_3 / 8_0_0) * size ) if max(UpperCamelCase_ , UpperCamelCase_ ) > max_size: lowerCAmelCase : int = max_size / max(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = newh * scale lowerCAmelCase : Tuple = neww * scale lowerCAmelCase, lowerCAmelCase : List[str] = int(newh + 0.5 ), int(neww + 0.5 ) lowerCAmelCase, lowerCAmelCase : Tuple = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase, lowerCAmelCase : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Union[str, Any] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = BridgeTowerImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[int] = BridgeTowerImageProcessingTester(self ) @property def lowerCamelCase__ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size_divisor''' ) ) def lowerCamelCase__ ( self : int ): pass def lowerCamelCase__ ( self : Optional[Any] ): # Initialize image processor lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase, lowerCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowerCAmelCase, lowerCAmelCase : int = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : Optional[Any] ): # Initialize image processor lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : Tuple = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowerCAmelCase, lowerCAmelCase : str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : Optional[int] ): # Initialize image processor lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase, lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowerCAmelCase, lowerCAmelCase : str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
60
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __A = ['''gpt2'''] __A = '''gpt2''' if is_tf_available(): class lowercase_ ( tf.Module ): def __init__( self : List[str] , A__ : List[str] ) -> Optional[Any]: super().__init__() _snake_case = tokenizer _snake_case = AutoConfig.from_pretrained(A__ ) _snake_case = TFGPTaLMHeadModel.from_config(A__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def UpperCamelCase_ ( self : Tuple , A__ : Dict ) -> int: _snake_case = self.tokenizer(A__ ) _snake_case = tokenized['''input_ids'''].to_tensor() _snake_case = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case = self.model(input_ids=A__ , attention_mask=A__ )['''logits'''] return outputs @require_tf @require_keras_nlp class lowercase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ) -> str: super().setUp() _snake_case = [GPTaTokenizer.from_pretrained(A__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case = [TFGPTaTokenizer.from_pretrained(A__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] _snake_case = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : List[str] ) -> Optional[int]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case = tokenizer([test_inputs] , return_tensors='''tf''' ) _snake_case = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case = python_outputs[key].numpy() _snake_case = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(A__ , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : int ) -> List[Any]: for tf_tokenizer in self.tf_tokenizers: _snake_case = tf.function(A__ ) for test_inputs in self.test_sentences: _snake_case = tf.constant(A__ ) _snake_case = compiled_tokenizer(A__ ) _snake_case = tf_tokenizer(A__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Union[str, Any] ) -> Dict: for tf_tokenizer in self.tf_tokenizers: _snake_case = ModelToSave(tokenizer=A__ ) _snake_case = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case = model.serving(A__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case = Path(A__ ) / '''saved.model''' tf.saved_model.save(A__ , A__ , signatures={'''serving_default''': model.serving} ) _snake_case = tf.saved_model.load(A__ ) _snake_case = loaded_model.signatures['''serving_default'''](A__ )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : int ) -> Optional[int]: for tf_tokenizer in self.tf_tokenizers: _snake_case = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case = tf_tokenizer(A__ ) # Build model with some sample inputs _snake_case = tf_tokenizer.get_config() _snake_case = TFGPTaTokenizer.from_config(A__ ) _snake_case = model_from_config(A__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case = 123123 for max_length in [3, 5, 1024]: _snake_case = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case = tf_tokenizer(A__ , max_length=A__ ) _snake_case = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
278
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def snake_case_(_UpperCamelCase ) -> Optional[int]: """simple docstring""" _snake_case = checkpoints.load_tax_checkpoint(_UpperCamelCase ) _snake_case = flatten_dict(_UpperCamelCase ) return flax_params def snake_case_(_UpperCamelCase ) -> List[str]: """simple docstring""" _snake_case = {} _snake_case = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } _snake_case = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key _snake_case = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): _snake_case = new_key.replace(_UpperCamelCase , _UpperCamelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): _snake_case = new_key.replace(_UpperCamelCase , _UpperCamelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number _snake_case = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , _UpperCamelCase ) _snake_case = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number _snake_case = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , _UpperCamelCase ) _snake_case = flax_dict[key] _snake_case = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): _snake_case = torch.from_numpy(converted_dict[key].T ) else: _snake_case = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=False ) -> List[Any]: """simple docstring""" _snake_case = get_flax_param(_UpperCamelCase ) if not use_large: _snake_case = PixaStructVisionConfig() _snake_case = PixaStructTextConfig() else: _snake_case = PixaStructVisionConfig( hidden_size=1_536 , d_ff=3_968 , num_attention_heads=24 , num_hidden_layers=18 ) _snake_case = PixaStructTextConfig(hidden_size=1_536 , d_ff=3_968 , num_heads=24 , num_layers=18 ) _snake_case = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=_UpperCamelCase ) _snake_case = PixaStructForConditionalGeneration(_UpperCamelCase ) _snake_case = rename_and_convert_flax_params(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) _snake_case = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) _snake_case = PixaStructImageProcessor() _snake_case = PixaStructProcessor(image_processor=_UpperCamelCase , tokenizer=_UpperCamelCase ) if use_large: _snake_case = 4_096 _snake_case = True # mkdir if needed os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) print('''Model saved in {}'''.format(_UpperCamelCase ) ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') __A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
278
1
"""simple docstring""" import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class a ( lowerCAmelCase_ ): _snake_case : Optional[int] = 'facebook/bart-large-mnli' _snake_case : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) _snake_case : List[Any] = 'text_classifier' _snake_case : Optional[int] = AutoTokenizer _snake_case : str = AutoModelForSequenceClassification _snake_case : Dict = ['text', ['text']] _snake_case : List[str] = ['text'] def lowerCAmelCase_ ( self : Any ): super().setup() _UpperCAmelCase = self.model.config _UpperCAmelCase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): _UpperCAmelCase = int(lowerCAmelCase__ ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ): _UpperCAmelCase = labels return self.pre_processor( [text] * len(lowerCAmelCase__ ) , [f'''This example is {label}''' for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Tuple ): _UpperCAmelCase = outputs.logits _UpperCAmelCase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
289
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase__ : List[Any] = 25_00_04 lowercase__ : str = 25_00_20 @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Optional[Any] = MBartTokenizer _snake_case : Tuple = MBartTokenizerFast _snake_case : List[str] = True _snake_case : Optional[Any] = True def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def snake_case__ ( self : Any ) -> Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) _UpperCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=True _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=False _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _snake_case : Dict = 'facebook/mbart-large-en-ro' _snake_case : Dict = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] _snake_case : List[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] _snake_case : Union[str, Any] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def snake_case__ ( cls : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) _UpperCamelCase = 1 return cls def snake_case__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def snake_case__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) _UpperCamelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] _UpperCamelCase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCAmelCase__ ) _UpperCamelCase = 10 _UpperCamelCase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] ) def snake_case__ ( self : int ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = MBartTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ ) @require_torch def snake_case__ ( self : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' ) _UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def snake_case__ ( self : Optional[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) _UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' ) _UpperCamelCase = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' ) _UpperCamelCase = targets['''input_ids'''] _UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def snake_case__ ( self : Tuple ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3034, 2, 250004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250001, } , )
324
0
from __future__ import annotations def __lowerCAmelCase ( a__ ) -> list[int]: __a = [True] * limit __a = False __a = False __a = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): __a = i * 2 while index < limit: __a = False __a = index + i __a = [2] for i in range(3 , a__ , 2 ): if is_prime[i]: primes.append(a__ ) return primes def __lowerCAmelCase ( a__ = 100_0000 ) -> int: __a = prime_sieve(a__ ) __a = 0 __a = 0 for i in range(len(a__ ) ): for j in range(i + length , len(a__ ) ): __a = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __a = j - i __a = sol return largest if __name__ == "__main__": print(F"{solution() = }")
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Optional[int] = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase__ : def __init__( self : Tuple ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Any=13 ,lowerCamelCase__ : Any=30 ,lowerCamelCase__ : Any=2 ,lowerCamelCase__ : Union[str, Any]=3 ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : Any=32 ,lowerCamelCase__ : Any=5 ,lowerCamelCase__ : Union[str, Any]=4 ,lowerCamelCase__ : Optional[Any]=37 ,lowerCamelCase__ : int="gelu" ,lowerCamelCase__ : Any=0.1 ,lowerCamelCase__ : Any=0.1 ,lowerCamelCase__ : Optional[int]=10 ,lowerCamelCase__ : Union[str, Any]=0.0_2 ,lowerCamelCase__ : List[str]=None ,lowerCamelCase__ : Any=2 ,): '''simple docstring''' _UpperCamelCase : int = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : str = patch_size _UpperCamelCase : Union[str, Any] = num_channels _UpperCamelCase : Any = is_training _UpperCamelCase : str = use_labels _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : List[Any] = hidden_act _UpperCamelCase : List[Any] = hidden_dropout_prob _UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCamelCase : int = type_sequence_label_size _UpperCamelCase : Optional[int] = initializer_range _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Tuple = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : Dict = (image_size // patch_size) ** 2 _UpperCamelCase : Any = num_patches + 1 def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : int = None if self.use_labels: _UpperCamelCase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCamelCase : List[str] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase__ ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : List[Any] ): '''simple docstring''' _UpperCamelCase : Optional[int] = ViTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : Dict = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : str ,lowerCamelCase__ : Any ,lowerCamelCase__ : Optional[int] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = ViTForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : str = model(lowerCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCamelCase : Any = 1 _UpperCamelCase : Union[str, Any] = ViTForMaskedImageModeling(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : int = model(lowerCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : Dict = self.type_sequence_label_size _UpperCamelCase : Optional[Any] = ViTForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : List[str] = model(lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : Any = ViTForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : str = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Union[str, Any] = config_and_inputs _UpperCamelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( lowercase , lowercase , unittest.TestCase ): lowercase__ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) lowercase__ = ( {"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification} if is_torch_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Dict = ViTModelTester(self ) _UpperCamelCase : int = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ,hidden_size=37 ) def UpperCamelCase_ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _UpperCamelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ ,nn.Linear ) ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Dict = model_class(lowerCamelCase__ ) _UpperCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Any = [*signature.parameters.keys()] _UpperCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase__ ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : int = ViTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A__ ( ): _UpperCamelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : str = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(lowerCamelCase__ ) _UpperCamelCase : int = self.default_image_processor _UpperCamelCase : int = prepare_img() _UpperCamelCase : Dict = image_processor(images=lowerCamelCase__ ,return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**lowerCamelCase__ ) # verify the logits _UpperCamelCase : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _UpperCamelCase : Tuple = ViTModel.from_pretrained('facebook/dino-vits8' ).to(lowerCamelCase__ ) _UpperCamelCase : str = ViTImageProcessor.from_pretrained('facebook/dino-vits8' ,size=480 ) _UpperCamelCase : str = prepare_img() _UpperCamelCase : Optional[int] = image_processor(images=lowerCamelCase__ ,return_tensors='pt' ) _UpperCamelCase : List[Any] = inputs.pixel_values.to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase : Dict = model(lowerCamelCase__ ,interpolate_pos_encoding=lowerCamelCase__ ) # verify the logits _UpperCamelCase : Tuple = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape ,lowerCamelCase__ ) _UpperCamelCase : str = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowerCamelCase__ ,atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : str = ViTModel.from_pretrained('facebook/dino-vits8' ,torch_dtype=torch.floataa ,device_map='auto' ) _UpperCamelCase : List[Any] = self.default_image_processor _UpperCamelCase : Optional[Any] = prepare_img() _UpperCamelCase : List[Any] = image_processor(images=lowerCamelCase__ ,return_tensors='pt' ) _UpperCamelCase : str = inputs.pixel_values.to(lowerCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCamelCase : List[Any] = model(lowerCamelCase__ )
83
