code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations def A_ ( snake_case : List[str] ) -> list[int]: # This function is recursive '''simple docstring''' __UpperCamelCase = len(__UpperCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __UpperCamelCase = array[0] __UpperCamelCase = False __UpperCamelCase = 1 __UpperCamelCase = [] while not is_found and i < array_length: if array[i] < pivot: __UpperCamelCase = True __UpperCamelCase = [element for element in array[i:] if element >= array[i]] __UpperCamelCase = longest_subsequence(__UpperCAmelCase ) if len(__UpperCAmelCase ) > len(__UpperCAmelCase ): __UpperCamelCase = temp_array else: i += 1 __UpperCamelCase = [element for element in array[1:] if element >= pivot] __UpperCamelCase = [pivot, *longest_subsequence(__UpperCAmelCase )] if len(__UpperCAmelCase ) > len(__UpperCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
328
'''simple docstring''' from __future__ import annotations import math def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> int: '''simple docstring''' if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(__UpperCAmelCase ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ), minimax(depth + 1, node_index * 2 + 1, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ), ) return min( minimax(depth + 1, node_index * 2, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ), minimax(depth + 1, node_index * 2 + 1, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ), ) def __magic_name__ ( ) -> None: '''simple docstring''' snake_case_ = [90, 23, 6, 33, 21, 65, 123, 3_4423] snake_case_ = math.log(len(__UpperCAmelCase ), 2 ) print('''Optimal value : ''', end='''''' ) print(minimax(0, 0, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
56
0
"""simple docstring""" from collections import defaultdict class A__ : '''simple docstring''' def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Tuple) -> Any: """simple docstring""" __lowerCAmelCase : Any = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 __lowerCAmelCase : Optional[Any] = [ [-1 for i in range(total + 1)] for j in range(2 ** len(_SCREAMING_SNAKE_CASE)) ] __lowerCAmelCase : List[str] = defaultdict(_SCREAMING_SNAKE_CASE) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 __lowerCAmelCase : Tuple = (1 << len(_SCREAMING_SNAKE_CASE)) - 1 def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Tuple) -> Any: """simple docstring""" if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement __lowerCAmelCase : Dict = self.count_ways_until(_SCREAMING_SNAKE_CASE , task_no + 1) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1) # save the value. __lowerCAmelCase : Optional[Any] = total_ways_util return self.dp[mask][task_no] def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Tuple) -> List[str]: """simple docstring""" for i in range(len(_SCREAMING_SNAKE_CASE)): for j in task_performed[i]: self.task[j].append(_SCREAMING_SNAKE_CASE) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1) if __name__ == "__main__": __snake_case : Optional[int] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. __snake_case : List[str] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
58
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowercase ( __snake_case ) -> Optional[Any]: __lowerCAmelCase : str = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" ,__snake_case ).groups()[0] class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: Any=None) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : str = file_names __lowerCAmelCase : Optional[int] = image_transform __lowerCAmelCase : List[Any] = label_to_id def __len__( self: Union[str, Any]) -> int: """simple docstring""" return len(self.file_names) def __getitem__( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Any]) -> Optional[int]: """simple docstring""" __lowerCAmelCase : int = self.file_names[idx] __lowerCAmelCase : List[str] = PIL.Image.open(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = raw_image.convert("RGB") if self.image_transform is not None: __lowerCAmelCase : Union[str, Any] = self.image_transform(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = extract_label(_SCREAMING_SNAKE_CASE) if self.label_to_id is not None: __lowerCAmelCase : str = self.label_to_id[label] return {"image": image, "label": label} def _lowercase ( __snake_case ,__snake_case ) -> Optional[int]: # Initialize accelerator if args.with_tracking: __lowerCAmelCase : str = Accelerator( cpu=args.cpu ,mixed_precision=args.mixed_precision ,log_with="all" ,project_dir=args.project_dir ) else: __lowerCAmelCase : Any = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase : int = config["lr"] __lowerCAmelCase : Union[str, Any] = int(config["num_epochs"] ) __lowerCAmelCase : Tuple = int(config["seed"] ) __lowerCAmelCase : Tuple = int(config["batch_size"] ) __lowerCAmelCase : int = config["image_size"] if not isinstance(__snake_case ,(list, tuple) ): __lowerCAmelCase : Tuple = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps ,"isdigit" ): if args.checkpointing_steps == "epoch": __lowerCAmelCase : Optional[Any] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): __lowerCAmelCase : Dict = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: __lowerCAmelCase : int = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: __lowerCAmelCase : Dict = os.path.split(__snake_case )[-1].split("." )[0] accelerator.init_trackers(__snake_case ,__snake_case ) # Grab all the image filenames __lowerCAmelCase : Union[str, Any] = [os.path.join(args.data_dir ,__snake_case ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences __lowerCAmelCase : Union[str, Any] = [extract_label(__snake_case ) for fname in file_names] __lowerCAmelCase : Any = list(set(__snake_case ) ) id_to_label.sort() __lowerCAmelCase : Optional[Any] = {lbl: i for i, lbl in enumerate(__snake_case )} # Set the seed before splitting the data. np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # Split our filenames between train and validation __lowerCAmelCase : List[str] = np.random.permutation(len(__snake_case ) ) __lowerCAmelCase : Dict = int(0.8 * len(__snake_case ) ) __lowerCAmelCase : str = random_perm[:cut] __lowerCAmelCase : Optional[int] = random_perm[cut:] # For training we use a simple RandomResizedCrop __lowerCAmelCase : str = Compose([RandomResizedCrop(__snake_case ,scale=(0.5, 1.0) ), ToTensor()] ) __lowerCAmelCase : List[str] = PetsDataset( [file_names[i] for i in train_split] ,image_transform=__snake_case ,label_to_id=__snake_case ) # For evaluation, we use a deterministic Resize __lowerCAmelCase : Union[str, Any] = Compose([Resize(__snake_case ), ToTensor()] ) __lowerCAmelCase : List[str] = PetsDataset([file_names[i] for i in eval_split] ,image_transform=__snake_case ,label_to_id=__snake_case ) # Instantiate dataloaders. __lowerCAmelCase : Union[str, Any] = DataLoader(__snake_case ,shuffle=__snake_case ,batch_size=__snake_case ,num_workers=4 ) __lowerCAmelCase : Any = DataLoader(__snake_case ,shuffle=__snake_case ,batch_size=__snake_case ,num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase : int = create_model("resnet50d" ,pretrained=__snake_case ,num_classes=len(__snake_case ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase : List[str] = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): __lowerCAmelCase : Any = False for param in model.get_classifier().parameters(): __lowerCAmelCase : List[Any] = True # We normalize the batches of images to be a bit faster. __lowerCAmelCase : Optional[Any] = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) __lowerCAmelCase : int = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase : int = torch.optim.Adam(params=model.parameters() ,lr=lr / 25 ) # Instantiate learning rate scheduler __lowerCAmelCase : List[Any] = OneCycleLR(optimizer=__snake_case ,max_lr=__snake_case ,epochs=__snake_case ,steps_per_epoch=len(__snake_case ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Tuple = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) # We need to keep track of how many total steps we have iterated over __lowerCAmelCase : Dict = 0 # We also need to keep track of the starting epoch so files are named properly __lowerCAmelCase : List[str] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) __lowerCAmelCase : Optional[Any] = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint __lowerCAmelCase : Optional[int] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) __lowerCAmelCase : Optional[Any] = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` __lowerCAmelCase : str = os.path.splitext(__snake_case )[0] if "epoch" in training_difference: __lowerCAmelCase : Dict = int(training_difference.replace("epoch_" ,"" ) ) + 1 __lowerCAmelCase : Optional[Any] = None else: __lowerCAmelCase : Any = int(training_difference.replace("step_" ,"" ) ) __lowerCAmelCase : Optional[int] = resume_step // len(__snake_case ) resume_step -= starting_epoch * len(__snake_case ) # Now we train the model for epoch in range(__snake_case ,__snake_case ): model.train() if args.with_tracking: __lowerCAmelCase : Any = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step __lowerCAmelCase : Optional[int] = accelerator.skip_first_batches(__snake_case ,__snake_case ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader __lowerCAmelCase : Optional[int] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. __lowerCAmelCase : List[Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} __lowerCAmelCase : Union[str, Any] = (batch["image"] - mean) / std __lowerCAmelCase : Optional[int] = model(__snake_case ) __lowerCAmelCase : List[str] = torch.nn.functional.cross_entropy(__snake_case ,batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__snake_case ,__snake_case ): __lowerCAmelCase : List[Any] = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: __lowerCAmelCase : Tuple = os.path.join(args.output_dir ,__snake_case ) accelerator.save_state(__snake_case ) model.eval() __lowerCAmelCase : int = 0 __lowerCAmelCase : Optional[int] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. __lowerCAmelCase : Tuple = {k: v.to(accelerator.device ) for k, v in batch.items()} __lowerCAmelCase : Optional[Any] = (batch["image"] - mean) / std with torch.no_grad(): __lowerCAmelCase : Optional[Any] = model(__snake_case ) __lowerCAmelCase : List[str] = outputs.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase : Optional[int] = accelerator.gather_for_metrics((predictions, batch["label"]) ) __lowerCAmelCase : str = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() __lowerCAmelCase : Optional[Any] = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(__snake_case ), "epoch": epoch, } ,step=__snake_case ,) if checkpointing_steps == "epoch": __lowerCAmelCase : Tuple = F"""epoch_{epoch}""" if args.output_dir is not None: __lowerCAmelCase : Optional[Any] = os.path.join(args.output_dir ,__snake_case ) accelerator.save_state(__snake_case ) if args.with_tracking: accelerator.end_training() def _lowercase ( ) -> Tuple: __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" ,required=__snake_case ,help="The data folder on disk." ) parser.add_argument("--fp16" ,action="store_true" ,help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" ,type=__snake_case ,default=__snake_case ,choices=["no", "fp16", "bf16", "fp8"] ,help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ,) parser.add_argument("--cpu" ,action="store_true" ,help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" ,type=__snake_case ,default=__snake_case ,help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." ,) parser.add_argument( "--output_dir" ,type=__snake_case ,default="." ,help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." ,) parser.add_argument( "--resume_from_checkpoint" ,type=__snake_case ,default=__snake_case ,help="If the training should continue from a checkpoint folder." ,) parser.add_argument( "--with_tracking" ,action="store_true" ,help="Whether to load in all available experiment trackers from the environment and use them for logging." ,) parser.add_argument( "--project_dir" ,type=__snake_case ,default="logs" ,help="Location on where to store experiment tracking logs` and relevent project information" ,) __lowerCAmelCase : List[Any] = parser.parse_args() __lowerCAmelCase : List[Any] = {"lr": 3e-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(__snake_case ,__snake_case ) if __name__ == "__main__": main()
58
1
_A = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} _A = ['a', 'b', 'c', 'd', 'e'] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =start # add current to visited visited.append(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __UpperCamelCase =topological_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE__ ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): for vertice in vertices: if vertice not in visited: __UpperCamelCase =topological_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # return sort return sort if __name__ == "__main__": _A = topological_sort('a', [], []) print(sort)
62
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
1
from argparse import ArgumentParser from .env import EnvironmentCommand def __UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" A : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) A : int = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(__lowerCAmelCase ) # Let's go A : Dict = parser.parse_args() if not hasattr(__lowerCAmelCase , """func""" ): parser.print_help() exit(1 ) # Run A : Union[str, Any] = args.func(__lowerCAmelCase ) service.run() if __name__ == "__main__": main()
350
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() A : Union[str, Any] = nn.Linear(3, 4 ) A : Union[str, Any] = nn.BatchNormad(4 ) A : Optional[Any] = nn.Linear(4, 5 ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.lineara(self.batchnorm(self.lineara(lowerCamelCase__ ) ) ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def _lowerCAmelCase ( self, lowerCamelCase__, *lowerCamelCase__, **lowerCamelCase__ ): return (args[0] + 1,) + args[1:], kwargs class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): return output + 1 class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): A : Tuple = ModelForTest() A : Any = ModelHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) self.assertEqual(test_model._hf_hook, lowerCamelCase__ ) self.assertTrue(hasattr(lowerCamelCase__, """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__, """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ), ["""x"""] ) remove_hook_from_module(lowerCamelCase__ ) self.assertFalse(hasattr(lowerCamelCase__, """_hf_hook""" ) ) self.assertFalse(hasattr(lowerCamelCase__, """_old_forward""" ) ) def _lowerCAmelCase ( self ): A : Tuple = ModelForTest() A : Optional[int] = ModelHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) add_hook_to_module(lowerCamelCase__, lowerCamelCase__, append=lowerCamelCase__ ) self.assertEqual(isinstance(test_model._hf_hook, lowerCamelCase__ ), lowerCamelCase__ ) self.assertEqual(len(test_model._hf_hook.hooks ), 2 ) self.assertTrue(hasattr(lowerCamelCase__, """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__, """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ), ["""x"""] ) remove_hook_from_module(lowerCamelCase__ ) self.assertFalse(hasattr(lowerCamelCase__, """_hf_hook""" ) ) self.assertFalse(hasattr(lowerCamelCase__, """_old_forward""" ) ) def _lowerCAmelCase ( self ): A : Any = ModelForTest() A : Tuple = torch.randn(2, 3 ) A : Optional[int] = test_model(x + 1 ) A : List[str] = test_model(x + 2 ) A : List[str] = PreForwardHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : List[str] = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__, lowerCamelCase__, atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A : Optional[Any] = PreForwardHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : Tuple = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__, lowerCamelCase__, atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A : Any = SequentialHook(PreForwardHook(), PreForwardHook() ) add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : Optional[Any] = test_model(lowerCamelCase__ ) assert torch.allclose(lowerCamelCase__, lowerCamelCase__, atol=1e-5 ) def _lowerCAmelCase ( self ): A : Tuple = ModelForTest() A : Any = torch.randn(2, 3 ) A : Any = test_model(lowerCamelCase__ ) A : List[Any] = PostForwardHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : str = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__, output + 1, atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A : Tuple = PostForwardHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : Optional[int] = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__, output + 1, atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A : Dict = SequentialHook(PostForwardHook(), PostForwardHook() ) add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : List[str] = test_model(lowerCamelCase__ ) assert torch.allclose(lowerCamelCase__, output + 2, atol=1e-5 ) def _lowerCAmelCase ( self ): A : List[Any] = ModelForTest() A : Tuple = torch.randn(2, 3 ) A : Union[str, Any] = test_model(lowerCamelCase__ ) A : List[Any] = PostForwardHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : List[Any] = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__, output + 1 ) ) self.assertTrue(outputa.requires_grad ) A : int = True A : Tuple = test_model(lowerCamelCase__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def _lowerCAmelCase ( self ): A : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara, AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm, AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara, AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device, torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device, torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device, torch.device(0 ) ) self.assertEqual(model.lineara.weight.device, torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device A : str = torch.randn(2, 3 ) A : int = model(lowerCamelCase__ ) self.assertEqual(output.device, torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(lowerCamelCase__, AlignDevicesHook(io_same_device=lowerCamelCase__ ) ) A : int = torch.randn(2, 3 ).to(0 ) A : str = model(lowerCamelCase__ ) self.assertEqual(output.device, torch.device(0 ) ) def _lowerCAmelCase ( self ): A : List[str] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # This will move each submodule on different devices A : int = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara, AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.batchnorm, AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.lineara, AlignDevicesHook(**lowerCamelCase__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A : Dict = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device, lowerCamelCase__ ) A : int = torch.randn(2, 3 ) A : List[Any] = model(lowerCamelCase__ ) self.assertEqual(output.device, lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # Now test with buffers included in the offload A : int = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara, AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.batchnorm, AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.lineara, AlignDevicesHook(**lowerCamelCase__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device, torch.device("""meta""" ) ) A : int = torch.randn(2, 3 ) A : str = model(lowerCamelCase__ ) self.assertEqual(output.device, lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) def _lowerCAmelCase ( self ): A : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # This will move each submodule on different devices A : Tuple = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(lowerCamelCase__, execution_device=lowerCamelCase__, offload=lowerCamelCase__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A : Optional[int] = torch.device(lowerCamelCase__ ) self.assertEqual(model.batchnorm.running_mean.device, lowerCamelCase__ ) A : List[str] = torch.randn(2, 3 ) A : Optional[int] = model(lowerCamelCase__ ) self.assertEqual(output.device, lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(lowerCamelCase__, execution_device=lowerCamelCase__, offload=lowerCamelCase__, offload_buffers=lowerCamelCase__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device, torch.device("""meta""" ) ) A : List[str] = torch.randn(2, 3 ) A : List[str] = model(lowerCamelCase__ ) self.assertEqual(output.device, lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) def _lowerCAmelCase ( self ): A : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # This will move each submodule on different devices A : List[str] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( lowerCamelCase__, execution_device=lowerCamelCase__, offload=lowerCamelCase__, weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A : Any = torch.device(lowerCamelCase__ ) self.assertEqual(model.batchnorm.running_mean.device, lowerCamelCase__ ) A : Optional[Any] = torch.randn(2, 3 ) A : Tuple = model(lowerCamelCase__ ) self.assertEqual(output.device, lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( lowerCamelCase__, execution_device=lowerCamelCase__, offload=lowerCamelCase__, weights_map=model.state_dict(), offload_buffers=lowerCamelCase__, ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device, torch.device("""meta""" ) ) A : List[Any] = torch.randn(2, 3 ) A : Dict = model(lowerCamelCase__ ) self.assertEqual(output.device, lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) )
115
0
def lowerCAmelCase_ ( __a , __a ) -> Dict: """simple docstring""" lowerCamelCase__: Any =[0 for i in range(r + 1 )] # nc0 = 1 lowerCamelCase__: List[str] =1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowerCamelCase__: List[str] =min(__a , __a ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
10
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any: """simple docstring""" if attention_mask is None: lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Optional[int] =seq_length lowerCamelCase__: Optional[Any] =is_training lowerCamelCase__: str =use_labels lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: int =hidden_size lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: str =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: Tuple =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: int =eos_token_id lowerCamelCase__: Union[str, Any] =pad_token_id lowerCamelCase__: List[str] =bos_token_id lowerCamelCase__: int =initializer_range def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: Dict =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =20 lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_) lowerCamelCase__: str =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: List[Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: Union[str, Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: Dict =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =20 lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_) lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Optional[int] =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: List[Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: str =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_) lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__: Optional[Any] =input_ids.shape[0] lowerCamelCase__: List[str] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data() lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_) lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_) lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(UpperCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) @jax.jit def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) with self.subTest("JIT Enabled"): lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) lowerCamelCase__: int ={ "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest("JIT Enabled"): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id lowerCamelCase__: str =model(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.") @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_) lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") lowerCamelCase__: Any =["Sam"] lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax") lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic." lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_) assert generated_txt[0].strip() == tgt_text
10
1
"""simple docstring""" def a__ ( __lowercase ) -> int: _A = [[0 for _ in range(__lowercase )] for _ in range(m + 1 )] for i in range(m + 1 ): _A = 1 for n in range(m + 1 ): for k in range(1 , __lowercase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: a_ = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: a_ = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
163
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
163
1
import random def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =num - 1 __UpperCamelCase =0 while s % 2 == 0: __UpperCamelCase =s // 2 t += 1 for _ in range(5 ): __UpperCamelCase =random.randrange(2 , num - 1 ) __UpperCamelCase =pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: __UpperCamelCase =0 while v != (num - 1): if i == t - 1: return False else: __UpperCamelCase =i + 1 __UpperCamelCase =(v**2) % num return True def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): if num < 2: return False __UpperCamelCase =[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int = 10_24 ): while True: __UpperCamelCase =random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": _A = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
62
from numpy import exp, pi, sqrt def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : float = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
62
1
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = 0 __magic_name__ = False __magic_name__ = 3.0 class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _lowerCAmelCase : Dict = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _lowerCAmelCase : str = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , snake_case__ ) @require_multi_gpu def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : int = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase : Tuple = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase : Optional[Any] = torch.nn.Linear(1_00, 2_00) lowerCAmelCase : List[str] = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase : List[Any] = """""" lowerCAmelCase : Tuple = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
25
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = { """7B""": 1_10_08, """13B""": 1_38_24, """30B""": 1_79_20, """65B""": 2_20_16, """70B""": 2_86_72, } lowerCAmelCase : Optional[int] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def lowercase (_A , _A=1 , _A=2_5_6 ): """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowercase (_A ): """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def lowercase (_A , _A ): """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def lowercase (_A , _A , _A , _A=True ): """simple docstring""" os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Optional[Any] = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Any = read_json(os.path.join(_A , 'params.json' ) ) _lowerCAmelCase : List[str] = NUM_SHARDS[model_size] _lowerCAmelCase : str = params['n_layers'] _lowerCAmelCase : Optional[int] = params['n_heads'] _lowerCAmelCase : int = n_heads // num_shards _lowerCAmelCase : Optional[int] = params['dim'] _lowerCAmelCase : Union[str, Any] = dim // n_heads _lowerCAmelCase : Union[str, Any] = 10_000.0 _lowerCAmelCase : str = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA _lowerCAmelCase : str = n_heads_per_shard // num_key_value_heads _lowerCAmelCase : Optional[int] = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase : Union[str, Any] = n_heads _lowerCAmelCase : Any = n_heads_per_shard _lowerCAmelCase : Optional[Any] = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase : List[Any] = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded _lowerCAmelCase : List[Any] = [ torch.load(os.path.join(_A , f'consolidated.{i:02d}.pth' ) , map_location='cpu' ) for i in range(_A ) ] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Union[str, Any] = {'weight_map': {}} for layer_i in range(_A ): _lowerCAmelCase : List[str] = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : str = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase : str = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase : List[str] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) _lowerCAmelCase : Optional[int] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) _lowerCAmelCase : Dict = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) _lowerCAmelCase : Dict = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : Tuple = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : int = inv_freq for k, v in state_dict.items(): _lowerCAmelCase : Optional[Any] = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) _lowerCAmelCase : Dict = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : List[str] = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: _lowerCAmelCase : List[str] = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase : int = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs _lowerCAmelCase : Tuple = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) _lowerCAmelCase : Optional[int] = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 _lowerCAmelCase : int = params['multiple_of'] if 'multiple_of' in params else 2_5_6 _lowerCAmelCase : List[Any] = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) _lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Tuple = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase : List[Any] = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def lowercase (): """simple docstring""" _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) _lowerCAmelCase : Any = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase : Dict = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
25
1
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowercase_ = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowercase_ = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowercase_ = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowercase_ = { """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } lowercase_ = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } lowercase_ = { """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def lowerCamelCase ( __lowerCamelCase : Dict ) ->Optional[int]: if isinstance(__lowerCamelCase , __lowerCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int]=False ) ->List[Any]: _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.0.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.0.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.2.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.2.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.emb_layers.1.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.emb_layers.1.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.0.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.0.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.3.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.3.bias'] if has_skip: _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.skip_connection.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.skip_connection.bias'] return new_checkpoint def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any]=None ) ->int: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 , dim=0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 , dim=0 ) _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.norm.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.norm.bias'] _SCREAMING_SNAKE_CASE = weight_q.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = bias_q.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = weight_k.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = bias_k.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = weight_v.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = bias_v.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = ( checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Tuple ) ->List[str]: _SCREAMING_SNAKE_CASE = torch.load(__lowerCamelCase , map_location="""cpu""" ) _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.0.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.0.bias"""] _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.2.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: _SCREAMING_SNAKE_CASE = checkpoint["""label_emb.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""input_blocks.0.0.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""input_blocks.0.0.bias"""] _SCREAMING_SNAKE_CASE = unet_config["""down_block_types"""] _SCREAMING_SNAKE_CASE = unet_config["""layers_per_block"""] _SCREAMING_SNAKE_CASE = unet_config["""attention_head_dim"""] _SCREAMING_SNAKE_CASE = unet_config["""block_out_channels"""] _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = channels_list[0] for i, layer_type in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = channels_list[i] _SCREAMING_SNAKE_CASE = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = True if j == 0 and downsample_block_has_skip else False _SCREAMING_SNAKE_CASE = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_skip=__lowerCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = True if j == 0 and downsample_block_has_skip else False _SCREAMING_SNAKE_CASE = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_skip=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.attentions.{j}' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.1' _SCREAMING_SNAKE_CASE = convert_attention( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) current_layer += 1 if i != len(__lowerCamelCase ) - 1: _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.downsamplers.0' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) current_layer += 1 _SCREAMING_SNAKE_CASE = current_channels # hardcoded the mid-block for now _SCREAMING_SNAKE_CASE = """mid_block.resnets.0""" _SCREAMING_SNAKE_CASE = """middle_block.0""" _SCREAMING_SNAKE_CASE = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = """mid_block.attentions.0""" _SCREAMING_SNAKE_CASE = """middle_block.1""" _SCREAMING_SNAKE_CASE = convert_attention(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = """mid_block.resnets.1""" _SCREAMING_SNAKE_CASE = """middle_block.2""" _SCREAMING_SNAKE_CASE = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = unet_config["""up_block_types"""] for i, layer_type in enumerate(__lowerCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_skip=__lowerCamelCase ) current_layer += 1 if i != len(__lowerCamelCase ) - 1: _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.upsamplers.0' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer-1}.1' _SCREAMING_SNAKE_CASE = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_skip=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.attentions.{j}' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer}.1' _SCREAMING_SNAKE_CASE = convert_attention( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) current_layer += 1 if i != len(__lowerCamelCase ) - 1: _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.upsamplers.0' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer-1}.2' _SCREAMING_SNAKE_CASE = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = checkpoint["""out.0.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""out.0.bias"""] _SCREAMING_SNAKE_CASE = checkpoint["""out.2.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowercase_ = parser.parse_args() lowercase_ = strabool(args.class_cond) lowercase_ = os.path.basename(args.unet_path) print(f"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: lowercase_ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowercase_ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowercase_ = TEST_UNET_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: lowercase_ = None lowercase_ = con_pt_to_diffuser(args.unet_path, unet_config) lowercase_ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowercase_ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowercase_ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowercase_ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") lowercase_ = CMStochasticIterativeScheduler(**scheduler_config) lowercase_ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
58
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowercase_ = logging.getLogger(__name__) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=30_522, type=int) lowercase_ = parser.parse_args() logger.info(f"""Loading data from {args.data_file}""") with open(args.data_file, """rb""") as fp: lowercase_ = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") lowercase_ = Counter() for tk_ids in data: counter.update(tk_ids) lowercase_ = [0] * args.vocab_size for k, v in counter.items(): lowercase_ = v logger.info(f"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
58
1
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def lowerCamelCase_ ( _a : List[Any] , _a : List[Any] , _a : Optional[Any] , _a : Dict=None , _a : List[Any]=None , _a : Dict=None , _a : Optional[Any]=None , _a : Dict=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase_ : int = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCAmelCase_ : Any = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCAmelCase_ : Optional[int] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_a ) if decoder_head_mask is None: UpperCAmelCase_ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_a ) if cross_attn_head_mask is None: UpperCAmelCase_ : Any = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class _snake_case : '''simple docstring''' def __init__( self: Union[str, Any] ,lowerCamelCase_: int ,lowerCamelCase_: Dict=13 ,lowerCamelCase_: Optional[int]=7 ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: Tuple=False ,lowerCamelCase_: Union[str, Any]=99 ,lowerCamelCase_: Any=16 ,lowerCamelCase_: Any=2 ,lowerCamelCase_: List[Any]=4 ,lowerCamelCase_: Optional[Any]=4 ,lowerCamelCase_: str="relu" ,lowerCamelCase_: Any=0.1 ,lowerCamelCase_: Dict=0.1 ,lowerCamelCase_: int=0.0 ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: Optional[int]=20 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: List[Any]=1 ,lowerCamelCase_: str=0 ,) -> int: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Optional[Any] = seq_length UpperCAmelCase_ : Union[str, Any] = is_training UpperCAmelCase_ : Any = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : int = encoder_layerdrop UpperCAmelCase_ : str = decoder_layerdrop UpperCAmelCase_ : Dict = max_position_embeddings UpperCAmelCase_ : Any = eos_token_id UpperCAmelCase_ : Any = pad_token_id UpperCAmelCase_ : Optional[Any] = bos_token_id def A__ ( self: Optional[Any] ) -> Dict: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : Any = self.eos_token_id # Eos Token UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCAmelCase_ : Optional[int] = input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase_ : List[str] = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase_ : List[str] = self.get_config() UpperCAmelCase_ : int = prepare_mam_aaa_inputs_dict(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) return config, inputs_dict def A__ ( self: Optional[Any] ) -> Tuple: return MaMaaaConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,encoder_layerdrop=self.encoder_layerdrop ,decoder_layerdrop=self.decoder_layerdrop ,max_position_embeddings=self.max_position_embeddings ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,) def A__ ( self: Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ : str = self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ : int = MaMaaaModel(config=lowerCamelCase_ ).get_decoder().to(lowerCamelCase_ ).eval() UpperCAmelCase_ : str = inputs_dict["""input_ids"""] UpperCAmelCase_ : List[Any] = inputs_dict["""attention_mask"""] UpperCAmelCase_ : str = inputs_dict["""head_mask"""] # first forward pass UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,head_mask=lowerCamelCase_ ,use_cache=lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : str = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 3) ,config.vocab_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor((self.batch_size, 3) ,2 ) # append to next input_ids and UpperCAmelCase_ : Optional[int] = torch.cat([input_ids, next_tokens] ,dim=-1 ) UpperCAmelCase_ : str = torch.cat([attention_mask, next_attn_mask] ,dim=-1 ) UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ )["""last_hidden_state"""] UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,past_key_values=lowerCamelCase_ )[ """last_hidden_state""" ] # select random slice UpperCAmelCase_ : str = ids_tensor((1,) ,output_from_past.shape[-1] ).item() UpperCAmelCase_ : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) ) def A__ ( self: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = MaMaaaModel(config=lowerCamelCase_ ).to(lowerCamelCase_ ).eval() UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ) UpperCAmelCase_ : Dict = outputs.encoder_last_hidden_state UpperCAmelCase_ : Dict = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Union[str, Any] = model.get_encoder() encoder.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : int = MaMaaaEncoder.from_pretrained(lowerCamelCase_ ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = encoder(inputs_dict["""input_ids"""] ,attention_mask=inputs_dict["""attention_mask"""] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Optional[int] = model.get_decoder() decoder.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = MaMaaaDecoder.from_pretrained(lowerCamelCase_ ).to(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = decoder( input_ids=inputs_dict["""decoder_input_ids"""] ,attention_mask=inputs_dict["""decoder_attention_mask"""] ,encoder_hidden_states=lowerCamelCase_ ,encoder_attention_mask=inputs_dict["""attention_mask"""] ,)[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class _snake_case ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : str = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) A__ : List[Any] = (MaMaaaForConditionalGeneration,) if is_torch_available() else () A__ : List[Any] = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) A__ : Dict = True A__ : Union[str, Any] = True A__ : Union[str, Any] = False A__ : Any = False def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Any ) -> List[str]: if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def A__ ( self: Tuple ) -> Optional[int]: UpperCAmelCase_ : str = MaMaaaModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self ,config_class=lowerCamelCase_ ) def A__ ( self: Tuple ) -> Any: self.config_tester.run_common_tests() def A__ ( self: Union[str, Any] ) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = model_class(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Any = model_class.from_pretrained(lowerCamelCase_ ,output_loading_info=lowerCamelCase_ ) self.assertEqual(info["""missing_keys"""] ,[] ) def A__ ( self: Dict ) -> List[Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCamelCase_ ) def A__ ( self: str ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowerCamelCase_ ) def A__ ( self: int ) -> Any: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): UpperCAmelCase_ : Dict = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) if not self.is_encoder_decoder: UpperCAmelCase_ : str = inputs["""input_ids"""] del inputs["input_ids"] else: UpperCAmelCase_ : Any = inputs["""input_ids"""] UpperCAmelCase_ : Tuple = inputs.get("""decoder_input_ids""" ,lowerCamelCase_ ) del inputs["input_ids"] inputs.pop("""decoder_input_ids""" ,lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = model.get_input_embeddings() if not self.is_encoder_decoder: UpperCAmelCase_ : Optional[Any] = wte(lowerCamelCase_ ) else: UpperCAmelCase_ : str = wte(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = wte(lowerCamelCase_ ) with torch.no_grad(): model(**lowerCamelCase_ )[0] def A__ ( self: Dict ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_ : int = input_dict["""input_ids"""] UpperCAmelCase_ : Tuple = input_ids.ne(1 ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = MaMaaaForConditionalGeneration(lowerCamelCase_ ).eval().to(lowerCamelCase_ ) if torch_device == "cuda": model.half() model.generate(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ) model.generate(num_beams=4 ,do_sample=lowerCamelCase_ ,early_stopping=lowerCamelCase_ ,num_return_sequences=3 ) def lowerCamelCase_ ( _a : List[Any] ): '''simple docstring''' return torch.tensor(_a , dtype=torch.long , device=_a ) UpperCamelCase_ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: List[str] ) -> List[str]: return MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" ) def A__ ( self: Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = MaMaaaModel.from_pretrained("""facebook/m2m100_418M""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) UpperCAmelCase_ : int = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) UpperCAmelCase_ : Dict = prepare_mam_aaa_inputs_dict(model.config ,lowerCamelCase_ ,lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**lowerCamelCase_ )[0] UpperCAmelCase_ : str = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape ,lowerCamelCase_ ) # change to expected output here UpperCAmelCase_ : Union[str, Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] ,device=lowerCamelCase_ ) self.assertTrue(torch.allclose(output[:, :3, :3] ,lowerCamelCase_ ,atol=lowerCamelCase_ ) ) def A__ ( self: Union[str, Any] ) -> Any: UpperCAmelCase_ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(lowerCamelCase_ ) # change to intended input UpperCAmelCase_ : Any = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) UpperCAmelCase_ : Any = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) UpperCAmelCase_ : int = prepare_mam_aaa_inputs_dict(model.config ,lowerCamelCase_ ,lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ )[0] UpperCAmelCase_ : List[str] = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape ,lowerCamelCase_ ) # change to expected output here UpperCAmelCase_ : int = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] ,device=lowerCamelCase_ ) self.assertTrue(torch.allclose(output[:, :3, :3] ,lowerCamelCase_ ,atol=lowerCamelCase_ ) ) def A__ ( self: Tuple ) -> Dict: UpperCAmelCase_ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" ,src_lang="""fr""" ,tgt_lang="""en""" ) UpperCAmelCase_ : List[Any] = [ """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent""" """ Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de""" """ l'ampleur de la surveillance américaine sur l'ensemble des communications en France.""", ] # The below article tests that we don't add any hypotheses outside of the top n_beams UpperCAmelCase_ : Any = tokenizer(lowerCamelCase_ ,padding=lowerCamelCase_ ,return_tensors="""pt""" ) UpperCAmelCase_ : Dict = model.generate( input_ids=dct["""input_ids"""].to(lowerCamelCase_ ) ,attention_mask=dct["""attention_mask"""].to(lowerCamelCase_ ) ,num_beams=5 ,forced_bos_token_id=tokenizer.get_lang_id("""en""" ) ,) UpperCAmelCase_ : str = [ """The NSA case highlights the total absence of intelligence debate""", """I think there are two levels of response from the French government.""", """When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.""" """ Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all""" """ communications in France.""", ] UpperCAmelCase_ : Union[str, Any] = tokenizer.batch_decode( hypotheses_batch.tolist() ,clean_up_tokenization_spaces=lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ) assert generated == expected_en
59
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger() @dataclass class _snake_case : '''simple docstring''' A__ : nn.Module A__ : List[nn.Module] = field(default_factory=__snake_case ) A__ : list = field(default_factory=__snake_case ) def A__ ( self: str ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tensor ,lowerCamelCase_: Tensor ) -> Optional[int]: UpperCAmelCase_ : Dict = len(list(m.modules() ) ) == 1 or isinstance(lowerCamelCase_ ,nn.Convad ) or isinstance(lowerCamelCase_ ,nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCamelCase_ ) def __call__( self: Tuple ,lowerCamelCase_: Tensor ) -> Dict: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCamelCase_ ) [x.remove() for x in self.handles] return self @property def A__ ( self: List[str] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda lowerCamelCase_ : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class _snake_case : '''simple docstring''' A__ : nn.Module A__ : nn.Module A__ : int = 1 A__ : List = field(default_factory=__snake_case ) A__ : List = field(default_factory=__snake_case ) A__ : bool = True def __call__( self: Tuple ,lowerCamelCase_: Tensor ) -> Optional[Any]: UpperCAmelCase_ : List[str] = Tracker(self.dest )(lowerCamelCase_ ).parametrized UpperCAmelCase_ : Any = Tracker(self.src )(lowerCamelCase_ ).parametrized UpperCAmelCase_ : int = list(filter(lambda lowerCamelCase_ : type(lowerCamelCase_ ) not in self.src_skip ,lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[int] = list(filter(lambda lowerCamelCase_ : type(lowerCamelCase_ ) not in self.dest_skip ,lowerCamelCase_ ) ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ) and self.raise_if_mismatch: raise Exception( F'''Numbers of operations are different. Source module has {len(lowerCamelCase_ )} operations while''' F''' destination module has {len(lowerCamelCase_ )}.''' ) for dest_m, src_m in zip(lowerCamelCase_ ,lowerCamelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) class _snake_case ( nn.Module ): '''simple docstring''' def __init__( self: List[str] ,lowerCamelCase_: nn.Module ) -> List[str]: super().__init__() UpperCAmelCase_ : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), F'''Unexpected layer name {k}''' UpperCAmelCase_ : Tuple = len(lowerCamelCase_ ) + 1 feature_blocks.append((F'''res{block_index}''', v) ) UpperCAmelCase_ : Optional[int] = nn.ModuleDict(lowerCamelCase_ ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tensor ) -> List[str]: return get_trunk_forward_outputs( lowerCamelCase_ ,out_feat_keys=lowerCamelCase_ ,feature_blocks=self._feature_blocks ,) class _snake_case ( __snake_case ): '''simple docstring''' def A__ ( self: Dict ,lowerCamelCase_: str ) -> str: UpperCAmelCase_ : str = x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self: Union[str, Any] ,lowerCamelCase_: str ) -> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: UpperCAmelCase_ : str = self.convert_name_to_timm(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = partial(lambda: (timm.create_model(lowerCamelCase_ ,pretrained=lowerCamelCase_ ).eval(), None) ) else: UpperCAmelCase_ : Optional[int] = super().__getitem__(lowerCamelCase_ ) return val class _snake_case ( __snake_case ): '''simple docstring''' def __getitem__( self: Union[str, Any] ,lowerCamelCase_: str ) -> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: UpperCAmelCase_ : Tuple = RegNetModel else: UpperCAmelCase_ : Union[str, Any] = RegNetForImageClassification return val def lowerCamelCase_ ( _a : str , _a : int , _a : List[Tuple[str, str]] ): '''simple docstring''' for from_key, to_key in keys: UpperCAmelCase_ : int = from_state_dict[from_key].clone() print(F'''Copied key={from_key} to={to_key}''' ) return to_state_dict def lowerCamelCase_ ( _a : str , _a : Callable[[], nn.Module] , _a : Callable[[], nn.Module] , _a : RegNetConfig , _a : Path , _a : bool = True , ): '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): UpperCAmelCase_ , UpperCAmelCase_ : Any = from_model_func() UpperCAmelCase_ : str = our_model_func(_a ).eval() UpperCAmelCase_ : List[Any] = ModuleTransfer(src=_a , dest=_a , raise_if_mismatch=_a ) UpperCAmelCase_ : List[str] = torch.randn((1, 3, 224, 224) ) module_transfer(_a ) if from_state_dict is not None: UpperCAmelCase_ : List[str] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: UpperCAmelCase_ : List[Any] = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] UpperCAmelCase_ : str = manually_copy_vissl_head(_a , our_model.state_dict() , _a ) our_model.load_state_dict(_a ) UpperCAmelCase_ : Union[str, Any] = our_model(_a , output_hidden_states=_a ) UpperCAmelCase_ : int = ( our_outputs.logits if isinstance(_a , _a ) else our_outputs.last_hidden_state ) UpperCAmelCase_ : Optional[int] = from_model(_a ) UpperCAmelCase_ : List[Any] = from_output[-1] if type(_a ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: UpperCAmelCase_ : Union[str, Any] = our_outputs.hidden_states[-1] assert torch.allclose(_a , _a ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=_a , ) UpperCAmelCase_ : Union[str, Any] = 224 if """seer""" not in name else 384 # we can use the convnext one UpperCAmelCase_ : Optional[int] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=_a ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=_a , ) print(F'''Pushed {name}''' ) def lowerCamelCase_ ( _a : Path , _a : str = None , _a : bool = True ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" UpperCAmelCase_ : List[Any] = 1000 UpperCAmelCase_ : Any = (1, num_labels) UpperCAmelCase_ : Tuple = """huggingface/label-files""" UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : List[str] = json.load(open(cached_download(hf_hub_url(_a , _a , repo_type="""dataset""" ) ) , """r""" ) ) UpperCAmelCase_ : Union[str, Any] = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase_ : Tuple = idalabel UpperCAmelCase_ : Any = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Union[str, Any] = partial(_a , num_labels=_a , idalabel=_a , labelaid=_a ) UpperCAmelCase_ : List[Any] = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } UpperCAmelCase_ : List[Any] = NameToOurModelFuncMap() UpperCAmelCase_ : Union[str, Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_a : str , _a : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: UpperCAmelCase_ : Optional[Any] = torch.hub.load_state_dict_from_url(_a , model_dir=str(_a ) , map_location="""cpu""" ) UpperCAmelCase_ : Union[str, Any] = model_func() # check if we have a head, if yes add it UpperCAmelCase_ : Optional[Any] = files["""classy_state_dict"""]["""base_model"""]["""model"""] UpperCAmelCase_ : Optional[Any] = model_state_dict["""trunk"""] model.load_state_dict(_a ) return model.eval(), model_state_dict["heads"] # pretrained UpperCAmelCase_ : List[Any] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : str = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Tuple = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : Optional[int] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned UpperCAmelCase_ : Dict = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Dict = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Any = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : List[Any] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _a , _a , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _a , _a , _a , ) return config, expected_shape if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
59
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class _lowercase ( unittest.TestCase ): def __init__( self: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any=7 , UpperCamelCase__: Optional[int]=3 , UpperCamelCase__: List[str]=18 , UpperCamelCase__: Union[str, Any]=30 , UpperCamelCase__: List[str]=400 , UpperCamelCase__: Any=True , UpperCamelCase__: Union[str, Any]=None , UpperCamelCase__: List[Any]=True , UpperCamelCase__: List[Any]=False , UpperCamelCase__: Tuple=True , UpperCamelCase__: Tuple=True , UpperCamelCase__: Any=[0.5, 0.5, 0.5] , UpperCamelCase__: Optional[Any]=[0.5, 0.5, 0.5] , ): lowerCamelCase__ : int = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : Optional[int] = num_channels lowerCamelCase__ : Union[str, Any] = image_size lowerCamelCase__ : Optional[int] = min_resolution lowerCamelCase__ : Optional[Any] = max_resolution lowerCamelCase__ : Union[str, Any] = do_resize lowerCamelCase__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 20} lowerCamelCase__ : Dict = do_thumbnail lowerCamelCase__ : Optional[int] = do_align_axis lowerCamelCase__ : Any = do_pad lowerCamelCase__ : Optional[Any] = do_normalize lowerCamelCase__ : Union[str, Any] = image_mean lowerCamelCase__ : Union[str, Any] = image_std def lowerCamelCase_ ( self: str ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _lowercase ( _lowercase , unittest.TestCase ): a = DonutImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Any = DonutImageProcessingTester(self ) @property def lowerCamelCase_ ( self: Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """size""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_thumbnail""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_align_long_axis""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_pad""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """image_std""" ) ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) lowerCamelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order lowerCamelCase__ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def lowerCamelCase_ ( self: List[str] ): pass @is_flaky() def lowerCamelCase_ ( self: Union[str, Any] ): # Initialize image_processing lowerCamelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input lowerCamelCase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCamelCase__ : List[str] = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def lowerCamelCase_ ( self: Optional[int] ): # Initialize image_processing lowerCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input lowerCamelCase__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCamelCase__ : Optional[Any] = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def lowerCamelCase_ ( self: Dict ): # Initialize image_processing lowerCamelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input lowerCamelCase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCamelCase__ : Tuple = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
41
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = None __a = BloomTokenizerFast __a = BloomTokenizerFast __a = True __a = False __a = """tokenizer_file""" __a = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def lowerCamelCase__ ( self : int ): '''simple docstring''' super().setUp() __UpperCAmelCase : Any = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : Any , **UpperCamelCase : Optional[int] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Any = self.get_rust_tokenizer() __UpperCAmelCase : Optional[Any] = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] __UpperCAmelCase : int = [[2_175, 23_714, 73_173, 144_252, 2], [77, 132_619, 3_478, 368, 109_586, 35_433, 2]] __UpperCAmelCase : Dict = tokenizer.batch_encode_plus(UpperCamelCase )["""input_ids"""] self.assertListEqual(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : int = tokenizer.batch_decode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : Any=6 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __UpperCAmelCase : Dict = """This is a simple input""" __UpperCAmelCase : str = ["""This is a simple input 1""", """This is a simple input 2"""] __UpperCAmelCase : List[str] = ("""This is a simple input""", """This is a pair""") __UpperCAmelCase : Dict = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(UpperCamelCase , max_length=UpperCamelCase ) tokenizer_r.encode_plus(UpperCamelCase , max_length=UpperCamelCase ) tokenizer_r.batch_encode_plus(UpperCamelCase , max_length=UpperCamelCase ) tokenizer_r.encode(UpperCamelCase , max_length=UpperCamelCase ) tokenizer_r.batch_encode_plus(UpperCamelCase , max_length=UpperCamelCase ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) __UpperCAmelCase : Union[str, Any] = None # Hotfixing padding = None self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding="""max_length""" ) # Simple input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="""max_length""" ) # Simple input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="""max_length""" , ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding="""max_length""" ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="""max_length""" ) # Pair input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="""max_length""" , ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.get_rust_tokenizer() __UpperCAmelCase : Optional[Any] = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = next(iter(UpperCamelCase ) )["""premise"""] # pick up one data __UpperCAmelCase : Any = list(sample_data.values() ) __UpperCAmelCase : Optional[Any] = list(map(tokenizer.encode , UpperCamelCase ) ) __UpperCAmelCase : List[Any] = [tokenizer.decode(UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase ) for x in output_tokens] self.assertListEqual(UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
115
0
"""simple docstring""" class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[Any]: _a = data _a = previous _a = next_node def __str__( self ) -> str: return F'{self.data}' def _UpperCAmelCase ( self ) -> int: return self.data def _UpperCAmelCase ( self ) -> str: return self.next def _UpperCAmelCase ( self ) -> Dict: return self.previous class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase ) -> int: _a = head def __iter__( self ) -> Tuple: return self def _UpperCAmelCase ( self ) -> Dict: if not self.current: raise StopIteration else: _a = self.current.get_data() _a = self.current.get_next() return value class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Any: _a = None # First node in list _a = None # Last node in list def __str__( self ) -> Optional[Any]: _a = self.head _a = [] while current is not None: nodes.append(current.get_data() ) _a = current.get_next() return " ".join(str(__UpperCAmelCase ) for node in nodes ) def __contains__( self , __UpperCAmelCase ) -> Dict: _a = self.head while current: if current.get_data() == value: return True _a = current.get_next() return False def __iter__( self ) -> int: return LinkedListIterator(self.head ) def _UpperCAmelCase ( self ) -> List[Any]: if self.head: return self.head.get_data() return None def _UpperCAmelCase ( self ) -> Dict: if self.tail: return self.tail.get_data() return None def _UpperCAmelCase ( self , __UpperCAmelCase ) -> None: if self.head is None: _a = node _a = node else: self.insert_before_node(self.head , __UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> None: if self.head is None: self.set_head(__UpperCAmelCase ) else: self.insert_after_node(self.tail , __UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> None: _a = Node(__UpperCAmelCase ) if self.head is None: self.set_head(__UpperCAmelCase ) else: self.set_tail(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: _a = node _a = node.previous if node.get_previous() is None: _a = node_to_insert else: _a = node_to_insert _a = node_to_insert def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: _a = node _a = node.next if node.get_next() is None: _a = node_to_insert else: _a = node_to_insert _a = node_to_insert def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: _a = 1 _a = Node(__UpperCAmelCase ) _a = self.head while node: if current_position == position: self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase ) return current_position += 1 _a = node.next self.insert_after_node(self.tail , __UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Node: _a = self.head while node: if node.get_data() == item: return node _a = node.get_next() raise Exception('''Node not found''' ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> int: if (node := self.get_node(__UpperCAmelCase )) is not None: if node == self.head: _a = self.head.get_next() if node == self.tail: _a = self.tail.get_previous() self.remove_node_pointers(__UpperCAmelCase ) @staticmethod def _UpperCAmelCase ( __UpperCAmelCase ) -> None: if node.get_next(): _a = node.previous if node.get_previous(): _a = node.next _a = None _a = None def _UpperCAmelCase ( self ) -> Union[str, Any]: return self.head is None def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> str: _a = '''ylacombe/bark-small''' _a = tempfile.mkdtemp() _a = '''en_speaker_1''' _a = '''This is a test string''' _a = '''speaker_embeddings_path.json''' _a = '''speaker_embeddings''' def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> Tuple: return AutoTokenizer.from_pretrained(self.checkpoint , **__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> str: _a = self.get_tokenizer() _a = BarkProcessor(tokenizer=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _a = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: _a = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def _UpperCAmelCase ( self ) -> str: _a = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _a = 35 _a = 2 _a = 8 _a = { '''semantic_prompt''': np.ones(__UpperCAmelCase ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _a = processor(text=self.input_string , voice_preset=__UpperCAmelCase ) _a = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _a = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(__UpperCAmelCase , **__UpperCAmelCase ) _a = processor(text=self.input_string , voice_preset=__UpperCAmelCase ) _a = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _a = processor(text=self.input_string , voice_preset=self.voice_preset ) def _UpperCAmelCase ( self ) -> Tuple: _a = self.get_tokenizer() _a = BarkProcessor(tokenizer=__UpperCAmelCase ) _a = processor(text=self.input_string ) _a = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
153
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=True , _lowerCamelCase=1 / 255 , _lowerCamelCase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCAmelCase__ : List[str] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Optional[int] = num_channels UpperCAmelCase__ : List[Any] = min_resolution UpperCAmelCase__ : Tuple = max_resolution UpperCAmelCase__ : Dict = do_resize UpperCAmelCase__ : Union[str, Any] = size UpperCAmelCase__ : str = do_normalize UpperCAmelCase__ : List[str] = image_mean UpperCAmelCase__ : Any = image_std UpperCAmelCase__ : str = do_rescale UpperCAmelCase__ : Dict = rescale_factor UpperCAmelCase__ : Optional[Any] = do_pad def snake_case__ ( self): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=False): if not batched: UpperCAmelCase__ : Any = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : str = int(self.size["""shortest_edge"""] * h / w) UpperCAmelCase__ : Any = self.size["""shortest_edge"""] elif w > h: UpperCAmelCase__ : Union[str, Any] = self.size["""shortest_edge"""] UpperCAmelCase__ : List[str] = int(self.size["""shortest_edge"""] * w / h) else: UpperCAmelCase__ : Dict = self.size["""shortest_edge"""] UpperCAmelCase__ : Any = self.size["""shortest_edge"""] else: UpperCAmelCase__ : Union[str, Any] = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase__ : List[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase: item[0])[0] UpperCAmelCase__ : int = max(_lowerCamelCase , key=lambda _lowerCamelCase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class _snake_case ( a__ , unittest.TestCase ): lowerCAmelCase :Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None def snake_case__ ( self): UpperCAmelCase__ : List[str] = DeformableDetrImageProcessingTester(self) @property def snake_case__ ( self): return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self): UpperCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""")) self.assertTrue(hasattr(_lowerCamelCase , """image_std""")) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""")) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""")) self.assertTrue(hasattr(_lowerCamelCase , """do_rescale""")) self.assertTrue(hasattr(_lowerCamelCase , """do_pad""")) self.assertTrue(hasattr(_lowerCamelCase , """size""")) def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333}) self.assertEqual(image_processor.do_pad , _lowerCamelCase) UpperCAmelCase__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowerCamelCase) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84}) self.assertEqual(image_processor.do_pad , _lowerCamelCase) def snake_case__ ( self): pass def snake_case__ ( self): # Initialize image_processing UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image) # Test not batched input UpperCAmelCase__ : Any = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(_lowerCamelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase) UpperCAmelCase__ : Tuple = image_processing(_lowerCamelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self): # Initialize image_processing UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray) # Test not batched input UpperCAmelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self): # Initialize image_processing UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor) # Test not batched input UpperCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case__ ( self): # prepare image and target UpperCAmelCase__ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""") as f: UpperCAmelCase__ : int = json.loads(f.read()) UpperCAmelCase__ : int = {"""image_id""": 3_9769, """annotations""": target} # encode them UpperCAmelCase__ : int = DeformableDetrImageProcessor() UpperCAmelCase__ : List[Any] = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , return_tensors="""pt""") # verify pixel values UpperCAmelCase__ : Tuple = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["""pixel_values"""].shape , _lowerCamelCase) UpperCAmelCase__ : Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4)) # verify area UpperCAmelCase__ : Tuple = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCamelCase)) # verify boxes UpperCAmelCase__ : Optional[Any] = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCamelCase) UpperCAmelCase__ : str = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCamelCase , atol=1e-3)) # verify image_id UpperCAmelCase__ : str = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCamelCase)) # verify is_crowd UpperCAmelCase__ : str = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCamelCase)) # verify class_labels UpperCAmelCase__ : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCamelCase)) # verify orig_size UpperCAmelCase__ : int = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCamelCase)) # verify size UpperCAmelCase__ : str = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCamelCase)) @slow def snake_case__ ( self): # prepare image, target and masks_path UpperCAmelCase__ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""") as f: UpperCAmelCase__ : List[str] = json.loads(f.read()) UpperCAmelCase__ : List[str] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} UpperCAmelCase__ : str = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""") # encode them UpperCAmelCase__ : int = DeformableDetrImageProcessor(format="""coco_panoptic""") UpperCAmelCase__ : Any = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , masks_path=_lowerCamelCase , return_tensors="""pt""") # verify pixel values UpperCAmelCase__ : int = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["""pixel_values"""].shape , _lowerCamelCase) UpperCAmelCase__ : List[str] = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4)) # verify area UpperCAmelCase__ : Tuple = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCamelCase)) # verify boxes UpperCAmelCase__ : Union[str, Any] = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCamelCase) UpperCAmelCase__ : Tuple = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCamelCase , atol=1e-3)) # verify image_id UpperCAmelCase__ : Optional[int] = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCamelCase)) # verify is_crowd UpperCAmelCase__ : int = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCamelCase)) # verify class_labels UpperCAmelCase__ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCamelCase)) # verify masks UpperCAmelCase__ : List[Any] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , _lowerCamelCase) # verify orig_size UpperCAmelCase__ : Dict = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCamelCase)) # verify size UpperCAmelCase__ : Tuple = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCamelCase))
163
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __A =namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : List[Any] = _TestCommandArgs(dataset=UpperCamelCase__ , all_configs=UpperCamelCase__ , save_infos=UpperCamelCase__ ) UpperCAmelCase__ : Any = TestCommand(*UpperCamelCase__ ) test_command.run() UpperCAmelCase__ : List[str] = os.path.join(UpperCamelCase__ , """README.md""" ) assert os.path.exists(UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) UpperCAmelCase__ : Any = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2_3_5_1_5_6_3, """num_examples""": 1_0_0_0_0, }, { """name""": """validation""", """num_bytes""": 2_3_8_4_1_8, """num_examples""": 1_0_0_0, }, ] , download_size=3_9_4_0_6_8_0 , dataset_size=2_5_8_9_9_8_1 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = getattr(dataset_infos["""default"""] , UpperCamelCase__ ), getattr(expected_dataset_infos["""default"""] , UpperCamelCase__ ) if key == "num_bytes": assert is_apercent_close(UpperCamelCase__ , UpperCamelCase__ ) elif key == "splits": assert list(UpperCamelCase__ ) == list(UpperCamelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
163
1
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : list[list[int]], _UpperCamelCase : int, _UpperCamelCase : int, _UpperCamelCase : set ) -> Any: A_ ,A_ = len(SCREAMING_SNAKE_CASE_ ), len(grid[0] ) if ( min(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) A_ = 0 count += depth_first_search(SCREAMING_SNAKE_CASE_, row + 1, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) count += depth_first_search(SCREAMING_SNAKE_CASE_, row - 1, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) count += depth_first_search(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, col + 1, SCREAMING_SNAKE_CASE_ ) count += depth_first_search(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, col - 1, SCREAMING_SNAKE_CASE_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
363
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Tuple, _UpperCamelCase : List[str] ) -> int: A_ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] A_ = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } A_ = F'''{src_lang}-{tgt_lang}''' A_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(_UpperCamelCase, exist_ok=_UpperCamelCase ) A_ = os.path.join(_UpperCamelCase, '''README.md''' ) print(F'''Generating {path}''' ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project __snake_case : Any = Path(__file__).resolve().parent.parent.parent __snake_case : Tuple = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __snake_case , __snake_case , __snake_case : Any = model_name.split('-') __snake_case : int = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
18
0
"""simple docstring""" UpperCAmelCase__ : Any = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCAmelCase__ : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCAmelCase__ : Optional[int] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
25
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCAmelCase__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a__ ) class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) requires_backends(self , """vision""" ) self.check_model_type(SCREAMING_SNAKE_CASE__ ) def __call__(self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" return super().__call__(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" return {}, {}, {} def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = load_image(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = image.size SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework ) return model_inputs def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model(**SCREAMING_SNAKE_CASE__ ) return model_outputs def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = model_outputs.predicted_depth SCREAMING_SNAKE_CASE__ : Optional[int] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = prediction.squeeze().cpu().numpy() SCREAMING_SNAKE_CASE__ : Any = (output * 2_55 / np.max(SCREAMING_SNAKE_CASE__ )).astype("""uint8""" ) SCREAMING_SNAKE_CASE__ : List[str] = Image.fromarray(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = {} SCREAMING_SNAKE_CASE__ : Any = predicted_depth SCREAMING_SNAKE_CASE__ : Dict = depth return output_dict
25
1
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LEDTokenizer _UpperCAmelCase : str = LEDTokenizerFast _UpperCAmelCase : Tuple = True def A ( self : Optional[Any] ): '''simple docstring''' super().setUp() _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowercase , range(len(lowercase ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase ) ) def A ( self : List[str] , **lowercase : Any ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : List[Any] , **lowercase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[Any] , lowercase : Any ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def A ( self : Dict ): '''simple docstring''' return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def A ( self : Dict ): '''simple docstring''' return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowercase , max_length=len(lowercase ) , padding=lowercase , return_tensors='pt' ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _snake_case = batch.input_ids.tolist()[0] self.assertListEqual(lowercase , lowercase ) @require_torch def A ( self : int ): '''simple docstring''' _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors='pt' ) self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('labels' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) @require_torch def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(text_target=lowercase , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def A ( self : Any ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer( ['I am a small frog' * 1_024, 'I am a small frog'] , padding=lowercase , truncation=lowercase , return_tensors='pt' ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def A ( self : Any ): '''simple docstring''' _snake_case = ['A long paragraph for summarization.'] _snake_case = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowercase , return_tensors='pt' ) _snake_case = tokenizer(text_target=lowercase , return_tensors='pt' ) _snake_case = inputs['input_ids'] _snake_case = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def A ( self : Optional[int] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = ['Summary of the text.', 'Another summary.'] _snake_case = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _snake_case = tokenizer(lowercase , padding=lowercase ) _snake_case = [[0] * len(lowercase ) for x in encoded_output['input_ids']] _snake_case = tokenizer.pad(lowercase ) self.assertSequenceEqual(outputs['global_attention_mask'] , lowercase ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : Optional[Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) _snake_case = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) _snake_case = 'A, <mask> AllenNLP sentence.' _snake_case = tokenizer_r.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) _snake_case = tokenizer_p.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
130
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "canine" def __init__( self : int , lowercase : Optional[int]=768 , lowercase : Tuple=12 , lowercase : Union[str, Any]=12 , lowercase : Optional[int]=3_072 , lowercase : Tuple="gelu" , lowercase : Optional[Any]=0.1 , lowercase : Tuple=0.1 , lowercase : int=16_384 , lowercase : Optional[int]=16 , lowercase : Optional[int]=0.02 , lowercase : Optional[Any]=1E-12 , lowercase : Optional[Any]=0 , lowercase : Dict=0xE000 , lowercase : Optional[Any]=0xE001 , lowercase : Union[str, Any]=4 , lowercase : str=4 , lowercase : Optional[int]=8 , lowercase : List[str]=16_384 , lowercase : Union[str, Any]=128 , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = type_vocab_size _snake_case = layer_norm_eps # Character config: _snake_case = downsampling_rate _snake_case = upsampling_kernel_size _snake_case = num_hash_functions _snake_case = num_hash_buckets _snake_case = local_transformer_stride
130
1
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def UpperCamelCase ( __lowerCamelCase : List[Any] ): return 1.0 / (1.0 + np.exp(-_outputs )) def UpperCamelCase ( __lowerCamelCase : int ): snake_case : Tuple = np.max(_outputs , axis=-1 , keepdims=__lowerCamelCase ) snake_case : int = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=__lowerCamelCase ) class UpperCAmelCase ( A_ ): A__ : Any = "sigmoid" A__ : str = "softmax" A__ : int = "none" @add_end_docstrings( A_ ,r"\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n " ,) class UpperCAmelCase ( A_ ): A__ : int = False A__ : Union[str, Any] = ClassificationFunction.NONE def __init__(self : List[str] , **snake_case__ : int ) -> str: '''simple docstring''' super().__init__(**snake_case__ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=None , snake_case__ : Union[str, Any]="" , **snake_case__ : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = tokenizer_kwargs snake_case : List[Any] = {} if hasattr(self.model.config , "return_all_scores" ) and return_all_scores is None: snake_case : Optional[int] = self.model.config.return_all_scores if isinstance(snake_case__ , snake_case__ ) or top_k is None: snake_case : List[Any] = top_k snake_case : str = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." , snake_case__ , ) if return_all_scores: snake_case : List[str] = None else: snake_case : Optional[int] = 1 if isinstance(snake_case__ , snake_case__ ): snake_case : Dict = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: snake_case : Optional[int] = function_to_apply return preprocess_params, {}, postprocess_params def __call__(self : Dict , *snake_case__ : List[str] , **snake_case__ : int ) -> Optional[int]: '''simple docstring''' snake_case : Optional[int] = super().__call__(*snake_case__ , **snake_case__ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. snake_case : Tuple = "top_k" not in kwargs if isinstance(args[0] , snake_case__ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Tuple , **snake_case__ : Union[str, Any] ) -> Dict[str, GenericTensor]: '''simple docstring''' snake_case : int = self.framework if isinstance(snake_case__ , snake_case__ ): return self.tokenizer(**snake_case__ , return_tensors=snake_case__ , **snake_case__ ) elif isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) == 1 and isinstance(inputs[0] , snake_case__ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=snake_case__ , **snake_case__ ) elif isinstance(snake_case__ , snake_case__ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Union[str, Any] ) -> int: '''simple docstring''' return self.model(**snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : Optional[Any] , snake_case__ : List[str]=None , snake_case__ : Dict=1 , snake_case__ : Tuple=True ) -> str: '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: snake_case : Tuple = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: snake_case : Tuple = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , "function_to_apply" ) and function_to_apply is None: snake_case : Tuple = self.model.config.function_to_apply else: snake_case : int = ClassificationFunction.NONE snake_case : Any = model_outputs["logits"][0] snake_case : List[str] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: snake_case : Optional[Any] = sigmoid(snake_case__ ) elif function_to_apply == ClassificationFunction.SOFTMAX: snake_case : Union[str, Any] = softmax(snake_case__ ) elif function_to_apply == ClassificationFunction.NONE: snake_case : Optional[Any] = outputs else: raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} snake_case : Optional[int] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(snake_case__ ) ] if not _legacy: dict_scores.sort(key=lambda snake_case__ : x["score"] , reverse=snake_case__ ) if top_k is not None: snake_case : Optional[int] = dict_scores[:top_k] return dict_scores
59
__lowerCamelCase = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.35_5818, } def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: snake_case : List[Any] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
59
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase_ = logging.getLogger(__name__) def __lowerCAmelCase ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int ): '''simple docstring''' return (preds == labels).mean() @dataclass class SCREAMING_SNAKE_CASE__ : A : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) A : Optional[str] = field( default=__UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) A : Optional[str] = field( default=__UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) A : Optional[str] = field( default=__UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class SCREAMING_SNAKE_CASE__ : A : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) A : str = field(metadata={"help": "Should contain the data files for the task."} ) A : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A : bool = field( default=__UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __snake_case : int = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , __SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) try: __snake_case : int = processors[data_args.task_name]() __snake_case : Optional[Any] = processor.get_labels() __snake_case : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__SCREAMING_SNAKE_CASE , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __snake_case : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # Get datasets __snake_case : str = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __snake_case : str = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__UpperCAmelCase : EvalPrediction ) -> Dict: __snake_case : int = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__SCREAMING_SNAKE_CASE , p.label_ids )} # Data collator __snake_case : int = DataCollatorWithPadding(__SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __snake_case : List[str] = Trainer( model=__SCREAMING_SNAKE_CASE , args=__SCREAMING_SNAKE_CASE , train_dataset=__SCREAMING_SNAKE_CASE , eval_dataset=__SCREAMING_SNAKE_CASE , compute_metrics=__SCREAMING_SNAKE_CASE , data_collator=__SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __snake_case : List[str] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __snake_case : Dict = trainer.evaluate() __snake_case : int = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(__SCREAMING_SNAKE_CASE , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) writer.write("""%s = %s\n""" % (key, value) ) results.update(__SCREAMING_SNAKE_CASE ) return results def __lowerCAmelCase ( __UpperCAmelCase : Optional[int] ): '''simple docstring''' main() if __name__ == "__main__": main()
367
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[Any] = "encodec" def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase : Tuple=2_40_00 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : int=1_28 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Union[str, Any]=[8, 5, 4, 2] , _lowerCAmelCase : str="weight_norm" , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict="reflect" , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : Optional[int]=10_24 , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , **_lowerCAmelCase : List[Any] , ): __snake_case : Optional[int] = target_bandwidths __snake_case : int = sampling_rate __snake_case : List[Any] = audio_channels __snake_case : str = normalize __snake_case : Union[str, Any] = chunk_length_s __snake_case : Union[str, Any] = overlap __snake_case : Union[str, Any] = hidden_size __snake_case : Union[str, Any] = num_filters __snake_case : Optional[Any] = num_residual_layers __snake_case : List[Any] = upsampling_ratios __snake_case : List[str] = norm_type __snake_case : Union[str, Any] = kernel_size __snake_case : Optional[int] = last_kernel_size __snake_case : Optional[Any] = residual_kernel_size __snake_case : Dict = dilation_growth_rate __snake_case : int = use_causal_conv __snake_case : Tuple = pad_mode __snake_case : str = compress __snake_case : Optional[Any] = num_lstm_layers __snake_case : List[Any] = trim_right_ratio __snake_case : Any = codebook_size __snake_case : int = codebook_dim if codebook_dim is not None else hidden_size __snake_case : int = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**_lowerCAmelCase ) @property def snake_case__ ( self : int ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def snake_case__ ( self : int ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def snake_case__ ( self : Union[str, Any] ): __snake_case : List[str] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def snake_case__ ( self : Tuple ): return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
20
0
"""simple docstring""" class _SCREAMING_SNAKE_CASE : def __init__( self , __A ) -> None: lowerCAmelCase_ :str = len(__a ) lowerCAmelCase_ :Union[str, Any] = [0] * len_array if len_array > 0: lowerCAmelCase_ :List[Any] = array[0] for i in range(1 , __a ): lowerCAmelCase_ :Dict = self.prefix_sum[i - 1] + array[i] def __lowerCAmelCase ( self , __A , __A ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __lowerCAmelCase ( self , __A ) -> bool: lowerCAmelCase_ :int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__a ) return False if __name__ == "__main__": import doctest doctest.testmod()
84
"""simple docstring""" import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class _lowerCamelCase ( _lowercase ): def __init__(self , *__a , **__a ) -> None: warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
153
0
snake_case__ : Optional[int] = tuple[float, float, float] snake_case__ : int = tuple[float, float, float] def _a ( lowerCamelCase: Pointad , lowerCamelCase: Pointad ) -> Vectorad: '''simple docstring''' __A = end_pointa[0] - end_pointa[0] __A = end_pointa[1] - end_pointa[1] __A = end_pointa[2] - end_pointa[2] return (x, y, z) def _a ( lowerCamelCase: Vectorad , lowerCamelCase: Vectorad ) -> Vectorad: '''simple docstring''' __A = ab[1] * ac[2] - ab[2] * ac[1] # *i __A = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __A = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _a ( lowerCamelCase: Vectorad , lowerCamelCase: int ) -> bool: '''simple docstring''' return tuple(round(lowerCamelCase , lowerCamelCase ) for x in vector ) == (0, 0, 0) def _a ( lowerCamelCase: Pointad , lowerCamelCase: Pointad , lowerCamelCase: Pointad , lowerCamelCase: int = 10 ) -> bool: '''simple docstring''' __A = create_vector(lowerCamelCase , lowerCamelCase ) __A = create_vector(lowerCamelCase , lowerCamelCase ) return is_zero_vector(get_ad_vectors_cross(lowerCamelCase , lowerCamelCase ) , lowerCamelCase )
250
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification snake_case__ : Dict = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co snake_case__ : Any = 'main' # Default branch name snake_case__ : Union[str, Any] = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) snake_case__ : Optional[int] = 'aaaaaaa' # This commit does not exist, so we should 404. snake_case__ : int = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes snake_case__ : Any = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def _a ( ) -> Tuple: '''simple docstring''' print('''Welcome!''' ) yield print('''Bye!''' ) @contextlib.contextmanager def _a ( ) -> Optional[int]: '''simple docstring''' print('''Bonjour!''' ) yield print('''Au revoir!''' ) class A_ ( unittest.TestCase ): def _lowerCAmelCase (self :Any )-> Optional[Any]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class A_ ( unittest.TestCase ): @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def _lowerCAmelCase (self :str , _UpperCamelCase :str )-> Optional[int]: with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :List[Any] )-> Union[str, Any]: with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def _lowerCAmelCase (self :int , _UpperCamelCase :Union[str, Any] )-> int: with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def _lowerCAmelCase (self :int )-> str: self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''start_positions''', '''end_positions'''] ) class A_ ( _lowerCamelCase ): pass self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) @require_tf def _lowerCAmelCase (self :Any )-> str: self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''start_positions''', '''end_positions'''] ) class A_ ( _lowerCamelCase ): pass self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) @require_flax def _lowerCAmelCase (self :Optional[int] )-> Dict: # Flax models don't have labels self.assertEqual(find_labels(_UpperCamelCase ) , [] ) self.assertEqual(find_labels(_UpperCamelCase ) , [] ) self.assertEqual(find_labels(_UpperCamelCase ) , [] ) class A_ ( _lowerCamelCase ): pass self.assertEqual(find_labels(_UpperCamelCase ) , [] )
250
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : List[Any] =KandinskyVaaInpaintPipeline lowercase_ : Union[str, Any] =['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] lowercase_ : Optional[int] =[ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] lowercase_ : Union[str, Any] =[ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase_ : Tuple =False @property def A__ ( self): return 3_2 @property def A__ ( self): return 3_2 @property def A__ ( self): return self.time_input_dim @property def A__ ( self): return self.time_input_dim * 4 @property def A__ ( self): return 1_0_0 @property def A__ ( self): torch.manual_seed(0) lowercase = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase = UNetaDConditionModel(**A__) return model @property def A__ ( self): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self): torch.manual_seed(0) lowercase = VQModel(**self.dummy_movq_kwargs) return model def A__ ( self): lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1_0_0_0 ,beta_schedule='''linear''' ,beta_start=0.00085 ,beta_end=0.012 ,clip_sample=A__ ,set_alpha_to_one=A__ ,steps_offset=1 ,prediction_type='''epsilon''' ,thresholding=A__ ,) lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def A__ ( self ,A__ ,A__=0): lowercase = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(A__)).to(A__) lowercase = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1)).to( A__) # create init_image lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(A__)).to(A__) lowercase = image.cpu().permute(0 ,2 ,3 ,1)[0] lowercase = Image.fromarray(np.uinta(A__)).convert('''RGB''').resize((2_5_6, 2_5_6)) # create mask lowercase = np.ones((6_4, 6_4) ,dtype=np.floataa) lowercase = 0 if str(A__).startswith('''mps'''): lowercase = torch.manual_seed(A__) else: lowercase = torch.Generator(device=A__).manual_seed(A__) lowercase = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def A__ ( self): lowercase = '''cpu''' lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**A__) lowercase = pipe.to(A__) pipe.set_progress_bar_config(disable=A__) lowercase = pipe(**self.get_dummy_inputs(A__)) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(A__) ,return_dict=A__ ,)[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}') assert image.shape == (1, 6_4, 6_4, 3) lowercase = np.array( [0.50775903, 0.49527195, 0.48824543, 0.50192237, 0.48644906, 0.49373814, 0.4780598, 0.47234827, 0.48327848]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def A__ ( self): super().test_inference_batch_single_identical(expected_max_diff=3E-3) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def A__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self): lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''') lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''') lowercase = np.ones((7_6_8, 7_6_8) ,dtype=np.floataa) lowercase = 0 lowercase = '''a hat''' lowercase = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' ,torch_dtype=torch.floataa) pipe_prior.to(A__) lowercase = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' ,torch_dtype=torch.floataa) lowercase = pipeline.to(A__) pipeline.set_progress_bar_config(disable=A__) lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase , lowercase = pipe_prior( A__ ,generator=A__ ,num_inference_steps=5 ,negative_prompt='''''' ,).to_tuple() lowercase = pipeline( image=A__ ,mask_image=A__ ,image_embeds=A__ ,negative_image_embeds=A__ ,generator=A__ ,num_inference_steps=1_0_0 ,height=7_6_8 ,width=7_6_8 ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(A__ ,A__)
101
from __future__ import annotations from math import pi, sqrt def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
"""simple docstring""" from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True UpperCAmelCase: Any = [num for num in range(3, 100_001, 2) if not is_prime(num)] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) _lowercase : str = [] for num in range(len(__UpperCAmelCase ) ): _lowercase : int = 0 while 2 * i * i <= odd_composites[num]: _lowercase : int = odd_composites[num] - 2 * i * i if is_prime(__UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__UpperCAmelCase ) == n: return list_nums return [] def __SCREAMING_SNAKE_CASE ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
369
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
336
0