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCAmelCase_ ( snake_case_ : Dict ) ->Tuple: lowerCamelCase__ : List[str] =fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , snake_case_ ).groups()[0] class A_ ( A__ ): """simple docstring""" def __init__( self :int , lowerCamelCase_ :int , lowerCamelCase_ :Any=None , lowerCamelCase_ :Any=None ): """simple docstring""" lowerCamelCase__ : Tuple =file_names lowerCamelCase__ : str =image_transform lowerCamelCase__ : str =label_to_id def __len__( self :Optional[int] ): """simple docstring""" return len(self.file_names ) def __getitem__( self :Optional[Any] , lowerCamelCase_ :Optional[int] ): """simple docstring""" lowerCamelCase__ : Tuple =self.file_names[idx] lowerCamelCase__ : Dict =PIL.Image.open(lowerCamelCase_ ) lowerCamelCase__ : Dict =raw_image.convert('RGB' ) if self.image_transform is not None: lowerCamelCase__ : int =self.image_transform(lowerCamelCase_ ) lowerCamelCase__ : List[str] =extract_label(lowerCamelCase_ ) if self.label_to_id is not None: lowerCamelCase__ : Optional[int] =self.label_to_id[label] return {"image": image, "label": label} def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Any ) ->Dict: # Initialize accelerator if args.with_tracking: lowerCamelCase__ : List[str] =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: lowerCamelCase__ : Tuple =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase__ : Optional[Any] =config['lr'] lowerCamelCase__ : List[str] =int(config['num_epochs'] ) lowerCamelCase__ : List[str] =int(config['seed'] ) lowerCamelCase__ : Dict =int(config['batch_size'] ) lowerCamelCase__ : Optional[int] =config['image_size'] if not isinstance(snake_case_ , (list, tuple) ): lowerCamelCase__ : Optional[int] =(image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": lowerCamelCase__ : Optional[Any] =args.checkpointing_steps elif args.checkpointing_steps.isdigit(): lowerCamelCase__ : Union[str, Any] =int(args.checkpointing_steps ) else: raise ValueError( f"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: lowerCamelCase__ : int =None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: lowerCamelCase__ : Tuple =os.path.split(snake_case_ )[-1].split('.' )[0] accelerator.init_trackers(snake_case_ , snake_case_ ) # Grab all the image filenames lowerCamelCase__ : List[str] =[os.path.join(args.data_dir , snake_case_ ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences lowerCamelCase__ : str =[extract_label(snake_case_ ) for fname in file_names] lowerCamelCase__ : Any =list(set(snake_case_ ) ) id_to_label.sort() lowerCamelCase__ : List[Any] ={lbl: i for i, lbl in enumerate(snake_case_ )} # Set the seed before splitting the data. np.random.seed(snake_case_ ) torch.manual_seed(snake_case_ ) torch.cuda.manual_seed_all(snake_case_ ) # Split our filenames between train and validation lowerCamelCase__ : int =np.random.permutation(len(snake_case_ ) ) lowerCamelCase__ : Tuple =int(0.8 * len(snake_case_ ) ) lowerCamelCase__ : str =random_perm[:cut] lowerCamelCase__ : Dict =random_perm[cut:] # For training we use a simple RandomResizedCrop lowerCamelCase__ : str =Compose([RandomResizedCrop(snake_case_ , scale=(0.5, 1.0) ), ToTensor()] ) lowerCamelCase__ : Any =PetsDataset( [file_names[i] for i in train_split] , image_transform=snake_case_ , label_to_id=snake_case_ ) # For evaluation, we use a deterministic Resize lowerCamelCase__ : Optional[int] =Compose([Resize(snake_case_ ), ToTensor()] ) lowerCamelCase__ : Dict =PetsDataset([file_names[i] for i in eval_split] , image_transform=snake_case_ , label_to_id=snake_case_ ) # Instantiate dataloaders. lowerCamelCase__ : Optional[Any] =DataLoader(snake_case_ , shuffle=snake_case_ , batch_size=snake_case_ , num_workers=4 ) lowerCamelCase__ : int =DataLoader(snake_case_ , shuffle=snake_case_ , batch_size=snake_case_ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase__ : Dict =create_model('resnet50d' , pretrained=snake_case_ , num_classes=len(snake_case_ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase__ : str =model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): lowerCamelCase__ : Dict =False for param in model.get_classifier().parameters(): lowerCamelCase__ : List[str] =True # We normalize the batches of images to be a bit faster. lowerCamelCase__ : Any =torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) lowerCamelCase__ : Dict =torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer lowerCamelCase__ : int =torch.optim.Adam(params=model.parameters() , lr=lr / 2_5 ) # Instantiate learning rate scheduler lowerCamelCase__ : Dict =OneCycleLR(optimizer=snake_case_ , max_lr=snake_case_ , epochs=snake_case_ , steps_per_epoch=len(snake_case_ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Any =accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # We need to keep track of how many total steps we have iterated over lowerCamelCase__ : int =0 # We also need to keep track of the starting epoch so files are named properly lowerCamelCase__ : Optional[int] =0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) lowerCamelCase__ : int =os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint lowerCamelCase__ : int =[f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) lowerCamelCase__ : Optional[int] =dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` lowerCamelCase__ : Tuple =os.path.splitext(snake_case_ )[0] if "epoch" in training_difference: lowerCamelCase__ : Union[str, Any] =int(training_difference.replace('epoch_' , '' ) ) + 1 lowerCamelCase__ : Optional[int] =None else: lowerCamelCase__ : List[Any] =int(training_difference.replace('step_' , '' ) ) lowerCamelCase__ : int =resume_step // len(snake_case_ ) resume_step -= starting_epoch * len(snake_case_ ) # Now we train the model for epoch in range(snake_case_ , snake_case_ ): model.train() if args.with_tracking: lowerCamelCase__ : str =0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step lowerCamelCase__ : Tuple =accelerator.skip_first_batches(snake_case_ , snake_case_ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader lowerCamelCase__ : str =train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. lowerCamelCase__ : int ={k: v.to(accelerator.device ) for k, v in batch.items()} lowerCamelCase__ : List[str] =(batch['image'] - mean) / std lowerCamelCase__ : Any =model(snake_case_ ) lowerCamelCase__ : List[Any] =torch.nn.functional.cross_entropy(snake_case_ , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(snake_case_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(snake_case_ , snake_case_ ): lowerCamelCase__ : int =f"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: lowerCamelCase__ : List[Any] =os.path.join(args.output_dir , snake_case_ ) accelerator.save_state(snake_case_ ) model.eval() lowerCamelCase__ : int =0 lowerCamelCase__ : Optional[Any] =0 for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. lowerCamelCase__ : Union[str, Any] ={k: v.to(accelerator.device ) for k, v in batch.items()} lowerCamelCase__ : int =(batch['image'] - mean) / std with torch.no_grad(): lowerCamelCase__ : List[str] =model(snake_case_ ) lowerCamelCase__ : Optional[int] =outputs.argmax(dim=-1 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =accelerator.gather_for_metrics((predictions, batch['label']) ) lowerCamelCase__ : Union[str, Any] =predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() lowerCamelCase__ : List[str] =accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}: {1_0_0 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { 'accuracy': 1_0_0 * eval_metric, 'train_loss': total_loss.item() / len(snake_case_ ), 'epoch': epoch, } , step=snake_case_ , ) if checkpointing_steps == "epoch": lowerCamelCase__ : Tuple =f"""epoch_{epoch}""" if args.output_dir is not None: lowerCamelCase__ : Tuple =os.path.join(args.output_dir , snake_case_ ) accelerator.save_state(snake_case_ ) if args.with_tracking: accelerator.end_training() def lowerCAmelCase_ ( ) ->int: lowerCamelCase__ : Any =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=snake_case_ , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=snake_case_ , default=snake_case_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=snake_case_ , default=snake_case_ , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=snake_case_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=snake_case_ , default=snake_case_ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=snake_case_ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) lowerCamelCase__ : Dict =parser.parse_args() lowerCamelCase__ : List[str] ={'lr': 3E-2, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 6_4, 'image_size': 2_2_4} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
126
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case_ : Dict = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Tuple = AlbertTokenizer UpperCAmelCase__ : Union[str, Any] = AlbertTokenizerFast UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Optional[Any] = True def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = AlbertTokenizer(_snake_case) tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : Dict , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = '''this is a test''' UpperCAmelCase_ = '''this is a test''' return input_text, output_text def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''<pad>''' UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<pad>''') self.assertEqual(vocab_keys[1] , '''<unk>''') self.assertEqual(vocab_keys[-1] , '''▁eloquent''') self.assertEqual(len(_snake_case) , 30000) def lowerCamelCase ( self : Any): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 30000) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_snake_case) UpperCAmelCase_ = rust_tokenizer.tokenize(_snake_case) self.assertListEqual(_snake_case , _snake_case) UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case) UpperCAmelCase_ = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case) self.assertListEqual(_snake_case , _snake_case) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_snake_case) UpperCAmelCase_ = rust_tokenizer.encode(_snake_case) self.assertListEqual(_snake_case , _snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = AlbertTokenizer(_snake_case , keep_accents=_snake_case) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''▁this''', '''▁is''', '''▁a''', '''▁test''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case) , [48, 25, 21, 1289]) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _snake_case , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''']) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_snake_case) self.assertListEqual(_snake_case , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_snake_case) self.assertListEqual( _snake_case , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = AlbertTokenizer(_snake_case) UpperCAmelCase_ = tokenizer.encode('''sequence builders''') UpperCAmelCase_ = tokenizer.encode('''multi-sequence build''') UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_snake_case) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
7
from maths.prime_factors import prime_factors def A (__A : int ) -> int: """simple docstring""" if not isinstance(__A , __A ): UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer""" raise TypeError(__A ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(__A ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
7
1
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : """simple docstring""" def __init__( self , A , A=1_3 , A=3_0 , A=2 , A=3 , A=True , A=True , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=1_0 , A=0.02 , A=None , A=2 , ) -> Dict: snake_case : str = parent snake_case : List[str] = batch_size snake_case : str = image_size snake_case : int = patch_size snake_case : Union[str, Any] = num_channels snake_case : Union[str, Any] = is_training snake_case : Tuple = use_labels snake_case : Dict = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : int = num_attention_heads snake_case : str = intermediate_size snake_case : Any = hidden_act snake_case : Any = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : Optional[Any] = type_sequence_label_size snake_case : List[str] = initializer_range snake_case : List[Any] = scope snake_case : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case : str = (image_size // patch_size) ** 2 snake_case : int = num_patches + 1 def UpperCAmelCase ( self ) -> int: snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : str = None if self.use_labels: snake_case : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : str = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> str: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[Any] = ViTModel(config=A ) model.to(A ) model.eval() snake_case : int = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A ) -> Optional[int]: snake_case : Union[str, Any] = ViTForMaskedImageModeling(config=A ) model.to(A ) model.eval() snake_case : Optional[Any] = model(A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case : List[str] = 1 snake_case : Union[str, Any] = ViTForMaskedImageModeling(A ) model.to(A ) model.eval() snake_case : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case : List[Any] = model(A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Tuple = self.type_sequence_label_size snake_case : Dict = ViTForImageClassification(A ) model.to(A ) model.eval() snake_case : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case : int = 1 snake_case : List[str] = ViTForImageClassification(A ) model.to(A ) model.eval() snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case : List[Any] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self ) -> Tuple: snake_case : str = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : int = config_and_inputs snake_case : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowercase (UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _snake_case = ( {"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification} if is_torch_available() else {} ) _snake_case = True _snake_case = False _snake_case = False _snake_case = False def UpperCAmelCase ( self ) -> List[str]: snake_case : Optional[int] = ViTModelTester(self ) snake_case : Tuple = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 ) def UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def UpperCAmelCase ( self ) -> List[str]: pass def UpperCAmelCase ( self ) -> List[Any]: snake_case , snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Dict = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case , snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Any = model_class(A ) snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : Optional[Any] = [*signature.parameters.keys()] snake_case : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def UpperCAmelCase ( self ) -> str: snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> str: snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCAmelCase ( self ) -> Any: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : List[str] = ViTModel.from_pretrained(A ) self.assertIsNotNone(A ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: snake_case : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __lowercase (unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> int: return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCAmelCase ( self ) -> int: snake_case : Tuple = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(A ) snake_case : List[str] = self.default_image_processor snake_case : Optional[int] = prepare_img() snake_case : int = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): snake_case : Optional[Any] = model(**A ) # verify the logits snake_case : Optional[int] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , A ) snake_case : int = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) ) @slow def UpperCAmelCase ( self ) -> Any: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. snake_case : Dict = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(A ) snake_case : Tuple = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=4_8_0 ) snake_case : Union[str, Any] = prepare_img() snake_case : Dict = image_processor(images=A , return_tensors="""pt""" ) snake_case : Union[str, Any] = inputs.pixel_values.to(A ) # forward pass with torch.no_grad(): snake_case : List[Any] = model(A , interpolate_pos_encoding=A ) # verify the logits snake_case : Any = torch.Size((1, 3_6_0_1, 3_8_4) ) self.assertEqual(outputs.last_hidden_state.shape , A ) snake_case : Dict = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , A , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase ( self ) -> List[str]: snake_case : str = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) snake_case : Dict = self.default_image_processor snake_case : List[str] = prepare_img() snake_case : str = image_processor(images=A , return_tensors="""pt""" ) snake_case : List[Any] = inputs.pixel_values.to(A ) # forward pass to make sure inference works in fp16 with torch.no_grad(): snake_case : List[str] = model(A )
124
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if len(lowercase ) != 2 or len(a[0] ) != 2 or len(lowercase ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) snake_case : int = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[list, list, list, list]: if len(lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) snake_case : Optional[int] = len(lowercase ) snake_case : str = matrix_length // 2 snake_case : int = [[a[i][j] for j in range(lowercase ,lowercase )] for i in range(lowercase )] snake_case : str = [ [a[i][j] for j in range(lowercase ,lowercase )] for i in range(lowercase ,lowercase ) ] snake_case : Optional[Any] = [[a[i][j] for j in range(lowercase )] for i in range(lowercase )] snake_case : str = [[a[i][j] for j in range(lowercase )] for i in range(lowercase ,lowercase )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[int, int]: return len(lowercase ), len(matrix[0] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: print("""\n""".join(str(lowercase ) for line in matrix ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if matrix_dimensions(lowercase ) == (2, 2): return default_matrix_multiplication(lowercase ,lowercase ) snake_case , snake_case , snake_case , snake_case : Optional[Any] = split_matrix(lowercase ) snake_case , snake_case , snake_case , snake_case : Any = split_matrix(lowercase ) snake_case : List[Any] = actual_strassen(lowercase ,matrix_subtraction(lowercase ,lowercase ) ) snake_case : List[str] = actual_strassen(matrix_addition(lowercase ,lowercase ) ,lowercase ) snake_case : Tuple = actual_strassen(matrix_addition(lowercase ,lowercase ) ,lowercase ) snake_case : str = actual_strassen(lowercase ,matrix_subtraction(lowercase ,lowercase ) ) snake_case : Union[str, Any] = actual_strassen(matrix_addition(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : int = actual_strassen(matrix_subtraction(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : List[Any] = actual_strassen(matrix_subtraction(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : str = matrix_addition(matrix_subtraction(matrix_addition(lowercase ,lowercase ) ,lowercase ) ,lowercase ) snake_case : List[str] = matrix_addition(lowercase ,lowercase ) snake_case : Any = matrix_addition(lowercase ,lowercase ) snake_case : List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(lowercase ,lowercase ) ,lowercase ) ,lowercase ) # construct the new matrix from our 4 quadrants snake_case : Optional[Any] = [] for i in range(len(lowercase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowercase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if matrix_dimensions(lowercase )[1] != matrix_dimensions(lowercase )[0]: snake_case : Optional[Any] = ( """Unable to multiply these matrices, please check the dimensions.\n""" f"""Matrix A: {matrixa}\n""" f"""Matrix B: {matrixa}""" ) raise Exception(lowercase ) snake_case : str = matrix_dimensions(lowercase ) snake_case : Optional[Any] = matrix_dimensions(lowercase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] snake_case : Dict = max(*lowercase ,*lowercase ) snake_case : Optional[Any] = int(math.pow(2 ,math.ceil(math.loga(lowercase ) ) ) ) snake_case : Any = matrixa snake_case : Optional[Any] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 ,lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) snake_case : Optional[int] = actual_strassen(lowercase ,lowercase ) # Removing the additional zeros for i in range(0 ,lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowerCamelCase : Any = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowerCamelCase : int = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
124
1
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Union[str, Any]: A_ = len(_UpperCamelCase ) while cur > 1: # Find the maximum number in arr A_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi A_ = arr[mi::-1] + arr[mi + 1 : len(_UpperCamelCase )] # Reverse whole list A_ = arr[cur - 1 :: -1] + arr[cur : len(_UpperCamelCase )] cur -= 1 return arr if __name__ == "__main__": __snake_case : Dict = input('Enter numbers separated by a comma:\n').strip() __snake_case : Dict = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
363
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Tuple, _UpperCamelCase : List[str] ) -> int: A_ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] A_ = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } A_ = F'''{src_lang}-{tgt_lang}''' A_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(_UpperCamelCase, exist_ok=_UpperCamelCase ) A_ = os.path.join(_UpperCamelCase, '''README.md''' ) print(F'''Generating {path}''' ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project __snake_case : Any = Path(__file__).resolve().parent.parent.parent __snake_case : Tuple = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __snake_case , __snake_case , __snake_case : Any = model_name.split('-') __snake_case : int = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
18
0
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __UpperCamelCase ( _A , _A , _A = 1 / sqrt(2 ) ): lowerCAmelCase_ = tau * frequency / samplerate lowerCAmelCase_ = sin(_A ) lowerCAmelCase_ = cos(_A ) lowerCAmelCase_ = _sin / (2 * q_factor) lowerCAmelCase_ = (1 - _cos) / 2 lowerCAmelCase_ = 1 - _cos lowerCAmelCase_ = 1 + alpha lowerCAmelCase_ = -2 * _cos lowerCAmelCase_ = 1 - alpha lowerCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __UpperCamelCase ( _A , _A , _A = 1 / sqrt(2 ) ): lowerCAmelCase_ = tau * frequency / samplerate lowerCAmelCase_ = sin(_A ) lowerCAmelCase_ = cos(_A ) lowerCAmelCase_ = _sin / (2 * q_factor) lowerCAmelCase_ = (1 + _cos) / 2 lowerCAmelCase_ = -1 - _cos lowerCAmelCase_ = 1 + alpha lowerCAmelCase_ = -2 * _cos lowerCAmelCase_ = 1 - alpha lowerCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __UpperCamelCase ( _A , _A , _A = 1 / sqrt(2 ) ): lowerCAmelCase_ = tau * frequency / samplerate lowerCAmelCase_ = sin(_A ) lowerCAmelCase_ = cos(_A ) lowerCAmelCase_ = _sin / (2 * q_factor) lowerCAmelCase_ = _sin / 2 lowerCAmelCase_ = 0 lowerCAmelCase_ = -ba lowerCAmelCase_ = 1 + alpha lowerCAmelCase_ = -2 * _cos lowerCAmelCase_ = 1 - alpha lowerCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __UpperCamelCase ( _A , _A , _A = 1 / sqrt(2 ) ): lowerCAmelCase_ = tau * frequency / samplerate lowerCAmelCase_ = sin(_A ) lowerCAmelCase_ = cos(_A ) lowerCAmelCase_ = _sin / (2 * q_factor) lowerCAmelCase_ = 1 - alpha lowerCAmelCase_ = -2 * _cos lowerCAmelCase_ = 1 + alpha lowerCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __UpperCamelCase ( _A , _A , _A , _A = 1 / sqrt(2 ) , ): lowerCAmelCase_ = tau * frequency / samplerate lowerCAmelCase_ = sin(_A ) lowerCAmelCase_ = cos(_A ) lowerCAmelCase_ = _sin / (2 * q_factor) lowerCAmelCase_ = 10 ** (gain_db / 40) lowerCAmelCase_ = 1 + alpha * big_a lowerCAmelCase_ = -2 * _cos lowerCAmelCase_ = 1 - alpha * big_a lowerCAmelCase_ = 1 + alpha / big_a lowerCAmelCase_ = -2 * _cos lowerCAmelCase_ = 1 - alpha / big_a lowerCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __UpperCamelCase ( _A , _A , _A , _A = 1 / sqrt(2 ) , ): lowerCAmelCase_ = tau * frequency / samplerate lowerCAmelCase_ = sin(_A ) lowerCAmelCase_ = cos(_A ) lowerCAmelCase_ = _sin / (2 * q_factor) lowerCAmelCase_ = 10 ** (gain_db / 40) lowerCAmelCase_ = (big_a + 1) - (big_a - 1) * _cos lowerCAmelCase_ = (big_a + 1) + (big_a - 1) * _cos lowerCAmelCase_ = (big_a - 1) - (big_a + 1) * _cos lowerCAmelCase_ = (big_a - 1) + (big_a + 1) * _cos lowerCAmelCase_ = 2 * sqrt(_A ) * alpha lowerCAmelCase_ = big_a * (pmc + aaa) lowerCAmelCase_ = 2 * big_a * mpc lowerCAmelCase_ = big_a * (pmc - aaa) lowerCAmelCase_ = ppmc + aaa lowerCAmelCase_ = -2 * pmpc lowerCAmelCase_ = ppmc - aaa lowerCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __UpperCamelCase ( _A , _A , _A , _A = 1 / sqrt(2 ) , ): lowerCAmelCase_ = tau * frequency / samplerate lowerCAmelCase_ = sin(_A ) lowerCAmelCase_ = cos(_A ) lowerCAmelCase_ = _sin / (2 * q_factor) lowerCAmelCase_ = 10 ** (gain_db / 40) lowerCAmelCase_ = (big_a + 1) - (big_a - 1) * _cos lowerCAmelCase_ = (big_a + 1) + (big_a - 1) * _cos lowerCAmelCase_ = (big_a - 1) - (big_a + 1) * _cos lowerCAmelCase_ = (big_a - 1) + (big_a + 1) * _cos lowerCAmelCase_ = 2 * sqrt(_A ) * alpha lowerCAmelCase_ = big_a * (ppmc + aaa) lowerCAmelCase_ = -2 * big_a * pmpc lowerCAmelCase_ = big_a * (ppmc - aaa) lowerCAmelCase_ = pmc + aaa lowerCAmelCase_ = 2 * mpc lowerCAmelCase_ = pmc - aaa lowerCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
278
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __UpperCamelCase ( _A = 3 ): if isinstance(_A , _A ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_A ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) lowerCAmelCase_ = QuantumRegister(_A , '''qr''' ) lowerCAmelCase_ = ClassicalRegister(_A , '''cr''' ) lowerCAmelCase_ = QuantumCircuit(_A , _A ) lowerCAmelCase_ = number_of_qubits for i in range(_A ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_A ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _A , _A ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_A , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_A , _A ) # simulate with 10000 shots lowerCAmelCase_ = Aer.get_backend('''qasm_simulator''' ) lowerCAmelCase_ = execute(_A , _A , shots=10000 ) return job.result().get_counts(_A ) if __name__ == "__main__": print( f"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
278
1
'''simple docstring''' import argparse from collections import defaultdict import yaml _UpperCamelCase = '''docs/source/en/_toctree.yml''' def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : Any = defaultdict(__a ) for doc in model_doc: counts[doc["local"]] += 1 __UpperCAmelCase : List[str] = [key for key, value in counts.items() if value > 1] __UpperCAmelCase : str = [] for duplicate_key in duplicates: __UpperCAmelCase : Union[str, Any] = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(__a , key=lambda lowerCAmelCase__ : s["title"].lower() ) def lowercase_ ( lowerCAmelCase__ : Optional[int]=False ): """simple docstring""" with open(__a , encoding="""utf-8""" ) as f: __UpperCAmelCase : Tuple = yaml.safe_load(f.read() ) # Get to the API doc __UpperCAmelCase : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCAmelCase : Union[str, Any] = content[api_idx]['sections'] # Then to the model doc __UpperCAmelCase : List[str] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __UpperCAmelCase : List[str] = api_doc[model_idx]['sections'] __UpperCAmelCase : List[Any] = [(idx, section) for idx, section in enumerate(__a ) if 'sections' in section] __UpperCAmelCase : Tuple = False for idx, modality_doc in modalities_docs: __UpperCAmelCase : List[Any] = modality_doc['sections'] __UpperCAmelCase : Any = clean_model_doc_toc(__a ) if old_modality_doc != new_modality_doc: __UpperCAmelCase : Union[str, Any] = True if overwrite: __UpperCAmelCase : str = new_modality_doc if diff: if overwrite: __UpperCAmelCase : Dict = model_doc __UpperCAmelCase : Dict = api_doc with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _UpperCamelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
355
'''simple docstring''' class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = data __UpperCAmelCase : int = previous __UpperCAmelCase : Union[str, Any] = next_node def __str__( self ) -> str: '''simple docstring''' return f'{self.data}' def __A ( self ) -> int: '''simple docstring''' return self.data def __A ( self ) -> List[str]: '''simple docstring''' return self.next def __A ( self ) -> str: '''simple docstring''' return self.previous class _A : def __init__( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = head def __iter__( self ) -> str: '''simple docstring''' return self def __A ( self ) -> str: '''simple docstring''' if not self.current: raise StopIteration else: __UpperCAmelCase : List[str] = self.current.get_data() __UpperCAmelCase : int = self.current.get_next() return value class _A : def __init__( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = None # First node in list __UpperCAmelCase : List[str] = None # Last node in list def __str__( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = self.head __UpperCAmelCase : Optional[int] = [] while current is not None: nodes.append(current.get_data() ) __UpperCAmelCase : Any = current.get_next() return " ".join(str(__UpperCAmelCase ) for node in nodes ) def __contains__( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.head while current: if current.get_data() == value: return True __UpperCAmelCase : Optional[Any] = current.get_next() return False def __iter__( self ) -> str: '''simple docstring''' return LinkedListIterator(self.head ) def __A ( self ) -> List[Any]: '''simple docstring''' if self.head: return self.head.get_data() return None def __A ( self ) -> Optional[Any]: '''simple docstring''' if self.tail: return self.tail.get_data() return None def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: __UpperCAmelCase : str = node __UpperCAmelCase : List[str] = node else: self.insert_before_node(self.head , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: self.set_head(__UpperCAmelCase ) else: self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase ) if self.head is None: self.set_head(__UpperCAmelCase ) else: self.set_tail(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Tuple = node __UpperCAmelCase : List[Any] = node.previous if node.get_previous() is None: __UpperCAmelCase : str = node_to_insert else: __UpperCAmelCase : Optional[Any] = node_to_insert __UpperCAmelCase : List[Any] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : List[str] = node __UpperCAmelCase : Union[str, Any] = node.next if node.get_next() is None: __UpperCAmelCase : Dict = node_to_insert else: __UpperCAmelCase : Any = node_to_insert __UpperCAmelCase : List[str] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase ) return current_position += 1 __UpperCAmelCase : int = node.next self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Node: '''simple docstring''' __UpperCAmelCase : Dict = self.head while node: if node.get_data() == item: return node __UpperCAmelCase : List[str] = node.get_next() raise Exception("""Node not found""" ) def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if (node := self.get_node(__UpperCAmelCase )) is not None: if node == self.head: __UpperCAmelCase : Optional[int] = self.head.get_next() if node == self.tail: __UpperCAmelCase : Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(__UpperCAmelCase ) @staticmethod def __A ( __UpperCAmelCase ) -> None: '''simple docstring''' if node.get_next(): __UpperCAmelCase : Optional[Any] = node.previous if node.get_previous(): __UpperCAmelCase : int = node.next __UpperCAmelCase : Tuple = None __UpperCAmelCase : Union[str, Any] = None def __A ( self ) -> List[Any]: '''simple docstring''' return self.head is None def lowercase_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __A : Dict = ''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class _UpperCAmelCase ( unittest.TestCase , _A ): def A ( self : List[Any] ) -> Dict: lowercase_ : Optional[int] = load_tool('''text-question-answering''' ) self.tool.setup() lowercase_ : Union[str, Any] = load_tool('''text-question-answering''' , remote=A ) def A ( self : Any ) -> List[str]: lowercase_ : Union[str, Any] = self.tool(A , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(A , '''launched the BigScience Research Workshop''' ) def A ( self : str ) -> List[str]: lowercase_ : int = self.remote_tool(A , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(A , '''launched the BigScience Research Workshop''' ) def A ( self : List[Any] ) -> int: lowercase_ : Optional[Any] = self.tool(text=A , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(A , '''launched the BigScience Research Workshop''' ) def A ( self : List[str] ) -> Optional[int]: lowercase_ : int = self.remote_tool(text=A , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(A , '''launched the BigScience Research Workshop''' )
33
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) __A : str = parser.parse_args() __A : List[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __A : Dict = CLIPImageProcessor() __A : Union[str, Any] = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') __A : List[str] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
33
1
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : int = {'vocab_file': 'vocab.txt'} _lowercase : Any = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } _lowercase : Optional[Any] = { 'openbmb/cpm-ant-10b': 10_24, } def lowercase__ ( snake_case_ :List[Any] ): __UpperCAmelCase = collections.OrderedDict() with open(snake_case_ , '''r''' , encoding='''utf-8''' ) as reader: __UpperCAmelCase = reader.readlines() for index, token in enumerate(snake_case_ ): __UpperCAmelCase = token.rstrip('''\n''' ) __UpperCAmelCase = index return vocab class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Optional[int] , _lowercase : List[str] , _lowercase : str="<unk>" , _lowercase : Optional[Any]=2_00 ): __UpperCAmelCase = vocab __UpperCAmelCase = unk_token __UpperCAmelCase = max_input_chars_per_word def a ( self : int , _lowercase : List[Any] ): __UpperCAmelCase = list(_lowercase ) if len(_lowercase ) > self.max_input_chars_per_word: return [self.unk_token] __UpperCAmelCase = 0 __UpperCAmelCase = [] while start < len(_lowercase ): __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = None while start < end: __UpperCAmelCase = ''''''.join(chars[start:end] ) if substr in self.vocab: __UpperCAmelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_lowercase ) __UpperCAmelCase = end return sub_tokens class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[str] = VOCAB_FILES_NAMES a__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP a__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = ["input_ids", "attention_mask"] a__ : List[Any] = False def __init__( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any]="<d>" , _lowercase : int="</d>" , _lowercase : Tuple="<s>" , _lowercase : List[str]="</s>" , _lowercase : Optional[int]="<pad>" , _lowercase : str="<unk>" , _lowercase : int="</n>" , _lowercase : Optional[int]="</_>" , _lowercase : List[str]="left" , **_lowercase : Optional[Any] , ): requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_lowercase , eod_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , pad_token=_lowercase , unk_token=_lowercase , line_token=_lowercase , space_token=_lowercase , padding_side=_lowercase , **_lowercase , ) __UpperCAmelCase = bod_token __UpperCAmelCase = eod_token __UpperCAmelCase = load_vocab(_lowercase ) __UpperCAmelCase = self.encoder[space_token] __UpperCAmelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __UpperCAmelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _lowercase : x[1] ) ) __UpperCAmelCase = {v: k for k, v in self.encoder.items()} __UpperCAmelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def a ( self : int ): return self.encoder[self.bod_token] @property def a ( self : Optional[int] ): return self.encoder[self.eod_token] @property def a ( self : Optional[Any] ): return self.encoder["\n"] @property def a ( self : Dict ): return len(self.encoder ) def a ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def a ( self : str , _lowercase : Dict ): __UpperCAmelCase = [] for x in jieba.cut(_lowercase , cut_all=_lowercase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_lowercase ) ) return output_tokens def a ( self : Optional[Any] , _lowercase : Optional[int] , **_lowercase : Dict ): __UpperCAmelCase = [i for i in token_ids if i >= 0] __UpperCAmelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_lowercase , **_lowercase ) def a ( self : Any , _lowercase : int ): return token in self.encoder def a ( self : int , _lowercase : List[str] ): return "".join(_lowercase ) def a ( self : int , _lowercase : int ): return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def a ( self : List[Any] , _lowercase : Any ): return self.decoder.get(_lowercase , self.unk_token ) def a ( self : Any , _lowercase : str , _lowercase : Optional[str] = None ): if os.path.isdir(_lowercase ): __UpperCAmelCase = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: __UpperCAmelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory __UpperCAmelCase = 0 if " " in self.encoder: __UpperCAmelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: __UpperCAmelCase = self.encoder['''\n'''] del self.encoder["\n"] __UpperCAmelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _lowercase : x[1] ) ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''' ) __UpperCAmelCase = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def a ( self : Any , _lowercase : List[int] , _lowercase : List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def a ( self : Union[str, Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) return [1] + ([0] * len(_lowercase ))
86
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=_lowerCAmelCase ): a__ : Union[str, Any] = ["onnx"] def __init__( self : Any , *_lowercase : Dict , **_lowercase : Any ): requires_backends(self , ['''onnx'''] ) @classmethod def a ( cls : str , *_lowercase : List[Any] , **_lowercase : int ): requires_backends(cls , ['''onnx'''] ) @classmethod def a ( cls : Union[str, Any] , *_lowercase : List[str] , **_lowercase : Optional[int] ): requires_backends(cls , ['''onnx'''] )
86
1