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" for char in word: lowercase__ : Optional[Any] = ord(lowerCamelCase__ ) if not _is_chinese_char(lowerCamelCase__ ): return 0 return 1 def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Tuple = set() for token in tokens: lowercase__ : List[str] = len(lowerCamelCase__ ) > 1 and is_chinese(lowerCamelCase__ ) if chinese_word: word_set.add(lowerCamelCase__ ) lowercase__ : int = list(lowerCamelCase__ ) return word_list def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if not chinese_word_set: return bert_tokens lowercase__ : Optional[int] = max([len(lowerCamelCase__ ) for w in chinese_word_set] ) lowercase__ : Optional[int] = bert_tokens lowercase__ , lowercase__ : str = 0, len(lowerCamelCase__ ) while start < end: lowercase__ : int = True if is_chinese(bert_word[start] ): lowercase__ : List[str] = min(end - start , lowerCamelCase__ ) for i in range(lowerCamelCase__ , 1 , -1 ): lowercase__ : Optional[Any] = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase__ : str = "##" + bert_word[j] lowercase__ : Optional[Any] = start + i lowercase__ : Optional[Any] = False break if single_word: start += 1 return bert_word def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = [] for i in range(0 , len(lowerCamelCase__ ) , 100 ): lowercase__ : List[str] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["cws"] ).cws lowercase__ : str = [get_chinese_word(lowerCamelCase__ ) for r in res] ltp_res.extend(lowerCamelCase__ ) assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) lowercase__ : Optional[int] = [] for i in range(0 , len(lowerCamelCase__ ) , 100 ): lowercase__ : List[str] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) lowercase__ : Dict = [] for input_ids, chinese_word in zip(lowerCamelCase__ , lowerCamelCase__ ): lowercase__ : Optional[int] = [] for id in input_ids: lowercase__ : int = bert_tokenizer._convert_id_to_token(lowerCamelCase__ ) input_tokens.append(lowerCamelCase__ ) lowercase__ : Optional[int] = add_sub_symbol(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Any = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCamelCase__ ): if token[:2] == "##": lowercase__ : Tuple = token[2:] # save chinese tokens' pos if len(lowerCamelCase__ ) == 1 and _is_chinese_char(ord(lowerCamelCase__ ) ): ref_id.append(lowerCamelCase__ ) ref_ids.append(lowerCamelCase__ ) assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) return ref_ids def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" with open(args.file_name , "r" , encoding="utf-8" ) as f: lowercase__ : Union[str, Any] = f.readlines() lowercase__ : Tuple = [line.strip() for line in data if len(lowerCamelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase__ : Union[str, Any] = LTP(args.ltp ) # faster in GPU device lowercase__ : int = BertTokenizer.from_pretrained(args.bert ) lowercase__ : int = prepare_ref(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) with open(args.save_path , "w" , encoding="utf-8" ) as f: lowercase__ : Optional[int] = [json.dumps(lowerCamelCase__ ) + "\n" for ref in ref_ids] f.writelines(lowerCamelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) lowerCAmelCase__ = parser.parse_args() main(args)
130
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class snake_case__(_UpperCamelCase ): """simple docstring""" def snake_case ( self : Optional[Any] ): lowercase__ : str = tempfile.mkdtemp() lowercase__ : Optional[Any] = 8 # DPR tok lowercase__ : Dict = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowercase__ : List[Any] = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) lowercase__ : str = os.path.join(SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok lowercase__ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ : List[str] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) lowercase__ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : List[Any] = {"unk_token": "<unk>"} lowercase__ : Any = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : str = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Any ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def snake_case ( self : Any ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def snake_case ( self : Any ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def snake_case ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def snake_case ( self : Optional[int] ): lowercase__ : int = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def snake_case ( self : List[str] ): lowercase__ : Union[str, Any] = self.get_dummy_dataset() lowercase__ : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: lowercase__ : Union[str, Any] = dataset lowercase__ : List[str] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : bool ): lowercase__ : Union[str, Any] = self.get_dummy_dataset() lowercase__ : Optional[int] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: lowercase__ : Any = os.path.join(self.tmpdirname , "dataset" ) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset lowercase__ : Tuple = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: lowercase__ : Dict = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , SCREAMING_SNAKE_CASE ) , ) return retriever def snake_case ( self : Tuple ): lowercase__ : Optional[int] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) lowercase__ : Optional[int] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) lowercase__ : List[str] = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(SCREAMING_SNAKE_CASE , open(SCREAMING_SNAKE_CASE , "wb" ) ) lowercase__ : int = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) lowercase__ : Any = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def snake_case ( self : int ): lowercase__ : Any = 1 lowercase__ : str = self.get_dummy_canonical_hf_index_retriever() lowercase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : str ): lowercase__ : Dict = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: lowercase__ : Tuple = self.get_dummy_dataset() retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self : str ): lowercase__ : Union[str, Any] = 1 lowercase__ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Optional[Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : Union[str, Any] ): lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self : Union[str, Any] ): lowercase__ : Optional[Any] = 1 lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Dict = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : List[str] ): lowercase__ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : int = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : Dict = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self : Union[str, Any] ): lowercase__ : List[Any] = 1 lowercase__ : List[str] = self.get_dummy_legacy_index_retriever() lowercase__ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : Dict ): lowercase__ : Optional[int] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def snake_case ( self : Any ): import torch lowercase__ : List[Any] = 1 lowercase__ : Union[str, Any] = self.get_dummy_canonical_hf_index_retriever() lowercase__ : Tuple = [[5, 7], [10, 11]] lowercase__ : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : int = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ , lowercase__ : List[str] = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) lowercase__ : List[str] = retriever( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE , return_tensors="pt" , ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def snake_case ( self : int ): lowercase__ : List[Any] = self.get_dpr_ctx_encoder_tokenizer() lowercase__ : Optional[int] = 1 lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = [[5, 7], [10, 11]] lowercase__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : List[Any] = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual( len(SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
130
1
import os def _A ( SCREAMING_SNAKE_CASE : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) as input_file: a__ : List[Any] =[ [int(SCREAMING_SNAKE_CASE ) for element in line.split("," )] for line in input_file.readlines() ] a__ : str =len(SCREAMING_SNAKE_CASE ) a__ : Dict =len(matrix[0] ) a__ : str =[[-1 for _ in range(SCREAMING_SNAKE_CASE )] for _ in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): a__ : List[Any] =matrix[i][0] for j in range(1 , SCREAMING_SNAKE_CASE ): for i in range(SCREAMING_SNAKE_CASE ): a__ : List[Any] =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , SCREAMING_SNAKE_CASE ): a__ : Dict =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): a__ : List[str] =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"""{solution() = }""")
148
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function UpperCAmelCase : Union[str, Any] = 1.054571817E-34 # unit of ℏ : J * s UpperCAmelCase : Union[str, Any] = 3E8 # unit of c : m * s^-1 def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: a__ : Tuple =(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: a__ : Any =(240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: a__ : List[str] =( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
148
1
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) lowerCAmelCase_ : int = str(bin(SCREAMING_SNAKE_CASE__ ) )[2:] # remove the leading "0b" lowerCAmelCase_ : Tuple = str(bin(SCREAMING_SNAKE_CASE__ ) )[2:] # remove the leading "0b" lowerCAmelCase_ : Optional[int] = max(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE__ ) , b_binary.zfill(SCREAMING_SNAKE_CASE__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
241
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Any = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= "visual_bert" def __init__( self ,snake_case=30522 ,snake_case=768 ,snake_case=512 ,snake_case=12 ,snake_case=12 ,snake_case=3072 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=2 ,snake_case=0.02 ,snake_case=1e-12 ,snake_case=False ,snake_case=True ,snake_case=1 ,snake_case=0 ,snake_case=2 ,**snake_case ,): '''simple docstring''' super().__init__(pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case ) lowercase : Tuple = vocab_size lowercase : int = max_position_embeddings lowercase : Optional[Any] = hidden_size lowercase : int = visual_embedding_dim lowercase : Tuple = num_hidden_layers lowercase : str = num_attention_heads lowercase : Optional[Any] = intermediate_size lowercase : str = hidden_act lowercase : Tuple = hidden_dropout_prob lowercase : List[Any] = attention_probs_dropout_prob lowercase : Union[str, Any] = initializer_range lowercase : int = type_vocab_size lowercase : Union[str, Any] = layer_norm_eps lowercase : Union[str, Any] = bypass_transformer lowercase : int = special_visual_initialize
20
0
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def UpperCamelCase_ ( A__ : List[Any] , A__ : Optional[int] ): '''simple docstring''' lowerCAmelCase_ : List[str] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg""" lowerCAmelCase_ : Dict = Image.open(requests.get(A__ , stream=A__ ).raw ).convert("""RGB""" ) lowerCAmelCase_ : List[str] = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073) , (0.26862954, 0.26130258, 0.27577711) ), ] ) lowerCAmelCase_ : List[Any] = transform(A__ ).unsqueeze(0 ).to(A__ ) return image def UpperCamelCase_ ( A__ : List[Any] ): '''simple docstring''' if "visual_encoder" in key: lowerCAmelCase_ : Dict = re.sub("""visual_encoder*""" , """vision_model.encoder""" , A__ ) if "blocks" in key: lowerCAmelCase_ : List[Any] = re.sub(R"""blocks""" , """layers""" , A__ ) if "attn" in key: lowerCAmelCase_ : Union[str, Any] = re.sub(R"""attn""" , """self_attn""" , A__ ) if "norm1" in key: lowerCAmelCase_ : Dict = re.sub(R"""norm1""" , """layer_norm1""" , A__ ) if "norm2" in key: lowerCAmelCase_ : str = re.sub(R"""norm2""" , """layer_norm2""" , A__ ) if "encoder.norm" in key: lowerCAmelCase_ : Optional[Any] = re.sub(R"""encoder.norm""" , """post_layernorm""" , A__ ) if "encoder.patch_embed.proj" in key: lowerCAmelCase_ : Optional[int] = re.sub(R"""encoder.patch_embed.proj""" , """embeddings.patch_embedding""" , A__ ) if "encoder.pos_embed" in key: lowerCAmelCase_ : Tuple = re.sub(R"""encoder.pos_embed""" , """embeddings.position_embedding""" , A__ ) if "encoder.cls_token" in key: lowerCAmelCase_ : List[str] = re.sub(R"""encoder.cls_token""" , """embeddings.class_embedding""" , A__ ) if "self_attn" in key: lowerCAmelCase_ : Optional[int] = re.sub(R"""self_attn.proj""" , """self_attn.projection""" , A__ ) return key @torch.no_grad() def UpperCamelCase_ ( A__ : int , A__ : Tuple=None ): '''simple docstring''' if config_path is not None: lowerCAmelCase_ : List[Any] = BlipConfig.from_pretrained(A__ ) else: lowerCAmelCase_ : Tuple = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) lowerCAmelCase_ : Optional[Any] = BlipForConditionalGeneration(A__ ).eval() lowerCAmelCase_ : Any = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth""" lowerCAmelCase_ : str = blip_decoder(pretrained=A__ , image_size=3_84 , vit="""base""" ) lowerCAmelCase_ : Optional[Any] = pt_model.eval() lowerCAmelCase_ : int = pt_model.state_dict() for key in modified_state_dict.copy(): lowerCAmelCase_ : Dict = modified_state_dict.pop(A__ ) lowerCAmelCase_ : Optional[Any] = rename_key(A__ ) lowerCAmelCase_ : Dict = value hf_model.load_state_dict(A__ ) lowerCAmelCase_ : List[Any] = 3_84 lowerCAmelCase_ : Optional[Any] = load_demo_image(image_size=A__ , device="""cpu""" ) lowerCAmelCase_ : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowerCAmelCase_ : Optional[int] = tokenizer(["""a picture of"""] ).input_ids lowerCAmelCase_ : Any = hf_model.generate(A__ , A__ ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] lowerCAmelCase_ : Tuple = hf_model.generate(A__ ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(A__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowerCAmelCase_ : List[str] = ( """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth""" ) lowerCAmelCase_ : str = blip_vqa(pretrained=A__ , image_size=A__ , vit="""base""" ) vqa_model.eval() lowerCAmelCase_ : Optional[Any] = vqa_model.state_dict() for key in modified_state_dict.copy(): lowerCAmelCase_ : Optional[int] = modified_state_dict.pop(A__ ) lowerCAmelCase_ : List[Any] = rename_key(A__ ) lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = BlipForQuestionAnswering(A__ ) hf_vqa_model.load_state_dict(A__ ) lowerCAmelCase_ : List[str] = ["""How many dogs are in this image?"""] lowerCAmelCase_ : int = tokenizer(A__ , return_tensors="""pt""" ).input_ids lowerCAmelCase_ : Optional[int] = hf_vqa_model.generate(A__ , A__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" ) lowerCAmelCase_ : List[str] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth""" lowerCAmelCase_ : Any = blip_itm(pretrained=A__ , image_size=A__ , vit="""base""" ) itm_model.eval() lowerCAmelCase_ : Tuple = itm_model.state_dict() for key in modified_state_dict.copy(): lowerCAmelCase_ : int = modified_state_dict.pop(A__ ) lowerCAmelCase_ : Optional[int] = rename_key(A__ ) lowerCAmelCase_ : Tuple = value lowerCAmelCase_ : Any = BlipForImageTextRetrieval(A__ ) lowerCAmelCase_ : Union[str, Any] = ["""A picture of a woman with a dog sitting in a beach"""] lowerCAmelCase_ : int = tokenizer( A__ , return_tensors="""pt""" , padding="""max_length""" , truncation=A__ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(A__ ) hf_itm_model.eval() lowerCAmelCase_ : Optional[int] = hf_itm_model(A__ , A__ , use_itm_head=A__ ) lowerCAmelCase_ : Optional[Any] = hf_itm_model(A__ , A__ , use_itm_head=A__ ) assert out[0].item() == 0.2110687494277954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45698845386505127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __A : Union[str, Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
358
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Optional[Any] = logging.get_logger(__name__) def UpperCamelCase_ ( A__ : List[Any] , A__ : str=False ): '''simple docstring''' lowerCAmelCase_ : List[str] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): lowerCAmelCase_ : str = """segformer.encoder.""" + key if key.startswith("""backbone""" ): lowerCAmelCase_ : str = key.replace("""backbone""" , """segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase_ : List[str] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] lowerCAmelCase_ : List[Any] = key.replace(f'patch_embed{idx}' , f'patch_embeddings.{int(A__ )-1}' ) if "norm" in key: lowerCAmelCase_ : Any = key.replace("""norm""" , """layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase_ : Tuple = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] lowerCAmelCase_ : int = key.replace(f'layer_norm{idx}' , f'layer_norm.{int(A__ )-1}' ) if "layer_norm1" in key: lowerCAmelCase_ : str = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: lowerCAmelCase_ : Union[str, Any] = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase_ : Any = key[key.find("""block""" ) + len("""block""" )] lowerCAmelCase_ : str = key.replace(f'block{idx}' , f'block.{int(A__ )-1}' ) if "attn.q" in key: lowerCAmelCase_ : List[Any] = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: lowerCAmelCase_ : Optional[int] = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: lowerCAmelCase_ : str = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: lowerCAmelCase_ : Optional[Any] = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: lowerCAmelCase_ : Optional[Any] = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: lowerCAmelCase_ : List[Any] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: lowerCAmelCase_ : Optional[Any] = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) lowerCAmelCase_ : Any = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase_ : str = key[key.find("""linear_c""" ) + len("""linear_c""" )] lowerCAmelCase_ : Dict = key.replace(f'linear_c{idx}' , f'linear_c.{int(A__ )-1}' ) if key.startswith("""head""" ): lowerCAmelCase_ : int = key.replace("""head""" , """classifier""" ) lowerCAmelCase_ : int = value return new_state_dict def UpperCamelCase_ ( A__ : int , A__ : Union[str, Any] ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase_ : int = state_dict.pop(f'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) lowerCAmelCase_ : Optional[int] = state_dict.pop(f'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase_ : List[str] = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase_ : Optional[Any] = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase_ : Union[str, Any] = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase_ : str = kv_bias[ config.hidden_sizes[i] : ] def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : Optional[Any] = Image.open(requests.get(A__ , stream=A__ ).raw ) return image @torch.no_grad() def UpperCamelCase_ ( A__ : Optional[Any] , A__ : List[Any] , A__ : Tuple ): '''simple docstring''' lowerCAmelCase_ : str = SegformerConfig() lowerCAmelCase_ : Optional[Any] = False # set attributes based on model_name lowerCAmelCase_ : int = """huggingface/label-files""" if "segformer" in model_name: lowerCAmelCase_ : Optional[int] = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: lowerCAmelCase_ : List[Any] = 1_50 lowerCAmelCase_ : int = """ade20k-id2label.json""" lowerCAmelCase_ : Tuple = (1, 1_50, 1_28, 1_28) elif "city" in model_name: lowerCAmelCase_ : List[str] = 19 lowerCAmelCase_ : Dict = """cityscapes-id2label.json""" lowerCAmelCase_ : List[str] = (1, 19, 1_28, 1_28) else: raise ValueError(f'Model {model_name} not supported' ) elif "mit" in model_name: lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Optional[int] = model_name[4:6] lowerCAmelCase_ : Union[str, Any] = 10_00 lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : Optional[Any] = (1, 10_00) else: raise ValueError(f'Model {model_name} not supported' ) # set config attributes lowerCAmelCase_ : Optional[Any] = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[Any] = {int(A__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : List[str] = idalabel lowerCAmelCase_ : List[Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase_ : Any = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : int = 2_56 elif size == "b2": lowerCAmelCase_ : Any = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : List[str] = 7_68 lowerCAmelCase_ : Any = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase_ : List[str] = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : Union[str, Any] = 7_68 lowerCAmelCase_ : Union[str, Any] = [3, 4, 18, 3] elif size == "b4": lowerCAmelCase_ : Tuple = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : Tuple = 7_68 lowerCAmelCase_ : Tuple = [3, 8, 27, 3] elif size == "b5": lowerCAmelCase_ : Union[str, Any] = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : str = 7_68 lowerCAmelCase_ : Any = [3, 6, 40, 3] else: raise ValueError(f'Size {size} not supported' ) # load image processor (only resize + normalize) lowerCAmelCase_ : List[Any] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=A__ , align=A__ , do_random_crop=A__ ) # prepare image lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Union[str, Any] = image_processor(images=A__ , return_tensors="""pt""" ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict if encoder_only: lowerCAmelCase_ : str = torch.load(A__ , map_location=torch.device("""cpu""" ) ) else: lowerCAmelCase_ : List[str] = torch.load(A__ , map_location=torch.device("""cpu""" ) )["""state_dict"""] # rename keys lowerCAmelCase_ : Dict = rename_keys(A__ , encoder_only=A__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(A__ , A__ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase_ : Dict = False lowerCAmelCase_ : List[Any] = SegformerForImageClassification(A__ ) else: lowerCAmelCase_ : str = SegformerForSemanticSegmentation(A__ ) model.load_state_dict(A__ ) model.eval() # forward pass lowerCAmelCase_ : Tuple = model(A__ ) lowerCAmelCase_ : Union[str, Any] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase_ : Tuple = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase_ : List[str] = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase_ : List[str] = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase_ : Dict = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase_ : Dict = torch.tensor( [ [ [-1.13_72E01, -1.27_87E01, -1.34_77E01], [-1.25_36E01, -1.41_94E01, -1.44_09E01], [-1.32_17E01, -1.48_88E01, -1.53_27E01], ], [ [-1.47_91E01, -1.71_22E01, -1.82_77E01], [-1.71_63E01, -1.91_92E01, -1.95_33E01], [-1.78_97E01, -1.99_91E01, -2.03_15E01], ], [ [7.67_23E-01, 4.19_21E-01, -7.78_78E-02], [4.77_72E-01, 9.55_57E-03, -2.80_82E-01], [3.60_32E-01, -2.48_26E-01, -5.11_68E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase_ : str = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase_ : Optional[int] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase_ : int = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase_ : Union[str, Any] = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: lowerCAmelCase_ : Optional[Any] = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , A__ , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __A : Tuple = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
89
0
'''simple docstring''' def _A ( snake_case = 10**9 ) -> int: _lowercase : List[Any] = 1 _lowercase : List[Any] = 2 _lowercase : List[str] = 0 _lowercase : List[Any] = 0 _lowercase : Union[str, Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _lowercase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'''{solution() = }''')
250
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'OPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OPTForCausalLM', 'OPTModel', 'OPTPreTrainedModel', 'OPTForSequenceClassification', 'OPTForQuestionAnswering', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'FlaxOPTForCausalLM', 'FlaxOPTModel', 'FlaxOPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
250
1
"""simple docstring""" from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def __UpperCAmelCase ( snake_case_ : Sequence[float] , snake_case_ : int , snake_case_ : int ) -> tuple[int | None, int | None, float]: """simple docstring""" if not arr: return None, None, 0 if low == high: return low, high, arr[low] _lowerCAmelCase = (low + high) // 2 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = max_subarray(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = max_subarray(snake_case_ , mid + 1 , snake_case_ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = max_cross_sum(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def __UpperCAmelCase ( snake_case_ : Sequence[float] , snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> tuple[int, int, float]: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = float("""-inf""" ), -1 _lowerCAmelCase , _lowerCAmelCase = float("""-inf""" ), -1 _lowerCAmelCase = 0 for i in range(snake_case_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: _lowerCAmelCase = summ _lowerCAmelCase = i _lowerCAmelCase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: _lowerCAmelCase = summ _lowerCAmelCase = i return max_left, max_right, (left_sum + right_sum) def __UpperCAmelCase ( snake_case_ : int ) -> float: """simple docstring""" _lowerCAmelCase = [randint(1 , snake_case_ ) for _ in range(snake_case_ )] _lowerCAmelCase = time.time() max_subarray(snake_case_ , 0 , input_size - 1 ) _lowerCAmelCase = time.time() return end - start def __UpperCAmelCase ( ) -> None: """simple docstring""" _lowerCAmelCase = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000] _lowerCAmelCase = [time_max_subarray(snake_case_ ) for input_size in input_sizes] print("""No of Inputs\t\tTime Taken""" ) for input_size, runtime in zip(snake_case_ , snake_case_ ): print(snake_case_ , """\t\t""" , snake_case_ ) plt.plot(snake_case_ , snake_case_ ) plt.xlabel("""Number of Inputs""" ) plt.ylabel("""Time taken in seconds""" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
317
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE : Optional[Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase = 'translator' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = LANGUAGE_CODES __UpperCamelCase = ['text', 'text', 'text'] __UpperCamelCase = ['text'] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCamelCase , return_tensors="""pt""" , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.model.generate(**lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCamelCase )
317
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] _SCREAMING_SNAKE_CASE = 'LayoutLMv3ImageProcessor' _SCREAMING_SNAKE_CASE = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Optional[Any] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : Dict ) -> str: """simple docstring""" snake_case_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __A , ) snake_case_ = kwargs.pop("feature_extractor" ) snake_case_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__A , __A ) def __call__( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowerCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _lowerCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _lowerCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , _lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : int = 0 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , **_lowerCAmelCase : Tuple , ) -> Dict: """simple docstring""" # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor snake_case_ = self.image_processor(images=__A , return_tensors=__A ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__A , __A ): snake_case_ = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case_ = features['''words'''] snake_case_ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_token_type_ids=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) # add pixel values snake_case_ = features.pop("pixel_values" ) if return_overflowing_tokens is True: snake_case_ = self.get_overflowing_images(__A , encoded_inputs["overflow_to_sample_mapping"] ) snake_case_ = images return encoded_inputs def lowerCAmelCase__ ( self : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any ) -> List[Any]: """simple docstring""" # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case_ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__A ) != len(__A ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F''' {len(__A )} and {len(__A )}''' ) return images_with_overflow def lowerCAmelCase__ ( self : Any , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def lowerCAmelCase__ ( self : Any , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : int ) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def lowerCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowerCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __A , ) return self.image_processor_class @property def lowerCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __A , ) return self.image_processor
159
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """codegen""" UpperCamelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any, __A : Optional[int]=5_0_4_0_0, __A : Tuple=2_0_4_8, __A : Optional[int]=2_0_4_8, __A : List[str]=4_0_9_6, __A : List[str]=2_8, __A : Union[str, Any]=1_6, __A : Tuple=6_4, __A : Union[str, Any]=None, __A : Union[str, Any]="gelu_new", __A : Any=0.0, __A : Dict=0.0, __A : str=0.0, __A : Optional[int]=1E-5, __A : Any=0.0_2, __A : Any=True, __A : Union[str, Any]=5_0_2_5_6, __A : List[str]=5_0_2_5_6, __A : int=False, **__A : List[Any], ): UpperCAmelCase : int = vocab_size UpperCAmelCase : Tuple = n_ctx UpperCAmelCase : Tuple = n_positions UpperCAmelCase : Optional[int] = n_embd UpperCAmelCase : Union[str, Any] = n_layer UpperCAmelCase : List[str] = n_head UpperCAmelCase : Tuple = n_inner UpperCAmelCase : int = rotary_dim UpperCAmelCase : List[Any] = activation_function UpperCAmelCase : List[str] = resid_pdrop UpperCAmelCase : Optional[Any] = embd_pdrop UpperCAmelCase : str = attn_pdrop UpperCAmelCase : Tuple = layer_norm_epsilon UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : Any = bos_token_id UpperCAmelCase : List[str] = eos_token_id super().__init__( bos_token_id=__A, eos_token_id=__A, tie_word_embeddings=__A, **__A ) class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Any, __A : PretrainedConfig, __A : str = "default", __A : List[PatchingSpec] = None, __A : bool = False, ): super().__init__(__A, task=__A, patching_specs=__A, use_past=__A ) if not getattr(self._config, '''pad_token_id''', __A ): # TODO: how to do that better? UpperCAmelCase : Union[str, Any] = 0 @property def __magic_name__ ( self : str ): UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__A, direction='''inputs''' ) UpperCAmelCase : int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __magic_name__ ( self : Dict ): return self._config.n_layer @property def __magic_name__ ( self : List[str] ): return self._config.n_head def __magic_name__ ( self : str, __A : PreTrainedTokenizer, __A : int = -1, __A : int = -1, __A : bool = False, __A : Optional[TensorType] = None, ): UpperCAmelCase : Union[str, Any] = super(__A, self ).generate_dummy_inputs( __A, batch_size=__A, seq_length=__A, is_pair=__A, framework=__A ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase : str = seqlen + 2 UpperCAmelCase : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase : Optional[int] = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: UpperCAmelCase : Optional[Any] = ordered_inputs['''attention_mask'''].dtype UpperCAmelCase : Dict = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__A, __A, dtype=__A )], dim=1 ) return ordered_inputs @property def __magic_name__ ( self : Tuple ): return 1_3
336
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : Dict = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :int = AlbertTokenizer _UpperCAmelCase :int = AlbertTokenizerFast _UpperCAmelCase :int = True _UpperCAmelCase :List[str] = True _UpperCAmelCase :Optional[Any] = True def __UpperCamelCase( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase : List[str] = AlbertTokenizer(A_ ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = "this is a test" UpperCamelCase : List[Any] = "this is a test" return input_text, output_text def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = "<pad>" UpperCamelCase : Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(A_ ) , 3_0000 ) def __UpperCamelCase( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def __UpperCamelCase( self ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCamelCase : Any = self.get_tokenizer() UpperCamelCase : Optional[int] = self.get_rust_tokenizer() UpperCamelCase : List[Any] = "I was born in 92000, and this is falsé." UpperCamelCase : Optional[Any] = tokenizer.tokenize(A_ ) UpperCamelCase : Optional[int] = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase : Optional[Any] = tokenizer.encode(A_ , add_special_tokens=A_ ) UpperCamelCase : Optional[int] = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase : List[Any] = self.get_rust_tokenizer() UpperCamelCase : Union[str, Any] = tokenizer.encode(A_ ) UpperCamelCase : Optional[int] = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = AlbertTokenizer(A_ , keep_accents=A_ ) UpperCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) self.assertListEqual(A_ , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [48, 25, 21, 1289] ) UpperCamelCase : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( A_ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) UpperCamelCase : Optional[int] = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual(A_ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) UpperCamelCase : List[str] = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = AlbertTokenizer(A_ ) UpperCamelCase : Dict = tokenizer.encode("sequence builders" ) UpperCamelCase : Tuple = tokenizer.encode("multi-sequence build" ) UpperCamelCase : str = tokenizer.build_inputs_with_special_tokens(A_ ) UpperCamelCase : int = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
140
class A__ : # Public class to implement a graph def __init__( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = row UpperCamelCase : Any = col UpperCamelCase : Optional[Any] = graph def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Any = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCamelCase : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCamelCase : Any = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , A_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , A_ ) def __UpperCamelCase( self ): # And finally, count all islands. '''simple docstring''' UpperCamelCase : str = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCamelCase : int = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(A_ , A_ , A_ ) count += 1 return count
140
1
"""simple docstring""" def UpperCamelCase__ ( lowercase__ : int = 100_0000 ): snake_case : Any = limit + 1 snake_case : int = [0] * limit for first_term in range(1 , lowercase__ ): for n in range(lowercase__ , lowercase__ , lowercase__ ): snake_case : Any = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a snake_case : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f'{solution() = }')
148
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class lowerCamelCase__ ( lowerCamelCase_ ): def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) self.check_model_type(SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case , snake_case : Optional[Any] = {}, {} if padding is not None: snake_case : Optional[Any] = padding if truncation is not None: snake_case : Union[str, Any] = truncation if top_k is not None: snake_case : str = top_k return preprocess_params, {}, postprocess_params def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , (Image.Image, str) ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case : Tuple = {"image": image, "question": question} else: snake_case : List[str] = image snake_case : Optional[int] = super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) return results def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ): """simple docstring""" snake_case : List[Any] = load_image(inputs["image"] ) snake_case : Tuple = self.tokenizer( inputs["question"] , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = self.image_processor(images=SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(SCREAMING_SNAKE_CASE ) return model_inputs def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[Any] = self.model(**SCREAMING_SNAKE_CASE ) return model_outputs def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=5 ): """simple docstring""" if top_k > self.model.config.num_labels: snake_case : List[Any] = self.model.config.num_labels if self.framework == "pt": snake_case : Optional[int] = model_outputs.logits.sigmoid()[0] snake_case , snake_case : Any = probs.topk(SCREAMING_SNAKE_CASE ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) snake_case : Optional[Any] = scores.tolist() snake_case : List[Any] = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )]
148
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'xlm-roberta' def __init__( self : Tuple , snake_case : Optional[Any]=3_0522 , snake_case : Optional[Any]=768 , snake_case : Any=12 , snake_case : Optional[int]=12 , snake_case : Any=3072 , snake_case : Optional[Any]="gelu" , snake_case : List[str]=0.1 , snake_case : Dict=0.1 , snake_case : Tuple=512 , snake_case : Union[str, Any]=2 , snake_case : Any=0.02 , snake_case : Union[str, Any]=1e-12 , snake_case : Any=1 , snake_case : Optional[int]=0 , snake_case : Optional[int]=2 , snake_case : int="absolute" , snake_case : Dict=True , snake_case : str=None , **snake_case : Dict , ): '''simple docstring''' super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) A__ : Optional[int] = vocab_size A__ : Optional[Any] = hidden_size A__ : Optional[Any] = num_hidden_layers A__ : List[str] = num_attention_heads A__ : Union[str, Any] = hidden_act A__ : Any = intermediate_size A__ : Dict = hidden_dropout_prob A__ : Any = attention_probs_dropout_prob A__ : Tuple = max_position_embeddings A__ : List[str] = type_vocab_size A__ : Optional[int] = initializer_range A__ : Any = layer_norm_eps A__ : List[str] = position_embedding_type A__ : str = use_cache A__ : int = classifier_dropout class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): @property def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": A__ : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
355
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ = logging.get_logger(__name__) A_ = Dict[str, Any] A_ = List[Prediction] @add_end_docstrings(UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): def __init__( self : str , *snake_case : Tuple , **snake_case : Tuple ): '''simple docstring''' super().__init__(*snake_case , **snake_case ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _UpperCamelCase ( self : List[Any] , **snake_case : Optional[int] ): '''simple docstring''' A__ : Dict = {} if "threshold" in kwargs: A__ : int = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : Tuple , *snake_case : Union[str, Any] , **snake_case : Union[str, Any] ): '''simple docstring''' return super().__call__(*snake_case , **snake_case ) def _UpperCamelCase ( self : str , snake_case : int ): '''simple docstring''' A__ : List[str] = load_image(snake_case ) A__ : int = torch.IntTensor([[image.height, image.width]] ) A__ : Union[str, Any] = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: A__ : str = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) A__ : List[str] = target_size return inputs def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ): '''simple docstring''' A__ : str = model_inputs.pop("""target_size""" ) A__ : Dict = self.model(**snake_case ) A__ : Optional[Any] = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: A__ : str = model_inputs["""bbox"""] return model_outputs def _UpperCamelCase ( self : Tuple , snake_case : Optional[int] , snake_case : int=0.9 ): '''simple docstring''' A__ : Any = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. A__ , A__ : Tuple = target_size[0].tolist() def unnormalize(snake_case : Optional[int] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) A__ , A__ : Optional[int] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) A__ : Optional[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] A__ : List[str] = [unnormalize(snake_case ) for bbox in model_outputs["""bbox"""].squeeze(0 )] A__ : Tuple = ["""score""", """label""", """box"""] A__ : Any = [dict(zip(snake_case , snake_case ) ) for vals in zip(scores.tolist() , snake_case , snake_case ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel A__ : Union[str, Any] = self.image_processor.post_process_object_detection(snake_case , snake_case , snake_case ) A__ : str = raw_annotations[0] A__ : str = raw_annotation["""scores"""] A__ : List[Any] = raw_annotation["""labels"""] A__ : int = raw_annotation["""boxes"""] A__ : str = scores.tolist() A__ : Any = [self.model.config.idalabel[label.item()] for label in labels] A__ : int = [self._get_bounding_box(snake_case ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] A__ : str = ["""score""", """label""", """box"""] A__ : Dict = [ dict(zip(snake_case , snake_case ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def _UpperCamelCase ( self : Union[str, Any] , snake_case : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) A__ , A__ , A__ , A__ : Any = box.int().tolist() A__ : Any = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
296
0
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __snake_case : int = 'true' def _lowercase ( __snake_case ,__snake_case=82 ,__snake_case=16 ) -> Union[str, Any]: set_seed(42 ) __lowerCAmelCase : Union[str, Any] = RegressionModel() __lowerCAmelCase : Dict = deepcopy(lowerCAmelCase_ ) __lowerCAmelCase : Any = RegressionDataset(length=lowerCAmelCase_ ) __lowerCAmelCase : List[str] = DataLoader(lowerCAmelCase_ ,batch_size=lowerCAmelCase_ ) model.to(accelerator.device ) __lowerCAmelCase : int = accelerator.prepare(lowerCAmelCase_ ,lowerCAmelCase_ ) return model, ddp_model, dataloader def _lowercase ( __snake_case ,__snake_case=False ) -> Optional[int]: __lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) __lowerCAmelCase : Dict = load_dataset("glue" ,"mrpc" ,split="validation" ) def tokenize_function(__snake_case ): __lowerCAmelCase : Optional[Any] = tokenizer(examples["sentence1"] ,examples["sentence2"] ,truncation=lowerCAmelCase_ ,max_length=lowerCAmelCase_ ) return outputs with accelerator.main_process_first(): __lowerCAmelCase : int = dataset.map( lowerCAmelCase_ ,batched=lowerCAmelCase_ ,remove_columns=["idx", "sentence1", "sentence2"] ,) __lowerCAmelCase : Union[str, Any] = tokenized_datasets.rename_column("label" ,"labels" ) def collate_fn(__snake_case ): if use_longest: return tokenizer.pad(lowerCAmelCase_ ,padding="longest" ,return_tensors="pt" ) return tokenizer.pad(lowerCAmelCase_ ,padding="max_length" ,max_length=128 ,return_tensors="pt" ) return DataLoader(lowerCAmelCase_ ,shuffle=lowerCAmelCase_ ,collate_fn=lowerCAmelCase_ ,batch_size=16 ) def _lowercase ( __snake_case ,__snake_case ) -> str: __lowerCAmelCase : Optional[int] = Accelerator(dispatch_batches=lowerCAmelCase_ ,split_batches=lowerCAmelCase_ ) __lowerCAmelCase : Optional[Any] = get_dataloader(lowerCAmelCase_ ,not dispatch_batches ) __lowerCAmelCase : List[str] = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" ,return_dict=lowerCAmelCase_ ) __lowerCAmelCase : Optional[int] = accelerator.prepare(lowerCAmelCase_ ,lowerCAmelCase_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> List[str]: __lowerCAmelCase : Union[str, Any] = [] for batch in dataloader: __lowerCAmelCase : Any = batch.values() with torch.no_grad(): __lowerCAmelCase : str = model(lowerCAmelCase_ ) __lowerCAmelCase : Optional[int] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __lowerCAmelCase : Dict = [], [] for logit, targ in logits_and_targets: logits.append(lowerCAmelCase_ ) targs.append(lowerCAmelCase_ ) __lowerCAmelCase : Dict = torch.cat(lowerCAmelCase_ ), torch.cat(lowerCAmelCase_ ) return logits, targs def _lowercase ( __snake_case ,__snake_case=82 ,__snake_case=False ,__snake_case=False ,__snake_case=16 ) -> List[Any]: __lowerCAmelCase : int = get_basic_setup(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) __lowerCAmelCase : Union[str, Any] = generate_predictions(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) assert ( len(lowerCAmelCase_ ) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCAmelCase_ )}""" def _lowercase ( __snake_case = False ,__snake_case = False ) -> List[Any]: __lowerCAmelCase : Optional[Any] = evaluate.load("glue" ,"mrpc" ) __lowerCAmelCase : Any = get_mrpc_setup(lowerCAmelCase_ ,lowerCAmelCase_ ) # First do baseline __lowerCAmelCase : str = setup['no'] model.to(lowerCAmelCase_ ) model.eval() for batch in dataloader: batch.to(lowerCAmelCase_ ) with torch.inference_mode(): __lowerCAmelCase : List[Any] = model(**lowerCAmelCase_ ) __lowerCAmelCase : Optional[Any] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowerCAmelCase_ ,references=batch["labels"] ) __lowerCAmelCase : Any = metric.compute() # Then do distributed __lowerCAmelCase : int = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase : List[str] = model(**lowerCAmelCase_ ) __lowerCAmelCase : int = outputs.logits.argmax(dim=-1 ) __lowerCAmelCase : Optional[int] = batch['labels'] __lowerCAmelCase : Dict = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowerCAmelCase_ ,references=lowerCAmelCase_ ) __lowerCAmelCase : Any = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] ,distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def _lowercase ( ) -> str: __lowerCAmelCase : Optional[int] = Accelerator(split_batches=lowerCAmelCase_ ,dispatch_batches=lowerCAmelCase_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(lowerCAmelCase_ ,lowerCAmelCase_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase : Optional[Any] = Accelerator(split_batches=lowerCAmelCase_ ,dispatch_batches=lowerCAmelCase_ ) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(lowerCAmelCase_ ,99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) __lowerCAmelCase : int = Accelerator() test_torch_metrics(lowerCAmelCase_ ,512 ) accelerator.state._reset_state() def _lowercase ( __snake_case ) -> int: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
269
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Optional[int] = BarthezTokenizer lowerCAmelCase : int = BarthezTokenizerFast lowerCAmelCase : Dict = True lowerCAmelCase : str = True def __lowercase ( self : List[Any] ): super().setUp() _a : List[Any] = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ,legacy_format=_UpperCAmelCase ) _a : Union[str, Any] = tokenizer def __lowercase ( self : Tuple ): _a : Optional[Any] = '<pad>' _a : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) ,_UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) ,_UpperCAmelCase ) def __lowercase ( self : str ): _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<s>' ) self.assertEqual(vocab_keys[1] ,'<pad>' ) self.assertEqual(vocab_keys[-1] ,'<mask>' ) self.assertEqual(len(_UpperCAmelCase ) ,101122 ) def __lowercase ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size ,101122 ) @require_torch def __lowercase ( self : Dict ): _a : Any = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _a : Dict = [0, 57, 3018, 70307, 91, 2] _a : Dict = self.tokenizer( _UpperCAmelCase ,max_length=len(_UpperCAmelCase ) ,padding=_UpperCAmelCase ,truncation=_UpperCAmelCase ,return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase ,_UpperCAmelCase ) self.assertEqual((2, 6) ,batch.input_ids.shape ) self.assertEqual((2, 6) ,batch.attention_mask.shape ) _a : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) def __lowercase ( self : Optional[Any] ): if not self.test_rust_tokenizer: return _a : str = self.get_tokenizer() _a : List[str] = self.get_rust_tokenizer() _a : Dict = 'I was born in 92000, and this is falsé.' _a : List[Any] = tokenizer.tokenize(_UpperCAmelCase ) _a : Tuple = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) _a : Optional[Any] = tokenizer.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) _a : Optional[int] = rust_tokenizer.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) _a : Union[str, Any] = self.get_rust_tokenizer() _a : Any = tokenizer.encode(_UpperCAmelCase ) _a : Optional[int] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) @slow def __lowercase ( self : Optional[int] ): # fmt: off _a : Optional[int] = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _a : Optional[Any] = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase ,model_name='moussaKam/mbarthez' ,revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' ,sequences=_UpperCAmelCase ,)
89
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : int = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Union[str, Any] = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys UpperCamelCase__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
353
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Optional[Any] = len(lowerCAmelCase__ ) for i in range(length - 1 ): UpperCAmelCase__ : Optional[Any] = i for k in range(i + 1 , lowerCAmelCase__ ): if collection[k] < collection[least]: UpperCAmelCase__ : Dict = k if least != i: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
299
0