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = AlbertTokenizer lowerCamelCase = AlbertTokenizerFast lowerCamelCase = True lowerCamelCase = True lowerCamelCase = True def snake_case__ ( self : Dict )-> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ = AlbertTokenizer(lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : List[str],lowercase_ : str )-> Any: '''simple docstring''' A__ = 'this is a test' A__ = 'this is a test' return input_text, output_text def snake_case__ ( self : List[Any] )-> Optional[int]: '''simple docstring''' A__ = '<pad>' A__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ ) def snake_case__ ( self : List[str] )-> str: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],'<pad>' ) self.assertEqual(vocab_keys[1],'<unk>' ) self.assertEqual(vocab_keys[-1],'▁eloquent' ) self.assertEqual(len(lowercase_ ),3_0_0_0_0 ) def snake_case__ ( self : int )-> List[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size,3_0_0_0_0 ) def snake_case__ ( self : Union[str, Any] )-> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = 'I was born in 92000, and this is falsé.' A__ = tokenizer.tokenize(lowercase_ ) A__ = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(lowercase_ ) A__ = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) def snake_case__ ( self : int )-> int: '''simple docstring''' A__ = AlbertTokenizer(lowercase_,keep_accents=lowercase_ ) A__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_,['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ),[4_8, 2_5, 2_1, 1_2_8_9] ) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) A__ = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual(lowercase_,[3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] ) A__ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'],) def snake_case__ ( self : Union[str, Any] )-> str: '''simple docstring''' A__ = AlbertTokenizer(lowercase_ ) A__ = tokenizer.encode('sequence builders' ) A__ = tokenizer.encode('multi-sequence build' ) A__ = tokenizer.build_inputs_with_special_tokens(lowercase_ ) A__ = tokenizer.build_inputs_with_special_tokens(lowercase_,lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def snake_case__ ( self : Any )-> Tuple: '''simple docstring''' A__ = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_,model_name='albert-base-v2',revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e',)
7
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> int: '''simple docstring''' A__ = 384 A__ = 7 if "tiny" in model_name: A__ = 96 A__ = (2, 2, 6, 2) A__ = (3, 6, 12, 24) elif "small" in model_name: A__ = 96 A__ = (2, 2, 18, 2) A__ = (3, 6, 12, 24) elif "base" in model_name: A__ = 128 A__ = (2, 2, 18, 2) A__ = (4, 8, 16, 32) A__ = 12 A__ = 512 elif "large" in model_name: A__ = 192 A__ = (2, 2, 18, 2) A__ = (6, 12, 24, 48) A__ = 12 A__ = 768 # set label information A__ = 150 A__ = 'huggingface/label-files' A__ = 'ade20k-id2label.json' A__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) A__ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} A__ = {v: k for k, v in idalabel.items()} A__ = SwinConfig( embed_dim=SCREAMING_SNAKE_CASE__ , depths=SCREAMING_SNAKE_CASE__ , num_heads=SCREAMING_SNAKE_CASE__ , window_size=SCREAMING_SNAKE_CASE__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) A__ = UperNetConfig( backbone_config=SCREAMING_SNAKE_CASE__ , auxiliary_in_channels=SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ , ) return config def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: '''simple docstring''' A__ = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.stages.{i}.downsample.reduction.weight', f'backbone.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.weight', f'backbone.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.bias', f'backbone.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[int]: '''simple docstring''' A__ = dct.pop(SCREAMING_SNAKE_CASE__ ) A__ = val def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: '''simple docstring''' A__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A__ = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' ) A__ = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[:dim, :] A__ = in_proj_bias[: dim] A__ = in_proj_weight[ dim : dim * 2, : ] A__ = in_proj_bias[ dim : dim * 2 ] A__ = in_proj_weight[ -dim :, : ] A__ = in_proj_bias[-dim :] # fmt: on def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' A__ , A__ = x.shape A__ = x.reshape(SCREAMING_SNAKE_CASE__ , 4 , in_channel // 4 ) A__ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return x def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]: '''simple docstring''' A__ , A__ = x.shape A__ = x.reshape(SCREAMING_SNAKE_CASE__ , in_channel // 4 , 4 ) A__ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return x def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: '''simple docstring''' A__ = x.shape[0] A__ = x.reshape(4 , in_channel // 4 ) A__ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE__ ) return x def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: '''simple docstring''' A__ = x.shape[0] A__ = x.reshape(in_channel // 4 , 4 ) A__ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE__ ) return x def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } A__ = model_name_to_url[model_name] A__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='cpu' , file_name=SCREAMING_SNAKE_CASE__ )[ 'state_dict' ] for name, param in state_dict.items(): print(SCREAMING_SNAKE_CASE__ , param.shape ) A__ = get_upernet_config(SCREAMING_SNAKE_CASE__ ) A__ = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A__ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "bn" in key: A__ = key.replace('bn' , 'batch_norm' ) A__ = val # rename keys A__ = create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_q_k_v(SCREAMING_SNAKE_CASE__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: A__ = reverse_correct_unfold_reduction_order(SCREAMING_SNAKE_CASE__ ) if "norm" in key: A__ = reverse_correct_unfold_norm_order(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # verify on image A__ = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' A__ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert('RGB' ) A__ = SegformerImageProcessor() A__ = processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values with torch.no_grad(): A__ = model(SCREAMING_SNAKE_CASE__ ) A__ = outputs.logits print(logits.shape ) print('First values of logits:' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": A__ = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": A__ = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": A__ = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": A__ = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[f"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowercase_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
7
1
"""simple docstring""" import numpy as np def UpperCAmelCase__ (snake_case__ : np.ndarray ): """simple docstring""" return 1 / (1 + np.exp(-vector )) def UpperCAmelCase__ (snake_case__ : np.ndarray ): """simple docstring""" return vector * sigmoid(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
132
0
"""simple docstring""" import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( A__, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline _SCREAMING_SNAKE_CASE = ["""prompt"""] _SCREAMING_SNAKE_CASE = ["""prompt""", """negative_prompt"""] _SCREAMING_SNAKE_CASE = [ """num_images_per_prompt""", """generator""", """num_inference_steps""", """latents""", """negative_prompt""", """guidance_scale""", """output_type""", """return_dict""", ] _SCREAMING_SNAKE_CASE = False @property def SCREAMING_SNAKE_CASE__ ( self : int ): return 3_2 @property def SCREAMING_SNAKE_CASE__ ( self : int ): return 3_2 @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): return 1_0_0 @property def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): torch.manual_seed(0 ) lowerCAmelCase_ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(_A ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } lowerCAmelCase_ : List[Any] = PriorTransformer(**_A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowerCAmelCase_ : Dict = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def SCREAMING_SNAKE_CASE__ ( self : Any ): torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) lowerCAmelCase_ : Optional[Any] = CLIPVisionModelWithProjection(_A ) return model @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=_A , do_normalize=_A , do_resize=_A , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=2_2_4 , ) return image_processor def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : Dict = self.dummy_prior lowerCAmelCase_ : List[str] = self.dummy_image_encoder lowerCAmelCase_ : Any = self.dummy_text_encoder lowerCAmelCase_ : Union[str, Any] = self.dummy_tokenizer lowerCAmelCase_ : Optional[int] = self.dummy_image_processor lowerCAmelCase_ : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_0_0_0 , clip_sample=_A , clip_sample_range=10.0 , ) lowerCAmelCase_ : str = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict=0 ): if str(_A ).startswith('mps' ): lowerCAmelCase_ : Tuple = torch.manual_seed(_A ) else: lowerCAmelCase_ : Union[str, Any] = torch.Generator(device=_A ).manual_seed(_A ) lowerCAmelCase_ : str = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : Dict = "cpu" lowerCAmelCase_ : List[Any] = self.get_dummy_components() lowerCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A ) lowerCAmelCase_ : List[str] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) lowerCAmelCase_ : List[str] = pipe(**self.get_dummy_inputs(_A ) ) lowerCAmelCase_ : int = output.image_embeds lowerCAmelCase_ : Any = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] lowerCAmelCase_ : Any = image[0, -1_0:] lowerCAmelCase_ : List[Any] = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) lowerCAmelCase_ : Optional[int] = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : Optional[Any] = torch_device == "cpu" lowerCAmelCase_ : str = True lowerCAmelCase_ : List[str] = False self._test_inference_batch_single_identical( test_max_difference=_A , relax_max_difference=_A , test_mean_pixel_difference=_A , ) @skip_mps def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : List[str] = torch_device == "cpu" lowerCAmelCase_ : Dict = False self._test_attention_slicing_forward_pass( test_max_difference=_A , test_mean_pixel_difference=_A , )
224
from __future__ import annotations from math import pi, sqrt def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def UpperCAmelCase_ ( __UpperCAmelCase : int = 3 ) -> qiskit.result.counts.Counts: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(__UpperCAmelCase ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) SCREAMING_SNAKE_CASE_ = QuantumRegister(__UpperCAmelCase , 'qr' ) SCREAMING_SNAKE_CASE_ = ClassicalRegister(__UpperCAmelCase , 'cr' ) SCREAMING_SNAKE_CASE_ = QuantumCircuit(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = number_of_qubits for i in range(__UpperCAmelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__UpperCAmelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , __UpperCAmelCase , __UpperCAmelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__UpperCAmelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__UpperCAmelCase , __UpperCAmelCase ) # simulate with 10000 shots SCREAMING_SNAKE_CASE_ = Aer.get_backend('qasm_simulator' ) SCREAMING_SNAKE_CASE_ = execute(__UpperCAmelCase , __UpperCAmelCase , shots=1_00_00 ) return job.result().get_counts(__UpperCAmelCase ) if __name__ == "__main__": print( f'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
210
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> str: SCREAMING_SNAKE_CASE_ = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> dict[str, str]: SCREAMING_SNAKE_CASE_ = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key SCREAMING_SNAKE_CASE_ = remove_duplicates(key.upper() ) SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) # First fill cipher with key characters SCREAMING_SNAKE_CASE_ = {alphabet[i]: char for i, char in enumerate(__UpperCAmelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__UpperCAmelCase ) , 26 ): SCREAMING_SNAKE_CASE_ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 SCREAMING_SNAKE_CASE_ = alphabet[i - offset] SCREAMING_SNAKE_CASE_ = char return cipher_alphabet def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : dict[str, str] ) -> str: return "".join(cipher_map.get(__UpperCAmelCase , __UpperCAmelCase ) for ch in message.upper() ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : dict[str, str] ) -> str: SCREAMING_SNAKE_CASE_ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__UpperCAmelCase , __UpperCAmelCase ) for ch in message.upper() ) def UpperCAmelCase_ ( ) -> None: SCREAMING_SNAKE_CASE_ = input('Enter message to encode or decode: ' ).strip() SCREAMING_SNAKE_CASE_ = input('Enter keyword: ' ).strip() SCREAMING_SNAKE_CASE_ = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: SCREAMING_SNAKE_CASE_ = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) SCREAMING_SNAKE_CASE_ = create_cipher_map(__UpperCAmelCase ) print(func(__UpperCAmelCase , __UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
210
1
from random import randint from tempfile import TemporaryFile import numpy as np def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Dict: """simple docstring""" _lowercase =0 if start < end: _lowercase =randint(__snake_case , __snake_case ) _lowercase =a[end] _lowercase =a[pivot] _lowercase =temp _lowercase , _lowercase =_in_place_partition(__snake_case , __snake_case , __snake_case ) count += _in_place_quick_sort(__snake_case , __snake_case , p - 1 ) count += _in_place_quick_sort(__snake_case , p + 1 , __snake_case ) return count def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: """simple docstring""" _lowercase =0 _lowercase =randint(__snake_case , __snake_case ) _lowercase =a[end] _lowercase =a[pivot] _lowercase =temp _lowercase =start - 1 for index in range(__snake_case , __snake_case ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _lowercase =new_pivot_index + 1 _lowercase =a[new_pivot_index] _lowercase =a[index] _lowercase =temp _lowercase =a[new_pivot_index + 1] _lowercase =a[end] _lowercase =temp return new_pivot_index + 1, count UpperCAmelCase__ = TemporaryFile() UpperCAmelCase__ = 100 # 1000 elements are to be sorted UpperCAmelCase__ ,UpperCAmelCase__ = 0, 1 # mean and standard deviation UpperCAmelCase__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array UpperCAmelCase__ = np.load(outfile) UpperCAmelCase__ = len(M) - 1 UpperCAmelCase__ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
5
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase_ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "tapas" def __init__( self : List[Any] ,_snake_case : Dict=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : int=12 ,_snake_case : Union[str, Any]=12 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : Optional[int]=0.1 ,_snake_case : Tuple=0.1 ,_snake_case : List[Any]=1_024 ,_snake_case : Any=[3, 256, 256, 2, 256, 256, 10] ,_snake_case : List[Any]=0.02 ,_snake_case : Union[str, Any]=1e-12 ,_snake_case : str=0 ,_snake_case : Any=10.0 ,_snake_case : int=0 ,_snake_case : Optional[Any]=1.0 ,_snake_case : List[str]=None ,_snake_case : Tuple=1.0 ,_snake_case : Tuple=False ,_snake_case : List[Any]=None ,_snake_case : int=1.0 ,_snake_case : List[Any]=1.0 ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]="ratio" ,_snake_case : Any=None ,_snake_case : Union[str, Any]=None ,_snake_case : List[str]=64 ,_snake_case : Optional[Any]=32 ,_snake_case : Optional[Any]=False ,_snake_case : Optional[int]=True ,_snake_case : Dict=False ,_snake_case : Tuple=False ,_snake_case : int=True ,_snake_case : List[str]=False ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ,**_snake_case : int ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,**_snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Dict = type_vocab_sizes lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ : Any = positive_label_weight lowercase__ : int = num_aggregation_labels lowercase__ : List[str] = aggregation_loss_weight lowercase__ : Optional[int] = use_answer_as_supervision lowercase__ : Optional[Any] = answer_loss_importance lowercase__ : Union[str, Any] = use_normalized_answer_loss lowercase__ : str = huber_loss_delta lowercase__ : str = temperature lowercase__ : int = aggregation_temperature lowercase__ : List[Any] = use_gumbel_for_cells lowercase__ : Tuple = use_gumbel_for_aggregation lowercase__ : Union[str, Any] = average_approximation_function lowercase__ : Union[str, Any] = cell_selection_preference lowercase__ : Any = answer_loss_cutoff lowercase__ : List[Any] = max_num_rows lowercase__ : str = max_num_columns lowercase__ : int = average_logits_per_cell lowercase__ : str = select_one_column lowercase__ : str = allow_empty_column_selection lowercase__ : Any = init_cell_selection_weights_to_zero lowercase__ : Optional[int] = reset_position_index_per_cell lowercase__ : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters lowercase__ : Optional[Any] = aggregation_labels lowercase__ : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels ,_snake_case ): lowercase__ : Union[str, Any] = {int(_snake_case ): v for k, v in aggregation_labels.items()}
16
0
class lowerCamelCase : """simple docstring""" def __init__( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = {} def __A ( self : Tuple , __magic_name__ : int ) -> str: if vertex not in self.adjacency: SCREAMING_SNAKE_CASE_ = {} self.num_vertices += 1 def __A ( self : str , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]: self.add_vertex(__magic_name__ ) self.add_vertex(__magic_name__ ) if head == tail: return SCREAMING_SNAKE_CASE_ = weight SCREAMING_SNAKE_CASE_ = weight def __A ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.get_edges() for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = edge edges.remove((tail, head, weight) ) for i in range(len(__magic_name__ ) ): SCREAMING_SNAKE_CASE_ = list(edges[i] ) edges.sort(key=lambda __magic_name__ : e[2] ) for i in range(len(__magic_name__ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: SCREAMING_SNAKE_CASE_ = edges[i][2] + 1 for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = edge SCREAMING_SNAKE_CASE_ = weight SCREAMING_SNAKE_CASE_ = weight def __str__( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = "" for tail in self.adjacency: for head in self.adjacency[tail]: SCREAMING_SNAKE_CASE_ = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __A ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __A ( self : Union[str, Any] ) -> Optional[int]: return self.adjacency.keys() @staticmethod def __A ( __magic_name__ : List[Any]=None , __magic_name__ : Tuple=None ) -> Any: SCREAMING_SNAKE_CASE_ = Graph() if vertices is None: SCREAMING_SNAKE_CASE_ = [] if edges is None: SCREAMING_SNAKE_CASE_ = [] for vertex in vertices: g.add_vertex(__magic_name__ ) for edge in edges: g.add_edge(*__magic_name__ ) return g class lowerCamelCase : """simple docstring""" def __init__( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = {} def __len__( self : Optional[int] ) -> Optional[int]: return len(self.parent ) def __A ( self : str , __magic_name__ : int ) -> Optional[int]: if item in self.parent: return self.find(__magic_name__ ) SCREAMING_SNAKE_CASE_ = item SCREAMING_SNAKE_CASE_ = 0 return item def __A ( self : Any , __magic_name__ : List[str] ) -> Any: if item not in self.parent: return self.make_set(__magic_name__ ) if item != self.parent[item]: SCREAMING_SNAKE_CASE_ = self.find(self.parent[item] ) return self.parent[item] def __A ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.find(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.find(__magic_name__ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: SCREAMING_SNAKE_CASE_ = roota return roota if self.rank[roota] < self.rank[roota]: SCREAMING_SNAKE_CASE_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 SCREAMING_SNAKE_CASE_ = roota return roota return None @staticmethod def __A ( __magic_name__ : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = graph.num_vertices SCREAMING_SNAKE_CASE_ = Graph.UnionFind() SCREAMING_SNAKE_CASE_ = [] while num_components > 1: SCREAMING_SNAKE_CASE_ = {} for vertex in graph.get_vertices(): SCREAMING_SNAKE_CASE_ = -1 SCREAMING_SNAKE_CASE_ = graph.get_edges() for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = edge edges.remove((tail, head, weight) ) for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = edge SCREAMING_SNAKE_CASE_ = union_find.find(__magic_name__ ) SCREAMING_SNAKE_CASE_ = union_find.find(__magic_name__ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cheap_edge[vertex] if union_find.find(__magic_name__ ) != union_find.find(__magic_name__ ): union_find.union(__magic_name__ , __magic_name__ ) mst_edges.append(cheap_edge[vertex] ) SCREAMING_SNAKE_CASE_ = num_components - 1 SCREAMING_SNAKE_CASE_ = Graph.build(edges=__magic_name__ ) return mst
363
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__UpperCamelCase )] ) SCREAMING_SNAKE_CASE_ = np.array(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __UpperCamelCase ) ) , x.transpose() ) , __UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = (1, 2, 1) SCREAMING_SNAKE_CASE_ = (1, 1, 0, 7) SCREAMING_SNAKE_CASE_ = SARIMAX( __UpperCamelCase , exog=__UpperCamelCase , order=__UpperCamelCase , seasonal_order=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = model.fit(disp=__UpperCamelCase , maxiter=6_0_0 , method="nm" ) SCREAMING_SNAKE_CASE_ = model_fit.predict(1 , len(__UpperCamelCase ) , exog=[test_match] ) return result[0] def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = regressor.predict(__UpperCamelCase ) return y_pred[0] def a__ ( __UpperCamelCase ): train_user.sort() SCREAMING_SNAKE_CASE_ = np.percentile(__UpperCamelCase , 2_5 ) SCREAMING_SNAKE_CASE_ = np.percentile(__UpperCamelCase , 7_5 ) SCREAMING_SNAKE_CASE_ = qa - qa SCREAMING_SNAKE_CASE_ = qa - (iqr * 0.1) return low_lim def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 for i in list_vote: if i > actual_result: SCREAMING_SNAKE_CASE_ = not_safe + 1 else: if abs(abs(__UpperCamelCase ) - abs(__UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] A : Optional[Any] = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) A : Union[str, Any] = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : List[str] = normalize_df[:, 0].tolist() A : int = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Tuple = x[: len(x) - 1] A : str = x[len(x) - 1 :] # for linear regression & sarimax A : Tuple = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : List[Any] = total_date[len(total_date) - 1 :] A : List[Any] = total_user[len(total_user) - 1 :] A : Optional[Any] = total_match[len(total_match) - 1 :] # voting system with forecasting A : Optional[int] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : str = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
305
0
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports lowerCamelCase__ = """ import os """ lowerCamelCase__ = """ def foo(): import os return False """ lowerCamelCase__ = """ def foo(): def bar(): if True: import os return False return bar() """ lowerCamelCase__ = """ import os try: import bar except ImportError: raise ValueError() """ lowerCamelCase__ = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ lowerCamelCase__ = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ lowerCamelCase__ = """ import os try: import bar except ImportError as e: raise ValueError() """ lowerCamelCase__ = """ import os try: import bar except: raise ValueError() """ lowerCamelCase__ = """ import os try: import bar import baz except ImportError: raise ValueError() """ lowerCamelCase__ = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ lowerCamelCase__ = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('case' , _UpperCamelCase ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : str = os.path.join(_UpperCamelCase , 'test_file.py' ) with open(_UpperCamelCase , 'w' ) as _tmp_file: _tmp_file.write(_UpperCamelCase ) __lowerCAmelCase : List[Any] = get_imports(_UpperCamelCase ) assert parsed_imports == ["os"]
86
"""simple docstring""" import numpy as np def __lowerCAmelCase (_UpperCamelCase ): return 1 / (1 + np.exp(-vector )) def __lowerCAmelCase (_UpperCamelCase ): return vector * sigmoid(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
86
1
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline SCREAMING_SNAKE_CASE__ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def lowerCAmelCase__ ( _UpperCamelCase : int , _UpperCamelCase : tuple , _UpperCamelCase : Path , _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Optional[int]=False , ) -> Optional[int]: """simple docstring""" output_path.parent.mkdir(parents=lowercase__ , exist_ok=lowercase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowercase__ , lowercase__ , f=output_path.as_posix() , input_names=lowercase__ , output_names=lowercase__ , dynamic_axes=lowercase__ , do_constant_folding=lowercase__ , use_external_data_format=lowercase__ , enable_onnx_checker=lowercase__ , opset_version=lowercase__ , ) else: export( lowercase__ , lowercase__ , f=output_path.as_posix() , input_names=lowercase__ , output_names=lowercase__ , dynamic_axes=lowercase__ , do_constant_folding=lowercase__ , opset_version=lowercase__ , ) @torch.no_grad() def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : bool = False ) -> Any: """simple docstring""" snake_case = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): snake_case = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: snake_case = """cpu""" snake_case = StableDiffusionPipeline.from_pretrained(lowercase__ , torch_dtype=lowercase__ ).to(lowercase__ ) snake_case = Path(lowercase__ ) # TEXT ENCODER snake_case = pipeline.text_encoder.config.max_position_embeddings snake_case = pipeline.text_encoder.config.hidden_size snake_case = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=lowercase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=lowercase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=lowercase__ , ) del pipeline.text_encoder # UNET snake_case = pipeline.unet.config.in_channels snake_case = pipeline.unet.config.sample_size snake_case = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet , model_args=( torch.randn(2 , lowercase__ , lowercase__ , lowercase__ ).to(device=lowercase__ , dtype=lowercase__ ), torch.randn(2 ).to(device=lowercase__ , dtype=lowercase__ ), torch.randn(2 , lowercase__ , lowercase__ ).to(device=lowercase__ , dtype=lowercase__ ), False, ) , output_path=lowercase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=lowercase__ , use_external_data_format=lowercase__ , ) snake_case = str(unet_path.absolute().as_posix() ) snake_case = os.path.dirname(lowercase__ ) snake_case = onnx.load(lowercase__ ) # clean up existing tensor files shutil.rmtree(lowercase__ ) os.mkdir(lowercase__ ) # collate external tensor files into one onnx.save_model( lowercase__ , lowercase__ , save_as_external_data=lowercase__ , all_tensors_to_one_file=lowercase__ , location='weights.pb' , convert_attribute=lowercase__ , ) del pipeline.unet # VAE ENCODER snake_case = pipeline.vae snake_case = vae_encoder.config.in_channels snake_case = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder snake_case = lambda _UpperCamelCase , _UpperCamelCase : vae_encoder.encode(lowercase__ , lowercase__ )[0].sample() onnx_export( lowercase__ , model_args=( torch.randn(1 , lowercase__ , lowercase__ , lowercase__ ).to(device=lowercase__ , dtype=lowercase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=lowercase__ , ) # VAE DECODER snake_case = pipeline.vae snake_case = vae_decoder.config.latent_channels snake_case = vae_decoder.config.out_channels # forward only through the decoder part snake_case = vae_encoder.decode onnx_export( lowercase__ , model_args=( torch.randn(1 , lowercase__ , lowercase__ , lowercase__ ).to(device=lowercase__ , dtype=lowercase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=lowercase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: snake_case = pipeline.safety_checker snake_case = safety_checker.config.vision_config.num_channels snake_case = safety_checker.config.vision_config.image_size snake_case = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , lowercase__ , lowercase__ , lowercase__ , ).to(device=lowercase__ , dtype=lowercase__ ), torch.randn(1 , lowercase__ , lowercase__ , lowercase__ ).to(device=lowercase__ , dtype=lowercase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=lowercase__ , ) del pipeline.safety_checker snake_case = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) snake_case = pipeline.feature_extractor else: snake_case = None snake_case = None snake_case = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=lowercase__ , feature_extractor=lowercase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(lowercase__ ) print('ONNX pipeline saved to' , lowercase__ ) del pipeline del onnx_pipeline snake_case = OnnxStableDiffusionPipeline.from_pretrained(lowercase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
356
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_12 , lowerCAmelCase=16 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase="None" , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = relative_attention snake_case = position_biased_input snake_case = pos_att_type snake_case = scope def snake_case ( self ): """simple docstring""" snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=lowerCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = TFDebertaVaModel(config=lowerCAmelCase ) snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case = [input_ids, input_mask] snake_case = model(lowerCAmelCase ) snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = TFDebertaVaForMaskedLM(config=lowerCAmelCase ) snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = self.num_labels snake_case = TFDebertaVaForSequenceClassification(config=lowerCAmelCase ) snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = self.num_labels snake_case = TFDebertaVaForTokenClassification(config=lowerCAmelCase ) snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = TFDebertaVaForQuestionAnswering(config=lowerCAmelCase ) snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self ): """simple docstring""" snake_case = self.prepare_config_and_inputs() ( ( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) , ) = config_and_inputs snake_case = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Optional[int] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _lowerCAmelCase : Any = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : List[Any] = False def snake_case ( self ): """simple docstring""" snake_case = TFDebertaVaModelTester(self ) snake_case = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) @slow def snake_case ( self ): """simple docstring""" snake_case = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(lowerCAmelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def snake_case ( self ): """simple docstring""" pass @slow def snake_case ( self ): """simple docstring""" snake_case = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) snake_case = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) snake_case = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] snake_case = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , lowerCAmelCase , atol=1E-4 )
149
0
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features snake_case_ = logging.get_logger(__name__) snake_case_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) snake_case_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field( default=UpperCamelCase_ , metadata={'help': 'Model type selected in the list: ' + ', '.join(UpperCamelCase_ )} ) A_ : str = field( default=UpperCamelCase_ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) A_ : int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : int = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) A_ : int = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) A_ : int = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) A_ : bool = field( default=UpperCamelCase_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) A_ : bool = field( default=UpperCamelCase_ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) A_ : float = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) A_ : int = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) A_ : int = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) A_ : int = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): A_ : Union[str, Any] = """train""" A_ : List[Any] = """dev""" class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): A_ : SquadDataTrainingArguments A_ : List[SquadFeatures] A_ : Split A_ : bool def __init__(self : Union[str, Any] , a__ : List[str] , a__ : Optional[Any] , a__ : Any = None , a__ : Optional[int] = Split.train , a__ : Any = False , a__ : str = None , a__ : str = "pt" , ): """simple docstring""" __snake_case = args __snake_case = is_language_sensitive __snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_a , _a ): try: __snake_case = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) __snake_case = mode # Load data features from cache or dataset file __snake_case = """v2""" if args.version_2_with_negative else """v1""" __snake_case = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case = cached_features_file + """.lock""" with FileLock(_a ): if os.path.exists(_a ) and not args.overwrite_cache: __snake_case = time.time() __snake_case = torch.load(_a ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __snake_case = self.old_features["""features"""] __snake_case = self.old_features.get('''dataset''' , _a ) __snake_case = self.old_features.get('''examples''' , _a ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" ''' future run''' ) else: if mode == Split.dev: __snake_case = self.processor.get_dev_examples(args.data_dir ) else: __snake_case = self.processor.get_train_examples(args.data_dir ) __snake_case = squad_convert_examples_to_features( examples=self.examples , tokenizer=_a , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_a , ) __snake_case = time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , _a , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__(self : Tuple ): """simple docstring""" return len(self.features ) def __getitem__(self : Optional[int] , a__ : int ): """simple docstring""" __snake_case = self.features[i] __snake_case = torch.tensor(feature.input_ids , dtype=torch.long ) __snake_case = torch.tensor(feature.attention_mask , dtype=torch.long ) __snake_case = torch.tensor(feature.token_type_ids , dtype=torch.long ) __snake_case = torch.tensor(feature.cls_index , dtype=torch.long ) __snake_case = torch.tensor(feature.p_mask , dtype=torch.float ) __snake_case = torch.tensor(feature.is_impossible , dtype=torch.float ) __snake_case = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __snake_case = torch.tensor(feature.start_position , dtype=torch.long ) __snake_case = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
24