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def lowercase ( SCREAMING_SNAKE_CASE__ : Sequence[float] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] _snake_case : Dict = (low + high) // 2 _snake_case , _snake_case , _snake_case : int = max_subarray(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case , _snake_case : Optional[Any] = max_subarray(SCREAMING_SNAKE_CASE__ , mid + 1 , SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case , _snake_case : Dict = max_cross_sum(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def lowercase ( SCREAMING_SNAKE_CASE__ : Sequence[float] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> tuple[int, int, float]: _snake_case , _snake_case : Dict = float("""-inf""" ), -1 _snake_case , _snake_case : int = float("""-inf""" ), -1 _snake_case : int | float = 0 for i in range(SCREAMING_SNAKE_CASE__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: _snake_case : Optional[Any] = summ _snake_case : str = i _snake_case : Any = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: _snake_case : Dict = summ _snake_case : List[Any] = i return max_left, max_right, (left_sum + right_sum) def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> float: _snake_case : Optional[int] = [randint(1 , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] _snake_case : Optional[Any] = time.time() max_subarray(SCREAMING_SNAKE_CASE__ , 0 , input_size - 1 ) _snake_case : Dict = time.time() return end - start def lowercase ( ) -> None: _snake_case : str = [10, 100, 1_000, 10_000, 50_000, 100_000, 200_000, 300_000, 400_000, 500_000] _snake_case : Tuple = [time_max_subarray(SCREAMING_SNAKE_CASE__ ) for input_size in input_sizes] print("""No of Inputs\t\tTime Taken""" ) for input_size, runtime in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): print(SCREAMING_SNAKE_CASE__ , """\t\t""" , SCREAMING_SNAKE_CASE__ ) plt.plot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) plt.xlabel("""Number of Inputs""" ) plt.ylabel("""Time taken in seconds""" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
317
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase_ ( UpperCamelCase__ , unittest.TestCase ): lowerCAmelCase__ = KandinskyVaaInpaintPipeline lowerCAmelCase__ = ['image_embeds', 'negative_image_embeds', 'image', 'mask_image'] lowerCAmelCase__ = [ 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] lowerCAmelCase__ = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCAmelCase__ = False @property def lowercase_ ( self : str ): '''simple docstring''' return 32 @property def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def lowercase_ ( self : List[Any] ): '''simple docstring''' return self.time_input_dim @property def lowercase_ ( self : int ): '''simple docstring''' return self.time_input_dim * 4 @property def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return 100 @property def lowercase_ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase__ : Dict = UNetaDConditionModel(**__lowerCamelCase ) return model @property def lowercase_ ( self : int ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : str = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.dummy_unet UpperCAmelCase__ : Dict = self.dummy_movq UpperCAmelCase__ : Optional[Any] = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__lowerCamelCase , ) UpperCAmelCase__ : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowercase_ ( self : Union[str, Any] , _A : int , _A : Optional[int]=0 ): '''simple docstring''' UpperCAmelCase__ : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCamelCase ) # create init_image UpperCAmelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Dict = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create mask UpperCAmelCase__ : int = np.ones((64, 64) , dtype=np.floataa ) UpperCAmelCase__ : Tuple = 0 if str(__lowerCamelCase ).startswith('''mps''' ): UpperCAmelCase__ : str = torch.manual_seed(__lowerCamelCase ) else: UpperCAmelCase__ : int = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCAmelCase__ : Any = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = '''cpu''' UpperCAmelCase__ : Tuple = self.get_dummy_components() UpperCAmelCase__ : Any = self.pipeline_class(**__lowerCamelCase ) UpperCAmelCase__ : Tuple = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase__ : List[str] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) UpperCAmelCase__ : int = output.images UpperCAmelCase__ : Dict = pipe( **self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0] UpperCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase__ : List[str] = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : str = np.array( [0.5_0_7_7_5_9_0_3, 0.4_9_5_2_7_1_9_5, 0.4_8_8_2_4_5_4_3, 0.5_0_1_9_2_2_3_7, 0.4_8_6_4_4_9_0_6, 0.4_9_3_7_3_8_1_4, 0.4_7_8_0_5_9_8, 0.4_7_2_3_4_8_2_7, 0.4_8_3_2_7_8_4_8] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def lowercase_ ( self : Tuple ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) UpperCAmelCase__ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCAmelCase__ : Optional[int] = np.ones((768, 768) , dtype=np.floataa ) UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : str = '''a hat''' UpperCAmelCase__ : str = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) UpperCAmelCase__ : Dict = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = pipe_prior( __lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase__ : Dict = pipeline( image=__lowerCamelCase , mask_image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) UpperCAmelCase__ : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
367
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a__ ( lowerCAmelCase__ ) -> List[Any]: return 1 / (1 + np.exp(-z )) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: return (-y * np.log(lowerCAmelCase__ ) - (1 - y) * np.log(1 - h )).mean() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : str = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) return np.sum(y * scores - np.log(1 + np.exp(lowerCAmelCase__ ) ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=7_00_00 ) -> List[Any]: UpperCAmelCase__ : Tuple = np.zeros(x.shape[1] ) for iterations in range(lowerCAmelCase__ ): UpperCAmelCase__ : List[Any] = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : int = np.dot(x.T , h - y ) / y.size UpperCAmelCase__ : Optional[int] = theta - alpha * gradient # updating the weights UpperCAmelCase__ : Dict = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : int = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = cost_function(lowerCAmelCase__ , lowerCAmelCase__ ) if iterations % 1_00 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase__ = datasets.load_iris() UpperCamelCase__ = iris.data[:, :2] UpperCamelCase__ = (iris.target != 0) * 1 UpperCamelCase__ = 0.1 UpperCamelCase__ = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('''theta: ''', theta) # printing the theta i.e our weights vector def a__ ( lowerCAmelCase__ ) -> Dict: return sigmoid_function( np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase__ = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
299
0
def UpperCamelCase ( __lowercase : int ): '''simple docstring''' if n == 1 or not isinstance(__lowercase ,__lowercase ): return 0 elif n == 2: return 1 else: A_ : str = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase ( __lowercase : int ): '''simple docstring''' A_ : int = 0 A_ : str = 2 while digits < n: index += 1 A_ : Union[str, Any] = len(str(fibonacci(__lowercase ) ) ) return index def UpperCamelCase ( __lowercase : int = 10_00 ): '''simple docstring''' return fibonacci_digits_index(__lowercase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
140
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput _UpperCAmelCase = """scheduler_config.json""" class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = 1 lowerCamelCase_ = 2 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = 5 lowerCamelCase_ = 6 lowerCamelCase_ = 7 lowerCamelCase_ = 8 lowerCamelCase_ = 9 lowerCamelCase_ = 1_0 lowerCamelCase_ = 1_1 lowerCamelCase_ = 1_2 lowerCamelCase_ = 1_3 lowerCamelCase_ = 1_4 @dataclass class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = 42 class UpperCAmelCase : '''simple docstring''' lowerCamelCase_ = SCHEDULER_CONFIG_NAME lowerCamelCase_ = [] lowerCamelCase_ = True @classmethod def lowerCAmelCase_ ( cls , lowercase = None , lowercase = None , lowercase=False , **lowercase , ): """simple docstring""" A_ , A_ , A_ : int = cls.load_config( pretrained_model_name_or_path=lowercase , subfolder=lowercase , return_unused_kwargs=lowercase , return_commit_hash=lowercase , **lowercase , ) return cls.from_config(lowercase , return_unused_kwargs=lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase = False , **lowercase ): """simple docstring""" self.save_config(save_directory=lowercase , push_to_hub=lowercase , **lowercase ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return self._get_compatibles() @classmethod def lowerCAmelCase_ ( cls ): """simple docstring""" A_ : Optional[Any] = list(set([cls.__name__] + cls._compatibles ) ) A_ : Any = importlib.import_module(__name__.split('.' )[0] ) A_ : Tuple = [ getattr(lowercase , lowercase ) for c in compatible_classes_str if hasattr(lowercase , lowercase ) ] return compatible_classes
140
1
from manim import * class lowerCamelCase__ ( __lowercase): '''simple docstring''' def _lowerCamelCase ( self :str ) -> Optional[int]: __UpperCamelCase : Tuple = Rectangle(height=0.5 , width=0.5 ) __UpperCamelCase : Optional[int] = Rectangle(height=0.25 , width=0.25 ) __UpperCamelCase : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __UpperCamelCase : Any = [mem.copy() for i in range(6 )] __UpperCamelCase : Optional[int] = [mem.copy() for i in range(6 )] __UpperCamelCase : List[Any] = VGroup(*a ).arrange(a , buff=0 ) __UpperCamelCase : Optional[int] = VGroup(*a ).arrange(a , buff=0 ) __UpperCamelCase : List[str] = VGroup(a , a ).arrange(a , buff=0 ) __UpperCamelCase : Optional[Any] = Text("CPU" , font_size=2_4 ) __UpperCamelCase : Optional[int] = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a ) __UpperCamelCase : Tuple = [mem.copy() for i in range(4 )] __UpperCamelCase : Dict = VGroup(*a ).arrange(a , buff=0 ) __UpperCamelCase : Tuple = Text("GPU" , font_size=2_4 ) __UpperCamelCase : Optional[int] = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) gpu.move_to([-1, -1, 0] ) self.add(a ) __UpperCamelCase : Any = [mem.copy() for i in range(6 )] __UpperCamelCase : Any = VGroup(*a ).arrange(a , buff=0 ) __UpperCamelCase : Dict = Text("Model" , font_size=2_4 ) __UpperCamelCase : List[str] = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) model.move_to([3, -1.0, 0] ) self.add(a ) __UpperCamelCase : List[str] = [] __UpperCamelCase : Union[str, Any] = [] __UpperCamelCase : Optional[Any] = [] for i, rect in enumerate(a ): rect.set_stroke(a ) __UpperCamelCase : Union[str, Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=a , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=a , buff=0.0 ) self.add(a ) model_cpu_arr.append(a ) self.add(*a , *a , *a ) __UpperCamelCase : Any = [mem.copy() for i in range(6 )] __UpperCamelCase : Tuple = VGroup(*a ).arrange(a , buff=0 ) __UpperCamelCase : Tuple = Text("Loaded Checkpoint" , font_size=2_4 ) __UpperCamelCase : Tuple = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) checkpoint.move_to([3, 0.5, 0] ) self.add(a ) __UpperCamelCase : List[str] = [] __UpperCamelCase : str = [] for i, rect in enumerate(a ): __UpperCamelCase : Dict = fill.copy().set_fill(a , opacity=0.7 ) target.move_to(a ) ckpt_arr.append(a ) __UpperCamelCase : Any = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(a ) self.add(*a , *a ) __UpperCamelCase : List[str] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __UpperCamelCase : Any = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a , a ) __UpperCamelCase : str = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=1_8 , ) blue_text.next_to(a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a ) __UpperCamelCase : Optional[Any] = MarkupText( f'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) __UpperCamelCase : Tuple = [meta_mem.copy() for i in range(6 )] __UpperCamelCase : Tuple = [meta_mem.copy() for i in range(6 )] __UpperCamelCase : Dict = VGroup(*a ).arrange(a , buff=0 ) __UpperCamelCase : Dict = VGroup(*a ).arrange(a , buff=0 ) __UpperCamelCase : List[str] = VGroup(a , a ).arrange(a , buff=0 ) __UpperCamelCase : int = Text("Disk" , font_size=2_4 ) __UpperCamelCase : str = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(a , run_time=3 ) , Write(a , run_time=1 ) , Create(a , run_time=1 ) ) __UpperCamelCase : str = [] for i, rect in enumerate(a ): __UpperCamelCase : Tuple = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(a , run_time=1.5 ) ) self.play(*a ) self.play(FadeOut(a ) ) __UpperCamelCase : Tuple = MarkupText(f'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(a , run_time=3 ) ) self.play( FadeOut(a , a , *a , *a ) , ) self.wait()
151
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase : Any = logging.get_logger(__name__) lowercase : Any = {'vocab_file': 'spiece.model'} lowercase : int = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class lowerCamelCase__ ( __lowercase): '''simple docstring''' def __init__( self :int , a :List[Any] , a :Optional[Any]=False , a :List[str]=True , a :str=False , a :Optional[Any]="<s>" , a :Tuple="</s>" , a :int="<unk>" , a :Optional[Any]="<sep>" , a :List[str]="<pad>" , a :Any="<cls>" , a :List[Any]="<mask>" , a :Optional[Any]=["<eop>", "<eod>"] , a :Optional[Dict[str, Any]] = None , **a :List[str] , ) -> None: __UpperCamelCase : Any = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token __UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a , remove_space=a , keep_accents=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) __UpperCamelCase : int = 3 __UpperCamelCase : Union[str, Any] = do_lower_case __UpperCamelCase : str = remove_space __UpperCamelCase : int = keep_accents __UpperCamelCase : Optional[int] = vocab_file __UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) __UpperCamelCase : Optional[Any] = jieba __UpperCamelCase : Optional[int] = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowerCamelCase ( self :Optional[int] ) -> List[str]: return len(self.sp_model ) def _lowerCamelCase ( self :Dict ) -> str: __UpperCamelCase : Optional[int] = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Optional[int] ) -> int: __UpperCamelCase : Tuple = self.__dict__.copy() __UpperCamelCase : Optional[Any] = None return state def __setstate__( self :Optional[int] , a :Dict ) -> str: __UpperCamelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase : Union[str, Any] = {} __UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self :List[Any] , a :str ) -> int: if self.remove_space: __UpperCamelCase : int = " ".join(inputs.strip().split() ) else: __UpperCamelCase : Union[str, Any] = inputs __UpperCamelCase : List[str] = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: __UpperCamelCase : Tuple = unicodedata.normalize("NFKD" , a ) __UpperCamelCase : Optional[Any] = "".join([c for c in outputs if not unicodedata.combining(a )] ) if self.do_lower_case: __UpperCamelCase : Any = outputs.lower() return outputs def _lowerCamelCase ( self :Tuple , a :str ) -> List[str]: __UpperCamelCase : List[Any] = self.preprocess_text(a ) __UpperCamelCase : int = self.sp_model.encode(a , out_type=a ) __UpperCamelCase : Optional[Any] = [] for piece in pieces: if len(a ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): __UpperCamelCase : str = self.sp_model.EncodeAsPieces(piece[:-1].replace(a , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __UpperCamelCase : List[str] = cur_pieces[1:] else: __UpperCamelCase : int = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a ) else: new_pieces.append(a ) return new_pieces def _lowerCamelCase ( self :str , a :Dict ) -> List[str]: return self.sp_model.PieceToId(a ) def _lowerCamelCase ( self :Tuple , a :int ) -> Tuple: return self.sp_model.IdToPiece(a ) def _lowerCamelCase ( self :Union[str, Any] , a :Union[str, Any] ) -> List[Any]: __UpperCamelCase : str = "".join(a ).replace(a , " " ).strip() return out_string def _lowerCamelCase ( self :Any , a :List[int] , a :Optional[List[int]] = None ) -> List[int]: __UpperCamelCase : Tuple = [self.sep_token_id] __UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self :Any , a :List[int] , a :Optional[List[int]] = None , a :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is not None: return ([0] * len(a )) + [1] + ([0] * len(a )) + [1, 1] return ([0] * len(a )) + [1, 1] def _lowerCamelCase ( self :Dict , a :List[int] , a :Optional[List[int]] = None ) -> List[int]: __UpperCamelCase : Optional[int] = [self.sep_token_id] __UpperCamelCase : Dict = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCamelCase ( self :Union[str, Any] , a :str , a :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : Tuple = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , "wb" ) as fi: __UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,) def _lowerCamelCase ( self :str , *a :str , **a :Any ) -> Tuple: __UpperCamelCase : int = super()._decode(*a , **a ) __UpperCamelCase : int = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
151
1
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Union[str, Any] =DebertaTokenizer a : List[str] =True a : Optional[Any] =DebertaTokenizerFast def lowercase__ ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] lowerCAmelCase : Optional[int] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase : List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase : List[str] = {"unk_token": "[UNK]"} lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) def lowercase__ ( self , **snake_case__ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = "lower newer" lowerCAmelCase : Any = "lower newer" return input_text, output_text def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Tuple = "lower newer" lowerCAmelCase : List[Any] = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase : Optional[Any] = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = tokens + [tokenizer.unk_token] lowerCAmelCase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.get_tokenizer() lowerCAmelCase : Optional[int] = tokenizer("Hello" , "World" ) lowerCAmelCase : Union[str, Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) lowerCAmelCase : Tuple = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) lowerCAmelCase : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) lowerCAmelCase : List[str] = tokenizer.encode( "sequence builders" , add_special_tokens=snake_case__ , add_prefix_space=snake_case__ ) lowerCAmelCase : List[Any] = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=snake_case__ , add_prefix_space=snake_case__ ) lowerCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCAmelCase : Tuple = tokenizer_class.from_pretrained("microsoft/deberta-base" ) lowerCAmelCase : Tuple = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] lowerCAmelCase : List[Any] = tokenizer(snake_case__ , padding=snake_case__ ) lowerCAmelCase : List[Any] = [tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) for seq in encoding["input_ids"]] # fmt: off lowerCAmelCase : List[str] = { "input_ids": [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCAmelCase : int = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , snake_case__ ) for expected, decoded in zip(snake_case__ , snake_case__ ): self.assertEqual(snake_case__ , snake_case__ )
108
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) @dataclass class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Optional[float] = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to SortishSamler or not."} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "whether to use adafactor"} ) __snake_case : Optional[float] = field( default=lowerCAmelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) __snake_case : Optional[float] = field( default=lowerCAmelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) __snake_case : Optional[float] = field(default=lowerCAmelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} ) __snake_case : Optional[float] = field( default=lowerCAmelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} ) __snake_case : Optional[str] = field( default="linear" , metadata={"help": F"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
296
0
def _lowerCAmelCase ( ): UpperCAmelCase = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] UpperCAmelCase = 6 UpperCAmelCase = 1 UpperCAmelCase = 1901 UpperCAmelCase = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 UpperCAmelCase = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 UpperCAmelCase = day - 29 else: if day > days_per_month[month - 1]: month += 1 UpperCAmelCase = day - days_per_month[month - 2] if month > 12: year += 1 UpperCAmelCase = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
352
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __magic_name__ = logging.get_logger(__name__) class lowercase ( A__ ): '''simple docstring''' def __init__( self , *_snake_case , **_snake_case ) -> None: """simple docstring""" warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
152
0
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowerCamelCase : Union[str, Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase : List[Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowerCamelCase : Tuple = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') lowerCamelCase : Dict = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase : Optional[Any] = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowerCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: snake_case : List[Any] = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" ,__lowerCamelCase ) return [m.group(0 ) for m in matches] def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: snake_case : Any = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES snake_case : Union[str, Any] = { config.replace("""Config""" ,"""""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. snake_case : Any = collections.defaultdict(__lowerCamelCase ) snake_case : str = collections.defaultdict(__lowerCamelCase ) snake_case : str = collections.defaultdict(__lowerCamelCase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__lowerCamelCase ): snake_case : Union[str, Any] = None if _re_tf_models.match(__lowerCamelCase ) is not None: snake_case : Dict = tf_models snake_case : Optional[int] = _re_tf_models.match(__lowerCamelCase ).groups()[0] elif _re_flax_models.match(__lowerCamelCase ) is not None: snake_case : str = flax_models snake_case : Any = _re_flax_models.match(__lowerCamelCase ).groups()[0] elif _re_pt_models.match(__lowerCamelCase ) is not None: snake_case : Any = pt_models snake_case : List[Any] = _re_pt_models.match(__lowerCamelCase ).groups()[0] if lookup_dict is not None: while len(__lowerCamelCase ) > 0: if attr_name in model_prefix_to_model_type: snake_case : int = True break # Try again after removing the last word in the name snake_case : Any = """""".join(camel_case_split(__lowerCamelCase )[:-1] ) snake_case : Optional[Any] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) snake_case : Optional[int] = list(__lowerCamelCase ) all_models.sort() snake_case : Optional[Any] = {"""model_type""": all_models} snake_case : Optional[Any] = [pt_models[t] for t in all_models] snake_case : str = [tf_models[t] for t in all_models] snake_case : List[Any] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure snake_case : Any = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: snake_case : str = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: snake_case : Optional[int] = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: snake_case : str = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. snake_case : Any = """AutoTokenizer""" snake_case : Tuple = [processors[t] for t in all_models] return pd.DataFrame(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: snake_case : Dict = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: snake_case : Any = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] snake_case : Any = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ): # The type of pipeline may not exist in this framework if not hasattr(__lowerCamelCase ,__lowerCamelCase ): continue # First extract all model_names snake_case : Union[str, Any] = [] for name in getattr(__lowerCamelCase ,__lowerCamelCase ).values(): if isinstance(__lowerCamelCase ,__lowerCamelCase ): model_names.append(__lowerCamelCase ) else: model_names.extend(list(__lowerCamelCase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Optional[Any]: snake_case : Tuple = get_frameworks_table() snake_case : Tuple = Dataset.from_pandas(__lowerCamelCase ) snake_case : List[Any] = hf_hub_download( """huggingface/transformers-metadata""" ,"""pipeline_tags.json""" ,repo_type="""dataset""" ,token=__lowerCamelCase ) snake_case : int = Dataset.from_json(__lowerCamelCase ) snake_case : List[Any] = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(__lowerCamelCase ) ) } snake_case : List[Any] = update_pipeline_and_auto_class_table(__lowerCamelCase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. snake_case : str = sorted(table.keys() ) snake_case : Optional[Any] = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) snake_case : Tuple = Dataset.from_pandas(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__lowerCamelCase ,"""frameworks.json""" ) ) tags_dataset.to_json(os.path.join(__lowerCamelCase ,"""pipeline_tags.json""" ) ) if commit_sha is not None: snake_case : Any = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: snake_case : Union[str, Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" ,folder_path=__lowerCamelCase ,repo_type="""dataset""" ,token=__lowerCamelCase ,commit_message=__lowerCamelCase ,) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: snake_case : Any = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} snake_case : List[Any] = transformers_module.pipelines.SUPPORTED_TASKS snake_case : Dict = [] for key in pipeline_tasks: if key not in in_table: snake_case : Dict = pipeline_tasks[key]["""pt"""] if isinstance(__lowerCamelCase ,(list, tuple) ): snake_case : Union[str, Any] = model[0] snake_case : Any = model.__name__ if model not in in_table.values(): missing.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: snake_case : Union[str, Any] = """, """.join(__lowerCamelCase ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') lowerCamelCase : List[str] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
124
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ByTaTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ) -> List[str]: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _UpperCamelCase ( self , **_A ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , _A , _A=False , _A=20 , _A=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = ''' ''' + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) SCREAMING_SNAKE_CASE_ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = '''Unicode €.''' SCREAMING_SNAKE_CASE_ = tokenizer(_A ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''Unicode €.</s>''' ) SCREAMING_SNAKE_CASE_ = tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization. </s>'''] SCREAMING_SNAKE_CASE_ = ['''Summary of the text. </s>'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['''input_ids'''][0] ) self.assertEqual(_A , batch['''labels'''][0] ) def _UpperCamelCase ( self ) -> Dict: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _UpperCamelCase ( self ) -> int: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [] ) setattr(_A , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
299
0
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __lowerCamelCase ( _lowercase , _lowercase ) -> float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_lowercase , _lowercase ) ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: UpperCAmelCase : Optional[int] = ( """Wrong input data's dimensions... """ F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(_lowercase ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : Optional[Any] = ( """Wrong input data's shape... """ F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(_lowercase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: UpperCAmelCase : Optional[int] = ( """Input data have different datatype... """ F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(_lowercase ) UpperCAmelCase : Union[str, Any] = [] for value in value_array: UpperCAmelCase : List[str] = euclidean(_lowercase , dataset[0] ) UpperCAmelCase : List[str] = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(_lowercase , _lowercase ) if dist > temp_dist: UpperCAmelCase : str = temp_dist UpperCAmelCase : List[Any] = dataset_value.tolist() answer.append([vector, dist] ) return answer def __lowerCamelCase ( _lowercase , _lowercase ) -> float: return np.dot(_lowercase , _lowercase ) / (norm(_lowercase ) * norm(_lowercase )) if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
1
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor UpperCAmelCase_ : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : int ) -> None: warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
32
import functools def A__ ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE_ = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : @staticmethod def lowercase__ ( *__magic_name__ : str , **__magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class _A ( unittest.TestCase ): @require_torch def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) __snake_case : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __snake_case : Optional[Any] = image_classifier(__magic_name__ , candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__magic_name__ ) , [ [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}], [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}], ] , ) __snake_case : Optional[int] = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(__magic_name__ ) , [ [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], ] , ) @require_tf def lowercase__ ( self : int ) -> Optional[Any]: """simple docstring""" __snake_case : Union[str, Any] = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" ) __snake_case : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __snake_case : Tuple = image_classifier(__magic_name__ , candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(__magic_name__ ) , [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}] , ) __snake_case : Union[str, Any] = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(__magic_name__ ) , [ [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], ] , ) @slow @require_torch def lowercase__ ( self : Optional[Any] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes __snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __snake_case : Optional[Any] = image_classifier(__magic_name__ , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(__magic_name__ ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) __snake_case : Optional[Any] = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(__magic_name__ ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def lowercase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __snake_case : Tuple = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" ) # This is an image of 2 cats with remotes and no planes __snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __snake_case : Dict = image_classifier(__magic_name__ , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(__magic_name__ ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) __snake_case : int = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(__magic_name__ ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , )
13
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A : def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = num_channels __snake_case : Dict = image_size __snake_case : Tuple = patch_size __snake_case : str = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : str = use_labels __snake_case : Dict = vocab_size __snake_case : List[Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Optional[int] = coordinate_size __snake_case : List[Any] = shape_size __snake_case : Tuple = num_labels __snake_case : List[Any] = num_choices __snake_case : Optional[Any] = scope __snake_case : List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case : List[str] = text_seq_length __snake_case : str = (image_size // patch_size) ** 2 + 1 __snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __snake_case : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : Union[str, Any] = bbox[i, j, 3] __snake_case : Union[str, Any] = bbox[i, j, 1] __snake_case : Any = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : Optional[Any] = bbox[i, j, 2] __snake_case : Tuple = bbox[i, j, 0] __snake_case : Optional[Any] = tmp_coordinate __snake_case : Dict = tf.constant(__magic_name__ ) __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_input_mask: __snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case : str = None __snake_case : List[Any] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ ) # text + image __snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) __snake_case : List[str] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , ) __snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ ) __snake_case : Tuple = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = 2 __snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs __snake_case : List[Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase__: Union[str, Any] = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase__: Dict = False lowercase__: int = False lowercase__: Dict = False def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" return True def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict: """simple docstring""" __snake_case : Any = copy.deepcopy(__magic_name__ ) if model_class in get_values(__magic_name__ ): __snake_case : Union[str, Any] = { k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : str = TFLayoutLMvaModelTester(self ) __snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ): # The number of elements in the loss should be the same as the number of elements in the label __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Any = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0] ] __snake_case : List[str] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = prepared_for_class.pop("""input_ids""" ) __snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : str = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: __snake_case : str = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __snake_case : Dict = -1_00 __snake_case : str = tf.convert_to_tensor(__magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = model(__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) # Get keys that were added with the _prepare_for_class function __snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys() __snake_case : Optional[Any] = inspect.signature(model.call ).parameters __snake_case : int = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __snake_case : Union[str, Any] = {0: """input_ids"""} for label_key in label_keys: __snake_case : int = signature_names.index(__magic_name__ ) __snake_case : Optional[int] = label_key __snake_case : Optional[int] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __snake_case : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __snake_case : List[str] = prepared_for_class[value] __snake_case : str = tuple(__magic_name__ ) # Send to model __snake_case : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Tuple = type self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None @slow def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) __snake_case : str = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values __snake_case : Tuple = tf.constant([[1, 2]] ) __snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) # verify the logits __snake_case : List[str] = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ ) __snake_case : Tuple = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
13
1
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : Tuple ) -> int: UpperCAmelCase : List[str] = parent def UpperCAmelCase_ ( self : int ) -> List[Any]: return {} def UpperCamelCase( ): UpperCAmelCase : Optional[Any] = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' UpperCAmelCase : List[str] = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = MarkupLMFeatureExtractor if is_bsa_available() else None def UpperCAmelCase_ ( self : List[str] ) -> Any: UpperCAmelCase : Dict = MarkupLMFeatureExtractionTester(self ) @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: return self.feature_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase_ ( self : int ) -> Optional[int]: # Initialize feature_extractor UpperCAmelCase : List[str] = self.feature_extraction_class() # Test not batched input UpperCAmelCase : int = get_html_strings()[0] UpperCAmelCase : Optional[Any] = feature_extractor(lowercase_ ) # fmt: off UpperCAmelCase : str = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] UpperCAmelCase : Optional[Any] = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , lowercase_ ) self.assertEqual(encoding.xpaths , lowercase_ ) # Test batched UpperCAmelCase : List[Any] = get_html_strings() UpperCAmelCase : List[str] = feature_extractor(lowercase_ ) # fmt: off UpperCAmelCase : Any = expected_nodes + [['My First Heading', 'My first paragraph.']] UpperCAmelCase : str = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowercase_ ) self.assertEqual(encoding.xpaths , lowercase_ )
151
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A_ : '''simple docstring''' def __init__( self : Any , lowercase_ : List[Any] , lowercase_ : int=3 , lowercase_ : Dict=32 , lowercase_ : Optional[Any]=3 , lowercase_ : Tuple=10 , lowercase_ : Optional[Any]=[10, 20, 30, 40] , lowercase_ : List[str]=[1, 1, 2, 1] , lowercase_ : Optional[int]=True , lowercase_ : str=True , lowercase_ : Dict="relu" , lowercase_ : Optional[Any]=3 , lowercase_ : List[str]=None , ) -> int: UpperCAmelCase : Dict = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Any = image_size UpperCAmelCase : Any = num_channels UpperCAmelCase : List[str] = embeddings_size UpperCAmelCase : str = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : int = use_labels UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Union[str, Any] = scope UpperCAmelCase : Any = len(lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase_ ( self : int , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : List[Any] = TFResNetModel(config=lowercase_ ) UpperCAmelCase : int = model(lowercase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self : Any , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int] ) -> List[Any]: UpperCAmelCase : List[Any] = self.num_labels UpperCAmelCase : Union[str, Any] = TFResNetForImageClassification(lowercase_ ) UpperCAmelCase : Any = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCAmelCase_ : Dict = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : str = False UpperCAmelCase_ : Optional[int] = False def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: UpperCAmelCase : Optional[int] = TFResNetModelTester(self ) UpperCAmelCase : Dict = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: pass def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(lowercase_ ) UpperCAmelCase : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: def check_hidden_states_output(lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] ): UpperCAmelCase : Union[str, Any] = model_class(lowercase_ ) UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase : List[Any] = layer_type UpperCAmelCase : int = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : List[Any] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Tuple: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : str = TFResNetModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCamelCase( ): UpperCAmelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Optional[int] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase : Any = self.default_image_processor UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=lowercase_ , return_tensors='tf' ) # forward pass UpperCAmelCase : List[Any] = model(**lowercase_ ) # verify the logits UpperCAmelCase : Optional[Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCAmelCase : int = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowercase_ , atol=1E-4 ) )
151
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ :Tuple = logging.get_logger(__name__) lowercase__ :List[Any] = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Optional[int] ='''instructblip_vision_model''' def __init__( self ,A__=1_4_0_8 ,A__=6_1_4_4 ,A__=3_9 ,A__=1_6 ,A__=2_2_4 ,A__=1_4 ,A__="gelu" ,A__=1E-6 ,A__=0.0 ,A__=1E-10 ,A__=True ,**A__ ,): super().__init__(**A__) lowercase = hidden_size lowercase = intermediate_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = patch_size lowercase = image_size lowercase = initializer_range lowercase = attention_dropout lowercase = layer_norm_eps lowercase = hidden_act lowercase = qkv_bias @classmethod def A__ ( cls ,A__ ,**A__): cls._set_token_in_kwargs(A__) lowercase , lowercase = cls.get_config_dict(A__ ,**A__) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''') == "instructblip": lowercase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(A__ ,**A__) class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : List[Any] ='''instructblip_qformer''' def __init__( self ,A__=3_0_5_2_2 ,A__=7_6_8 ,A__=1_2 ,A__=1_2 ,A__=3_0_7_2 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=5_1_2 ,A__=0.02 ,A__=1E-12 ,A__=0 ,A__="absolute" ,A__=2 ,A__=1_4_0_8 ,**A__ ,): super().__init__(pad_token_id=A__ ,**A__) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = initializer_range lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = cross_attention_frequency lowercase = encoder_hidden_size @classmethod def A__ ( cls ,A__ ,**A__): cls._set_token_in_kwargs(A__) lowercase , lowercase = cls.get_config_dict(A__ ,**A__) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''') == "instructblip": lowercase = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(A__ ,**A__) class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : str ='''instructblip''' lowercase_ : str =True def __init__( self ,A__=None ,A__=None ,A__=None ,A__=3_2 ,**A__): super().__init__(**A__) if vision_config is None: lowercase = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''') if qformer_config is None: lowercase = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''') if text_config is None: lowercase = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''') lowercase = InstructBlipVisionConfig(**A__) lowercase = InstructBlipQFormerConfig(**A__) lowercase = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' lowercase = CONFIG_MAPPING[text_model_type](**A__) lowercase = self.text_config.tie_word_embeddings lowercase = self.text_config.is_encoder_decoder lowercase = num_query_tokens lowercase = self.vision_config.hidden_size lowercase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase = 1.0 lowercase = 0.02 @classmethod def A__ ( cls ,A__ ,A__ ,A__ ,**A__ ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**A__ ,) def A__ ( self): lowercase = copy.deepcopy(self.__dict__) lowercase = self.vision_config.to_dict() lowercase = self.qformer_config.to_dict() lowercase = self.text_config.to_dict() lowercase = self.__class__.model_type return output
97
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ :Any = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :Tuple = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :Union[str, Any] = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :Optional[int] = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :Union[str, Any] = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowercase__ :List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
97
1
def __lowercase ( _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Any = min(UpperCamelCase__ ) # min() finds the minimum value SCREAMING_SNAKE_CASE : Optional[Any] = max(UpperCamelCase__ ) # max() finds the maximum value SCREAMING_SNAKE_CASE : str = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size SCREAMING_SNAKE_CASE : List[Any] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. SCREAMING_SNAKE_CASE : Optional[Any] = 0 for count in range(UpperCamelCase__ ): while holes[count] > 0: holes[count] -= 1 SCREAMING_SNAKE_CASE : Tuple = count + min_val i += 1 def __lowercase ( ) -> List[Any]: SCREAMING_SNAKE_CASE : Dict = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(UpperCamelCase__ ) print("""Sorted order is:""" , """ """.join(UpperCamelCase__ ) ) if __name__ == "__main__": main()
245
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _a( UpperCamelCase__ : str, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =AlbertConfig.from_json_file(UpperCamelCase__ ) print(f"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE__ : Any =AlbertForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict(), UpperCamelCase__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
152
0
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowercase ( A__ ): """simple docstring""" _a = DistilBertTokenizer _a = DistilBertTokenizerFast _a = True @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) UpperCamelCase__ :Optional[int] = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase_ ) UpperCamelCase__ :Any = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
367
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __snake_case = get_logger() __snake_case = None class lowercase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): """simple docstring""" def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ ): '''simple docstring''' super().__init__(features=UpperCamelCase_ ) import jax from jaxlib.xla_client import Device if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( F'''Expected {device} to be a `str` not {type(UpperCamelCase_ )}, as `jaxlib.xla_extension.Device` ''' '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) UpperCamelCase__ :Tuple = device if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase__ :Optional[Any] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' F'''device: {str(jax.devices()[0] )}.''' ) UpperCamelCase__ :Optional[int] = str(jax.devices()[0] ) UpperCamelCase__ :Tuple = jnp_array_kwargs @staticmethod def lowerCAmelCase__ ( ): '''simple docstring''' import jax return {str(UpperCamelCase_ ): device for device in jax.devices()} def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(UpperCamelCase_ , axis=0 ) return column def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCamelCase__ :Optional[int] = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCamelCase__ :List[str] = {'''dtype''': jnp.intaa} else: UpperCamelCase__ :Union[str, Any] = {'''dtype''': jnp.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCamelCase__ :Optional[Any] = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): UpperCamelCase__ :str = np.asarray(UpperCamelCase_ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase__ :Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCamelCase_ , **{**default_dtype, **self.jnp_array_kwargs} ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCamelCase_ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(UpperCamelCase_ , '''__array__''' ) and not isinstance(UpperCamelCase_ , jax.Array ): UpperCamelCase__ :int = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) UpperCamelCase__ :List[Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) UpperCamelCase__ :Tuple = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) UpperCamelCase__ :Dict = self.recursive_tensorize(UpperCamelCase_ ) UpperCamelCase__ :str = self._consolidate(UpperCamelCase_ ) return column def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = self.python_features_decoder.decode_batch(UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: UpperCamelCase__ :Optional[int] = self._consolidate(batch[column_name] ) return batch
219
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: lowerCAmelCase = ( '''Wrong input data\'s dimensions... ''' f"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(snake_case__ ) try: if dataset.shape[1] != value_array.shape[1]: lowerCAmelCase = ( '''Wrong input data\'s shape... ''' f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(snake_case__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: lowerCAmelCase = ( '''Input data have different datatype... ''' f"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(snake_case__ ) lowerCAmelCase = [] for value in value_array: lowerCAmelCase = euclidean(snake_case__ , dataset[0] ) lowerCAmelCase = dataset[0].tolist() for dataset_value in dataset[1:]: lowerCAmelCase = euclidean(snake_case__ , snake_case__ ) if dist > temp_dist: lowerCAmelCase = temp_dist lowerCAmelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> float: return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ )) if __name__ == "__main__": import doctest doctest.testmod()
338
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase_ ( unittest.TestCase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def SCREAMING_SNAKE_CASE_ ( self ) ->int: lowerCAmelCase = self.dummy_uncond_unet lowerCAmelCase = KarrasVeScheduler() lowerCAmelCase = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowercase_ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: lowerCAmelCase = '''google/ncsnpp-celebahq-256''' lowerCAmelCase = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = KarrasVeScheduler() lowerCAmelCase = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
338