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging a :Tuple = ( "https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py" ) a :int = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowercase ( ) -> Dict: SCREAMING_SNAKE_CASE__ : Any = """https://pypi.org/pypi/diffusers/json""" SCREAMING_SNAKE_CASE__ : str = json.loads(request.urlopen(__lowerCAmelCase ).read() )["""releases"""].keys() return sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : version.Version(__lowerCAmelCase ) ) def _lowercase ( ) -> Optional[Any]: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = Path(__lowerCAmelCase ) / """__init__.py""" if not init_path.exists(): init_path.touch() def _lowercase ( __lowerCAmelCase ) -> Optional[int]: init_hf_modules() SCREAMING_SNAKE_CASE__ : List[Any] = Path(__lowerCAmelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def _lowercase ( __lowerCAmelCase ) -> Tuple: with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE__ : int = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE__ : Optional[Any] = re.findall("""^\s*import\s+\.(\S+)\s*$""" , __lowerCAmelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , __lowerCAmelCase , flags=re.MULTILINE ) # Unique-ify return list(set(__lowerCAmelCase ) ) def _lowercase ( __lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : List[str] = [module_file] SCREAMING_SNAKE_CASE__ : str = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE__ : Dict = [] for f in files_to_check: new_imports.extend(get_relative_imports(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : int = Path(__lowerCAmelCase ).parent SCREAMING_SNAKE_CASE__ : Dict = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE__ : Optional[Any] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE__ : Any = [F'''{f}.py''' for f in new_import_files] SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(__lowerCAmelCase ) == 0 all_relative_imports.extend(__lowerCAmelCase ) return all_relative_imports def _lowercase ( __lowerCAmelCase ) -> Any: with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE__ : Dict = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE__ : Optional[Any] = re.findall("""^\s*import\s+(\S+)\s*$""" , __lowerCAmelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , __lowerCAmelCase , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE__ : str = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE__ : Tuple = list(set(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[str] = [] for imp in imports: try: importlib.import_module(__lowerCAmelCase ) except ImportError: missing_packages.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F'''{', '.join(__lowerCAmelCase )}. Run `pip install {' '.join(__lowerCAmelCase )}`''' ) return get_relative_imports(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: SCREAMING_SNAKE_CASE__ : str = module_path.replace(os.path.sep , """.""" ) SCREAMING_SNAKE_CASE__ : Any = importlib.import_module(__lowerCAmelCase ) if class_name is None: return find_pipeline_class(__lowerCAmelCase ) return getattr(__lowerCAmelCase , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Optional[int]: from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE__ : Tuple = dict(inspect.getmembers(__lowerCAmelCase , inspect.isclass ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __lowerCAmelCase ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' F''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' F''' {loaded_module}.''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = cls return pipeline_class def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> Dict: SCREAMING_SNAKE_CASE__ : str = str(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if os.path.isfile(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = module_file_or_url SCREAMING_SNAKE_CASE__ : List[str] = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: SCREAMING_SNAKE_CASE__ : Optional[int] = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE__ : List[Any] = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE__ : Any = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: SCREAMING_SNAKE_CASE__ : List[str] = F'''v{revision}''' elif revision == "main": SCREAMING_SNAKE_CASE__ : int = revision else: raise ValueError( F'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' F''' {', '.join(available_versions + ['main'] )}.''' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE__ : int = COMMUNITY_PIPELINES_URL.format(revision=__lowerCAmelCase , pipeline=__lowerCAmelCase ) try: SCREAMING_SNAKE_CASE__ : Dict = cached_download( __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , proxies=__lowerCAmelCase , resume_download=__lowerCAmelCase , local_files_only=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE__ : Optional[int] = """git""" SCREAMING_SNAKE_CASE__ : Optional[Any] = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE__ : Any = hf_hub_download( __lowerCAmelCase , __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , proxies=__lowerCAmelCase , resume_download=__lowerCAmelCase , local_files_only=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE__ : Dict = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE__ : Optional[int] = check_imports(__lowerCAmelCase ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE__ : Any = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = Path(__lowerCAmelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__lowerCAmelCase , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE__ : Tuple = F'''{module_needed}.py''' shutil.copy(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Dict = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE__ : Optional[int] = HfFolder.get_token() else: SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : int = model_info(__lowerCAmelCase , revision=__lowerCAmelCase , token=__lowerCAmelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE__ : Optional[Any] = submodule_path / commit_hash SCREAMING_SNAKE_CASE__ : Optional[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(__lowerCAmelCase ) if not (submodule_path / module_file).exists(): shutil.copy(__lowerCAmelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __lowerCAmelCase , F'''{module_needed}.py''' , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , resume_download=__lowerCAmelCase , proxies=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , revision=__lowerCAmelCase , local_files_only=__lowerCAmelCase , ) return os.path.join(__lowerCAmelCase , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , **__lowerCAmelCase , ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_cached_module_file( __lowerCAmelCase , __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , resume_download=__lowerCAmelCase , proxies=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , revision=__lowerCAmelCase , local_files_only=__lowerCAmelCase , ) return get_class_in_module(__lowerCAmelCase , final_module.replace(""".py""" , """""" ) )
132
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class lowerCamelCase__ ( unittest.TestCase ): def _lowerCamelCase ( self : List[str] ): if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=_UpperCAmelCase , ) assert hasattr(self , "env" ) def _lowerCamelCase ( self : int , _a : Optional[int]=1 ): # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-single" , instance_count=_UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=_UpperCAmelCase , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def _lowerCamelCase ( self : List[str] , _a : Optional[int] ): TrainingJobAnalytics(_UpperCAmelCase ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) def _lowerCamelCase ( self : Optional[Any] ): # create estimator a__: List[Any] =self.create_estimator() # run training estimator.fit() # result dataframe a__: Optional[int] =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis a__: Optional[int] =list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) a__: Dict =list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping a__: Tuple =( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , _UpperCAmelCase )
368
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class lowerCamelCase__ ( _a ): _lowerCAmelCase = 42 class lowerCamelCase__ ( _a , _a ): @register_to_config def __init__( self : Union[str, Any] , _a : int = 1_6 , _a : int = 8_8 , _a : Optional[int] = None , _a : Optional[int] = None , _a : int = 1 , _a : float = 0.0 , _a : int = 3_2 , _a : Optional[int] = None , _a : bool = False , _a : Optional[int] = None , _a : str = "geglu" , _a : bool = True , _a : bool = True , ): super().__init__() a__: List[Any] =num_attention_heads a__: Tuple =attention_head_dim a__: Dict =num_attention_heads * attention_head_dim a__: List[Any] =in_channels a__: Dict =torch.nn.GroupNorm(num_groups=_a , num_channels=_a , eps=1e-6 , affine=_a ) a__: str =nn.Linear(_a , _a ) # 3. Define transformers blocks a__: Optional[int] =nn.ModuleList( [ BasicTransformerBlock( _a , _a , _a , dropout=_a , cross_attention_dim=_a , activation_fn=_a , attention_bias=_a , double_self_attention=_a , norm_elementwise_affine=_a , ) for d in range(_a ) ] ) a__: Any =nn.Linear(_a , _a ) def _lowerCamelCase ( self : List[str] , _a : str , _a : Optional[Any]=None , _a : int=None , _a : int=None , _a : Optional[int]=1 , _a : Tuple=None , _a : bool = True , ): a__ , a__ , a__ , a__: int =hidden_states.shape a__: str =batch_frames // num_frames a__: Any =hidden_states a__: Optional[int] =hidden_states[None, :].reshape(_a , _a , _a , _a , _a ) a__: Union[str, Any] =hidden_states.permute(0 , 2 , 1 , 3 , 4 ) a__: Tuple =self.norm(_a ) a__: Union[str, Any] =hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _a , _a ) a__: Dict =self.proj_in(_a ) # 2. Blocks for block in self.transformer_blocks: a__: str =block( _a , encoder_hidden_states=_a , timestep=_a , cross_attention_kwargs=_a , class_labels=_a , ) # 3. Output a__: Any =self.proj_out(_a ) a__: Optional[int] =( hidden_states[None, None, :] .reshape(_a , _a , _a , _a , _a ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) a__: Dict =hidden_states.reshape(_a , _a , _a , _a ) a__: List[str] =hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=_a )
42
0
import argparse import os import re __a : Tuple = """src/transformers""" # Pattern that looks at the indentation in a line. __a : List[str] = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. __a : str = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __a : int = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. __a : Tuple = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __a : int = re.compile(r"""\[([^\]]+)\]""") def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = _re_indent.search(lowercase ) return "" if search is None else search.groups()[0] def UpperCAmelCase ( lowercase , lowercase="" , lowercase=None , lowercase=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowercase ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(lowercase ) and (end_prompt is None or not lines[index].startswith(lowercase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowercase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowercase ) ) if index < len(lowercase ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(lowercase ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowercase ) > 0: blocks.append('''\n'''.join(lowercase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowercase ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def UpperCAmelCase ( lowercase ): """simple docstring""" def _inner(lowercase ): return key(lowercase ).lower().replace('''_''' , '''''' ) return _inner def UpperCAmelCase ( lowercase , lowercase=None ): """simple docstring""" def noop(lowercase ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(lowercase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(lowercase )[0].isupper() and not key(lowercase ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(lowercase )[0].isupper()] __lowercase = ignore_underscore(lowercase ) return sorted(lowercase , key=lowercase ) + sorted(lowercase , key=lowercase ) + sorted(lowercase , key=lowercase ) def UpperCAmelCase ( lowercase ): """simple docstring""" def _replace(lowercase ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(lowercase )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(lowercase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(lowercase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(lowercase , key=lambda lowercase : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowercase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(lowercase )] ) return "\n".join(lowercase ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , lowercase ) return import_statement def UpperCAmelCase ( lowercase , lowercase=True ): """simple docstring""" with open(lowercase , encoding='''utf-8''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( lowercase , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowercase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(lowercase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(lowercase ) else: line_idx += 1 if line_idx >= len(lowercase ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(lowercase , indent_level=lowercase ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(lowercase ).groups()[0] if pattern.search(lowercase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(lowercase ) if key is not None] __lowercase = [x[0] for x in sorted(lowercase , key=lambda lowercase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(lowercase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowercase ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowercase ): if check_only: return True else: print(F"Overwriting {file}." ) with open(lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowercase ) ) def UpperCAmelCase ( lowercase=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(lowercase ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(lowercase , '''__init__.py''' ) , check_only=lowercase ) if result: __lowercase = [os.path.join(lowercase , '''__init__.py''' )] if len(lowercase ) > 0: raise ValueError(F"Would overwrite {len(lowercase )} files, run `make style`." ) if __name__ == "__main__": __a : int = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") __a : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
210
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''num_attention_heads''' ) ) class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=64 , lowerCAmelCase__=3 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=16 , lowerCAmelCase__=[1_28, 2_56, 3_84] , lowerCAmelCase__=[4, 6, 8] , lowerCAmelCase__=[2, 3, 4] , lowerCAmelCase__=[16, 16, 16] , lowerCAmelCase__=0 , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=0.02 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=2 , ) -> Tuple: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = kernel_size __lowercase = stride __lowercase = padding __lowercase = hidden_sizes __lowercase = num_attention_heads __lowercase = depths __lowercase = key_dim __lowercase = drop_path_rate __lowercase = patch_size __lowercase = attention_ratio __lowercase = mlp_ratio __lowercase = initializer_range __lowercase = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __lowercase = is_training __lowercase = use_labels __lowercase = num_labels __lowercase = initializer_range def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' __lowercase = LevitModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = model(lowerCAmelCase__ ) __lowercase = (self.image_size, self.image_size) __lowercase , __lowercase = image_size[0], image_size[1] for _ in range(4 ): __lowercase = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __lowercase = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' __lowercase = self.num_labels __lowercase = LevitForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : int = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) __a : List[str] = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) __a : int = False __a : Dict = False __a : Optional[Any] = False __a : Optional[int] = False __a : Dict = False def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = LevitModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCAmelCase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __lowercase = outputs.hidden_states __lowercase = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __lowercase = (self.model_tester.image_size, self.model_tester.image_size) __lowercase , __lowercase = image_size[0], image_size[1] for _ in range(4 ): __lowercase = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __lowercase = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> str: '''simple docstring''' __lowercase = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' if not self.model_tester.is_training: return __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCAmelCase__ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __lowercase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() __lowercase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __lowercase = model(**lowerCAmelCase__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowercase = False __lowercase = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase__ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __lowercase = model_class(lowerCAmelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCAmelCase__ ) model.train() __lowercase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __lowercase = model(**lowerCAmelCase__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCAmelCase__ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): __lowercase = problem_type['''title'''] __lowercase = problem_type['''num_labels'''] __lowercase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() __lowercase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if problem_type["num_labels"] > 1: __lowercase = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) __lowercase = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCAmelCase__ ) as warning_list: __lowercase = model(**lowerCAmelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = LevitModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCAmelCase ( ): """simple docstring""" __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCAmelCase__ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCAmelCase__ ) # verify the logits __lowercase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __lowercase = torch.tensor([1.0448, -0.3745, -1.8317] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
210
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
351
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Optional[int] = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
204
0
"""simple docstring""" import random class a : """simple docstring""" @staticmethod def UpperCamelCase ( UpperCamelCase: str ): """simple docstring""" A__ = [ord(_UpperCAmelCase ) for i in text] A__ = [] A__ = [] for i in plain: A__ = random.randint(1 , 3_00 ) A__ = (i + k) * k cipher.append(_UpperCAmelCase ) key.append(_UpperCAmelCase ) return cipher, key @staticmethod def UpperCamelCase ( UpperCamelCase: list[int] , UpperCamelCase: list[int] ): """simple docstring""" A__ = [] for i in range(len(_UpperCAmelCase ) ): A__ = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_UpperCAmelCase ) ) return "".join(_UpperCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : List[str] = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
335
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
0
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> list[float]: if radian_mode: return [magnitude * cos(__lowerCAmelCase ), magnitude * sin(__lowerCAmelCase )] return [magnitude * cos(radians(__lowerCAmelCase ) ), magnitude * sin(radians(__lowerCAmelCase ) )] def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 10**-1 ) -> bool: SCREAMING_SNAKE_CASE__ : NDArray[floataa] = cross(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : float = sum(__lowerCAmelCase ) return abs(__lowerCAmelCase ) < eps if __name__ == "__main__": # Test to check if it works a :Optional[Any] = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) a :NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg a :Union[str, Any] = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) a :int = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg a :List[str] = array([[0, -2_000], [0, -1_200], [0, 15_600], [0, -12_400]]) a :Tuple = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
369
"""simple docstring""" from math import loga def _lowercase ( __lowerCAmelCase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
56
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : str = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase__ : Dict = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } UpperCAmelCase__ : List[Any] = { 'facebook/nllb-large-en-ro': 1_0_2_4, 'facebook/nllb-200-distilled-600M': 1_0_2_4, } # fmt: off UpperCAmelCase__ : Any = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Tuple = VOCAB_FILES_NAMES __UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : str = ['''input_ids''', '''attention_mask'''] __UpperCamelCase : Tuple = NllbTokenizer __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__(self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="<mask>" , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token SCREAMING_SNAKE_CASE__ : int = legacy_behaviour super().__init__( vocab_file=SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , legacy_behaviour=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : str = vocab_file SCREAMING_SNAKE_CASE__ : Union[str, Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE__ : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) SCREAMING_SNAKE_CASE__ : Dict = { lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE__ : Any = src_lang if src_lang is not None else """eng_Latn""" SCREAMING_SNAKE_CASE__ : Dict = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __magic_name__ (self ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = src_lang SCREAMING_SNAKE_CASE__ : Dict = self(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = tgt_lang_id return inputs def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "eng_Latn" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "fra_Latn" , **SCREAMING_SNAKE_CASE__ , ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = src_lang SCREAMING_SNAKE_CASE__ : List[Any] = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Dict: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ (self ) -> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE__ : Optional[int] = [self.cur_lang_code] SCREAMING_SNAKE_CASE__ : List[str] = [self.eos_token_id] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE__ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [self.cur_lang_code] SCREAMING_SNAKE_CASE__ : int = [self.eos_token_id] SCREAMING_SNAKE_CASE__ : str = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE__ : List[str] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return SCREAMING_SNAKE_CASE__ : Any = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
25
from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Any = logging.get_logger(__name__) A__: List[str] = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """pegasus""" UpperCamelCase__ = ["""past_key_values"""] UpperCamelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self: List[str] , __lowerCamelCase: Dict=5_0265 , __lowerCamelCase: int=1024 , __lowerCamelCase: Dict=12 , __lowerCamelCase: Dict=4096 , __lowerCamelCase: str=16 , __lowerCamelCase: List[Any]=12 , __lowerCamelCase: int=4096 , __lowerCamelCase: Optional[Any]=16 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: int=0.0 , __lowerCamelCase: List[str]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: List[Any]="gelu" , __lowerCamelCase: List[Any]=1024 , __lowerCamelCase: int=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Any=0.02 , __lowerCamelCase: Union[str, Any]=0 , __lowerCamelCase: str=False , __lowerCamelCase: Optional[int]=0 , __lowerCamelCase: Optional[Any]=1 , __lowerCamelCase: Optional[int]=1 , **__lowerCamelCase: Union[str, Any] , ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = vocab_size UpperCamelCase__: List[Any] = max_position_embeddings UpperCamelCase__: Tuple = d_model UpperCamelCase__: str = encoder_ffn_dim UpperCamelCase__: Optional[int] = encoder_layers UpperCamelCase__: List[Any] = encoder_attention_heads UpperCamelCase__: Tuple = decoder_ffn_dim UpperCamelCase__: int = decoder_layers UpperCamelCase__: List[str] = decoder_attention_heads UpperCamelCase__: int = dropout UpperCamelCase__: List[str] = attention_dropout UpperCamelCase__: Tuple = activation_dropout UpperCamelCase__: Optional[int] = activation_function UpperCamelCase__: Dict = init_std UpperCamelCase__: Optional[Any] = encoder_layerdrop UpperCamelCase__: Any = decoder_layerdrop UpperCamelCase__: Optional[int] = use_cache UpperCamelCase__: Optional[int] = encoder_layers UpperCamelCase__: List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) @property def UpperCAmelCase_ ( self: Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' return self.d_model
149
0
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[Any] = ["""image_processor""", """tokenizer"""] snake_case__ : Optional[Any] = """OwlViTImageProcessor""" snake_case__ : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Optional[Any] , __lowerCamelCase : str=None , __lowerCamelCase : List[str]=None , **__lowerCamelCase : Union[str, Any] ): UpperCamelCase :Tuple = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __lowerCamelCase , ) UpperCamelCase :Union[str, Any] = kwargs.pop("""feature_extractor""" ) UpperCamelCase :int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__lowerCamelCase , __lowerCamelCase ) def __call__( self : int , __lowerCamelCase : int=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[Any]="max_length" , __lowerCamelCase : Union[str, Any]="np" , **__lowerCamelCase : Optional[Any] ): if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(__lowerCamelCase , __lowerCamelCase ) or (isinstance(__lowerCamelCase , __lowerCamelCase ) and not isinstance(text[0] , __lowerCamelCase )): UpperCamelCase :List[str] = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase )] elif isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(text[0] , __lowerCamelCase ): UpperCamelCase :Tuple = [] # Maximum number of queries across batch UpperCamelCase :Tuple = max([len(__lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__lowerCamelCase ) != max_num_queries: UpperCamelCase :Union[str, Any] = t + [""" """] * (max_num_queries - len(__lowerCamelCase )) UpperCamelCase :List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) encodings.append(__lowerCamelCase ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": UpperCamelCase :Optional[Any] = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCamelCase :int = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCamelCase :Union[str, Any] = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCamelCase :Any = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCamelCase :Optional[int] = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) UpperCamelCase :Optional[int] = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCamelCase :Dict = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCamelCase :List[str] = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) UpperCamelCase :int = BatchEncoding() UpperCamelCase :Any = input_ids UpperCamelCase :Tuple = attention_mask if query_images is not None: UpperCamelCase :str = BatchEncoding() UpperCamelCase :Dict = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ).pixel_values UpperCamelCase :Optional[int] = query_pixel_values if images is not None: UpperCamelCase :Optional[Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if text is not None and images is not None: UpperCamelCase :List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCamelCase :List[Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase ) , tensor_type=__lowerCamelCase ) def _A ( self : Optional[int] , *__lowerCamelCase : str , **__lowerCamelCase : int ): return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase ) def _A ( self : List[str] , *__lowerCamelCase : int , **__lowerCamelCase : Union[str, Any] ): return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase ) def _A ( self : str , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : List[Any] ): return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase ) def _A ( self : int , *__lowerCamelCase : int , **__lowerCamelCase : List[Any] ): return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _A ( self : Union[str, Any] , *__lowerCamelCase : str , **__lowerCamelCase : List[str] ): return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def _A ( self : Dict ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __lowerCamelCase , ) return self.image_processor_class @property def _A ( self : List[Any] ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __lowerCamelCase , ) return self.image_processor
62
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) UpperCAmelCase_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> Tuple: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCamelCase :List[Any] = model_type_to_module_name(__magic_name__ ) UpperCamelCase :Union[str, Any] = importlib.import_module(f""".{module_name}""" , """transformers.models""" ) try: return getattr(__magic_name__ , __magic_name__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__magic_name__ , """__name__""" , __magic_name__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCamelCase :List[str] = importlib.import_module("""transformers""" ) if hasattr(__magic_name__ , __magic_name__ ): return getattr(__magic_name__ , __magic_name__ ) return None def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, os.PathLike] , __magic_name__ : Optional[Union[str, os.PathLike]] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : Optional[Dict[str, str]] = None , __magic_name__ : Optional[Union[bool, str]] = None , __magic_name__ : Optional[str] = None , __magic_name__ : bool = False , **__magic_name__ : Any , ) -> Dict: """simple docstring""" UpperCamelCase :Dict = get_file_from_repo( __magic_name__ , __magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , resume_download=__magic_name__ , proxies=__magic_name__ , use_auth_token=__magic_name__ , revision=__magic_name__ , local_files_only=__magic_name__ , ) if resolved_config_file is None: logger.info( """Could not locate the image processor configuration file, will try to use the model config instead.""" ) return {} with open(__magic_name__ , encoding="""utf-8""" ) as reader: return json.load(__magic_name__ ) class _SCREAMING_SNAKE_CASE : def __init__( self : Any ): raise EnvironmentError( """AutoImageProcessor is designed to be instantiated """ """using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(__lowerCamelCase ) def _A ( cls : List[str] , __lowerCamelCase : List[Any] , **__lowerCamelCase : int ): UpperCamelCase :Optional[Any] = kwargs.pop("""config""" , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = kwargs.pop("""trust_remote_code""" , __lowerCamelCase ) UpperCamelCase :Any = True UpperCamelCase , UpperCamelCase :int = ImageProcessingMixin.get_image_processor_dict(__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase :Union[str, Any] = config_dict.get("""image_processor_type""" , __lowerCamelCase ) UpperCamelCase :int = None if "AutoImageProcessor" in config_dict.get("""auto_map""" , {} ): UpperCamelCase :Optional[Any] = config_dict["""auto_map"""]["""AutoImageProcessor"""] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: UpperCamelCase :Optional[int] = config_dict.pop("""feature_extractor_type""" , __lowerCamelCase ) if feature_extractor_class is not None: logger.warning( """Could not find image processor class in the image processor config or the model config. Loading""" """ based on pattern matching with the model's feature extractor configuration.""" ) UpperCamelCase :str = feature_extractor_class.replace("""FeatureExtractor""" , """ImageProcessor""" ) if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): UpperCamelCase :Any = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] UpperCamelCase :Dict = feature_extractor_auto_map.replace("""FeatureExtractor""" , """ImageProcessor""" ) logger.warning( """Could not find image processor auto map in the image processor config or the model config.""" """ Loading based on pattern matching with the model's feature extractor configuration.""" ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase :str = AutoConfig.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # It could be in `config.image_processor_type`` UpperCamelCase :Optional[Any] = getattr(__lowerCamelCase , """image_processor_type""" , __lowerCamelCase ) if hasattr(__lowerCamelCase , """auto_map""" ) and "AutoImageProcessor" in config.auto_map: UpperCamelCase :Any = config.auto_map["""AutoImageProcessor"""] if image_processor_class is not None: UpperCamelCase :Tuple = image_processor_class_from_name(__lowerCamelCase ) UpperCamelCase :List[Any] = image_processor_auto_map is not None UpperCamelCase :Any = image_processor_class is not None or type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING UpperCamelCase :Optional[int] = resolve_trust_remote_code( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if has_remote_code and trust_remote_code: UpperCamelCase :Optional[int] = get_class_from_dynamic_module( __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) UpperCamelCase :int = kwargs.pop("""code_revision""" , __lowerCamelCase ) if os.path.isdir(__lowerCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING: UpperCamelCase :int = IMAGE_PROCESSOR_MAPPING[type(__lowerCamelCase )] return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def _A ( __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ): IMAGE_PROCESSOR_MAPPING.register(__lowerCamelCase , __lowerCamelCase )
62
1
"""simple docstring""" import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput __UpperCamelCase : Optional[Any] = '''scheduler_config.json''' class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = 1 lowercase__ = 2 lowercase__ = 3 lowercase__ = 4 lowercase__ = 5 @dataclass class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = 42 class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase__ = SCHEDULER_CONFIG_NAME lowercase__ = ["dtype"] lowercase__ = [] lowercase__ = True @classmethod def __lowerCAmelCase ( cls : List[Any] ,lowercase_ : Dict[str, Any] = None ,lowercase_ : Optional[str] = None ,lowercase_ : Optional[int]=False ,**lowercase_ : Any ,): lowerCAmelCase__ ,lowerCAmelCase__ : Dict = cls.load_config( pretrained_model_name_or_path=lowercase_ ,subfolder=lowercase_ ,return_unused_kwargs=lowercase_ ,**lowercase_ ,) lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = cls.from_config(lowercase_ ,return_unused_kwargs=lowercase_ ,**lowercase_ ) if hasattr(lowercase_ ,'''create_state''' ) and getattr(lowercase_ ,'''has_state''' ,lowercase_ ): lowerCAmelCase__ : List[Any] = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __lowerCAmelCase ( self : Tuple ,lowercase_ : Union[str, os.PathLike] ,lowercase_ : bool = False ,**lowercase_ : str ): self.save_config(save_directory=lowercase_ ,push_to_hub=lowercase_ ,**lowercase_ ) @property def __lowerCAmelCase ( self : List[str] ): return self._get_compatibles() @classmethod def __lowerCAmelCase ( cls : List[Any] ): lowerCAmelCase__ : Tuple = list(set([cls.__name__] + cls._compatibles ) ) lowerCAmelCase__ : Tuple = importlib.import_module(__name__.split('''.''' )[0] ) lowerCAmelCase__ : Union[str, Any] = [ getattr(lowercase_ ,lowercase_ ) for c in compatible_classes_str if hasattr(lowercase_ ,lowercase_ ) ] return compatible_classes def __SCREAMING_SNAKE_CASE ( A_ , A_ ): assert len(A_ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(A_ ) - x.ndim) ) , A_ ) def __SCREAMING_SNAKE_CASE ( A_ , A_=0.999 , A_=jnp.floataa ): def alpha_bar(A_ ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 lowerCAmelCase__ : Optional[Any] = [] for i in range(A_ ): lowerCAmelCase__ : str = i / num_diffusion_timesteps lowerCAmelCase__ : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(A_ ) / alpha_bar(A_ ) , A_ ) ) return jnp.array(A_ , dtype=A_ ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,lowercase_ : List[Any] ): lowerCAmelCase__ : Optional[int] = scheduler.config if config.trained_betas is not None: lowerCAmelCase__ : Any = jnp.asarray(config.trained_betas ,dtype=scheduler.dtype ) elif config.beta_schedule == "linear": lowerCAmelCase__ : Union[str, Any] = jnp.linspace(config.beta_start ,config.beta_end ,config.num_train_timesteps ,dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : int = ( jnp.linspace( config.beta_start**0.5 ,config.beta_end**0.5 ,config.num_train_timesteps ,dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : List[Any] = betas_for_alpha_bar(config.num_train_timesteps ,dtype=scheduler.dtype ) else: raise NotImplementedError( F'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) lowerCAmelCase__ : str = 1.0 - betas lowerCAmelCase__ : Union[str, Any] = jnp.cumprod(lowercase_ ,axis=0 ) return cls( alphas=lowercase_ ,betas=lowercase_ ,alphas_cumprod=lowercase_ ,) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ : Any = state.alphas_cumprod lowerCAmelCase__ : Optional[Any] = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase__ : Tuple = sqrt_alpha_prod.flatten() lowerCAmelCase__ : str = broadcast_to_shape_from_left(A_ , original_samples.shape ) lowerCAmelCase__ : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase__ : Optional[Any] = sqrt_one_minus_alpha_prod.flatten() lowerCAmelCase__ : Optional[int] = broadcast_to_shape_from_left(A_ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = get_sqrt_alpha_prod(A_ , A_ , A_ , A_ ) lowerCAmelCase__ : str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = get_sqrt_alpha_prod(A_ , A_ , A_ , A_ ) lowerCAmelCase__ : Union[str, Any] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
106