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class a_ ( unittest.TestCase ): def __a ( self :int) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :Optional[int]) -> Union[str, Any]: UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''') UpperCAmelCase_ = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) sd_pipe.set_scheduler('''sample_euler''') UpperCAmelCase_ = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = sd_pipe([prompt] , generator=_lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''') UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def __a ( self :Union[str, Any]) -> Union[str, Any]: UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''') UpperCAmelCase_ = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) sd_pipe.set_scheduler('''sample_euler''') UpperCAmelCase_ = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = sd_pipe([prompt] , generator=_lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''') UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-1 def __a ( self :List[str]) -> str: UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''') UpperCAmelCase_ = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) sd_pipe.set_scheduler('''sample_dpmpp_2m''') UpperCAmelCase_ = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=_lowercase , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
357
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = "▁" UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =BigBirdTokenizer UpperCamelCase__ : Tuple =BigBirdTokenizerFast UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : List[str] =True def __a ( self :Any) -> List[str]: super().setUp() UpperCAmelCase_ = self.tokenizer_class(_lowercase , keep_accents=_lowercase) tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :str) -> str: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''[MASK]''') self.assertEqual(len(_lowercase) , 1004) def __a ( self :List[str]) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __a ( self :Tuple) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_lowercase) UpperCAmelCase_ = rust_tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = BigBirdTokenizer(_lowercase , keep_accents=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __a ( self :Any) -> List[Any]: return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') @slow def __a ( self :int) -> List[Any]: UpperCAmelCase_ = '''Hello World!''' UpperCAmelCase_ = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @slow def __a ( self :int) -> Any: UpperCAmelCase_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase_ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @require_torch @slow def __a ( self :Dict) -> Union[str, Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys())[:10] UpperCAmelCase_ = ''' '''.join(_lowercase) UpperCAmelCase_ = self.big_tokenizer.encode_plus(_lowercase , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = BigBirdConfig(attention_type='''original_full''') UpperCAmelCase_ = BigBirdModel(_lowercase) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase) model(**_lowercase) @slow def __a ( self :Optional[int]) -> Any: UpperCAmelCase_ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') UpperCAmelCase_ = tokenizer.decode(tokenizer('''Paris is the [MASK].''').input_ids) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''') @slow def __a ( self :Dict) -> List[str]: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
344
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowercase : """simple docstring""" @staticmethod def _SCREAMING_SNAKE_CASE ( *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : int): pass @is_pipeline_test @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) SCREAMING_SNAKE_CASE_: Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") SCREAMING_SNAKE_CASE_: List[str] = image_classifier(lowerCAmelCase__ , candidate_labels=["a", "b", "c"]) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowerCAmelCase__) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) SCREAMING_SNAKE_CASE_: Tuple = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2) self.assertEqual( nested_simplify(lowerCAmelCase__) , [ [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf") SCREAMING_SNAKE_CASE_: Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") SCREAMING_SNAKE_CASE_: Tuple = image_classifier(lowerCAmelCase__ , candidate_labels=["a", "b", "c"]) self.assertEqual( nested_simplify(lowerCAmelCase__) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2) self.assertEqual( nested_simplify(lowerCAmelCase__) , [ [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], ] , ) @slow @require_torch def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: str = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE_: str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") SCREAMING_SNAKE_CASE_: int = image_classifier(lowerCAmelCase__ , candidate_labels=["cat", "plane", "remote"]) self.assertEqual( nested_simplify(lowerCAmelCase__) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE_: Dict = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2) self.assertEqual( nested_simplify(lowerCAmelCase__) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf") # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE_: Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") SCREAMING_SNAKE_CASE_: str = image_classifier(lowerCAmelCase__ , candidate_labels=["cat", "plane", "remote"]) self.assertEqual( nested_simplify(lowerCAmelCase__) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE_: str = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2) self.assertEqual( nested_simplify(lowerCAmelCase__) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
13
class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = name SCREAMING_SNAKE_CASE_: Union[str, Any] = val def __str__( self : Dict): return F"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : List[str] , lowerCAmelCase__ : Any): return self.val < other.val class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: int = {} SCREAMING_SNAKE_CASE_: Any = self.build_heap(lowerCAmelCase__) def __getitem__( self : List[Any] , lowerCAmelCase__ : Dict): return self.get_value(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): return (idx - 1) // 2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return idx * 2 + 2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): return self.heap_dict[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = len(lowerCAmelCase__) - 1 SCREAMING_SNAKE_CASE_: List[str] = self.get_parent_idx(lowerCAmelCase__) for idx, i in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Union[str, Any] = idx SCREAMING_SNAKE_CASE_: str = i.val for i in range(lowerCAmelCase__ , -1 , -1): self.sift_down(lowerCAmelCase__ , lowerCAmelCase__) return array def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]): while True: SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_left_child_idx(lowerCAmelCase__) # noqa: E741 SCREAMING_SNAKE_CASE_: Dict = self.get_right_child_idx(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = idx if l < len(lowerCAmelCase__) and array[l] < array[idx]: SCREAMING_SNAKE_CASE_: List[str] = l if r < len(lowerCAmelCase__) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE_: str = r if smallest != idx: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE_: Optional[int] = smallest else: break def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Any = self.get_parent_idx(lowerCAmelCase__) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE_: Union[str, Any] = p SCREAMING_SNAKE_CASE_: Optional[int] = self.get_parent_idx(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.heap[0] def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE_: int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): self.heap.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = len(self.heap) - 1 SCREAMING_SNAKE_CASE_: List[str] = node.val self.sift_up(len(self.heap) - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return len(self.heap) == 0 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE_: Any = new_value SCREAMING_SNAKE_CASE_: Tuple = new_value self.sift_up(self.idx_of_element[node]) lowerCAmelCase : int = Node("""R""", -1) lowerCAmelCase : str = Node("""B""", 6) lowerCAmelCase : str = Node("""A""", 3) lowerCAmelCase : List[str] = Node("""X""", 1) lowerCAmelCase : Union[str, Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCAmelCase : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
13
1
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase , _UpperCamelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = JsonDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase , _UpperCamelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_3": "float64", "col_1": "string", "col_2": "int64"}, ] , ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = {"col_3": "float64", "col_1": "string", "col_2": "int64"} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = JsonDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read() assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = {"col_2": "int64", "col_3": "float64", "col_1": "string"} __lowerCAmelCase = features.copy() __lowerCAmelCase = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = JsonDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read() assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase , split=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase , _UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if issubclass(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = jsonl_path elif issubclass(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = [jsonl_path] __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=("train",) ): '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = JsonDatasetReader({"train": jsonl_path} , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase ).read() _check_json_datasetdict(_UpperCamelCase , _UpperCamelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = JsonDatasetReader({"train": jsonl_path} , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read() _check_json_datasetdict(_UpperCamelCase , _UpperCamelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if split: __lowerCAmelCase = {split: jsonl_path} else: __lowerCAmelCase = "train" __lowerCAmelCase = {"train": jsonl_path, "test": jsonl_path} __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase ).read() _check_json_datasetdict(_UpperCamelCase , _UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return json.load(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return [json.loads(_UpperCamelCase ) for line in buffer] class _UpperCamelCase : '''simple docstring''' @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def snake_case ( self , __a , __a , __a ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowercase , __lowercase , lines=__lowercase ).write() buffer.seek(0 ) __lowerCAmelCase = load_json_function(__lowercase ) assert isinstance(__lowercase , __lowercase ) assert isinstance(exported_content[0] , __lowercase ) assert len(__lowercase ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def snake_case ( self , __a , __a , __a , __a , __a ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowercase , __lowercase , lines=__lowercase , orient=__lowercase ).write() buffer.seek(0 ) __lowerCAmelCase = load_json(__lowercase ) assert isinstance(__lowercase , __lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__lowercase , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__lowercase ) == 10 @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def snake_case ( self , __a , __a , __a ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowercase , __lowercase , lines=__lowercase , num_proc=2 ).write() buffer.seek(0 ) __lowerCAmelCase = load_json_function(__lowercase ) assert isinstance(__lowercase , __lowercase ) assert isinstance(exported_content[0] , __lowercase ) assert len(__lowercase ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def snake_case ( self , __a , __a , __a , __a , __a ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowercase , __lowercase , lines=__lowercase , orient=__lowercase , num_proc=2 ).write() buffer.seek(0 ) __lowerCAmelCase = load_json(__lowercase ) assert isinstance(__lowercase , __lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__lowercase , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__lowercase ) == 10 def snake_case ( self , __a ): with pytest.raises(__lowercase ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowercase , __lowercase , num_proc=0 ) @pytest.mark.parametrize("compression, extension" , [("gzip", "gz"), ("bz2", "bz2"), ("xz", "xz")] ) def snake_case ( self , __a , __a , __a , __a , __a ): __lowerCAmelCase = tmp_path_factory.mktemp("data" ) / f"test.json.{extension}" __lowerCAmelCase = str(shared_datadir / f"test_file.json.{extension}" ) JsonDatasetWriter(__lowercase , __lowercase , compression=__lowercase ).write() with fsspec.open(__lowercase , "rb" , compression="infer" ) as f: __lowerCAmelCase = f.read() with fsspec.open(__lowercase , "rb" , compression="infer" ) as f: __lowerCAmelCase = f.read() assert exported_content == original_content
359
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""transformers""", """torch""", """note_seq"""] def __init__( self , *__a , **__a ): requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["transformers", "torch", "note_seq"] )
259
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class lowercase ( A__ ): """simple docstring""" _a = 'vivit' def __init__( self , UpperCamelCase_=224 , UpperCamelCase_=32 , UpperCamelCase_=[2, 16, 16] , UpperCamelCase_=3 , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3072 , UpperCamelCase_="gelu_fast" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.02 , UpperCamelCase_=1e-06 , UpperCamelCase_=True , **UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :Tuple = hidden_size UpperCamelCase__ :int = num_hidden_layers UpperCamelCase__ :Optional[Any] = num_attention_heads UpperCamelCase__ :List[str] = intermediate_size UpperCamelCase__ :Dict = hidden_act UpperCamelCase__ :str = hidden_dropout_prob UpperCamelCase__ :Optional[Any] = attention_probs_dropout_prob UpperCamelCase__ :Optional[int] = initializer_range UpperCamelCase__ :int = layer_norm_eps UpperCamelCase__ :List[Any] = image_size UpperCamelCase__ :Optional[Any] = num_frames UpperCamelCase__ :Dict = tubelet_size UpperCamelCase__ :Optional[int] = num_channels UpperCamelCase__ :List[Any] = qkv_bias super().__init__(**UpperCamelCase_ )
97
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class lowercase ( A__ ): """simple docstring""" _a = 'camembert' def __init__( self , UpperCamelCase_=30522 , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3072 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=2 , UpperCamelCase_=0.02 , UpperCamelCase_=1e-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=True , UpperCamelCase_=None , **UpperCamelCase_ , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :int = vocab_size UpperCamelCase__ :Optional[int] = hidden_size UpperCamelCase__ :Optional[int] = num_hidden_layers UpperCamelCase__ :List[Any] = num_attention_heads UpperCamelCase__ :Union[str, Any] = hidden_act UpperCamelCase__ :List[Any] = intermediate_size UpperCamelCase__ :int = hidden_dropout_prob UpperCamelCase__ :Tuple = attention_probs_dropout_prob UpperCamelCase__ :Union[str, Any] = max_position_embeddings UpperCamelCase__ :Tuple = type_vocab_size UpperCamelCase__ :int = initializer_range UpperCamelCase__ :List[str] = layer_norm_eps UpperCamelCase__ :int = position_embedding_type UpperCamelCase__ :Any = use_cache UpperCamelCase__ :Any = classifier_dropout class lowercase ( A__ ): """simple docstring""" @property def lowerCAmelCase__ ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase__ :List[str] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase__ :Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
97
1
import re from filelock import FileLock try: import nltk A__ = True except (ImportError, ModuleNotFoundError): A__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" re.sub('''<n>''' , '''''' , __lowerCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__lowerCAmelCase ) )
44
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. A__ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. A__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. A__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> tuple[str, float]: """simple docstring""" snake_case__ : List[Any] = len([g for position, g in enumerate(__lowerCAmelCase ) if g == main_target[position]] ) return (item, float(__lowerCAmelCase )) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> tuple[str, str]: """simple docstring""" snake_case__ : Tuple = random.randint(0 , len(__lowerCAmelCase ) - 1 ) snake_case__ : Optional[Any] = parent_a[:random_slice] + parent_a[random_slice:] snake_case__ : Any = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Dict = list(__lowerCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: snake_case__ : List[str] = random.choice(__lowerCAmelCase ) return "".join(__lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> list[str]: """simple docstring""" snake_case__ : Dict = [] # Generate more children proportionally to the fitness score. snake_case__ : List[str] = int(parent_a[1] * 100 ) + 1 snake_case__ : Optional[int] = 10 if child_n >= 10 else child_n for _ in range(__lowerCAmelCase ): snake_case__ : List[str] = population_score[random.randint(0 , __lowerCAmelCase )][0] snake_case__ , snake_case__ : Union[str, Any] = crossover(parent_a[0] , __lowerCAmelCase ) # Append new string to the population list. pop.append(mutate(__lowerCAmelCase , __lowerCAmelCase ) ) pop.append(mutate(__lowerCAmelCase , __lowerCAmelCase ) ) return pop def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: snake_case__ : List[str] = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(__lowerCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. snake_case__ : List[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: snake_case__ : List[str] = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(__lowerCAmelCase ) # Generate random starting population. snake_case__ : Tuple = [] for _ in range(__lowerCAmelCase ): population.append(''''''.join([random.choice(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. snake_case__ , snake_case__ : Union[str, Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__lowerCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. snake_case__ : str = [evaluate(__lowerCAmelCase , __lowerCAmelCase ) for item in population] # Check if there is a matching evolution. snake_case__ : str = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : x[1] , reverse=__lowerCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. snake_case__ : Optional[Any] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__lowerCAmelCase ) # Normalize population score to be between 0 and 1. snake_case__ : Dict = [ (item, score / len(__lowerCAmelCase )) for item, score in population_score ] # This is selection for i in range(__lowerCAmelCase ): population.extend(select(population_score[int(__lowerCAmelCase )] , __lowerCAmelCase , __lowerCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__lowerCAmelCase ) > N_POPULATION: break if __name__ == "__main__": A__ = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) A__ = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) A__ , A__ , A__ = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
44
1
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __a = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __UpperCAmelCase ( a_: Optional[int] ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCamelCase ) def __UpperCAmelCase ( a_: Dict ): from diffusers.utils.testing_utils import pytest_terminal_summary_main _UpperCAmelCase : List[str] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(__UpperCamelCase, id=__UpperCamelCase )
145
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __snake_case : def __init__( self : Optional[int] , _lowercase : Union[str, Any] , _lowercase : List[Any]=13 , _lowercase : List[Any]=7 , _lowercase : Optional[int]=True , _lowercase : str=True , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : List[str]=99 , _lowercase : List[str]=32 , _lowercase : str=5 , _lowercase : str=4 , _lowercase : str=4 , _lowercase : Union[str, Any]="gelu" , _lowercase : str=0.0 , _lowercase : Union[str, Any]=0.1 , _lowercase : List[str]=True , _lowercase : Union[str, Any]=5_12 , _lowercase : List[str]=16 , _lowercase : Dict=2 , _lowercase : int=0.02 , _lowercase : Any=3 , _lowercase : int=4 , _lowercase : List[str]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_multiple_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = weight_tying SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self : Optional[int] ): """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = True return config, input_ids, input_mask, token_labels def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int , _lowercase : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseModel(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = model(_lowercase , attention_mask=_lowercase ) SCREAMING_SNAKE_CASE__ = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Dict , _lowercase : int , _lowercase : str , _lowercase : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseModel(_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Any , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : int , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() # first forward pass SCREAMING_SNAKE_CASE__ = model(_lowercase , attention_mask=_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE__ = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE__ = model(_lowercase , attention_mask=_lowercase , output_hidden_states=_lowercase ) SCREAMING_SNAKE_CASE__ = output_from_no_past["""hidden_states"""][0] SCREAMING_SNAKE_CASE__ = model( _lowercase , attention_mask=_lowercase , past_key_values=_lowercase , output_hidden_states=_lowercase , )["""hidden_states"""][0] # select random slice SCREAMING_SNAKE_CASE__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-3 ) ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __snake_case ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCAmelCase_ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCAmelCase_ = ( {"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def __a ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowercase , _lowercase , _lowercase ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowercase , _lowercase , _lowercase ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_decoder() SCREAMING_SNAKE_CASE__ = None self.model_tester.create_and_check_model_as_decoder(_lowercase , _lowercase , _lowercase ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowercase , _lowercase , _lowercase ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowercase ) @slow def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """abeja/gpt-neox-japanese-2.7b""" SCREAMING_SNAKE_CASE__ = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] SCREAMING_SNAKE_CASE__ = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseTokenizer.from_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseForCausalLM.from_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = [] for prompt in prompts: SCREAMING_SNAKE_CASE__ = tokenizer(_lowercase , return_tensors="""pt""" ).input_ids SCREAMING_SNAKE_CASE__ = model.generate(_lowercase , max_length=50 ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) predicted_outputs += generated_string self.assertListEqual(_lowercase , _lowercase )
219
0
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __snake_case = logging.getLogger(__name__) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : List[Any] = """summarization""" __lowerCamelCase : Optional[Any] = ["""loss"""] __lowerCamelCase : List[str] = ROUGE_KEYS __lowerCamelCase : int = """rouge2""" def __init__( self , snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' if hparams.sortish_sampler and hparams.gpus > 1: UpperCAmelCase : str =False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(snake_case__ , num_labels=snake_case__ , mode=self.mode , **snake_case__ ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) UpperCAmelCase : Tuple =Path(self.output_dir ) / '''metrics.json''' UpperCAmelCase : Any =Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) UpperCAmelCase : Union[str, Any] =0 UpperCAmelCase : Any =defaultdict(snake_case__ ) UpperCAmelCase : Union[str, Any] =self.config.model_type UpperCAmelCase : Any =self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size UpperCAmelCase : dict ={ "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } UpperCAmelCase : Union[str, Any] ={ '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } UpperCAmelCase : Dict ={k: v if v >= 0 else None for k, v in n_observations_per_split.items()} UpperCAmelCase : Any ={ '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], f'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) UpperCAmelCase : Union[str, Any] =get_git_info()['''repo_sha'''] UpperCAmelCase : Optional[int] =hparams.num_workers UpperCAmelCase : Tuple =None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , snake_case__ ): UpperCAmelCase : Union[str, Any] =self.tokenizer.lang_code_to_id[hparams.tgt_lang] UpperCAmelCase : List[str] =self.decoder_start_token_id UpperCAmelCase : str =( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) UpperCAmelCase : Union[str, Any] =False UpperCAmelCase : List[Any] =self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: UpperCAmelCase : Tuple =self.hparams.eval_max_gen_length else: UpperCAmelCase : Union[str, Any] =self.model.config.max_length UpperCAmelCase : Dict =self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCAmelCase__ ( self , snake_case__ ) -> Dict[str, List[str]]: '''simple docstring''' UpperCAmelCase : List[Any] ={ k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(snake_case__ , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) UpperCAmelCase : Any =True return readable_batch def UpperCAmelCase__ ( self , snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' return self.model(snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Dict =self.tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) return lmap(str.strip , snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : Dict =self.tokenizer.pad_token_id UpperCAmelCase : int =batch['''input_ids'''], batch['''attention_mask'''] UpperCAmelCase : List[Any] =batch['''labels'''] if isinstance(self.model , snake_case__ ): UpperCAmelCase : Any =self.model._shift_right(snake_case__ ) else: UpperCAmelCase : Tuple =shift_tokens_right(snake_case__ , snake_case__ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero UpperCAmelCase : Any =decoder_input_ids self.save_readable_batch(snake_case__ ) UpperCAmelCase : Dict =self(snake_case__ , attention_mask=snake_case__ , decoder_input_ids=snake_case__ , use_cache=snake_case__ ) UpperCAmelCase : List[Any] =outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id UpperCAmelCase : Optional[Any] =nn.CrossEntropyLoss(ignore_index=snake_case__ ) assert lm_logits.shape[-1] == self.vocab_size UpperCAmelCase : Dict =ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: UpperCAmelCase : str =nn.functional.log_softmax(snake_case__ , dim=-1 ) UpperCAmelCase : Any =label_smoothed_nll_loss( snake_case__ , snake_case__ , self.hparams.label_smoothing , ignore_index=snake_case__ ) return (loss,) @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return self.tokenizer.pad_token_id def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] =self._step(snake_case__ ) UpperCAmelCase : Any =dict(zip(self.loss_names , snake_case__ ) ) # tokens per batch UpperCAmelCase : List[str] =batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() UpperCAmelCase : int =batch['''input_ids'''].shape[0] UpperCAmelCase : List[Any] =batch['''input_ids'''].eq(self.pad ).sum() UpperCAmelCase : Any =batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Dict: '''simple docstring''' return self._generative_step(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__="val" ) -> Dict: '''simple docstring''' self.step_count += 1 UpperCAmelCase : Dict ={k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} UpperCAmelCase : Any =losses['''loss'''] UpperCAmelCase : Union[str, Any] ={ k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } UpperCAmelCase : Optional[Any] =( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) UpperCAmelCase : torch.FloatTensor =torch.tensor(snake_case__ ).type_as(snake_case__ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(snake_case__ ) UpperCAmelCase : str ={f'''{prefix}_avg_{k}''': x for k, x in losses.items()} UpperCAmelCase : Optional[int] =self.step_count self.metrics[prefix].append(snake_case__ ) # callback writes this to self.metrics_save_path UpperCAmelCase : Union[str, Any] =flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'''{prefix}_loss''': loss, f'''{prefix}_{self.val_metric}''': metric_tensor, } def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Dict: '''simple docstring''' return calculate_rouge(snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ ) -> dict: '''simple docstring''' UpperCAmelCase : str =time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') UpperCAmelCase : Union[str, Any] =self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=snake_case__ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) UpperCAmelCase : Union[str, Any] =(time.time() - ta) / batch['''input_ids'''].shape[0] UpperCAmelCase : List[str] =self.ids_to_clean_text(snake_case__ ) UpperCAmelCase : List[str] =self.ids_to_clean_text(batch['''labels'''] ) UpperCAmelCase : str =self._step(snake_case__ ) UpperCAmelCase : Optional[Any] =dict(zip(self.loss_names , snake_case__ ) ) UpperCAmelCase : Dict =self.calc_generative_metrics(snake_case__ , snake_case__ ) UpperCAmelCase : int =np.mean(lmap(snake_case__ , snake_case__ ) ) base_metrics.update(gen_time=snake_case__ , gen_len=snake_case__ , preds=snake_case__ , target=snake_case__ , **snake_case__ ) return base_metrics def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple: '''simple docstring''' return self._generative_step(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ ) -> Tuple: '''simple docstring''' return self.validation_epoch_end(snake_case__ , prefix='''test''' ) def UpperCAmelCase__ ( self , snake_case__ ) -> SeqaSeqDataset: '''simple docstring''' UpperCAmelCase : List[Any] =self.n_obs[type_path] UpperCAmelCase : Optional[int] =self.target_lens[type_path] UpperCAmelCase : Optional[int] =self.dataset_class( self.tokenizer , type_path=snake_case__ , n_obs=snake_case__ , max_target_length=snake_case__ , **self.dataset_kwargs , ) return dataset def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ = False ) -> DataLoader: '''simple docstring''' UpperCAmelCase : Tuple =self.get_dataset(snake_case__ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": UpperCAmelCase : Optional[int] =dataset.make_sortish_sampler(snake_case__ , distributed=self.hparams.gpus > 1 ) return DataLoader( snake_case__ , batch_size=snake_case__ , collate_fn=dataset.collate_fn , shuffle=snake_case__ , num_workers=self.num_workers , sampler=snake_case__ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": UpperCAmelCase : Optional[int] =dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( snake_case__ , batch_sampler=snake_case__ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( snake_case__ , batch_size=snake_case__ , collate_fn=dataset.collate_fn , shuffle=snake_case__ , num_workers=self.num_workers , sampler=snake_case__ , ) def UpperCAmelCase__ ( self ) -> DataLoader: '''simple docstring''' UpperCAmelCase : Dict =self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=snake_case__ ) return dataloader def UpperCAmelCase__ ( self ) -> DataLoader: '''simple docstring''' return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def UpperCAmelCase__ ( self ) -> DataLoader: '''simple docstring''' return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCAmelCase__ ( snake_case__ , snake_case__ ) -> Dict: '''simple docstring''' BaseTransformer.add_model_specific_args(snake_case__ , snake_case__ ) add_generic_args(snake_case__ , snake_case__ ) parser.add_argument( '''--max_source_length''' , default=1024 , type=snake_case__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=snake_case__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=snake_case__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=snake_case__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=snake_case__ ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=snake_case__ ) parser.add_argument('''--max_tokens_per_batch''' , type=snake_case__ , default=snake_case__ ) parser.add_argument('''--logger_name''' , type=snake_case__ , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=snake_case__ , default=-1 , required=snake_case__ , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=snake_case__ , default=500 , required=snake_case__ , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=snake_case__ , default=-1 , required=snake_case__ , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=snake_case__ , default='''summarization''' , required=snake_case__ , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=snake_case__ , default=0.0 , required=snake_case__ ) parser.add_argument('''--src_lang''' , type=snake_case__ , default='''''' , required=snake_case__ ) parser.add_argument('''--tgt_lang''' , type=snake_case__ , default='''''' , required=snake_case__ ) parser.add_argument('''--eval_beams''' , type=snake_case__ , default=snake_case__ , required=snake_case__ ) parser.add_argument( '''--val_metric''' , type=snake_case__ , default=snake_case__ , required=snake_case__ , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=snake_case__ , default=snake_case__ , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=snake_case__ , default=1 , required=snake_case__ , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=snake_case__ , default=-1 , required=snake_case__ , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : str = """translation""" __lowerCamelCase : int = ["""loss"""] __lowerCamelCase : int = ["""bleu"""] __lowerCamelCase : List[Any] = """bleu""" def __init__( self , snake_case__ , **snake_case__ ) -> str: '''simple docstring''' super().__init__(snake_case__ , **snake_case__ ) UpperCAmelCase : Dict =hparams.src_lang UpperCAmelCase : int =hparams.tgt_lang def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> dict: '''simple docstring''' return calculate_bleu(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=None )-> SummarizationModule: '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=__lowerCAmelCase ) check_output_dir(__lowerCAmelCase , expected_items=3 ) if model is None: if "summarization" in args.task: UpperCAmelCase : SummarizationModule =SummarizationModule(__lowerCAmelCase ) else: UpperCAmelCase : SummarizationModule =TranslationModule(__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] =Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): UpperCAmelCase : Dict =True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase : List[str] =os.environ.get('''WANDB_PROJECT''' , __lowerCAmelCase ) UpperCAmelCase : List[Any] =WandbLogger(name=model.output_dir.name , project=__lowerCAmelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase : List[Any] =WandbLogger(name=model.output_dir.name , project=f'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: UpperCAmelCase : Any =get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: UpperCAmelCase : Dict =False UpperCAmelCase : Optional[int] =args.val_metric == '''loss''' UpperCAmelCase : pl.Trainer =generic_train( __lowerCAmelCase , __lowerCAmelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __lowerCAmelCase ) , early_stopping_callback=__lowerCAmelCase , logger=__lowerCAmelCase , ) pickle_save(model.hparams , model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model UpperCAmelCase : str ='''''' UpperCAmelCase : Any =sorted(glob.glob(os.path.join(args.output_dir , '''*.ckpt''' ) , recursive=__lowerCAmelCase ) ) if checkpoints: UpperCAmelCase : Tuple =checkpoints[-1] UpperCAmelCase : Union[str, Any] =checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __snake_case = argparse.ArgumentParser() __snake_case = pl.Trainer.add_argparse_args(parser) __snake_case = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __snake_case = parser.parse_args() main(args)
353
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.json'''} __snake_case = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } __snake_case = {'''mgp-str''': 27} class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , snake_case__ , snake_case__="[GO]" , snake_case__="[GO]" , snake_case__="[s]" , snake_case__="[GO]" , **snake_case__ ) -> Any: '''simple docstring''' super().__init__( unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , pad_token=snake_case__ , **snake_case__ , ) with open(snake_case__ , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase : int =json.load(snake_case__ ) UpperCAmelCase : List[str] ={v: k for k, v in self.vocab.items()} @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return len(self.vocab ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =[] for s in text: char_tokens.extend(snake_case__ ) return char_tokens def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' return self.vocab.get(snake_case__ , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(snake_case__ ) ) return UpperCAmelCase : List[Any] =os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + '''\n''' ) return (vocab_file,)
78
0
from manim import * class __A ( __A ): def lowercase__ ( self : List[str] ): lowerCAmelCase : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : str = [mem.copy() for i in range(6 )] lowerCAmelCase : Any = [mem.copy() for i in range(6 )] lowerCAmelCase : List[str] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) lowerCAmelCase : Optional[Any] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) lowerCAmelCase : Any = VGroup(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) lowerCAmelCase : int = Text('CPU' , font_size=24 ) lowerCAmelCase : Any = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCamelCase ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(4 )] lowerCAmelCase : Dict = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) lowerCAmelCase : Dict = Text('GPU' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(_lowerCamelCase ) lowerCAmelCase : List[str] = [mem.copy() for i in range(6 )] lowerCAmelCase : List[str] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) lowerCAmelCase : str = Text('Model' , font_size=24 ) lowerCAmelCase : str = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(_lowerCamelCase ) lowerCAmelCase : Optional[int] = [] for i, rect in enumerate(_lowerCamelCase ): rect.set_stroke(_lowerCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) lowerCAmelCase : Optional[int] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_lowerCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=_lowerCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=_lowerCamelCase , buff=0.0 ) self.add(_lowerCamelCase ) cpu_targs.append(_lowerCamelCase ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Optional[int] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) lowerCAmelCase : int = Text('Loaded Checkpoint' , font_size=24 ) lowerCAmelCase : str = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , aligned_edge=_lowerCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : List[Any] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase : List[Any] = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(_lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) lowerCAmelCase : Any = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCamelCase ) , Write(_lowerCamelCase ) ) self.play(Write(_lowerCamelCase , run_time=1 ) , Create(_lowerCamelCase , run_time=1 ) ) lowerCAmelCase : List[str] = [] lowerCAmelCase : str = [] for i, rect in enumerate(_lowerCamelCase ): lowerCAmelCase : Union[str, Any] = fill.copy().set_fill(_lowerCamelCase , opacity=0.7 ) target.move_to(_lowerCamelCase ) first_animations.append(GrowFromCenter(_lowerCamelCase , run_time=1 ) ) lowerCAmelCase : Optional[int] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(_lowerCamelCase , run_time=1.5 ) ) self.play(*_lowerCamelCase ) self.play(*_lowerCamelCase ) self.wait()
138
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Optional[Any] = name A_ : Dict = value A_ : Union[str, Any] = weight def __repr__( self ) -> List[str]: return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.value def UpperCAmelCase_ ( self ) -> List[str]: return self.name def UpperCAmelCase_ ( self ) -> Tuple: return self.weight def UpperCAmelCase_ ( self ) -> Optional[int]: return self.value / self.weight def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Optional[int] = [] for i in range(len(a_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" A_ : Optional[Any] = sorted(a_ , key=a_ , reverse=a_ ) A_ : str = [] A_ , A_ : Dict = 0.0, 0.0 for i in range(len(a_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
344
0
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __lowercase ( _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' random.seed(_SCREAMING_SNAKE_CASE ) np.random.seed(_SCREAMING_SNAKE_CASE ) torch.manual_seed(_SCREAMING_SNAKE_CASE ) torch.cuda.manual_seed_all(_SCREAMING_SNAKE_CASE ) # ^^ safe to call this function even if cuda is not available class UpperCamelCase__ : '''simple docstring''' def __init__( self : Optional[Any] ,lowerCamelCase__ : Iterable[torch.nn.Parameter] ,lowerCamelCase__ : float = 0.9999 ,lowerCamelCase__ : float = 0.0 ,lowerCamelCase__ : int = 0 ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : Union[float, int] = 1.0 ,lowerCamelCase__ : Union[float, int] = 2 / 3 ,lowerCamelCase__ : Optional[Any] = None ,lowerCamelCase__ : Dict[str, Any] = None ,**lowerCamelCase__ : Any ,) -> Union[str, Any]: '''simple docstring''' if isinstance(lowerCamelCase__ ,torch.nn.Module ): SCREAMING_SNAKE_CASE = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" ,"""1.0.0""" ,lowerCamelCase__ ,standard_warn=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility SCREAMING_SNAKE_CASE = True if kwargs.get("""max_value""" ,lowerCamelCase__ ) is not None: SCREAMING_SNAKE_CASE = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" ,"""1.0.0""" ,lowerCamelCase__ ,standard_warn=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = kwargs["""max_value"""] if kwargs.get("""min_value""" ,lowerCamelCase__ ) is not None: SCREAMING_SNAKE_CASE = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" ,"""1.0.0""" ,lowerCamelCase__ ,standard_warn=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = kwargs["""min_value"""] SCREAMING_SNAKE_CASE = list(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = [p.clone().detach() for p in parameters] if kwargs.get("""device""" ,lowerCamelCase__ ) is not None: SCREAMING_SNAKE_CASE = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" ,"""1.0.0""" ,lowerCamelCase__ ,standard_warn=lowerCamelCase__ ) self.to(device=kwargs["""device"""] ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = decay SCREAMING_SNAKE_CASE = min_decay SCREAMING_SNAKE_CASE = update_after_step SCREAMING_SNAKE_CASE = use_ema_warmup SCREAMING_SNAKE_CASE = inv_gamma SCREAMING_SNAKE_CASE = power SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = None # set in `step()` SCREAMING_SNAKE_CASE = model_cls SCREAMING_SNAKE_CASE = model_config @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Union[str, Any] ) -> "EMAModel": '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = model_cls.load_config(lowerCamelCase__ ,return_unused_kwargs=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model_cls.from_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = cls(model.parameters() ,model_cls=lowerCamelCase__ ,model_config=model.config ) ema_model.load_state_dict(lowerCamelCase__ ) return ema_model def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : str ) -> Tuple: '''simple docstring''' if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) SCREAMING_SNAKE_CASE = self.model_cls.from_config(self.model_config ) SCREAMING_SNAKE_CASE = self.state_dict() state_dict.pop("""shadow_params""" ,lowerCamelCase__ ) model.register_to_config(**lowerCamelCase__ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : int ) -> float: '''simple docstring''' SCREAMING_SNAKE_CASE = max(0 ,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: SCREAMING_SNAKE_CASE = 1 - (1 + step / self.inv_gamma) ** -self.power else: SCREAMING_SNAKE_CASE = (1 + step) / (10 + step) SCREAMING_SNAKE_CASE = min(lowerCamelCase__ ,self.decay ) # make sure decay is not smaller than min_decay SCREAMING_SNAKE_CASE = max(lowerCamelCase__ ,self.min_decay ) return cur_decay_value @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Iterable[torch.nn.Parameter] ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCamelCase__ ,torch.nn.Module ): SCREAMING_SNAKE_CASE = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" ,"""1.0.0""" ,lowerCamelCase__ ,standard_warn=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = parameters.parameters() SCREAMING_SNAKE_CASE = list(lowerCamelCase__ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. SCREAMING_SNAKE_CASE = self.get_decay(self.optimization_step ) SCREAMING_SNAKE_CASE = decay SCREAMING_SNAKE_CASE = 1 - decay SCREAMING_SNAKE_CASE = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params ,lowerCamelCase__ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): SCREAMING_SNAKE_CASE = deepspeed.zero.GatheredParameters(lowerCamelCase__ ,modifier_rank=lowerCamelCase__ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ,lowerCamelCase__ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = list(lowerCamelCase__ ) for s_param, param in zip(self.shadow_params ,lowerCamelCase__ ): param.data.copy_(s_param.to(param.device ).data ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : str=None ,lowerCamelCase__ : int=None ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = [ p.to(device=lowerCamelCase__ ,dtype=lowerCamelCase__ ) if p.is_floating_point() else p.to(device=lowerCamelCase__ ) for p in self.shadow_params ] def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = [param.detach().cpu().clone() for param in parameters] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params ,lowerCamelCase__ ): param.data.copy_(c_param.data ) # Better memory-wise. SCREAMING_SNAKE_CASE = None def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : dict ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = copy.deepcopy(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = state_dict.get("""decay""" ,self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) SCREAMING_SNAKE_CASE = state_dict.get("""min_decay""" ,self.min_decay ) if not isinstance(self.min_decay ,lowerCamelCase__ ): raise ValueError("""Invalid min_decay""" ) SCREAMING_SNAKE_CASE = state_dict.get("""optimization_step""" ,self.optimization_step ) if not isinstance(self.optimization_step ,lowerCamelCase__ ): raise ValueError("""Invalid optimization_step""" ) SCREAMING_SNAKE_CASE = state_dict.get("""update_after_step""" ,self.update_after_step ) if not isinstance(self.update_after_step ,lowerCamelCase__ ): raise ValueError("""Invalid update_after_step""" ) SCREAMING_SNAKE_CASE = state_dict.get("""use_ema_warmup""" ,self.use_ema_warmup ) if not isinstance(self.use_ema_warmup ,lowerCamelCase__ ): raise ValueError("""Invalid use_ema_warmup""" ) SCREAMING_SNAKE_CASE = state_dict.get("""inv_gamma""" ,self.inv_gamma ) if not isinstance(self.inv_gamma ,(float, int) ): raise ValueError("""Invalid inv_gamma""" ) SCREAMING_SNAKE_CASE = state_dict.get("""power""" ,self.power ) if not isinstance(self.power ,(float, int) ): raise ValueError("""Invalid power""" ) SCREAMING_SNAKE_CASE = state_dict.get("""shadow_params""" ,lowerCamelCase__ ) if shadow_params is not None: SCREAMING_SNAKE_CASE = shadow_params if not isinstance(self.shadow_params ,lowerCamelCase__ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCamelCase__ ,torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
193
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : int = ComputeEnvironment.AMAZON_SAGEMAKER __snake_case : List[Any] = True __snake_case : Optional[int] = "ml.p3.2xlarge" __snake_case : List[str] = "accelerate_sagemaker_execution_role" __snake_case : Tuple = "hf-sm" __snake_case : Any = "us-east-1" __snake_case : Union[str, Any] = 1 __snake_case : Dict = "accelerate-sagemaker-1" __snake_case : Tuple = "1.6" __snake_case : List[str] = "4.4" __snake_case : str = "train.py" __snake_case : List[str] = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] __snake_case : Optional[int] = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""do_train"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""epochs"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""learning_rate"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""max_steps"""] ,lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
193
1