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowercase : Dict = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowercase : Optional[int] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowercase : Optional[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> tuple[str, float]: _snake_case = len([g for position, g in enumerate(__A ) if g == main_target[position]] ) return (item, float(__A )) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> tuple[str, str]: _snake_case = random.randint(0 , len(__A ) - 1 ) _snake_case = parent_a[:random_slice] + parent_a[random_slice:] _snake_case = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> str: _snake_case = list(__A ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: _snake_case = random.choice(__A ) return "".join(__A ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , ) -> list[str]: _snake_case = [] # Generate more children proportionally to the fitness score. _snake_case = int(parent_a[1] * 100 ) + 1 _snake_case = 10 if child_n >= 10 else child_n for _ in range(__A ): _snake_case = population_score[random.randint(0 , __A )][0] _snake_case , _snake_case = crossover(parent_a[0] , __A ) # Append new string to the population list. pop.append(mutate(__A , __A ) ) pop.append(mutate(__A , __A ) ) return pop def SCREAMING_SNAKE_CASE__ ( __A , __A , __A = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: _snake_case = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(__A ) # Verify that the target contains no genes besides the ones inside genes variable. _snake_case = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _snake_case = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(__A ) # Generate random starting population. _snake_case = [] for _ in range(__A ): population.append(''.join([random.choice(__A ) for i in range(len(__A ) )] ) ) # Just some logs to know what the algorithms is doing. _snake_case , _snake_case = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__A ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _snake_case = [evaluate(__A , __A ) for item in population] # Check if there is a matching evolution. _snake_case = sorted(__A , key=lambda __A : x[1] , reverse=__A ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _snake_case = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__A ) # Normalize population score to be between 0 and 1. _snake_case = [ (item, score / len(__A )) for item, score in population_score ] # This is selection for i in range(__A ): population.extend(select(population_score[int(__A )] , __A , __A ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__A ) > N_POPULATION: break if __name__ == "__main__": lowercase : str = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowercase : str = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowercase , lowercase , lowercase : Tuple = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
42
0
def UpperCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ): snake_case : Optional[Any] = [0 for i in range(r + 1 )] # nc0 = 1 snake_case : Optional[int] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case : Optional[int] = min(__lowerCamelCase , __lowerCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
10
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCamelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_28, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase ( unittest.TestCase ): @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Optional[int]: '''simple docstring''' snake_case : Any = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) snake_case : Union[str, Any] = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , repo_id="test-config" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : Any = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' snake_case : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) snake_case : Optional[int] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : str = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' CustomConfig.register_for_auto_class() snake_case : Union[str, Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) snake_case : int = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case : Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated snake_case : Tuple = c.n_embd + 1 # int snake_case : str = c.resid_pdrop + 1.0 # float snake_case : Optional[Any] = not c.scale_attn_weights # bool snake_case : Optional[int] = c.summary_type + "foo" # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(snake_case__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case__ , c.summary_type , "mismatch for key: summary_type" ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' snake_case : Tuple = PretrainedConfig() snake_case : List[str] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) snake_case : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(snake_case__ , snake_case__ )] if len(snake_case__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f""" {', '.join(snake_case__ )}.""" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(snake_case__ ): # config is in subfolder, the following should not work without specifying the subfolder snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = mock.Mock() snake_case : Optional[int] = 5_00 snake_case : Any = {} snake_case : str = HTTPError snake_case : Tuple = {} # Download this model to make sure it's in the cache. snake_case : List[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: snake_case : List[str] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE (self : Any ) -> List[Any]: '''simple docstring''' snake_case : Dict = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _SCREAMING_SNAKE_CASE (self : int ) -> str: '''simple docstring''' snake_case : Optional[Any] = AutoConfig.from_pretrained("bert-base-cased" ) snake_case : int = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case__ ) snake_case : str = 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 snake_case : str = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 snake_case : List[str] = ["config.42.0.0.json"] snake_case : Optional[int] = 7_68 configuration.save_pretrained(snake_case__ ) shutil.move(os.path.join(snake_case__ , "config.4.0.0.json" ) , os.path.join(snake_case__ , "config.42.0.0.json" ) ) snake_case : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers snake_case : Optional[int] = "v4.0.0" snake_case , snake_case : List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( snake_case__ , return_unused_kwargs=snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers snake_case : int = "v3.0.0" snake_case : int = old_transformers.models.auto.AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
10
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowerCAmelCase : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __lowerCAmelCase : Tuple = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __lowerCAmelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __magic_name__ ( A : str ): '''simple docstring''' with open(A, "rb" ) as f: a = Image.open(A ) return im.convert("RGB" ) @dataclass class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field(default=_UpperCamelCase , metadata={"""help""": """A folder containing the training data."""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field(default=_UpperCamelCase , metadata={"""help""": """A folder containing the validation data."""} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = field( default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) SCREAMING_SNAKE_CASE_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) SCREAMING_SNAKE_CASE_ : str = field(default=_UpperCamelCase , metadata={"""help""": """Name or path of preprocessor config."""} ) SCREAMING_SNAKE_CASE_ : bool = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) SCREAMING_SNAKE_CASE_ : bool = field( default=_UpperCamelCase , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def __magic_name__ ( A : Dict ): '''simple docstring''' a = torch.stack([example["pixel_values"] for example in examples] ) a = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __magic_name__ ( ): '''simple docstring''' a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a , a , a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a , a , a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification", A, A ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a = training_args.get_process_log_level() logger.setLevel(A ) transformers.utils.logging.set_verbosity(A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: a = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task="image-classification", use_auth_token=True if model_args.use_auth_token else None, ) else: a = {} if data_args.train_dir is not None: a = os.path.join(data_args.train_dir, "**" ) if data_args.validation_dir is not None: a = os.path.join(data_args.validation_dir, "**" ) a = load_dataset( "imagefolder", data_files=A, cache_dir=model_args.cache_dir, task="image-classification", ) # If we don't have a validation split, split off a percentage of train as validation. a = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, A ) and data_args.train_val_split > 0.0: a = dataset["train"].train_test_split(data_args.train_val_split ) a = split["train"] a = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. a = dataset["train"].features["labels"].names a , a = {}, {} for i, label in enumerate(A ): a = str(A ) a = label # Load the accuracy metric from the datasets package a = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(A : int ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) a = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(A ), labelaid=A, idalabel=A, finetuning_task="image-classification", cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) a = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=A, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) a = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: a = image_processor.size["shortest_edge"] else: a = (image_processor.size["height"], image_processor.size["width"]) a = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) a = Compose( [ RandomResizedCrop(A ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) a = Compose( [ Resize(A ), CenterCrop(A ), ToTensor(), normalize, ] ) def train_transforms(A : Dict ): a = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(A : List[str] ): a = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: a = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(A ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: a = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(A ) # Initalize our trainer a = Trainer( model=A, args=A, train_dataset=dataset["train"] if training_args.do_train else None, eval_dataset=dataset["validation"] if training_args.do_eval else None, compute_metrics=A, tokenizer=A, data_collator=A, ) # Training if training_args.do_train: a = None if training_args.resume_from_checkpoint is not None: a = training_args.resume_from_checkpoint elif last_checkpoint is not None: a = last_checkpoint a = trainer.train(resume_from_checkpoint=A ) trainer.save_model() trainer.log_metrics("train", train_result.metrics ) trainer.save_metrics("train", train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: a = trainer.evaluate() trainer.log_metrics("eval", A ) trainer.save_metrics("eval", A ) # Write model card and (optionally) push to hub a = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**A ) else: trainer.create_model_card(**A ) if __name__ == "__main__": main()
107
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def _SCREAMING_SNAKE_CASE ( lowercase : str = "laptop" ): '''simple docstring''' lowerCamelCase_ = f"""https://www.amazon.in/laptop/s?k={product}""" lowerCamelCase_ = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } lowerCamelCase_ = BeautifulSoup(requests.get(lowercase , headers=lowercase ).text ) # Initialize a Pandas dataframe with the column titles lowerCamelCase_ = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: lowerCamelCase_ = item.ha.text lowerCamelCase_ = 'https://www.amazon.in/' + item.ha.a['href'] lowerCamelCase_ = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: lowerCamelCase_ = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: lowerCamelCase_ = 'Not available' try: lowerCamelCase_ = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: lowerCamelCase_ = '' try: lowerCamelCase_ = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 1_00 ) except ValueError: lowerCamelCase_ = float('nan' ) except AttributeError: pass lowerCamelCase_ = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] lowerCamelCase_ = ' ' lowerCamelCase_ = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": lowerCamelCase : Tuple = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
204
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Optional[Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
62
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]: """simple docstring""" return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any , __magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : Tuple="attention" ) -> Optional[int]: """simple docstring""" UpperCamelCase :Any = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) UpperCamelCase :Any = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) UpperCamelCase :Optional[Any] = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) UpperCamelCase :Tuple = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) UpperCamelCase :Any = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) UpperCamelCase :List[str] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) UpperCamelCase :int = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) UpperCamelCase :Optional[int] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=False ) -> Optional[int]: """simple docstring""" if split_mlp_wi: UpperCamelCase :Tuple = params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] UpperCamelCase :Optional[int] = params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] UpperCamelCase :Union[str, Any] = (wi_a, wi_a) else: UpperCamelCase :Union[str, Any] = params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] UpperCamelCase :List[str] = params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str ) -> List[Any]: """simple docstring""" return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : dict , *, __magic_name__ : int , __magic_name__ : bool , __magic_name__ : bool = False ) -> List[str]: """simple docstring""" UpperCamelCase :str = traverse_util.flatten_dict(variables["""target"""] ) UpperCamelCase :int = {"""/""".join(__magic_name__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCamelCase :Union[str, Any] = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , __magic_name__ ) UpperCamelCase :Tuple = collections.OrderedDict() # Shared embeddings. UpperCamelCase :Optional[int] = old["""token_embedder/embedding"""] # Encoder. for i in range(__magic_name__ ): # Block i, layer 0 (Self Attention). UpperCamelCase :List[Any] = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """encoder""" , """pre_attention_layer_norm""" ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Union[str, Any] = tax_attention_lookup(__magic_name__ , __magic_name__ , """encoder""" , """attention""" ) UpperCamelCase :Dict = layer_norm UpperCamelCase :str = k.T UpperCamelCase :int = o.T UpperCamelCase :Optional[int] = q.T UpperCamelCase :List[str] = v.T # Block i, layer 1 (MLP). UpperCamelCase :Union[str, Any] = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """encoder""" , """pre_mlp_layer_norm""" ) UpperCamelCase , UpperCamelCase :List[Any] = tax_mlp_lookup(__magic_name__ , __magic_name__ , """encoder""" , __magic_name__ ) UpperCamelCase :Dict = layer_norm if split_mlp_wi: UpperCamelCase :Union[str, Any] = wi[0].T UpperCamelCase :List[str] = wi[1].T else: UpperCamelCase :str = wi.T UpperCamelCase :Dict = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCamelCase :List[Any] = tax_relpos_bias_lookup( __magic_name__ , __magic_name__ , """encoder""" ).T UpperCamelCase :Dict = old["""encoder/encoder_norm/scale"""] if not scalable_attention: UpperCamelCase :Optional[Any] = tax_relpos_bias_lookup( __magic_name__ , 0 , """encoder""" ).T UpperCamelCase :str = tax_relpos_bias_lookup( __magic_name__ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(__magic_name__ ): # Block i, layer 0 (Self Attention). UpperCamelCase :Tuple = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """decoder""" , """pre_self_attention_layer_norm""" ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Any = tax_attention_lookup(__magic_name__ , __magic_name__ , """decoder""" , """self_attention""" ) UpperCamelCase :Any = layer_norm UpperCamelCase :Tuple = k.T UpperCamelCase :Optional[Any] = o.T UpperCamelCase :List[Any] = q.T UpperCamelCase :Optional[Any] = v.T # Block i, layer 1 (Cross Attention). UpperCamelCase :List[str] = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """decoder""" , """pre_cross_attention_layer_norm""" ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :int = tax_attention_lookup(__magic_name__ , __magic_name__ , """decoder""" , """encoder_decoder_attention""" ) UpperCamelCase :Union[str, Any] = layer_norm UpperCamelCase :int = k.T UpperCamelCase :Union[str, Any] = o.T UpperCamelCase :Optional[Any] = q.T UpperCamelCase :List[str] = v.T # Block i, layer 2 (MLP). UpperCamelCase :Tuple = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """decoder""" , """pre_mlp_layer_norm""" ) UpperCamelCase , UpperCamelCase :Optional[int] = tax_mlp_lookup(__magic_name__ , __magic_name__ , """decoder""" , __magic_name__ ) UpperCamelCase :Optional[int] = layer_norm if split_mlp_wi: UpperCamelCase :List[Any] = wi[0].T UpperCamelCase :Tuple = wi[1].T else: UpperCamelCase :Any = wi.T UpperCamelCase :List[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCamelCase :Optional[int] = tax_relpos_bias_lookup(__magic_name__ , __magic_name__ , """decoder""" ).T UpperCamelCase :int = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCamelCase :Dict = old["""decoder/logits_dense/kernel"""].T return new def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : bool ) -> Union[str, Any]: """simple docstring""" UpperCamelCase :Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCamelCase :str = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCamelCase :Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) UpperCamelCase :Dict = state_dict["""shared.weight"""] return state_dict def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int ) -> List[str]: """simple docstring""" UpperCamelCase :Union[str, Any] = checkpoints.load_tax_checkpoint(__magic_name__ ) UpperCamelCase :Optional[Any] = convert_tax_to_pytorch( __magic_name__ , num_layers=config.num_layers , is_encoder_only=__magic_name__ , scalable_attention=__magic_name__ ) UpperCamelCase :Optional[int] = make_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ , strict=__magic_name__ ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : bool = False , __magic_name__ : bool = False , ) -> List[str]: """simple docstring""" UpperCamelCase :Tuple = MTaConfig.from_json_file(__magic_name__ ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCamelCase :Optional[Any] = UMTaEncoderModel(__magic_name__ ) else: UpperCamelCase :Tuple = UMTaForConditionalGeneration(__magic_name__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__magic_name__ ) # Verify that we can load the checkpoint. model.from_pretrained(__magic_name__ ) print("""Done""" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) UpperCAmelCase_ : str = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
62
1