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : int=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Union[str, Any]=None , **UpperCamelCase : List[Any] ): '''simple docstring''' if tokenize_kwargs is None: lowercase__ = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) lowercase__ = truncation lowercase__ = tokenize_kwargs lowercase__ = {} if return_tensors is not None: lowercase__ = return_tensors return preprocess_params, {}, postprocess_params def UpperCamelCase__ (self : List[str] , UpperCamelCase : str , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = self.framework lowercase__ = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) return model_inputs def UpperCamelCase__ (self : Dict , UpperCamelCase : List[str] ): '''simple docstring''' lowercase__ = self.model(**UpperCamelCase ) return model_outputs def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Any=False ): '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__(self : str , *UpperCamelCase : Any , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return super().__call__(*UpperCamelCase , **UpperCamelCase )
2
import sys def _A ( SCREAMING_SNAKE_CASE__ : List[str] ): UpperCamelCase :Any = len(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = [[0 for x in range(SCREAMING_SNAKE_CASE__ )] for x in range(SCREAMING_SNAKE_CASE__ )] UpperCamelCase :List[Any] = [[0 for x in range(SCREAMING_SNAKE_CASE__ )] for x in range(SCREAMING_SNAKE_CASE__ )] for chain_length in range(2 , SCREAMING_SNAKE_CASE__ ): for a in range(1 , n - chain_length + 1 ): UpperCamelCase :Optional[Any] = a + chain_length - 1 UpperCamelCase :int = sys.maxsize for c in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Any = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCamelCase :int = cost UpperCamelCase :List[str] = c return matrix, sol def _A ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): if i == j: print('''A''' + str(SCREAMING_SNAKE_CASE__ ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , optimal_solution[i][j] ) print_optiomal_solution(SCREAMING_SNAKE_CASE__ , optimal_solution[i][j] + 1 , SCREAMING_SNAKE_CASE__ ) print(''')''' , end=''' ''' ) def _A ( ): UpperCamelCase :Optional[int] = [30, 35, 15, 5, 10, 20, 25] UpperCamelCase :Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCamelCase , UpperCamelCase :Dict = matrix_chain_order(SCREAMING_SNAKE_CASE__ ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(SCREAMING_SNAKE_CASE__ , 1 , n - 1 ) if __name__ == "__main__": main()
259
0
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _snake_case = logging.get_logger(__name__) class lowerCAmelCase ( lowercase_ ): def __init__( self :Optional[Any] , *_lowercase :Dict , **_lowercase :Any ): '''simple docstring''' warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
201
import math def _A ( __magic_name__ ): lowercase__ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__magic_name__ ) def _A ( __magic_name__ = 1 / 1_2345 ): lowercase__ = 0 lowercase__ = 0 lowercase__ = 3 while True: lowercase__ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__magic_name__ ): lowercase__ = int(__magic_name__ ) total_partitions += 1 if check_partition_perfect(__magic_name__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__magic_name__ ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
201
1
"""simple docstring""" import math import sys import cva import numpy as np def SCREAMING_SNAKE_CASE ( _lowerCamelCase : np.ndarray ,_lowerCamelCase : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. _lowerCAmelCase : Tuple = math.sqrt(_lowerCamelCase ) _lowerCAmelCase : Dict = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : np.ndarray ,_lowerCamelCase : int ,_lowerCamelCase : int ,_lowerCamelCase : int ) -> np.ndarray: _lowerCAmelCase : List[Any] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. _lowerCAmelCase : List[str] = np.zeros((kernel_size, kernel_size) ) for i in range(0 ,_lowerCamelCase ): for j in range(0 ,_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_lowerCamelCase ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : np.ndarray ,_lowerCamelCase : float ,_lowerCamelCase : float ,_lowerCamelCase : int ,) -> np.ndarray: _lowerCAmelCase : Union[str, Any] = np.zeros(img.shape ) _lowerCAmelCase : Dict = get_gauss_kernel(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Tuple = img.shape for i in range(kernel_size // 2 ,size_x - kernel_size // 2 ): for j in range(kernel_size // 2 ,size_y - kernel_size // 2 ): _lowerCAmelCase : Union[str, Any] = get_slice(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : List[Any] = img_s - img_s[kernel_size // 2, kernel_size // 2] _lowerCAmelCase : List[Any] = vec_gaussian(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = np.multiply(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : int = np.multiply(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : str = np.sum(_lowerCamelCase ) / np.sum(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = val return imga def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list ) -> tuple: _lowerCAmelCase : List[Any] = args[1] if args[1:] else """../image_data/lena.jpg""" _lowerCAmelCase : Optional[Any] = float(args[2] ) if args[2:] else 1.0 _lowerCAmelCase : Dict = float(args[3] ) if args[3:] else 1.0 if args[4:]: _lowerCAmelCase : List[str] = int(args[4] ) _lowerCAmelCase : List[str] = kernel_size + abs(kernel_size % 2 - 1 ) else: _lowerCAmelCase : Tuple = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _a , _a , _a , _a : Optional[Any] = parse_args(sys.argv) _a : Optional[Any] = cva.imread(filename, 0) cva.imshow('input image', img) _a : List[str] = img / 255 _a : Union[str, Any] = out.astype('float32') _a : Dict = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _a : Optional[int] = out * 255 _a : Union[str, Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
44
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
44
1
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : int = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = "efficientnet" def __init__( self : int , _lowercase : int = 3 , _lowercase : int = 6_00 , _lowercase : float = 2.0 , _lowercase : float = 3.1 , _lowercase : int = 8 , _lowercase : List[int] = [3, 3, 5, 3, 5, 5, 3] , _lowercase : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , _lowercase : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , _lowercase : List[int] = [] , _lowercase : List[int] = [1, 2, 2, 2, 1, 2, 1] , _lowercase : List[int] = [1, 2, 2, 3, 3, 4, 1] , _lowercase : List[int] = [1, 6, 6, 6, 6, 6, 6] , _lowercase : float = 0.25 , _lowercase : str = "swish" , _lowercase : int = 25_60 , _lowercase : str = "mean" , _lowercase : float = 0.02 , _lowercase : float = 0.0_01 , _lowercase : float = 0.99 , _lowercase : float = 0.5 , _lowercase : float = 0.2 , **_lowercase : List[str] , ): """simple docstring""" super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = width_coefficient SCREAMING_SNAKE_CASE__ = depth_coefficient SCREAMING_SNAKE_CASE__ = depth_divisor SCREAMING_SNAKE_CASE__ = kernel_sizes SCREAMING_SNAKE_CASE__ = in_channels SCREAMING_SNAKE_CASE__ = out_channels SCREAMING_SNAKE_CASE__ = depthwise_padding SCREAMING_SNAKE_CASE__ = strides SCREAMING_SNAKE_CASE__ = num_block_repeats SCREAMING_SNAKE_CASE__ = expand_ratios SCREAMING_SNAKE_CASE__ = squeeze_expansion_ratio SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dim SCREAMING_SNAKE_CASE__ = pooling_type SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = batch_norm_eps SCREAMING_SNAKE_CASE__ = batch_norm_momentum SCREAMING_SNAKE_CASE__ = dropout_rate SCREAMING_SNAKE_CASE__ = drop_connect_rate SCREAMING_SNAKE_CASE__ = sum(_lowercase ) * 4 class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = version.parse("1.11" ) @property def __a ( self : Union[str, Any] ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __a ( self : Optional[int] ): """simple docstring""" return 1E-5
204
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): __lowerCamelCase : Optional[Any] = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: __lowerCamelCase : int = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = (images / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE__ = numpy_to_pil(__UpperCamelCase ) return images def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if images.ndim == 3: SCREAMING_SNAKE_CASE__ = images[None, ...] SCREAMING_SNAKE_CASE__ = (images * 2_55).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images SCREAMING_SNAKE_CASE__ = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: SCREAMING_SNAKE_CASE__ = [Image.fromarray(__UpperCamelCase ) for image in images] return pil_images
204
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : Union[str, Any] = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE : Union[str, Any] = { """squeezebert/squeezebert-uncased""": 512, """squeezebert/squeezebert-mnli""": 512, """squeezebert/squeezebert-mnli-headless""": 512, } SCREAMING_SNAKE_CASE : Tuple = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =SqueezeBertTokenizer def __init__(self , a_=None , a_=None , a_=True , a_="[UNK]" , a_="[SEP]" , a_="[PAD]" , a_="[CLS]" , a_="[MASK]" , a_=True , a_=None , **a_ , ): '''simple docstring''' super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , ) __snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowercase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowercase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowercase_ ) != tokenize_chinese_chars ): __snake_case : Any = getattr(lowercase_ , normalizer_state.pop('''type''' ) ) __snake_case : Optional[Any] = do_lower_case __snake_case : Tuple = strip_accents __snake_case : Any = tokenize_chinese_chars __snake_case : Tuple = normalizer_class(**lowercase_ ) __snake_case : str = do_lower_case def SCREAMING_SNAKE_CASE (self , a_ , a_=None ): '''simple docstring''' __snake_case : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Optional[Any] = [self.sep_token_id] __snake_case : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Dict = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ )
102
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case_ = logging.get_logger(__name__) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = ["""pixel_values"""] def __init__( self :int , lowercase_ :bool = True , lowercase_ :Dict[str, int] = None , lowercase_ :PILImageResampling = PILImageResampling.BICUBIC , lowercase_ :bool = True , lowercase_ :Union[int, float] = 1 / 2_55 , lowercase_ :bool = True , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :bool = True , **lowercase_ :Union[str, Any] , ) -> None: super().__init__(**lowercase_ ) UpperCAmelCase = size if size is not None else {'height': 3_84, 'width': 3_84} UpperCAmelCase = get_size_dict(lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase = do_convert_rgb def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :np.ndarray , lowercase_ :Dict[str, int] , lowercase_ :PILImageResampling = PILImageResampling.BICUBIC , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :Any , ) -> np.ndarray: UpperCAmelCase = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) UpperCAmelCase = (size['height'], size['width']) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :np.ndarray , lowercase_ :Union[int, float] , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :Optional[int] , ) -> int: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :Any , lowercase_ :np.ndarray , lowercase_ :Union[float, List[float]] , lowercase_ :Union[float, List[float]] , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :Optional[Any] , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :ImageInput , lowercase_ :Optional[bool] = None , lowercase_ :Optional[Dict[str, int]] = None , lowercase_ :PILImageResampling = None , lowercase_ :Optional[bool] = None , lowercase_ :Optional[float] = None , lowercase_ :Optional[bool] = None , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :Optional[Union[str, TensorType]] = None , lowercase_ :bool = None , lowercase_ :ChannelDimension = ChannelDimension.FIRST , **lowercase_ :Tuple , ) -> PIL.Image.Image: UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase = [convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(lowercase_ ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] UpperCAmelCase = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] UpperCAmelCase = BatchFeature(data={'pixel_values': images} , tensor_type=lowercase_ ) return encoded_outputs
78
0
import os from datetime import datetime as dt from github import Github lowerCamelCase = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = Github(os.environ['''GITHUB_TOKEN'''] ) lowerCAmelCase__ : Optional[int] = g.get_repo('''huggingface/diffusers''' ) lowerCAmelCase__ : int = repo.get_issues(state='''open''' ) for issue in open_issues: lowerCAmelCase__ : str = sorted(issue.get_comments() , key=lambda _a : i.created_at , reverse=_a ) lowerCAmelCase__ : List[Any] = comments[0] if len(_a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
360
from collections.abc import Iterable from typing import Any class _a : def __init__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : int | None = None )-> Tuple: lowerCAmelCase__ : Union[str, Any] = value lowerCAmelCase__ : Node | None = None # Added in order to delete a node easier lowerCAmelCase__ : Node | None = None lowerCAmelCase__ : Node | None = None def __repr__( self : List[Any] )-> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'{self.value}': (self.left, self.right)} , indent=1 ) class _a : def __init__( self : Tuple , _SCREAMING_SNAKE_CASE : Node | None = None )-> int: lowerCAmelCase__ : Dict = root def __str__( self : Tuple )-> str: return str(self.root ) def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : Node , _SCREAMING_SNAKE_CASE : Node | None )-> None: if new_children is not None: # reset its kids lowerCAmelCase__ : Union[str, Any] = node.parent if node.parent is not None: # reset its parent if self.is_right(_SCREAMING_SNAKE_CASE ): # If it is the right children lowerCAmelCase__ : List[str] = new_children else: lowerCAmelCase__ : Any = new_children else: lowerCAmelCase__ : Optional[Any] = new_children def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : Node )-> bool: if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase__( self : int )-> bool: return self.root is None def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] )-> None: lowerCAmelCase__ : Any = Node(_SCREAMING_SNAKE_CASE ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase__ : Optional[Any] = new_node # set its root else: # Tree is not empty lowerCAmelCase__ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase__ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase__ : List[Any] = parent_node.left else: if parent_node.right is None: lowerCAmelCase__ : Tuple = new_node break else: lowerCAmelCase__ : Union[str, Any] = parent_node.right lowerCAmelCase__ : Dict = parent_node def UpperCAmelCase__( self : str , *_SCREAMING_SNAKE_CASE : List[Any] )-> None: for value in values: self.__insert(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] )-> Node | None: if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: lowerCAmelCase__ : Union[str, Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase__ : List[str] = node.left if value < node.value else node.right return node def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : Node | None = None )-> Node | None: if node is None: if self.root is None: return None lowerCAmelCase__ : List[Any] = self.root if not self.empty(): while node.right is not None: lowerCAmelCase__ : str = node.right return node def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : Node | None = None )-> Node | None: if node is None: lowerCAmelCase__ : Any = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase__ : Dict = self.root while node.left is not None: lowerCAmelCase__ : Tuple = node.left return node def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : int )-> None: lowerCAmelCase__ : Optional[Any] = self.search(_SCREAMING_SNAKE_CASE ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif node.left is None: # Has only right children self.__reassign_nodes(_SCREAMING_SNAKE_CASE , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_SCREAMING_SNAKE_CASE , node.left ) else: lowerCAmelCase__ : Tuple = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase__ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Node | None )-> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple=None )-> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : Node | None )-> None: if node: self.inorder(_SCREAMING_SNAKE_CASE , node.left ) arr.append(node.value ) self.inorder(_SCREAMING_SNAKE_CASE , node.right ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Node )-> int: lowerCAmelCase__ : list[int] = [] self.inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # append all values to list using inorder traversal return arr[k - 1] def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : List[str] = [] if curr_node is not None: lowerCAmelCase__ : Optional[int] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : List[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase__ : str = BinarySearchTree() for i in testlist: t.insert(_a ) # Prints all the elements of the list in order traversal print(_a ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(_a ) print(_a ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
211
0
from math import isqrt def UpperCamelCase__( UpperCamelCase__ : int )->bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(UpperCamelCase__ ) + 1 ) ) def UpperCamelCase__( UpperCamelCase__ : int = 10**6 )->int: A__ = 0 A__ = 1 A__ = 7 while prime_candidate < max_prime: primes_count += is_prime(UpperCamelCase__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"{solution() = }")
193
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self,__lowerCamelCase,__lowerCamelCase=3,__lowerCamelCase=32,__lowerCamelCase=3,__lowerCamelCase=10,__lowerCamelCase=[10, 20, 30, 40],__lowerCamelCase=[1, 1, 2, 1],__lowerCamelCase=True,__lowerCamelCase=True,__lowerCamelCase="relu",__lowerCamelCase=3,__lowerCamelCase=None,): A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = embeddings_size A__ = hidden_sizes A__ = depths A__ = is_training A__ = use_labels A__ = hidden_act A__ = num_labels A__ = scope A__ = len(__lowerCamelCase ) def UpperCamelCase ( self ): A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = self.get_config() return config, pixel_values def UpperCamelCase ( self ): return RegNetConfig( num_channels=self.num_channels,embeddings_size=self.embeddings_size,hidden_sizes=self.hidden_sizes,depths=self.depths,hidden_act=self.hidden_act,num_labels=self.num_labels,image_size=self.image_size,) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = FlaxRegNetModel(config=__lowerCamelCase ) A__ = model(__lowerCamelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32),) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = self.num_labels A__ = FlaxRegNetForImageClassification(config=__lowerCamelCase ) A__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def UpperCamelCase ( self ): A__ = self.prepare_config_and_inputs() A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self ): A__ = FlaxRegNetModelTester(self ) A__ = ConfigTester(self,config_class=__lowerCamelCase,has_text_modality=__lowerCamelCase ) def UpperCamelCase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): return def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def UpperCamelCase ( self ): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(__lowerCamelCase ) A__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1],__lowerCamelCase ) def UpperCamelCase ( self ): def check_hidden_states_output(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = model_class(__lowerCamelCase ) A__ = model(**self._prepare_for_class(__lowerCamelCase,__lowerCamelCase ) ) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ),expected_num_stages + 1 ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) def UpperCamelCase ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A__ = self._prepare_for_class(__lowerCamelCase,__lowerCamelCase ) A__ = model_class(__lowerCamelCase ) @jax.jit def model_jitted(__lowerCamelCase,**__lowerCamelCase ): return model(pixel_values=__lowerCamelCase,**__lowerCamelCase ) with self.subTest('''JIT Enabled''' ): A__ = model_jitted(**__lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): A__ = model_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ),len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase,__lowerCamelCase ): self.assertEqual(jitted_output.shape,output.shape ) def UpperCamelCase__( )->Optional[int]: A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def UpperCamelCase ( self ): return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def UpperCamelCase ( self ): A__ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=__lowerCamelCase,return_tensors='''np''' ) A__ = model(**__lowerCamelCase ) # verify the logits A__ = (1, 1000) self.assertEqual(outputs.logits.shape,__lowerCamelCase ) A__ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3],__lowerCamelCase,atol=1E-4 ) )
193
1
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case_( a__ ): def __init__( self : Any , UpperCamelCase_ : NestedDataStructureLike[PathLike] , UpperCamelCase_ : Optional[NamedSplit] = None , UpperCamelCase_ : Optional[Features] = None , UpperCamelCase_ : str = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[int] = None , **UpperCamelCase_ : str , ): super().__init__( UpperCamelCase_ , split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : str = path_or_paths if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else {self.split: path_or_paths} lowerCAmelCase : Tuple = Text( cache_dir=UpperCamelCase_ , data_files=UpperCamelCase_ , features=UpperCamelCase_ , **UpperCamelCase_ , ) def lowerCamelCase__ ( self : Dict ): # Build iterable dataset if self.streaming: lowerCAmelCase : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowerCAmelCase : Any = None lowerCAmelCase : Dict = None lowerCAmelCase : List[str] = None lowerCAmelCase : int = None self.builder.download_and_prepare( download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , ) lowerCAmelCase : Any = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory ) return dataset
314
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ): super().__init__() lowerCAmelCase : Dict = initial_learning_rate lowerCAmelCase : List[str] = warmup_steps lowerCAmelCase : Union[str, Any] = power lowerCAmelCase : Dict = decay_schedule_fn lowerCAmelCase : str = name def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa ) lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase : str = global_step_float / warmup_steps_float lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , ) def lowerCamelCase__ ( self : str ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ): lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , ) if num_warmup_steps: lowerCAmelCase : List[str] = WarmUp( initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , ) if weight_decay_rate > 0.0: lowerCAmelCase : Dict = AdamWeightDecay( learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , ) else: lowerCAmelCase : Any = tf.keras.optimizers.Adam( learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class snake_case_( a__ ): def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ): super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = weight_decay_rate lowerCAmelCase : List[str] = include_in_weight_decay lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay @classmethod def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp} return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ): super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ): lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) ) return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase : Dict = apply_state or {} lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ): lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return False return True class snake_case_( a__ ): def __init__( self : Any ): lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = None @property def lowerCamelCase__ ( self : List[str] ): if self._accum_steps is None: lowerCAmelCase : Optional[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCamelCase__ ( self : Any ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ): if not self._gradients: lowerCAmelCase : Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase_ ) self._accum_steps.assign_add(1 ) def lowerCamelCase__ ( self : Union[str, Any] ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
314
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCAmelCase_ ( __UpperCAmelCase: Dict , __UpperCAmelCase: Tuple=False ) -> Dict: UpperCamelCase__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowerCAmelCase_ ( __UpperCAmelCase: List[str] , __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: List[str]=False ) -> str: for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ : Dict = '''''' else: UpperCamelCase__ : Tuple = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : int = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) UpperCamelCase__ : Dict = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[Any] = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ : Optional[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __UpperCAmelCase: Dict ) -> Optional[int]: UpperCamelCase__ : List[Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: Dict ) -> Tuple: # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. UpperCamelCase__ : Tuple = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: Tuple , __UpperCAmelCase: Optional[int] , __UpperCAmelCase: str ) -> str: UpperCamelCase__ : str = dct.pop(__UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = val def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] , __UpperCAmelCase: Optional[int] ) -> List[str]: UpperCamelCase__ : Tuple = ViTMSNConfig() UpperCamelCase__ : List[str] = 1000 UpperCamelCase__ : Dict = '''datasets/huggingface/label-files''' UpperCamelCase__ : Tuple = '''imagenet-1k-id2label.json''' UpperCamelCase__ : Optional[Any] = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase ) , '''r''' ) ) UpperCamelCase__ : List[str] = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : Optional[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: UpperCamelCase__ : int = 384 UpperCamelCase__ : List[str] = 1536 UpperCamelCase__ : Optional[Any] = 6 elif "l16" in checkpoint_url: UpperCamelCase__ : List[Any] = 1024 UpperCamelCase__ : Any = 4096 UpperCamelCase__ : Optional[Any] = 24 UpperCamelCase__ : Tuple = 16 UpperCamelCase__ : List[Any] = 0.1 elif "b4" in checkpoint_url: UpperCamelCase__ : Any = 4 elif "l7" in checkpoint_url: UpperCamelCase__ : str = 7 UpperCamelCase__ : List[str] = 1024 UpperCamelCase__ : List[Any] = 4096 UpperCamelCase__ : List[Any] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : Optional[Any] = 0.1 UpperCamelCase__ : int = ViTMSNModel(__UpperCAmelCase ) UpperCamelCase__ : Dict = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location='''cpu''' )['''target_encoder'''] UpperCamelCase__ : Optional[int] = ViTImageProcessor(size=config.image_size ) remove_projection_head(__UpperCAmelCase ) UpperCamelCase__ : List[str] = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , base_model=__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() UpperCamelCase__ : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ : str = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) UpperCamelCase__ : int = ViTImageProcessor( size=config.image_size , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase ) UpperCamelCase__ : Tuple = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase__ : List[str] = model(**__UpperCAmelCase ) UpperCamelCase__ : int = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: UpperCamelCase__ : Dict = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: UpperCamelCase__ : str = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: UpperCamelCase__ : Dict = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: UpperCamelCase__ : List[Any] = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: UpperCamelCase__ : Union[str, Any] = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __UpperCAmelCase , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
201
class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__ = "", __magic_name__ = False ) -> None: """simple docstring""" # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : Optional[Any] = is_leaf UpperCamelCase__ : List[str] = prefix def UpperCamelCase__ ( self, __magic_name__ ) -> tuple[str, str, str]: """simple docstring""" UpperCamelCase__ : Dict = 0 for q, w in zip(self.prefix, __magic_name__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" for word in words: self.insert(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Union[str, Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Tuple = RadixNode(prefix=__magic_name__, is_leaf=__magic_name__ ) else: UpperCamelCase__ : Any = self.nodes[word[0]] UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = incoming_node.match( __magic_name__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(__magic_name__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : Tuple = self.nodes[matching_string[0]] UpperCamelCase__ : List[Any] = RadixNode(__magic_name__, __magic_name__ ) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : Any = True else: self.nodes[matching_string[0]].insert(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> bool: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0], __magic_name__ ) if not incoming_node: return False else: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Dict = incoming_node.match( __magic_name__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> bool: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0], __magic_name__ ) if not incoming_node: return False else: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = incoming_node.match( __magic_name__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(__magic_name__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: UpperCamelCase__ : Optional[Any] = list(self.nodes.values() )[0] UpperCamelCase__ : Union[str, Any] = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : int = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: UpperCamelCase__ : Any = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : Union[str, Any] = list(incoming_node.nodes.values() )[0] UpperCamelCase__ : List[str] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : int = merging_node.nodes return True def UpperCamelCase__ ( self, __magic_name__ = 0 ) -> None: """simple docstring""" if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def lowerCAmelCase_ ( ) -> bool: UpperCamelCase__ : Optional[int] = '''banana bananas bandana band apple all beast'''.split() UpperCamelCase__ : Optional[int] = RadixNode() root.insert_many(__UpperCAmelCase ) assert all(root.find(__UpperCAmelCase ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def lowerCAmelCase_ ( ) -> None: assert test_trie() def lowerCAmelCase_ ( ) -> None: UpperCamelCase__ : int = RadixNode() UpperCamelCase__ : Any = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(__UpperCAmelCase ) print('''Words:''' , __UpperCAmelCase ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
201
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase : Any = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __lowercase ( lowerCamelCase__ ): """simple docstring""" def __init__( self : Optional[int] , **lowerCAmelCase__ : str): super().__init__(**__lowerCamelCase) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch.") requires_backends(self , "vision") self.check_model_type(__lowerCamelCase) def __call__( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict = None , **lowerCAmelCase__ : List[Any] , ): if "text_queries" in kwargs: SCREAMING_SNAKE_CASE_: int = kwargs.pop("text_queries") if isinstance(__lowerCamelCase , (str, Image.Image)): SCREAMING_SNAKE_CASE_: Any = {'''image''': image, '''candidate_labels''': candidate_labels} else: SCREAMING_SNAKE_CASE_: List[Any] = image SCREAMING_SNAKE_CASE_: int = super().__call__(__lowerCamelCase , **__lowerCamelCase) return results def _SCREAMING_SNAKE_CASE ( self : List[str] , **lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE_: Optional[int] = kwargs['''threshold'''] if "top_k" in kwargs: SCREAMING_SNAKE_CASE_: List[str] = kwargs['''top_k'''] return {}, {}, postprocess_params def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: Dict = load_image(inputs["image"]) SCREAMING_SNAKE_CASE_: Any = inputs['''candidate_labels'''] if isinstance(__lowerCamelCase , __lowerCamelCase): SCREAMING_SNAKE_CASE_: List[str] = candidate_labels.split(",") SCREAMING_SNAKE_CASE_: List[str] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(__lowerCamelCase): SCREAMING_SNAKE_CASE_: List[Any] = self.tokenizer(__lowerCamelCase , return_tensors=self.framework) SCREAMING_SNAKE_CASE_: Tuple = self.image_processor(__lowerCamelCase , return_tensors=self.framework) yield { "is_last": i == len(__lowerCamelCase) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = model_inputs.pop("target_size") SCREAMING_SNAKE_CASE_: Union[str, Any] = model_inputs.pop("candidate_label") SCREAMING_SNAKE_CASE_: Any = model_inputs.pop("is_last") SCREAMING_SNAKE_CASE_: List[str] = self.model(**__lowerCamelCase) SCREAMING_SNAKE_CASE_: Tuple = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=None): SCREAMING_SNAKE_CASE_: Dict = [] for model_output in model_outputs: SCREAMING_SNAKE_CASE_: Union[str, Any] = model_output['''candidate_label'''] SCREAMING_SNAKE_CASE_: Optional[int] = BaseModelOutput(__lowerCamelCase) SCREAMING_SNAKE_CASE_: Any = self.image_processor.post_process_object_detection( outputs=__lowerCamelCase , threshold=__lowerCamelCase , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): SCREAMING_SNAKE_CASE_: List[str] = outputs['''scores'''][index].item() SCREAMING_SNAKE_CASE_: Optional[int] = self._get_bounding_box(outputs["boxes"][index][0]) SCREAMING_SNAKE_CASE_: Tuple = {'''score''': score, '''label''': label, '''box''': box} results.append(__lowerCamelCase) SCREAMING_SNAKE_CASE_: Dict = sorted(__lowerCamelCase , key=lambda lowerCAmelCase__: x["score"] , reverse=__lowerCamelCase) if top_k: SCREAMING_SNAKE_CASE_: Tuple = results[:top_k] return results def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[Any]): if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") SCREAMING_SNAKE_CASE_: Dict = box.int().tolist() SCREAMING_SNAKE_CASE_: Optional[int] = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
356
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __lowercase ( tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : float , lowerCAmelCase__ : Callable , lowerCAmelCase__ : int , lowerCAmelCase__ : float = 1.0 , lowerCAmelCase__ : str = None , ): super().__init__() SCREAMING_SNAKE_CASE_: str = initial_learning_rate SCREAMING_SNAKE_CASE_: Dict = warmup_steps SCREAMING_SNAKE_CASE_: Any = power SCREAMING_SNAKE_CASE_: int = decay_schedule_fn SCREAMING_SNAKE_CASE_: Union[str, Any] = name def __call__( self : Optional[Any] , lowerCAmelCase__ : Any): with tf.name_scope(self.name or "WarmUp") as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. SCREAMING_SNAKE_CASE_: Any = tf.cast(lowerCAmelCase__ , tf.floataa) SCREAMING_SNAKE_CASE_: Optional[Any] = tf.cast(self.warmup_steps , tf.floataa) SCREAMING_SNAKE_CASE_: Optional[int] = global_step_float / warmup_steps_float SCREAMING_SNAKE_CASE_: Union[str, Any] = self.initial_learning_rate * tf.math.pow(lowerCAmelCase__ , self.power) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps) , name=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : Tuple): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 0.9 , _UpperCAmelCase = 0.9_9_9 , _UpperCAmelCase = 1e-8 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 1.0 , _UpperCAmelCase = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_UpperCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_UpperCAmelCase , ) if num_warmup_steps: SCREAMING_SNAKE_CASE_: Tuple = WarmUp( initial_learning_rate=_UpperCAmelCase , decay_schedule_fn=_UpperCAmelCase , warmup_steps=_UpperCAmelCase , ) if weight_decay_rate > 0.0: SCREAMING_SNAKE_CASE_: List[str] = AdamWeightDecay( learning_rate=_UpperCAmelCase , weight_decay_rate=_UpperCAmelCase , beta_a=_UpperCAmelCase , beta_a=_UpperCAmelCase , epsilon=_UpperCAmelCase , clipnorm=_UpperCAmelCase , global_clipnorm=_UpperCAmelCase , exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] , include_in_weight_decay=_UpperCAmelCase , ) else: SCREAMING_SNAKE_CASE_: int = tf.keras.optimizers.Adam( learning_rate=_UpperCAmelCase , beta_a=_UpperCAmelCase , beta_a=_UpperCAmelCase , epsilon=_UpperCAmelCase , clipnorm=_UpperCAmelCase , global_clipnorm=_UpperCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , lowerCAmelCase__ : float = 0.9 , lowerCAmelCase__ : float = 0.999 , lowerCAmelCase__ : float = 1E-7 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : str = "AdamWeightDecay" , **lowerCAmelCase__ : int , ): super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = weight_decay_rate SCREAMING_SNAKE_CASE_: List[Any] = include_in_weight_decay SCREAMING_SNAKE_CASE_: List[Any] = exclude_from_weight_decay @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: List[str] = {"WarmUp": WarmUp} return super(lowerCAmelCase__ , cls).from_config(lowerCAmelCase__ , custom_objects=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int]): super(lowerCAmelCase__ , self)._prepare_local(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = tf.constant( self.weight_decay_rate , name="adam_weight_decay_rate") def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: str = self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"] , use_locking=self._use_locking , ) return tf.no_op() def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=None , **lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = list(zip(*lowerCAmelCase__)) return super(lowerCAmelCase__ , self).apply_gradients(zip(lowerCAmelCase__ , lowerCAmelCase__) , name=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple): if apply_state is None: return self._decayed_lr_t[var_dtype], {} SCREAMING_SNAKE_CASE_: Dict = apply_state or {} SCREAMING_SNAKE_CASE_: List[str] = apply_state.get((var_device, var_dtype)) if coefficients is None: SCREAMING_SNAKE_CASE_: Optional[int] = self._fallback_apply_state(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple=None): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self._decay_weights_op(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) with tf.control_dependencies([decay]): return super(lowerCAmelCase__ , self)._resource_apply_dense(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict=None): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = self._decay_weights_op(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) with tf.control_dependencies([decay]): return super(lowerCAmelCase__ , self)._resource_apply_sparse(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: List[str] = super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate}) return config def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCAmelCase__ , lowerCAmelCase__) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCAmelCase__ , lowerCAmelCase__) is not None: return False return True class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Any = [] SCREAMING_SNAKE_CASE_: Any = None @property def _SCREAMING_SNAKE_CASE ( self : int): if self._accum_steps is None: SCREAMING_SNAKE_CASE_: Tuple = tf.Variable( tf.constant(0 , dtype=tf.intaa) , trainable=lowerCAmelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _SCREAMING_SNAKE_CASE ( self : Tuple): if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients") return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : str , lowerCAmelCase__ : Tuple): if not self._gradients: SCREAMING_SNAKE_CASE_: Optional[Any] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCAmelCase__) , trainable=lowerCAmelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ]) if len(lowerCAmelCase__) != len(self._gradients): raise ValueError(F"Expected {len(self._gradients)} gradients, but got {len(lowerCAmelCase__)}") for accum_gradient, gradient in zip(self._gradients , lowerCAmelCase__): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCAmelCase__) self._accum_steps.assign_add(1) def _SCREAMING_SNAKE_CASE ( self : int): if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCAmelCase__))
127
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''blenderbot-small''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : int , A_ : Any=50265 , A_ : int=512 , A_ : int=8 , A_ : Optional[int]=2048 , A_ : Optional[int]=16 , A_ : List[Any]=8 , A_ : str=2048 , A_ : Union[str, Any]=16 , A_ : int=0.0 , A_ : Optional[Any]=0.0 , A_ : List[str]=True , A_ : Optional[int]=True , A_ : Dict="gelu" , A_ : int=512 , A_ : str=0.1 , A_ : Optional[Any]=0.0 , A_ : Any=0.0 , A_ : str=0.02 , A_ : Optional[Any]=1 , A_ : Optional[Any]=False , A_ : Optional[Any]=0 , A_ : str=1 , A_ : List[str]=2 , A_ : Optional[int]=2 , **A_ : List[str] , ) -> List[Any]: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = d_model lowerCamelCase_ = encoder_ffn_dim lowerCamelCase_ = encoder_layers lowerCamelCase_ = encoder_attention_heads lowerCamelCase_ = decoder_ffn_dim lowerCamelCase_ = decoder_layers lowerCamelCase_ = decoder_attention_heads lowerCamelCase_ = dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = activation_function lowerCamelCase_ = init_std lowerCamelCase_ = encoder_layerdrop lowerCamelCase_ = decoder_layerdrop lowerCamelCase_ = use_cache lowerCamelCase_ = encoder_layers lowerCamelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , **A_ , ) class A( UpperCamelCase ): '''simple docstring''' @property def a__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowerCamelCase_ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: lowerCamelCase_ = {0: 'batch'} lowerCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowerCamelCase_ = {0: 'batch', 1: 'decoder_sequence'} lowerCamelCase_ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(A_ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase_ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: lowerCamelCase_ , lowerCamelCase_ = self.num_layers for i in range(A_ ): lowerCamelCase_ = {0: 'batch', 2: 'past_sequence + sequence'} lowerCamelCase_ = {0: 'batch', 2: 'past_sequence + sequence'} else: lowerCamelCase_ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def a__ ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowerCamelCase_ = super().outputs else: lowerCamelCase_ = super(A_ , self ).outputs if self.use_past: lowerCamelCase_ , lowerCamelCase_ = self.num_layers for i in range(A_ ): lowerCamelCase_ = {0: 'batch', 2: 'past_sequence + sequence'} lowerCamelCase_ = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def a__ ( self : int , A_ : PreTrainedTokenizer , A_ : int = -1 , A_ : int = -1 , A_ : bool = False , A_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" lowerCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) # Generate decoder inputs lowerCamelCase_ = seq_length if not self.use_past else 1 lowerCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) lowerCamelCase_ = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} lowerCamelCase_ = dict(**A_ , **A_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCamelCase_ , lowerCamelCase_ = common_inputs['input_ids'].shape lowerCamelCase_ = common_inputs['decoder_input_ids'].shape[1] lowerCamelCase_ , lowerCamelCase_ = self.num_attention_heads lowerCamelCase_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase_ = decoder_seq_length + 3 lowerCamelCase_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase_ = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(A_ , A_ )] , dim=1 ) lowerCamelCase_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase_ , lowerCamelCase_ = self.num_layers lowerCamelCase_ = min(A_ , A_ ) lowerCamelCase_ = max(A_ , A_ ) - min_num_layers lowerCamelCase_ = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(A_ ): common_inputs["past_key_values"].append( ( torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), ) ) # TODO: test this. lowerCamelCase_ = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(A_ , A_ ): common_inputs["past_key_values"].append((torch.zeros(A_ ), torch.zeros(A_ )) ) return common_inputs def a__ ( self : str , A_ : PreTrainedTokenizer , A_ : int = -1 , A_ : int = -1 , A_ : bool = False , A_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" lowerCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCamelCase_ , lowerCamelCase_ = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowerCamelCase_ = seqlen + 2 lowerCamelCase_ , lowerCamelCase_ = self.num_layers lowerCamelCase_ , lowerCamelCase_ = self.num_attention_heads lowerCamelCase_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase_ = common_inputs['attention_mask'].dtype lowerCamelCase_ = torch.cat( [common_inputs['attention_mask'], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) lowerCamelCase_ = [ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(A_ ) ] return common_inputs def a__ ( self : Tuple , A_ : PreTrainedTokenizer , A_ : int = -1 , A_ : int = -1 , A_ : bool = False , A_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" lowerCamelCase_ = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase_ = tokenizer.num_special_tokens_to_add(A_ ) lowerCamelCase_ = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase_ = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase_ = dict(tokenizer(A_ , return_tensors=A_ ) ) return common_inputs def a__ ( self : int , A_ : PreTrainedTokenizer , A_ : int = -1 , A_ : int = -1 , A_ : bool = False , A_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowerCamelCase_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) elif self.task == "causal-lm": lowerCamelCase_ = self._generate_dummy_inputs_for_causal_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) else: lowerCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) return common_inputs def a__ ( self : Any , A_ : Optional[int] , A_ : Dict , A_ : Optional[Any] , A_ : Optional[int] ) -> Union[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowerCamelCase_ = super()._flatten_past_key_values_(A_ , A_ , A_ , A_ ) else: lowerCamelCase_ = super(A_ , self )._flatten_past_key_values_( A_ , A_ , A_ , A_ )
204
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowerCamelCase : List[str] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Optional[int] , lowercase : Optional[int] ): '''simple docstring''' return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def _SCREAMING_SNAKE_CASE ( lowercase : np.ndarray , lowercase : Optional[str] , lowercase : Optional[str] ): '''simple docstring''' lowerCamelCase_ = to_pil_image(lowercase ) lowerCamelCase_ , lowerCamelCase_ = pil_image.size lowerCamelCase_ = pytesseract.image_to_data(lowercase , lang=lowercase , output_type='dict' , config=lowercase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates lowerCamelCase_ = [idx for idx, word in enumerate(lowercase ) if not word.strip()] lowerCamelCase_ = [word for idx, word in enumerate(lowercase ) if idx not in irrelevant_indices] lowerCamelCase_ = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] lowerCamelCase_ = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] lowerCamelCase_ = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] lowerCamelCase_ = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCamelCase_ = [] for x, y, w, h in zip(lowercase , lowercase , lowercase , lowercase ): lowerCamelCase_ = [x, y, x + w, y + h] actual_boxes.append(lowercase ) # finally, normalize the bounding boxes lowerCamelCase_ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase , lowercase , lowercase ) ) assert len(lowercase ) == len(lowercase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : int , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BILINEAR , A_ : bool = True , A_ : float = 1 / 255 , A_ : bool = True , A_ : Union[float, Iterable[float]] = None , A_ : Union[float, Iterable[float]] = None , A_ : bool = True , A_ : Optional[str] = None , A_ : Optional[str] = "" , **A_ : Optional[int] , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_value lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCamelCase_ = apply_ocr lowerCamelCase_ = ocr_lang lowerCamelCase_ = tesseract_config def a__ ( self : str , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BILINEAR , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowerCamelCase_ = (size['height'], size['width']) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[Any] , ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : Union[str, Any] , A_ : np.ndarray , A_ : Union[float, Iterable[float]] , A_ : Union[float, Iterable[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : int , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : List[Any] , A_ : ImageInput , A_ : bool = None , A_ : Dict[str, int] = None , A_ : Dict=None , A_ : bool = None , A_ : float = None , A_ : bool = None , A_ : Union[float, Iterable[float]] = None , A_ : Union[float, Iterable[float]] = None , A_ : bool = None , A_ : Optional[str] = None , A_ : Optional[str] = None , A_ : Optional[Union[str, TensorType]] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : Any , ) -> PIL.Image.Image: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ ) lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCamelCase_ = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCamelCase_ = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('If do_normalize is True, image_mean and image_std must be specified.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , 'pytesseract' ) lowerCamelCase_ = [] lowerCamelCase_ = [] for image in images: lowerCamelCase_ , lowerCamelCase_ = apply_tesseract(A_ , A_ , A_ ) words_batch.append(A_ ) boxes_batch.append(A_ ) if do_resize: lowerCamelCase_ = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = BatchFeature(data={'pixel_values': images} , tensor_type=A_ ) if apply_ocr: lowerCamelCase_ = words_batch lowerCamelCase_ = boxes_batch return data
204
1
from __future__ import annotations from math import pi, sqrt def lowercase__ ( __snake_case : float , __snake_case : float ): '''simple docstring''' if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
369
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __UpperCAmelCase = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __UpperCAmelCase = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowercase__ ( __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = SavedModel() UpperCAmelCase_ : Optional[Any] = [] with open(os.path.join(__snake_case , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: UpperCAmelCase_ : Optional[Any] = json.load(__snake_case )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__snake_case )] ) with open(__snake_case , 'rb' ) as f: saved_model.ParseFromString(f.read() ) UpperCAmelCase_ : List[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCAmelCase_ : Optional[int] = sorted(__snake_case ) UpperCAmelCase_ : int = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__snake_case ) if strict and len(__snake_case ) > 0: raise Exception(F"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops ) elif len(__snake_case ) > 0: print(F"Found the following incompatible ops for the opset {opset}:" ) print(*__snake_case , sep='\n' ) else: print(F"The saved model {saved_model_path} can properly be converted with ONNX." ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) __UpperCAmelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
145
0
'''simple docstring''' def A_ ( snake_case ): if not isinstance(__A , __A ): raise ValueError("multiplicative_persistence() only accepts integral values" ) if num < 0: raise ValueError("multiplicative_persistence() does not accept negative values" ) SCREAMING_SNAKE_CASE:List[Any] = 0 SCREAMING_SNAKE_CASE:Any = str(__A ) while len(__A ) != 1: SCREAMING_SNAKE_CASE:Tuple = [int(__A ) for i in num_string] SCREAMING_SNAKE_CASE:Tuple = 1 for i in range(0 , len(__A ) ): total *= numbers[i] SCREAMING_SNAKE_CASE:List[Any] = str(__A ) steps += 1 return steps def A_ ( snake_case ): if not isinstance(__A , __A ): raise ValueError("additive_persistence() only accepts integral values" ) if num < 0: raise ValueError("additive_persistence() does not accept negative values" ) SCREAMING_SNAKE_CASE:Dict = 0 SCREAMING_SNAKE_CASE:Tuple = str(__A ) while len(__A ) != 1: SCREAMING_SNAKE_CASE:Dict = [int(__A ) for i in num_string] SCREAMING_SNAKE_CASE:Union[str, Any] = 0 for i in range(0 , len(__A ) ): total += numbers[i] SCREAMING_SNAKE_CASE:int = str(__A ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
139
'''simple docstring''' from collections.abc import Generator from math import sin def lowerCAmelCase (__A): """simple docstring""" if len(__A) != 32: raise ValueError('''Input must be of length 32''') _a = b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowerCAmelCase (__A): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''') _a = format(__A , '''08x''')[-8:] _a = b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''') return little_endian_hex def lowerCAmelCase (__A): """simple docstring""" _a = b'''''' for char in message: bit_string += format(__A , '''08b''').encode('''utf-8''') _a = format(len(__A) , '''064b''').encode('''utf-8''') # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__A) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:]) + to_little_endian(start_len[:32]) return bit_string def lowerCAmelCase (__A): """simple docstring""" if len(__A) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''') for pos in range(0 , len(__A) , 512): _a = bit_string[pos : pos + 512] _a = [] for i in range(0 , 512 , 32): block_words.append(int(to_little_endian(block[i : i + 32]) , 2)) yield block_words def lowerCAmelCase (__A): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''') _a = format(__A , '''032b''') _a = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(__A , 2) def lowerCAmelCase (__A , __A): """simple docstring""" return (a + b) % 2**32 def lowerCAmelCase (__A , __A): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''') if shift < 0: raise ValueError('''Shift must be non-negative''') return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def lowerCAmelCase (__A): """simple docstring""" _a = preprocess(__A) _a = [int(2**32 * abs(sin(i + 1))) for i in range(64)] # Starting states _a = 0x67_452_301 _a = 0xEF_CDA_B89 _a = 0x98_BAD_CFE _a = 0x10_325_476 _a = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__A): _a = aa _a = ba _a = ca _a = da # Hash current chunk for i in range(64): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a = d ^ (b & (c ^ d)) _a = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a = c ^ (d & (b ^ c)) _a = (5 * i + 1) % 16 elif i <= 47: _a = b ^ c ^ d _a = (3 * i + 5) % 16 else: _a = c ^ (b | not_aa(__A)) _a = (7 * i) % 16 _a = (f + a + added_consts[i] + block_words[g]) % 2**32 _a = d _a = c _a = b _a = sum_aa(__A , left_rotate_aa(__A , shift_amounts[i])) # Add hashed chunk to running total _a = sum_aa(__A , __A) _a = sum_aa(__A , __A) _a = sum_aa(__A , __A) _a = sum_aa(__A , __A) _a = reformat_hex(__A) + reformat_hex(__A) + reformat_hex(__A) + reformat_hex(__A) return digest if __name__ == "__main__": import doctest doctest.testmod()
211
0
from typing import Any def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> list: _validation( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) # Creates data structures and fill initial step lowercase : dict = {} lowercase : dict = {} for state in states_space: lowercase : List[Any] = observations_space[0] lowercase : Dict = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowercase : List[Any] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): lowercase : Union[str, Any] = observations_space[o] lowercase : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowercase : Optional[Any] = """""" lowercase : str = -1 for k_state in states_space: lowercase : Optional[int] = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowercase : Union[str, Any] = probability lowercase : Optional[int] = k_state # Update probabilities and pointers dicts lowercase : int = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowercase : int = arg_max # The final observation lowercase : List[str] = observations_space[len(SCREAMING_SNAKE_CASE__ ) - 1] # argmax for given final observation lowercase : List[str] = """""" lowercase : Any = -1 for k_state in states_space: lowercase : str = probabilities[(k_state, final_observation)] if probability > max_probability: lowercase : Optional[Any] = probability lowercase : Optional[int] = k_state lowercase : Optional[Any] = arg_max # Process pointers backwards lowercase : List[str] = last_state lowercase : List[Any] = [] for o in range(len(SCREAMING_SNAKE_CASE__ ) - 1 , -1 , -1 ): result.append(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = pointers[previous, observations_space[o]] result.reverse() return result def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> None: _validate_not_empty( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) _validate_lists(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _validate_dicts( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There's an empty parameter""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> None: _validate_list(SCREAMING_SNAKE_CASE__ , """observations_space""" ) _validate_list(SCREAMING_SNAKE_CASE__ , """states_space""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> None: if not isinstance(_object , SCREAMING_SNAKE_CASE__ ): lowercase : str = f"{var_name} must be a list" raise ValueError(SCREAMING_SNAKE_CASE__ ) else: for x in _object: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : int = f"{var_name} must be a list of strings" raise ValueError(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> None: _validate_dict(SCREAMING_SNAKE_CASE__ , """initial_probabilities""" , SCREAMING_SNAKE_CASE__ ) _validate_nested_dict(SCREAMING_SNAKE_CASE__ , """transition_probabilities""" ) _validate_nested_dict(SCREAMING_SNAKE_CASE__ , """emission_probabilities""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> None: _validate_dict(_object , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for x in _object.values(): _validate_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False ) -> None: if not isinstance(_object , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[Any] = f"{var_name} must be a dict" raise ValueError(SCREAMING_SNAKE_CASE__ ) if not all(isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for x in _object ): lowercase : List[Any] = f"{var_name} all keys must be strings" raise ValueError(SCREAMING_SNAKE_CASE__ ) if not all(isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for x in _object.values() ): lowercase : Optional[Any] = """nested dictionary """ if nested else """""" lowercase : Optional[Any] = f"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": from doctest import testmod testmod()
285
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase : str = mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: lowercase : Optional[int] = max( mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - wt[i - 1] ) + val[i - 1] , ) lowercase : List[Any] = val return f[i][j] def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: lowercase : Optional[int] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase : Union[str, Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase : Any = dp[i - 1][w_] return dp[n][w_], dp def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if not (isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) if num_items != len(SCREAMING_SNAKE_CASE__ ): lowercase : Optional[Any] = ( """The number of weights must be the same as the number of values.\n""" f"But got {num_items} weights and {len(SCREAMING_SNAKE_CASE__ )} values" ) raise ValueError(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ): if not isinstance(wt[i] , SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = ( """All weights must be integers but got weight of """ f"type {type(wt[i] )} at index {i}" ) raise TypeError(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Any = knapsack(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : set = set() _construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return optimal_val, example_optional_set def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: optimal_set.add(SCREAMING_SNAKE_CASE__ ) _construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , j - wt[i - 1] , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Dict = [3, 2, 4, 4] lowercase : List[Any] = [4, 3, 2, 3] lowercase : Tuple = 4 lowercase : Tuple = 6 lowercase : Tuple = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowercase , lowercase : List[str] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowercase , lowercase : Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
285
1
def UpperCAmelCase_ ( _A ): '''simple docstring''' return str(_A ) == str(_A )[::-1] def UpperCAmelCase_ ( _A ): '''simple docstring''' return int(_A ) + int(str(_A )[::-1] ) def UpperCAmelCase_ ( _A = 1_00_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for num in range(1 , _A ): SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = num while iterations < 50: SCREAMING_SNAKE_CASE__ = sum_reverse(_A ) iterations += 1 if is_palindrome(_A ): break else: lychrel_nums.append(_A ) return len(_A ) if __name__ == "__main__": print(F"{solution() = }")
314
from __future__ import annotations def UpperCAmelCase_ ( _A , _A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = word_bank or [] # create a table SCREAMING_SNAKE_CASE__ = len(_A ) + 1 SCREAMING_SNAKE_CASE__ = [] for _ in range(_A ): table.append([] ) # seed value SCREAMING_SNAKE_CASE__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(_A ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_A )] == word: SCREAMING_SNAKE_CASE__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_A )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_A )]: combination.reverse() return table[len(_A )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
314
1
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase__ :Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase__ :str = 25_0004 lowercase__ :int = 25_0020 @require_sentencepiece @require_tokenizers class lowercase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase_ : Any =MBartaaTokenizer lowercase_ : Dict =MBartaaTokenizerFast lowercase_ : Tuple =True lowercase_ : int =True def A__ ( self): super().setUp() # We have a SentencePiece fixture for testing lowercase = MBartaaTokenizer(UpperCamelCase__ ,src_lang='''en_XX''' ,tgt_lang='''ro_RO''' ,keep_accents=UpperCamelCase__) tokenizer.save_pretrained(self.tmpdirname) def A__ ( self): lowercase = '''<s>''' lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__) ,UpperCamelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__) ,UpperCamelCase__) def A__ ( self): lowercase = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] ,'''<s>''') self.assertEqual(vocab_keys[1] ,'''<pad>''') self.assertEqual(vocab_keys[-1] ,'''<mask>''') self.assertEqual(len(UpperCamelCase__) ,1_0_5_4) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size ,1_0_5_4) def A__ ( self): lowercase = MBartaaTokenizer(UpperCamelCase__ ,src_lang='''en_XX''' ,tgt_lang='''ro_RO''' ,keep_accents=UpperCamelCase__) lowercase = tokenizer.tokenize('''This is a test''') self.assertListEqual(UpperCamelCase__ ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__) ,[value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] ,) lowercase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( UpperCamelCase__ ,[SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] ,) lowercase = tokenizer.convert_tokens_to_ids(UpperCamelCase__) self.assertListEqual( UpperCamelCase__ ,[ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] ,) lowercase = tokenizer.convert_ids_to_tokens(UpperCamelCase__) self.assertListEqual( UpperCamelCase__ ,[SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] ,) @slow def A__ ( self): lowercase = {'''input_ids''': [[2_5_0_0_0_4, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [2_5_0_0_0_4, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_0_0_0_4, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ ,model_name='''facebook/mbart-large-50''' ,revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' ,) def A__ ( self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowercase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ ,**UpperCamelCase__) lowercase = self.tokenizer_class.from_pretrained(UpperCamelCase__ ,**UpperCamelCase__) lowercase = tempfile.mkdtemp() lowercase = tokenizer_r.save_pretrained(UpperCamelCase__) lowercase = tokenizer_p.save_pretrained(UpperCamelCase__) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files)) lowercase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f) self.assertSequenceEqual(UpperCamelCase__ ,UpperCamelCase__) # Checks everything loads correctly in the same way lowercase = tokenizer_r.from_pretrained(UpperCamelCase__) lowercase = tokenizer_p.from_pretrained(UpperCamelCase__) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase__ ,UpperCamelCase__)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCamelCase__) # Save tokenizer rust, legacy_format=True lowercase = tempfile.mkdtemp() lowercase = tokenizer_r.save_pretrained(UpperCamelCase__ ,legacy_format=UpperCamelCase__) lowercase = tokenizer_p.save_pretrained(UpperCamelCase__) # Checks it save with the same files self.assertSequenceEqual(UpperCamelCase__ ,UpperCamelCase__) # Checks everything loads correctly in the same way lowercase = tokenizer_r.from_pretrained(UpperCamelCase__) lowercase = tokenizer_p.from_pretrained(UpperCamelCase__) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase__ ,UpperCamelCase__)) shutil.rmtree(UpperCamelCase__) # Save tokenizer rust, legacy_format=False lowercase = tempfile.mkdtemp() lowercase = tokenizer_r.save_pretrained(UpperCamelCase__ ,legacy_format=UpperCamelCase__) lowercase = tokenizer_p.save_pretrained(UpperCamelCase__) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way lowercase = tokenizer_r.from_pretrained(UpperCamelCase__) lowercase = tokenizer_p.from_pretrained(UpperCamelCase__) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase__ ,UpperCamelCase__)) shutil.rmtree(UpperCamelCase__) @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): lowercase_ : List[str] ='''facebook/mbart-large-50-one-to-many-mmt''' lowercase_ : int =[ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] lowercase_ : Optional[Any] =[ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] lowercase_ : Dict =[EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def A__ ( cls): lowercase = MBartaaTokenizer.from_pretrained( cls.checkpoint_name ,src_lang='''en_XX''' ,tgt_lang='''ro_RO''') lowercase = 1 return cls def A__ ( self): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] ,2_5_0_0_0_1) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] ,2_5_0_0_0_4) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] ,2_5_0_0_2_0) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] ,2_5_0_0_3_8) def A__ ( self): lowercase = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens ,UpperCamelCase__) def A__ ( self): self.assertIn(UpperCamelCase__ ,self.tokenizer.all_special_ids) lowercase = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] lowercase = self.tokenizer.decode(UpperCamelCase__ ,skip_special_tokens=UpperCamelCase__) lowercase = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=UpperCamelCase__) self.assertEqual(UpperCamelCase__ ,UpperCamelCase__) self.assertNotIn(self.tokenizer.eos_token ,UpperCamelCase__) def A__ ( self): lowercase = ['''this is gunna be a long sentence ''' * 2_0] assert isinstance(src_text[0] ,UpperCamelCase__) lowercase = 1_0 lowercase = self.tokenizer(UpperCamelCase__ ,max_length=UpperCamelCase__ ,truncation=UpperCamelCase__).input_ids[0] self.assertEqual(ids[0] ,UpperCamelCase__) self.assertEqual(ids[-1] ,2) self.assertEqual(len(UpperCamelCase__) ,UpperCamelCase__) def A__ ( self): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR''']) ,[2_5_0_0_5_3, 2_5_0_0_0_1]) def A__ ( self): lowercase = tempfile.mkdtemp() lowercase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCamelCase__) lowercase = MBartaaTokenizer.from_pretrained(UpperCamelCase__) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,UpperCamelCase__) @require_torch def A__ ( self): lowercase = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=UpperCamelCase__ ,return_tensors='''pt''') lowercase = shift_tokens_right(batch['''labels'''] ,self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def A__ ( self): lowercase = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=UpperCamelCase__ ,truncation=UpperCamelCase__ ,max_length=len(self.expected_src_tokens) ,return_tensors='''pt''' ,) lowercase = shift_tokens_right(batch['''labels'''] ,self.tokenizer.pad_token_id) self.assertIsInstance(UpperCamelCase__ ,UpperCamelCase__) self.assertEqual((2, 1_4) ,batch.input_ids.shape) self.assertEqual((2, 1_4) ,batch.attention_mask.shape) lowercase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,UpperCamelCase__) self.assertEqual(2 ,batch.decoder_input_ids[0, 0]) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[EN_CODE]) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id]) def A__ ( self): lowercase = self.tokenizer(self.src_text ,padding=UpperCamelCase__ ,truncation=UpperCamelCase__ ,max_length=3 ,return_tensors='''pt''') lowercase = self.tokenizer( text_target=self.tgt_text ,padding=UpperCamelCase__ ,truncation=UpperCamelCase__ ,max_length=1_0 ,return_tensors='''pt''') lowercase = targets['''input_ids'''] lowercase = shift_tokens_right(UpperCamelCase__ ,self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1] ,3) self.assertEqual(batch.decoder_input_ids.shape[1] ,1_0) @require_torch def A__ ( self): lowercase = self.tokenizer._build_translation_inputs( '''A test''' ,return_tensors='''pt''' ,src_lang='''en_XX''' ,tgt_lang='''ar_AR''') self.assertEqual( nested_simplify(UpperCamelCase__) ,{ # en_XX, A, test, EOS '''input_ids''': [[2_5_0_0_0_4, 6_2, 3_0_3_4, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_0_0_0_1, } ,)
367
from __future__ import annotations from decimal import Decimal from numpy import array def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowercase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements lowercase = [[0.0, 0.0], [0.0, 0.0]] lowercase , lowercase = matrix[1][1], matrix[0][0] lowercase , lowercase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowercase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix lowercase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowercase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowercase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowercase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowercase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowercase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowercase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowercase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowercase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowercase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowercase = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): lowercase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowercase = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase__ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
97
0
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class lowerCAmelCase__ : '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = None # Automatically constructed __UpperCamelCase = "dict" __UpperCamelCase = None __UpperCamelCase = field(default="Translation" , init=UpperCAmelCase__ , repr=UpperCAmelCase__ ) def __call__( self : List[str]): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages)}) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' from .features import Value return {k: Value('''string''') for k in sorted(self.languages)} @dataclass class lowerCAmelCase__ : '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None # Automatically constructed __UpperCamelCase = "dict" __UpperCamelCase = None __UpperCamelCase = field(default="TranslationVariableLanguages" , init=UpperCAmelCase__ , repr=UpperCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = sorted(set(self.languages)) if self.languages else None SCREAMING_SNAKE_CASE_ : Any = len(self.languages) if self.languages else None def __call__( self : Optional[int]): '''simple docstring''' return pa.struct({'''language''': pa.list_(pa.string()), '''translation''': pa.list_(pa.string())}) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = set(self.languages) if self.languages and set(lowercase_) - lang_set: raise ValueError( F'Some languages in example ({", ".join(sorted(set(lowercase_) - lang_set))}) are not in valid set ({", ".join(lowercase_)}).') # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. SCREAMING_SNAKE_CASE_ : int = [] for lang, text in translation_dict.items(): if isinstance(lowercase_ , lowercase_): translation_tuples.append((lang, text)) else: translation_tuples.extend([(lang, el) for el in text]) # Ensure translations are in ascending order by language code. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = zip(*sorted(lowercase_)) return {"language": languages, "translation": translations} def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value('''string''')), "translation": Sequence(Value('''string''')), }
91
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) _SCREAMING_SNAKE_CASE : List[str] = "hf-internal-testing/tiny-random-bert" _SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") _SCREAMING_SNAKE_CASE : Optional[int] = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class A__ ( unittest.TestCase ): """simple docstring""" def a_ ( self ): snake_case = cached_file(__snake_case , __snake_case ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__snake_case ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__snake_case , __snake_case ) ) ) with open(os.path.join(__snake_case , '''refs''' , '''main''' ) ) as f: snake_case = f.read() self.assertEqual(__snake_case , os.path.join(__snake_case , '''snapshots''' , __snake_case , __snake_case ) ) self.assertTrue(os.path.isfile(__snake_case ) ) # File is cached at the same place the second time. snake_case = cached_file(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) # Using a specific revision to test the full commit hash. snake_case = cached_file(__snake_case , __snake_case , revision='''9b8c223''' ) self.assertEqual(__snake_case , os.path.join(__snake_case , '''snapshots''' , __snake_case , __snake_case ) ) def a_ ( self ): with self.assertRaisesRegex(__snake_case , '''is not a valid model identifier''' ): snake_case = cached_file('''tiny-random-bert''' , __snake_case ) with self.assertRaisesRegex(__snake_case , '''is not a valid git identifier''' ): snake_case = cached_file(__snake_case , __snake_case , revision='''aaaa''' ) with self.assertRaisesRegex(__snake_case , '''does not appear to have a file named''' ): snake_case = cached_file(__snake_case , '''conf''' ) def a_ ( self ): with self.assertRaisesRegex(__snake_case , '''does not appear to have a file named''' ): snake_case = cached_file(__snake_case , '''conf''' ) with open(os.path.join(__snake_case , '''refs''' , '''main''' ) ) as f: snake_case = f.read() self.assertTrue(os.path.isfile(os.path.join(__snake_case , '''.no_exist''' , __snake_case , '''conf''' ) ) ) snake_case = cached_file(__snake_case , '''conf''' , _raise_exceptions_for_missing_entries=__snake_case ) self.assertIsNone(__snake_case ) snake_case = cached_file(__snake_case , '''conf''' , local_files_only=__snake_case , _raise_exceptions_for_missing_entries=__snake_case ) self.assertIsNone(__snake_case ) snake_case = mock.Mock() snake_case = 5_0_0 snake_case = {} snake_case = HTTPError snake_case = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=__snake_case ) as mock_head: snake_case = cached_file(__snake_case , '''conf''' , _raise_exceptions_for_connection_errors=__snake_case ) self.assertIsNone(__snake_case ) # This check we did call the fake head request mock_head.assert_called() def a_ ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __snake_case ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __snake_case ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __snake_case ) ) def a_ ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__snake_case , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , __snake_case ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__snake_case , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , __snake_case , revision='''ahaha''' ) snake_case = get_file_from_repo('''bert-base-cased''' , __snake_case ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case = json.loads(open(__snake_case , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 7_6_8 ) def a_ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: snake_case = Path(__snake_case ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(__snake_case , '''a.txt''' ) , str(__snake_case ) ) self.assertIsNone(get_file_from_repo(__snake_case , '''b.txt''' ) )
127
0
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCAmelCase (): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __UpperCamelCase ="""__test_patch_submodule_mock__""" with patch_submodule(_test_patching , '''os.path.join''' , _lowerCAmelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCAmelCase (): """simple docstring""" assert _test_patching.open is open __UpperCamelCase ="""__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , _lowerCAmelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCAmelCase (): """simple docstring""" __UpperCamelCase ="""__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , '''pandas.read_csv''' , _lowerCAmelCase ): pass def lowerCAmelCase (): """simple docstring""" __UpperCamelCase ="""__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , _lowerCAmelCase ) is None with patch_submodule(_test_patching , '''len''' , _lowerCAmelCase ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCAmelCase (): """simple docstring""" __UpperCamelCase ="""__test_patch_submodule_start_and_stop_mock__""" __UpperCamelCase =patch_submodule(_test_patching , '''open''' , _lowerCAmelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCAmelCase (): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __UpperCamelCase ="""__test_patch_submodule_successive_join__""" __UpperCamelCase ="""__test_patch_submodule_successive_dirname__""" __UpperCamelCase ="""__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , _lowerCAmelCase ): with patch_submodule(_test_patching , '''os.rename''' , _lowerCAmelCase ): with patch_submodule(_test_patching , '''os.path.dirname''' , _lowerCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , _lowerCAmelCase ): with patch_submodule(_test_patching , '''os.path.join''' , _lowerCAmelCase ): with patch_submodule(_test_patching , '''os.path.dirname''' , _lowerCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCAmelCase (): """simple docstring""" __UpperCamelCase ="""__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , _lowerCAmelCase ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , _lowerCAmelCase ): pass
371
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowercase = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''GPTNeoXTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXForCausalLM''', '''GPTNeoXForQuestionAnswering''', '''GPTNeoXForSequenceClassification''', '''GPTNeoXForTokenClassification''', '''GPTNeoXLayer''', '''GPTNeoXModel''', '''GPTNeoXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
85
0
"""simple docstring""" def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(a_ , n - 1 , a_ ) * a) % mod else: lowerCAmelCase__ : Any = binary_exponentiation(a_ , n / 2 , a_ ) return (b * b) % mod # a prime number _A = 7_0_1 _A = 1_0_0_0_0_0_0_0_0_0 _A = 1_0 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
242
'''simple docstring''' def __UpperCAmelCase ( a_: int = 50 ): _UpperCAmelCase : str = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
145
0
"""simple docstring""" import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase__ ( self ) -> int: A = tempfile.mkdtemp() A = 8 # DPR tok A = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] A = os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) os.makedirs(lowerCamelCase_ ,exist_ok=lowerCamelCase_ ) A = os.path.join(lowerCamelCase_ ,DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok A = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] A = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) A = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] A = {"""unk_token""": """<unk>"""} A = os.path.join(self.tmpdirname ,"""bart_tokenizer""" ) os.makedirs(lowerCamelCase_ ,exist_ok=lowerCamelCase_ ) A = os.path.join(lowerCamelCase_ ,BART_VOCAB_FILES_NAMES["""vocab_file"""] ) A = os.path.join(lowerCamelCase_ ,BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase_ ) ) def UpperCamelCase__ ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) ) def UpperCamelCase__ ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""bart_tokenizer""" ) ) def UpperCamelCase__ ( self ) -> Any: shutil.rmtree(self.tmpdirname ) @require_tokenizers def UpperCamelCase__ ( self ) -> List[Any]: A = os.path.join(self.tmpdirname ,"""rag_tokenizer""" ) A = RagConfig(question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ) A = RagTokenizer(question_encoder=self.get_dpr_tokenizer() ,generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(lowerCamelCase_ ) rag_tokenizer.save_pretrained(lowerCamelCase_ ) A = RagTokenizer.from_pretrained(lowerCamelCase_ ,config=lowerCamelCase_ ) self.assertIsInstance(new_rag_tokenizer.question_encoder ,lowerCamelCase_ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() ,rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator ,lowerCamelCase_ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() ,rag_tokenizer.generator.get_vocab() ) @slow def UpperCamelCase__ ( self ) -> Union[str, Any]: A = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) A = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] A = tokenizer(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @slow def UpperCamelCase__ ( self ) -> Tuple: A = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) A = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] A = tokenizer(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ )
77
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def _A ( _a : Callable[[int | float], int | float] , _a : int | float , _a : int | float , _a : int = 1_0_0 , ): """simple docstring""" A = x_start A = fnc(_a ) A = 0.0 for _ in range(_a ): # Approximates curve as a sequence of linear lines and sums their length A = (x_end - x_start) / steps + xa A = fnc(_a ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step A = xa A = fxa return length if __name__ == "__main__": def _A ( _a : Tuple ): """simple docstring""" return math.sin(1_0 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") UpperCAmelCase =10 while i <= 100_000: print(f"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
77
1
from __future__ import annotations def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = 2 snake_case_ = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(UpperCamelCase__ ) if n > 1: factors.append(UpperCamelCase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
285
import os import numpy import onnx def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = a.name snake_case_ = b.name snake_case_ = '' snake_case_ = '' snake_case_ = a == b snake_case_ = name_a snake_case_ = name_b return res def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCamelCase__ , UpperCamelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCamelCase__ , UpperCamelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCamelCase__ , UpperCamelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCamelCase__ , UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = list(model.graph.initializer ) snake_case_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case_ = inits[i].name snake_case_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCamelCase__ , UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = os.path.dirname(UpperCamelCase__ ) snake_case_ = os.path.basename(UpperCamelCase__ ) snake_case_ = onnx.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case_ = list(model.graph.initializer ) snake_case_ = set() snake_case_ = {} snake_case_ = [] snake_case_ = 0 for i in range(len(UpperCamelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCamelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCamelCase__ ) dup_set.add(UpperCamelCase__ ) snake_case_ = inits[j].data_type snake_case_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , UpperCamelCase__ ) total_reduced_size += mem_size snake_case_ = inits[i].name snake_case_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCamelCase__ ) else: snake_case_ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) snake_case_ = sorted(UpperCamelCase__ ) _remove_dup_initializers_from_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case_ = 'optimized_' + model_file_name snake_case_ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) onnx.save(UpperCamelCase__ , UpperCamelCase__ ) return new_model
285
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
371
from __future__ import annotations def A(__a: dict , __a: str ): lowerCAmelCase_ , lowerCAmelCase_ = set(__a ), [start] while stack: lowerCAmelCase_ = stack.pop() explored.add(__a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__a ) return explored lowerCamelCase__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
22
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self ) -> Tuple: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: a =AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) a =TFAutoModel.from_pretrained(__A , from_pt=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) a =AutoModel.from_pretrained(__A , from_tf=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Tuple: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: a =AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) a =TFAutoModelForPreTraining.from_pretrained(__A , from_pt=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) a =AutoModelForPreTraining.from_pretrained(__A , from_tf=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def SCREAMING_SNAKE_CASE ( self ) -> int: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a =AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) a =TFAutoModelForCausalLM.from_pretrained(__A , from_pt=__A ) a , a =TFAutoModelForCausalLM.from_pretrained( __A , output_loading_info=__A , from_pt=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) a =AutoModelForCausalLM.from_pretrained(__A , from_tf=__A ) a , a =AutoModelForCausalLM.from_pretrained( __A , output_loading_info=__A , from_tf=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def SCREAMING_SNAKE_CASE ( self ) -> str: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a =AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) a =TFAutoModelWithLMHead.from_pretrained(__A , from_pt=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) a =AutoModelWithLMHead.from_pretrained(__A , from_tf=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a =AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) a =TFAutoModelForMaskedLM.from_pretrained(__A , from_pt=__A ) a , a =TFAutoModelForMaskedLM.from_pretrained( __A , output_loading_info=__A , from_pt=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) a =AutoModelForMaskedLM.from_pretrained(__A , from_tf=__A ) a , a =AutoModelForMaskedLM.from_pretrained( __A , output_loading_info=__A , from_tf=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a =AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) a =TFAutoModelForSeqaSeqLM.from_pretrained(__A , from_pt=__A ) a , a =TFAutoModelForSeqaSeqLM.from_pretrained( __A , output_loading_info=__A , from_pt=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) a =AutoModelForSeqaSeqLM.from_pretrained(__A , from_tf=__A ) a , a =AutoModelForSeqaSeqLM.from_pretrained( __A , output_loading_info=__A , from_tf=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Tuple: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: a =AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) a =TFAutoModelForSequenceClassification.from_pretrained(__A , from_pt=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) a =AutoModelForSequenceClassification.from_pretrained(__A , from_tf=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def SCREAMING_SNAKE_CASE ( self ) -> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: a =AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) a =TFAutoModelForQuestionAnswering.from_pretrained(__A , from_pt=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) a =AutoModelForQuestionAnswering.from_pretrained(__A , from_tf=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =TFAutoModelWithLMHead.from_pretrained(__A , from_pt=__A ) self.assertIsInstance(__A , __A ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__A ) , 1_4410 ) a =AutoModelWithLMHead.from_pretrained(__A , from_tf=__A ) self.assertIsInstance(__A , __A ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__A ) , 1_4410 ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =TFAutoModelWithLMHead.from_pretrained(__A , from_pt=__A ) self.assertIsInstance(__A , __A ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__A ) , 1_4410 ) a =AutoModelWithLMHead.from_pretrained(__A , from_tf=__A ) self.assertIsInstance(__A , __A ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__A ) , 1_4410 )
81
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
97
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowercase ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self : Dict ): torch.manual_seed(0 ) UpperCamelCase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model @property def A_ ( self : Dict ): torch.manual_seed(0 ) UpperCamelCase__ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , ) return model @property def A_ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(_a ) def A_ ( self : Optional[int] ): UpperCamelCase__ = self.dummy_uncond_unet UpperCamelCase__ = DDIMScheduler() UpperCamelCase__ = self.dummy_vq_model UpperCamelCase__ = LDMPipeline(unet=_a , vqvae=_a , scheduler=_a ) ldm.to(_a ) ldm.set_progress_bar_config(disable=_a ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = ldm(generator=_a , num_inference_steps=2 , output_type='''numpy''' ).images UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = ldm(generator=_a , num_inference_steps=2 , output_type='''numpy''' , return_dict=_a )[0] UpperCamelCase__ = image[0, -3:, -3:, -1] UpperCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase__ = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' def A_ ( self : Optional[int] ): UpperCamelCase__ = LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' ) ldm.to(_a ) ldm.set_progress_bar_config(disable=_a ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = ldm(generator=_a , num_inference_steps=5 , output_type='''numpy''' ).images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase__ = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase__ = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
35
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase = { """configuration_xlm_roberta""": [ """XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaConfig""", """XLMRobertaOnnxConfig""", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""XLMRobertaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""XLMRobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaForCausalLM""", """XLMRobertaForMaskedLM""", """XLMRobertaForMultipleChoice""", """XLMRobertaForQuestionAnswering""", """XLMRobertaForSequenceClassification""", """XLMRobertaForTokenClassification""", """XLMRobertaModel""", """XLMRobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMRobertaForCausalLM""", """TFXLMRobertaForMaskedLM""", """TFXLMRobertaForMultipleChoice""", """TFXLMRobertaForQuestionAnswering""", """TFXLMRobertaForSequenceClassification""", """TFXLMRobertaForTokenClassification""", """TFXLMRobertaModel""", """TFXLMRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxXLMRobertaForMaskedLM""", """FlaxXLMRobertaForCausalLM""", """FlaxXLMRobertaForMultipleChoice""", """FlaxXLMRobertaForQuestionAnswering""", """FlaxXLMRobertaForSequenceClassification""", """FlaxXLMRobertaForTokenClassification""", """FlaxXLMRobertaModel""", """FlaxXLMRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
35
1
'''simple docstring''' # Function to print upper half of diamond (pyramid) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> List[str]: for i in range(0 , UpperCamelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str: for i in range(UpperCamelCase , 0 , -1 ): for _ in range(UpperCamelCase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(UpperCamelCase ) # upper half reverse_floyd(UpperCamelCase ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') _A : List[Any] =1 while K: _A : Optional[int] =int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) _A : Union[str, Any] =int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
41
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _SCREAMING_SNAKE_CASE : Any = False try: _SCREAMING_SNAKE_CASE : Optional[Any] = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class _snake_case : def __init__( self , a__ = None , a__ = [] ) -> List[str]: '''simple docstring''' snake_case_ = 0 snake_case_ = choices snake_case_ = prompt if sys.platform == "win32": snake_case_ = "*" else: snake_case_ = "➔ " def lowerCAmelCase__ ( self , a__ , a__ = "" ) -> int: '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] , 32 , a__ ) else: forceWrite(self.choices[index] , a__ ) def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(a__ ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def lowerCAmelCase__ ( self , a__ , a__ = 1 ) -> List[str]: '''simple docstring''' snake_case_ = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(a__ ) move_cursor(a__ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(a__ )] for number in range(10 )] ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = int(chr(self.current_selection ) ) snake_case_ = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , a__ ) else: return else: return def lowerCAmelCase__ ( self , a__ = 0 ) -> List[str]: '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt , "\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" ) snake_case_ = default_choice for i in range(len(self.choices ) ): self.print_choice(a__ ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position , "UP" ) with cursor.hide(): while True: if in_colab: try: snake_case_ = int(builtins.input() ) except ValueError: snake_case_ = default_choice else: snake_case_ = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , "UP" ) clear_line() self.write_choice(a__ , "\n" ) return choice
85
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = '▁' UpperCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} UpperCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } UpperCAmelCase_ = { 'facebook/xglm-564M': 2_0_4_8, } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Tuple = VOCAB_FILES_NAMES lowerCAmelCase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str="<s>" , _UpperCAmelCase : Optional[Any]="</s>" , _UpperCAmelCase : Optional[Any]="</s>" , _UpperCAmelCase : Optional[Any]="<s>" , _UpperCAmelCase : List[Any]="<unk>" , _UpperCAmelCase : Dict="<pad>" , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : Optional[int] , ): """simple docstring""" UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCAmelCase__ = 7 UpperCAmelCase__ = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )] UpperCAmelCase__ = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCAmelCase ) ) UpperCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase__ = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} UpperCAmelCase__ = len(self.sp_model ) UpperCAmelCase__ = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_UpperCAmelCase ) UpperCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ): """simple docstring""" UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None UpperCAmelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , _UpperCAmelCase : List[Any] ): """simple docstring""" UpperCAmelCase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCAmelCase__ = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : str ): """simple docstring""" return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Optional[Any] ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase__ = self.sp_model.PieceToId(_UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[Any] ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , """wb""" ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,)
361
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list[list[int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : set ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ), len(grid[0] ) if ( min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) UpperCAmelCase__ = 0 count += depth_first_search(SCREAMING_SNAKE_CASE__ , row + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += depth_first_search(SCREAMING_SNAKE_CASE__ , row - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += depth_first_search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , col + 1 , SCREAMING_SNAKE_CASE__ ) count += depth_first_search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , col - 1 , SCREAMING_SNAKE_CASE__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
61
0
"""simple docstring""" from collections import defaultdict from math import gcd def a_ ( _lowerCAmelCase : int = 150_0000 ): '''simple docstring''' lowercase__ : defaultdict = defaultdict(_lowerCAmelCase ) lowercase__ : int = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , _lowerCAmelCase , 2 ): if gcd(_lowerCAmelCase , _lowerCAmelCase ) > 1: continue lowercase__ : Tuple = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_lowerCAmelCase , limit + 1 , _lowerCAmelCase ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
77
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : Tuple = logging.get_logger(__name__) _UpperCamelCase : Union[str, Any] = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class UpperCAmelCase_ ( _a): lowerCamelCase__ : List[Any] = "mgp-str" def __init__( self , a=[3_2, 1_2_8] , a=4 , a=3 , a=2_7 , a=3_8 , a=5_0_2_5_7 , a=3_0_5_2_2 , a=7_6_8 , a=1_2 , a=1_2 , a=4.0 , a=True , a=False , a=1e-5 , a=0.0 , a=0.0 , a=0.0 , a=False , a=0.02 , **a , ) -> Tuple: super().__init__(**a ) lowercase__ : int = image_size lowercase__ : List[Any] = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = max_token_length lowercase__ : Dict = num_character_labels lowercase__ : Optional[int] = num_bpe_labels lowercase__ : Dict = num_wordpiece_labels lowercase__ : Tuple = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : Dict = mlp_ratio lowercase__ : Optional[int] = distilled lowercase__ : Optional[int] = layer_norm_eps lowercase__ : Optional[int] = drop_rate lowercase__ : List[str] = qkv_bias lowercase__ : Optional[int] = attn_drop_rate lowercase__ : Any = drop_path_rate lowercase__ : List[Any] = output_aa_attentions lowercase__ : Tuple = initializer_range
77
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) lowercase__ : Optional[int] = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys lowercase__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
289
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : Optional[int] = 1_6 lowercase__ : List[str] = 3_2 def UpperCamelCase_ ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 ) -> Dict: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCAmelCase_ : Union[str, Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCAmelCase__ : Tuple ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ : Dict = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase_ : Dict = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ : int = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCAmelCase__ : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase_ : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase_ : Dict = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase_ : str = 8 else: lowerCAmelCase_ : str = None return tokenizer.pad( lowerCAmelCase__ , padding='longest' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='pt' , ) # Instantiate dataloaders. lowerCAmelCase_ : List[Any] = DataLoader( tokenized_datasets['train'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : int = mocked_dataloaders # noqa: F811 def UpperCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS' , lowerCAmelCase__ ) == "1": lowerCAmelCase_ : Optional[int] = 2 # Initialize accelerator lowerCAmelCase_ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ : Optional[int] = config['lr'] lowerCAmelCase_ : Tuple = int(config['num_epochs'] ) lowerCAmelCase_ : int = int(config['seed'] ) lowerCAmelCase_ : str = int(config['batch_size'] ) lowerCAmelCase_ : str = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase__ ) def inner_training_loop(lowerCAmelCase__ : Optional[int] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ : str = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase_ : int = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase_ : List[Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) lowerCAmelCase_ ,lowerCAmelCase_ : Any = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate scheduler lowerCAmelCase_ : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : List[Any] = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase_ : List[str] = model(**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = outputs.loss accelerator.backward(lowerCAmelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ : Union[str, Any] = model(**lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase_ ,lowerCAmelCase_ : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) lowerCAmelCase_ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , lowerCAmelCase__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCamelCase_ ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : int = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) lowerCAmelCase_ : str = parser.parse_args() lowerCAmelCase_ : Union[str, Any] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
289
1
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class _a ( lowerCAmelCase_ ): """simple docstring""" def __A ( self : List[Any] ): A_ = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def __A ( self : Optional[Any] ): with self.assertRaises(snake_case_ ): A_ = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def __A ( self : Dict ): with self.assertRaises(snake_case_ ): A_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def __A ( self : str ): A_ = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __A ( self : Union[str, Any] ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): A_ = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def __A ( self : int ): A_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __A ( self : Dict ): A_ = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def __A ( self : int ): A_ = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def __A ( self : Dict ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): A_ = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def __A ( self : str ): A_ = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def __A ( self : Tuple ): A_ = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def __A ( self : Optional[int] ): import PIL.Image A_ = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=snake_case_ ) as mock_cast_to_python_objects: A_ = pa.array(TypedSequence([{"path": None, "bytes": B"image_bytes"}, pil_image] , type=Image() ) ) A_ , A_ = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , snake_case_ ) self.assertFalse(kwargs["optimize_list_casting"] ) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : int ): """simple docstring""" A_ = pa.BufferReader(__lowercase ) if isinstance(__lowercase ,pa.Buffer ) else pa.memory_map(__lowercase ) A_ = pa.ipc.open_stream(__lowercase ) A_ = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 10] ) @pytest.mark.parametrize( "fields" ,[None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : int ): """simple docstring""" A_ = pa.BufferOutputStream() A_ = pa.schema(__lowercase ) if fields else None with ArrowWriter(stream=__lowercase ,schema=__lowercase ,writer_batch_size=__lowercase ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) A_ , A_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__lowercase ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __snake_case ( ): """simple docstring""" A_ = pa.BufferOutputStream() A_ = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=__lowercase ,features=__lowercase ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) A_ , A_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata A_ = pa.BufferReader(output.getvalue() ) A_ = pa.ipc.open_stream(__lowercase ) A_ = f.read_all() A_ = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__lowercase ) @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 10] ) def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" A_ = pa.BufferOutputStream() with ArrowWriter( stream=__lowercase ,writer_batch_size=__lowercase ,hash_salt="split_name" ,check_duplicates=__lowercase ,) as writer: with pytest.raises(__lowercase ): writer.write({"col_1": "foo", "col_2": 1} ,key=[1, 2] ) A_ , A_ = writer.finalize() @pytest.mark.parametrize("writer_batch_size" ,[None, 2, 10] ) def __snake_case ( __UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = pa.BufferOutputStream() with ArrowWriter( stream=__lowercase ,writer_batch_size=__lowercase ,hash_salt="split_name" ,check_duplicates=__lowercase ,) as writer: with pytest.raises(__lowercase ): writer.write({"col_1": "foo", "col_2": 1} ,key=10 ) writer.write({"col_1": "bar", "col_2": 2} ,key=10 ) A_ , A_ = writer.finalize() @pytest.mark.parametrize("writer_batch_size" ,[None, 2, 10] ) def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = pa.BufferOutputStream() with ArrowWriter( stream=__lowercase ,writer_batch_size=__lowercase ,hash_salt="split_name" ,check_duplicates=__lowercase ,) as writer: writer.write({"col_1": "foo", "col_2": 1} ,key=1 ) writer.write({"col_1": "bar", "col_2": 2} ,key=2 ) A_ , A_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 10] ) @pytest.mark.parametrize( "fields" ,[None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[int] ): """simple docstring""" A_ = pa.BufferOutputStream() A_ = pa.schema(__lowercase ) if fields else None with ArrowWriter(stream=__lowercase ,schema=__lowercase ,writer_batch_size=__lowercase ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) A_ , A_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__lowercase ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 10] ) @pytest.mark.parametrize( "fields" ,[None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any ): """simple docstring""" A_ = pa.BufferOutputStream() A_ = pa.schema(__lowercase ) if fields else None with ArrowWriter(stream=__lowercase ,schema=__lowercase ,writer_batch_size=__lowercase ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) A_ , A_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__lowercase ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 10] ) @pytest.mark.parametrize( "fields" ,[None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Tuple ): """simple docstring""" A_ = pa.BufferOutputStream() A_ = pa.schema(__lowercase ) if fields else None with ArrowWriter(stream=__lowercase ,schema=__lowercase ,writer_batch_size=__lowercase ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) A_ , A_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__lowercase ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __snake_case ( ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: A_ = {"col_1": pa.string(), "col_2": pa.intaa()} A_ = os.path.join(__lowercase ,"test.arrow" ) with ArrowWriter(path=__lowercase ,schema=pa.schema(__lowercase ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) A_ , A_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__lowercase ,metadata=writer._schema.metadata ) _check_output(__lowercase ,1 ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" if pa.types.is_list(__lowercase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : Optional[Any] ): """simple docstring""" if isinstance(lst[0] ,__lowercase ): change_first_primitive_element_in_list(lst[0] ,__lowercase ) else: A_ = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" ,[(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" ,[[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : str ,__UpperCamelCase : Dict ): """simple docstring""" A_ = pa.array(TypedSequence(__lowercase ,optimized_int_type=__lowercase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" ,[ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] ,) @pytest.mark.parametrize("sequence" ,[[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : List[Any] ,__UpperCamelCase : List[Any] ): """simple docstring""" A_ = pa.array(OptimizedTypedSequence(__lowercase ,col=__lowercase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications A_ = copy.deepcopy(__lowercase ) A_ = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__lowercase ,__lowercase ) A_ = pa.array(OptimizedTypedSequence(__lowercase ,col=__lowercase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" ,[False, True] ) def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : Tuple ): """simple docstring""" A_ = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=__lowercase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def __snake_case ( __UpperCamelCase : str ): """simple docstring""" A_ = "mock://dataset-train.arrow" with ArrowWriter(path=__lowercase ,storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs ,type(__lowercase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) A_ , A_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__lowercase ) def __snake_case ( ): """simple docstring""" A_ = pa.BufferOutputStream() with ParquetWriter(stream=__lowercase ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) A_ , A_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 A_ = pa.BufferReader(output.getvalue() ) A_ = pq.read_table(__lowercase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" ,[False, True] ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" import PIL.Image A_ = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) ,dtype=np.uinta ) ).save(__lowercase ,format="png" ) A_ = pa.BufferOutputStream() with ParquetWriter( stream=__lowercase ,features=Features({"image": Image()} ) ,embed_local_files=__lowercase ) as writer: writer.write({"image": image_path} ) writer.finalize() A_ = pa.BufferReader(output.getvalue() ) A_ = pq.read_table(__lowercase ) A_ = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] ,__lowercase ) with open(__lowercase ,"rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def __snake_case ( ): """simple docstring""" A_ = pa.schema([pa.field("col_1" ,pa.string() ,nullable=__lowercase )] ) A_ = pa.BufferOutputStream() with ArrowWriter(stream=__lowercase ) as writer: writer._build_writer(inferred_schema=__lowercase ) assert writer._schema == pa.schema([pa.field("col_1" ,pa.string() )] )
312
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: __SCREAMING_SNAKE_CASE :List[Any] = None __SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :List[str] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE :List[Any] = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } __SCREAMING_SNAKE_CASE :Optional[Any] = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } __SCREAMING_SNAKE_CASE :Optional[int] = '''▁''' class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES _lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : int = AlbertTokenizer def __init__( self : Optional[Any] , snake_case_ : Optional[Any]=None , snake_case_ : Optional[Any]=None , snake_case_ : Optional[Any]=True , snake_case_ : str=True , snake_case_ : Tuple=False , snake_case_ : List[Any]="[CLS]" , snake_case_ : Union[str, Any]="[SEP]" , snake_case_ : str="<unk>" , snake_case_ : Union[str, Any]="[SEP]" , snake_case_ : List[Any]="<pad>" , snake_case_ : List[str]="[CLS]" , snake_case_ : int="[MASK]" , **snake_case_ : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _UpperCAmelCase = ( AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ , normalized=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token ) super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , **snake_case_ , ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def lowercase ( self : Union[str, Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase ( self : Dict , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : Optional[Any] , snake_case_ : str , snake_case_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
22
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase_ = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } lowerCamelCase_ = {'''facebook/blenderbot-3B''': 1_28} class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE__ = BlenderbotTokenizer def __init__(self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="replace" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ): super().__init__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase__ = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop("""type""" ) ) UpperCamelCase__ = add_prefix_space UpperCamelCase__ = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = add_prefix_space UpperCamelCase__ = """post_processor""" UpperCamelCase__ = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if tokenizer_component_instance: UpperCamelCase__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase__ = tuple(state["""sep"""] ) if "cls" in state: UpperCamelCase__ = tuple(state["""cls"""] ) UpperCamelCase__ = False if state.get("""add_prefix_space""" , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase__ = add_prefix_space UpperCamelCase__ = True if state.get("""trim_offsets""" , SCREAMING_SNAKE_CASE_ ) != trim_offsets: UpperCamelCase__ = trim_offsets UpperCamelCase__ = True if changes_to_apply: UpperCamelCase__ = getattr(SCREAMING_SNAKE_CASE_ , state.pop("""type""" ) ) UpperCamelCase__ = component_class(**SCREAMING_SNAKE_CASE_ ) setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase_ (self ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else value UpperCamelCase__ = value def UpperCAmelCase_ (self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = kwargs.get("""is_split_into_words""" , SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = kwargs.get("""is_split_into_words""" , SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase__ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): return token_ids_a + [self.eos_token_id] def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """ """.join(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.encode(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > self.model_max_length: UpperCamelCase__ = input_ids[-self.model_max_length :] logger.warning(F"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
354
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase_ = logging.get_logger(__name__) def __magic_name__ ( __a : Optional[int] ): '''simple docstring''' UpperCamelCase__ = R"""\w+[.]\d+""" UpperCamelCase__ = re.findall(__a , __a ) for pat in pats: UpperCamelCase__ = key.replace(__a , """_""".join(pat.split(""".""" ) ) ) return key def __magic_name__ ( __a : str , __a : Dict , __a : int ): '''simple docstring''' UpperCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __magic_name__ ( __a : List[Any] , __a : List[Any] , __a : Optional[int]=42 ): '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCamelCase__ = flax_model.init_weights(PRNGKey(__a ) ) UpperCamelCase__ = flatten_dict(__a ) UpperCamelCase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = rename_key(__a ) UpperCamelCase__ = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(__a ) return unflatten_dict(__a )
178
0
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __a = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __a = logging.get_logger(__name__) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "maskformer" lowercase = {"hidden_size": "mask_feature_size"} lowercase = ["resnet", "swin"] lowercase = ["detr"] def __init__( self : Any , snake_case_ : int = 256 , snake_case_ : int = 256 , snake_case_ : float = 0.1 , snake_case_ : bool = False , snake_case_ : Optional[Dict] = None , snake_case_ : Optional[Dict] = None , snake_case_ : float = 0.02 , snake_case_ : float = 1.0 , snake_case_ : float = 1.0 , snake_case_ : float = 1.0 , snake_case_ : float = 20.0 , snake_case_ : Optional[bool] = None , **snake_case_ : int , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k snake_case__ : Optional[Any] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(snake_case_ , snake_case_ ): snake_case__ : Dict = backbone_config.pop("""model_type""" ) snake_case__ : int = CONFIG_MAPPING[backbone_model_type] snake_case__ : Optional[int] = config_class.from_dict(snake_case_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " f"Supported model types: {','.join(self.backbones_supported )}" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 snake_case__ : Optional[Any] = DetrConfig() else: # verify that the decoder is supported snake_case__ : List[str] = ( decoder_config.pop("""model_type""" ) if isinstance(snake_case_ , snake_case_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"Transformer Decoder {decoder_type} not supported, please use one of" f" {','.join(self.decoders_supported )}" ) if isinstance(snake_case_ , snake_case_ ): snake_case__ : Union[str, Any] = CONFIG_MAPPING[decoder_type] snake_case__ : Union[str, Any] = config_class.from_dict(snake_case_ ) snake_case__ : Any = backbone_config snake_case__ : Optional[int] = decoder_config # main feature dimension for the model snake_case__ : int = fpn_feature_size snake_case__ : Any = mask_feature_size # initializer snake_case__ : str = init_std snake_case__ : Optional[Any] = init_xavier_std # Hungarian matcher && loss snake_case__ : Optional[int] = cross_entropy_weight snake_case__ : Dict = dice_weight snake_case__ : List[str] = mask_weight snake_case__ : Tuple = use_auxiliary_loss snake_case__ : Any = no_object_weight snake_case__ : List[str] = output_auxiliary_logits snake_case__ : int = self.decoder_config.encoder_attention_heads snake_case__ : str = self.decoder_config.num_hidden_layers super().__init__(**snake_case_ ) @classmethod def lowerCamelCase ( cls : int , snake_case_ : PretrainedConfig , snake_case_ : PretrainedConfig , **snake_case_ : int ): return cls( backbone_config=snake_case_ , decoder_config=snake_case_ , **snake_case_ , ) def lowerCamelCase ( self : Dict ): snake_case__ : str = copy.deepcopy(self.__dict__ ) snake_case__ : int = self.backbone_config.to_dict() snake_case__ : List[Any] = self.decoder_config.to_dict() snake_case__ : int = self.__class__.model_type return output
35
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __snake_case( _lowerCAmelCase , _lowerCAmelCase=False ) -> str: snake_case__ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Tuple = """""" else: snake_case__ : Dict = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Optional[Any] = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case__ : Tuple = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Any = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[int] = in_proj_bias[: config.hidden_size] snake_case__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Tuple = in_proj_bias[-config.hidden_size :] def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : str = dct.pop(_lowerCAmelCase ) snake_case__ : Tuple = val def __snake_case( ) -> Tuple: snake_case__ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> str: snake_case__ : Optional[int] = DeiTConfig() # all deit models have fine-tuned heads snake_case__ : Union[str, Any] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : int = 1_000 snake_case__ : Any = """huggingface/label-files""" snake_case__ : Optional[Any] = """imagenet-1k-id2label.json""" snake_case__ : Tuple = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : List[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : List[Any] = idalabel snake_case__ : List[str] = {v: k for k, v in idalabel.items()} snake_case__ : Tuple = int(deit_name[-6:-4] ) snake_case__ : Optional[Any] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): snake_case__ : Tuple = 192 snake_case__ : Union[str, Any] = 768 snake_case__ : Tuple = 12 snake_case__ : Union[str, Any] = 3 elif deit_name[9:].startswith("""small""" ): snake_case__ : str = 384 snake_case__ : Any = 1_536 snake_case__ : str = 12 snake_case__ : int = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): snake_case__ : Union[str, Any] = 1_024 snake_case__ : Any = 4_096 snake_case__ : List[Any] = 24 snake_case__ : Tuple = 16 # load original model from timm snake_case__ : List[Any] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[Any] = timm_model.state_dict() snake_case__ : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model snake_case__ : Optional[Any] = DeiTForImageClassificationWithTeacher(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ : List[Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ : Optional[Any] = DeiTImageProcessor(size=_lowerCAmelCase , crop_size=config.image_size ) snake_case__ : str = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case__ : Optional[Any] = encoding["""pixel_values"""] snake_case__ : Tuple = model(_lowerCAmelCase ) snake_case__ : Optional[int] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
35
1
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : Optional[Any] = '''▁''' lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = BertGenerationTokenizer _A : int = False _A : Dict = True def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" super().setUp() __lowercase : str = BertGenerationTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = """<s>""" __lowercase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(__a ) , 1002 ) def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase : str = BertGenerationTokenizer(__a , keep_accents=__a ) __lowercase : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [285, 46, 10, 170, 382] , ) __lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowercase : Tuple = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __lowercase : List[str] = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Any = """Hello World!""" __lowercase : Tuple = [18536, 2260, 101] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : int = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __lowercase : Any = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @require_torch @slow def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __lowercase : int = list(self.big_tokenizer.get_vocab().keys() )[:10] __lowercase : Optional[Any] = """ """.join(__a ) __lowercase : Union[str, Any] = self.big_tokenizer.encode_plus(__a , return_tensors="""pt""" , return_token_type_ids=__a ) __lowercase : List[Any] = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=__a ) __lowercase : Optional[Any] = BertGenerationConfig() __lowercase : Union[str, Any] = BertGenerationEncoder(__a ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__a ) model(**__a ) @slow def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = {"""input_ids""": [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
360
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Union[str, Any] = { "configuration_xmod": [ "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig", "XmodOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ "XMOD_PRETRAINED_MODEL_ARCHIVE_LIST", "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys __lowerCAmelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
156
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): return round(float(moles / volume ) * nfactor ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): return round(float((moles * 0.0821 * temperature) / (volume) ) ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
61
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) _lowerCamelCase : List[str] = logging.getLogger(__name__) def _a ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = np.argmax(SCREAMING_SNAKE_CASE__ , axis=1 ) return np.sum(outputs == labels ) def _a ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]: '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , encoding="utf_8" ) as f: SCREAMING_SNAKE_CASE__ : Any = csv.reader(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = [] next(SCREAMING_SNAKE_CASE__ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE__ ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = [] for dataset in encoded_datasets: SCREAMING_SNAKE_CASE__ : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) SCREAMING_SNAKE_CASE__ : List[Any] = np.zeros((n_batch, 2) , dtype=np.intaa ) SCREAMING_SNAKE_CASE__ : List[Any] = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) SCREAMING_SNAKE_CASE__ : Tuple = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] SCREAMING_SNAKE_CASE__ : List[str] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] SCREAMING_SNAKE_CASE__ : Optional[Any] = with_conta SCREAMING_SNAKE_CASE__ : int = with_conta SCREAMING_SNAKE_CASE__ : Dict = len(SCREAMING_SNAKE_CASE__ ) - 1 SCREAMING_SNAKE_CASE__ : int = len(SCREAMING_SNAKE_CASE__ ) - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = with_conta SCREAMING_SNAKE_CASE__ : Dict = with_conta SCREAMING_SNAKE_CASE__ : int = mc_label SCREAMING_SNAKE_CASE__ : Union[str, Any] = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE__ ) for t in all_inputs ) ) return tensor_datasets def _a ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE__ , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=SCREAMING_SNAKE_CASE__ , default="" ) parser.add_argument("--eval_dataset" , type=SCREAMING_SNAKE_CASE__ , default="" ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE__ , default=42 ) parser.add_argument("--num_train_epochs" , type=SCREAMING_SNAKE_CASE__ , default=3 ) parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE__ , default=8 ) parser.add_argument("--eval_batch_size" , type=SCREAMING_SNAKE_CASE__ , default=16 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=SCREAMING_SNAKE_CASE__ , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=SCREAMING_SNAKE_CASE__ , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=SCREAMING_SNAKE_CASE__ , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE__ , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE__ , default=6.2_5E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=SCREAMING_SNAKE_CASE__ , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=SCREAMING_SNAKE_CASE__ , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=SCREAMING_SNAKE_CASE__ , default=0.0_1 ) parser.add_argument("--lm_coef" , type=SCREAMING_SNAKE_CASE__ , default=0.9 ) parser.add_argument("--n_valid" , type=SCREAMING_SNAKE_CASE__ , default=3_74 ) parser.add_argument("--server_ip" , type=SCREAMING_SNAKE_CASE__ , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=SCREAMING_SNAKE_CASE__ , default="" , help="Can be used for distant debugging." ) SCREAMING_SNAKE_CASE__ : List[str] = parser.parse_args() print(SCREAMING_SNAKE_CASE__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) SCREAMING_SNAKE_CASE__ : Any = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) SCREAMING_SNAKE_CASE__ : int = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset SCREAMING_SNAKE_CASE__ : List[str] = ["_start_", "_delimiter_", "_classify_"] SCREAMING_SNAKE_CASE__ : int = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE__ ) ) model.to(SCREAMING_SNAKE_CASE__ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE__ : int ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE__ ) for o in obj] logger.info("Encoding dataset..." ) SCREAMING_SNAKE_CASE__ : str = load_rocstories_dataset(args.train_dataset ) SCREAMING_SNAKE_CASE__ : Optional[Any] = load_rocstories_dataset(args.eval_dataset ) SCREAMING_SNAKE_CASE__ : Optional[int] = (train_dataset, eval_dataset) SCREAMING_SNAKE_CASE__ : Any = tokenize_and_encode(SCREAMING_SNAKE_CASE__ ) # Compute the max input length for the Transformer SCREAMING_SNAKE_CASE__ : Optional[Any] = model.config.n_positions // 2 - 2 SCREAMING_SNAKE_CASE__ : Dict = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) SCREAMING_SNAKE_CASE__ : Optional[Any] = min(SCREAMING_SNAKE_CASE__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders SCREAMING_SNAKE_CASE__ : Any = pre_process_datasets(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = tensor_datasets[0], tensor_datasets[1] SCREAMING_SNAKE_CASE__ : Any = TensorDataset(*SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = RandomSampler(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=args.train_batch_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = TensorDataset(*SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = SequentialSampler(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: SCREAMING_SNAKE_CASE__ : List[str] = args.max_steps SCREAMING_SNAKE_CASE__ : Any = args.max_steps // (len(SCREAMING_SNAKE_CASE__ ) // args.gradient_accumulation_steps) + 1 else: SCREAMING_SNAKE_CASE__ : Dict = len(SCREAMING_SNAKE_CASE__ ) // args.gradient_accumulation_steps * args.num_train_epochs SCREAMING_SNAKE_CASE__ : str = list(model.named_parameters() ) SCREAMING_SNAKE_CASE__ : int = ["bias", "LayerNorm.bias", "LayerNorm.weight"] SCREAMING_SNAKE_CASE__ : str = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] SCREAMING_SNAKE_CASE__ : Optional[int] = AdamW(SCREAMING_SNAKE_CASE__ , lr=args.learning_rate , eps=args.adam_epsilon ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE__ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE__ ) if args.do_train: SCREAMING_SNAKE_CASE__ : Any = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : List[Any] = 0 SCREAMING_SNAKE_CASE__ : str = tqdm(SCREAMING_SNAKE_CASE__ , desc="Training" ) for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : List[str] = tuple(t.to(SCREAMING_SNAKE_CASE__ ) for t in batch ) SCREAMING_SNAKE_CASE__ : Any = batch SCREAMING_SNAKE_CASE__ : Tuple = model(SCREAMING_SNAKE_CASE__ , mc_token_ids=SCREAMING_SNAKE_CASE__ , lm_labels=SCREAMING_SNAKE_CASE__ , mc_labels=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() SCREAMING_SNAKE_CASE__ : List[str] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 SCREAMING_SNAKE_CASE__ : int = "Training loss: {:.2e} lr: {:.2e}".format(SCREAMING_SNAKE_CASE__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer SCREAMING_SNAKE_CASE__ : Tuple = model.module if hasattr(SCREAMING_SNAKE_CASE__ , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE__ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned SCREAMING_SNAKE_CASE__ : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) SCREAMING_SNAKE_CASE__ : Optional[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE__ ) if args.do_eval: model.eval() SCREAMING_SNAKE_CASE__ : Tuple = 0, 0 SCREAMING_SNAKE_CASE__ : List[Any] = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE__ , desc="Evaluating" ): SCREAMING_SNAKE_CASE__ : Optional[int] = tuple(t.to(SCREAMING_SNAKE_CASE__ ) for t in batch ) SCREAMING_SNAKE_CASE__ : Optional[Any] = batch with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = model( SCREAMING_SNAKE_CASE__ , mc_token_ids=SCREAMING_SNAKE_CASE__ , lm_labels=SCREAMING_SNAKE_CASE__ , mc_labels=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = mc_logits.detach().cpu().numpy() SCREAMING_SNAKE_CASE__ : Union[str, Any] = mc_labels.to("cpu" ).numpy() SCREAMING_SNAKE_CASE__ : Dict = accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 SCREAMING_SNAKE_CASE__ : Dict = eval_loss / nb_eval_steps SCREAMING_SNAKE_CASE__ : Optional[Any] = eval_accuracy / nb_eval_examples SCREAMING_SNAKE_CASE__ : Any = tr_loss / nb_tr_steps if args.do_train else None SCREAMING_SNAKE_CASE__ : str = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} SCREAMING_SNAKE_CASE__ : str = os.path.join(args.output_dir , "eval_results.txt" ) with open(SCREAMING_SNAKE_CASE__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE__ , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
371
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') _lowerCamelCase : Any = f"https://www.google.com/search?q={query}&num=100" _lowerCamelCase : Optional[Any] = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: _lowerCamelCase : Union[str, Any] = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: _lowerCamelCase : Optional[Any] = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
191
0
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file _UpperCAmelCase = TapasConfig.from_json_file(lowercase ) # set absolute/relative position embeddings parameter _UpperCAmelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _UpperCAmelCase = TapasForQuestionAnswering(config=lowercase ) elif task == "WTQ": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = True # hparam_utils.py hparams _UpperCAmelCase = 0.66_46_94 _UpperCAmelCase = 0.20_79_51 _UpperCAmelCase = 0.12_11_94 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = 0.0_35_25_13 _UpperCAmelCase = TapasForQuestionAnswering(config=lowercase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = False # hparam_utils.py hparams _UpperCAmelCase = 36.45_19 _UpperCAmelCase = 0.90_34_21 _UpperCAmelCase = 2_22.0_88 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 0.76_31_41 _UpperCAmelCase = TapasForQuestionAnswering(config=lowercase ) elif task == "TABFACT": _UpperCAmelCase = TapasForSequenceClassification(config=lowercase ) elif task == "MLM": _UpperCAmelCase = TapasForMaskedLM(config=lowercase ) elif task == "INTERMEDIATE_PRETRAINING": _UpperCAmelCase = TapasModel(config=lowercase ) else: raise ValueError(f'''Task {task} not supported.''' ) print(f'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowercase ,lowercase ,lowercase ) # Save pytorch-model (weights and configuration) print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowercase ) # Save tokenizer files print(f'''Save tokenizer files to {pytorch_dump_path}''' ) _UpperCAmelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" ,model_max_length=5_12 ) tokenizer.save_pretrained(lowercase ) print("""Used relative position embeddings:""" ,model.config.reset_position_index_per_cell ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
289
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = get_failure_array(lowercase ) # 2) Step through text searching for pattern _UpperCAmelCase , _UpperCAmelCase = 0, 0 # index into text, pattern while i < len(lowercase ): if pattern[j] == text[i]: if j == (len(lowercase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _UpperCAmelCase = failure[j - 1] continue i += 1 return False def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [0] _UpperCAmelCase = 0 _UpperCAmelCase = 1 while j < len(lowercase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _UpperCAmelCase = failure[i - 1] continue j += 1 failure.append(lowercase ) return failure if __name__ == "__main__": # Test 1) UpperCAmelCase__ = """abc1abc12""" UpperCAmelCase__ = """alskfjaldsabc1abc1abc12k23adsfabcabc""" UpperCAmelCase__ = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCAmelCase__ = """ABABX""" UpperCAmelCase__ = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) UpperCAmelCase__ = """AAAB""" UpperCAmelCase__ = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) UpperCAmelCase__ = """abcdabcy""" UpperCAmelCase__ = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) UpperCAmelCase__ = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
289
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowerCamelCase ( ): """simple docstring""" a :Tuple = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' a :Union[str, Any] = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ).convert('''RGB''' ) return image def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" a :str = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] ): """simple docstring""" a :Union[str, Any] = dct.pop(UpperCAmelCase_ ) a :Optional[Any] = val def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases a :Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) a :List[Any] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict a :str = torch.cat((q_bias, torch.zeros_like(UpperCAmelCase_ , requires_grad=UpperCAmelCase_ ), v_bias) ) a :Any = qkv_bias def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] ): """simple docstring""" a :str = 364 if '''coco''' in model_name else 224 a :Tuple = BlipaVisionConfig(image_size=UpperCAmelCase_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: a :int = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=UpperCAmelCase_ ).to_dict() elif "opt-6.7b" in model_name: a :Any = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=UpperCAmelCase_ ).to_dict() elif "t5-xl" in model_name: a :Any = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: a :str = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() a :Union[str, Any] = BlipaConfig(vision_config=UpperCAmelCase_ , text_config=UpperCAmelCase_ ) return config, image_size @torch.no_grad() def __lowerCamelCase ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Dict=False ): """simple docstring""" a :int = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) a :Union[str, Any] = tokenizer('''\n''' , add_special_tokens=UpperCAmelCase_ ).input_ids[0] a , a :Any = get_blipa_config(UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) a :Optional[Any] = BlipaForConditionalGeneration(UpperCAmelCase_ ).eval() a :List[str] = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } a , a :str = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) a :Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' a , a , a :Tuple = load_model_and_preprocess( name=UpperCAmelCase_ , model_type=UpperCAmelCase_ , is_eval=UpperCAmelCase_ , device=UpperCAmelCase_ ) original_model.eval() print('''Done!''' ) # update state dict keys a :Optional[int] = original_model.state_dict() a :int = create_rename_keys(UpperCAmelCase_ ) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): a :Dict = state_dict.pop(UpperCAmelCase_ ) if key.startswith('''Qformer.bert''' ): a :Optional[Any] = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: a :Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: a :Optional[int] = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: a :Dict = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): a :Tuple = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): a :Any = key.replace('''t5''' , '''language''' ) a :Optional[int] = val # read in qv biases read_in_q_v_bias(UpperCAmelCase_ , UpperCAmelCase_ ) a , a :Any = hf_model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) assert len(UpperCAmelCase_ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] a :Dict = load_demo_image() a :int = vis_processors['''eval'''](UpperCAmelCase_ ).unsqueeze(0 ).to(UpperCAmelCase_ ) a :Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(UpperCAmelCase_ ) # create processor a :str = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=UpperCAmelCase_ , image_std=UpperCAmelCase_ ) a :str = BlipaProcessor(image_processor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) a :Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='''pt''' ).pixel_values.to(UpperCAmelCase_ ) # make sure processor creates exact same pixel values assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) original_model.to(UpperCAmelCase_ ) hf_model.to(UpperCAmelCase_ ) with torch.no_grad(): if "opt" in model_name: a :Optional[int] = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits a :Optional[int] = hf_model(UpperCAmelCase_ , UpperCAmelCase_ ).logits else: a :int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits a :int = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) a :Union[str, Any] = hf_model(UpperCAmelCase_ , UpperCAmelCase_ , labels=UpperCAmelCase_ ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": a :str = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=UpperCAmelCase_ ) assert torch.allclose(logits[0, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": a :List[str] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=UpperCAmelCase_ ) else: # cast to same type a :Optional[Any] = logits.dtype assert torch.allclose(original_logits.to(UpperCAmelCase_ ) , UpperCAmelCase_ , atol=1E-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) a :str = '''''' a :str = tokenizer(UpperCAmelCase_ , return_tensors='''pt''' ).input_ids.to(UpperCAmelCase_ ) a :Optional[Any] = original_model.generate({'''image''': original_pixel_values} ) a :Union[str, Any] = hf_model.generate( UpperCAmelCase_ , UpperCAmelCase_ , do_sample=UpperCAmelCase_ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , UpperCAmelCase_ ) a :str = input_ids.shape[1] a :Union[str, Any] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=UpperCAmelCase_ ) a :Tuple = [text.strip() for text in output_text] print('''HF generation:''' , UpperCAmelCase_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCAmelCase_ ) hf_model.save_pretrained(UpperCAmelCase_ ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": snake_case : List[str] = argparse.ArgumentParser() snake_case : Optional[Any] = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) snake_case : Optional[int] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
281
from ...configuration_utils import PretrainedConfig class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'bert-generation' def __init__( self , _lowerCamelCase=5_0358 , _lowerCamelCase=1024 , _lowerCamelCase=24 , _lowerCamelCase=16 , _lowerCamelCase=4096 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase="absolute" , _lowerCamelCase=True , **_lowerCamelCase , ): super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) a :Optional[int] = vocab_size a :Tuple = hidden_size a :Any = num_hidden_layers a :Any = num_attention_heads a :List[Any] = hidden_act a :Tuple = intermediate_size a :Any = hidden_dropout_prob a :int = attention_probs_dropout_prob a :Dict = max_position_embeddings a :int = initializer_range a :Union[str, Any] = layer_norm_eps a :str = position_embedding_type a :int = use_cache
281
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
262
class UpperCamelCase_ : '''simple docstring''' def __init__( self , a ) -> None: snake_case_ = set_counts snake_case_ = max(a ) snake_case_ = len(a ) snake_case_ = [1] * num_sets snake_case_ = list(range(a ) ) def _UpperCamelCase ( self , a , a ) -> bool: snake_case_ = self.get_parent(a ) snake_case_ = self.get_parent(a ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] snake_case_ = 0 snake_case_ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 snake_case_ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] snake_case_ = 0 snake_case_ = src_parent snake_case_ = self.set_counts[src_parent] snake_case_ = max(self.max_set , a ) return True def _UpperCamelCase ( self , a ) -> int: if self.parents[disj_set] == disj_set: return disj_set snake_case_ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
178
0
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __lowerCamelCase ( unittest.TestCase , A__ ): '''simple docstring''' def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : int = load_tool("text-classification" ) self.tool.setup() lowerCAmelCase_ : int = load_tool("text-classification" , remote=__A ) def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : int = self.tool("That\'s quite cool" , ["positive", "negative"] ) self.assertEqual(__A , "positive" ) def lowerCamelCase ( self : int ): lowerCAmelCase_ : Optional[Any] = self.remote_tool("That\'s quite cool" , ["positive", "negative"] ) self.assertEqual(__A , "positive" ) def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = self.tool(text="That\'s quite cool" , labels=["positive", "negative"] ) self.assertEqual(__A , "positive" ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Dict = self.remote_tool(text="That\'s quite cool" , labels=["positive", "negative"] ) self.assertEqual(__A , "positive" )
359
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowercase__ = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Tuple: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowerCAmelCase_ : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(__UpperCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = XLMProphetNetForConditionalGeneration.from_pretrained( __UpperCamelCase , output_loading_info=__UpperCamelCase ) else: lowerCAmelCase_ : List[str] = ProphetNetForConditionalGenerationOld.from_pretrained(__UpperCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( __UpperCamelCase , output_loading_info=__UpperCamelCase ) lowerCAmelCase_ : List[str] = ["key_proj", "value_proj", "query_proj"] lowerCAmelCase_ : Tuple = { "self_attn": "ngram_self_attn", "cross_attn": "encoder_attn", "cross_attn_layer_norm": "encoder_attn_layer_norm", "feed_forward_layer_norm": "final_layer_norm", "feed_forward": "", "intermediate": "fc1", "output": "fc2", "key_proj": "k_proj", "query_proj": "q_proj", "value_proj": "v_proj", "word_embeddings": "embed_tokens", "embeddings_layer_norm": "emb_layer_norm", "relative_pos_embeddings": "relative_linear", "ngram_embeddings": "ngram_input_embed", "position_embeddings": "embed_positions", } for key in loading_info["missing_keys"]: lowerCAmelCase_ : Dict = key.split("." ) if attributes[0] == "lm_head": lowerCAmelCase_ : int = prophet lowerCAmelCase_ : int = prophet_old else: lowerCAmelCase_ : str = prophet.prophetnet lowerCAmelCase_ : int = prophet_old.model lowerCAmelCase_ : Optional[int] = False for attribute in attributes: if attribute in mapping: lowerCAmelCase_ : Tuple = mapping[attribute] if not hasattr(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) > 0: lowerCAmelCase_ : Optional[Any] = attribute elif hasattr(__UpperCamelCase , __UpperCamelCase ): lowerCAmelCase_ : Optional[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowerCAmelCase_ : str = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowerCAmelCase_ : Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowerCAmelCase_ : Tuple = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowerCAmelCase_ : Optional[int] = True break elif attribute in special_keys and hasattr(__UpperCamelCase , "in_proj_weight" ): lowerCAmelCase_ : List[Any] = old_model.in_proj_weight.shape[0] // 3 lowerCAmelCase_ : List[str] = getattr(__UpperCamelCase , __UpperCamelCase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowerCAmelCase_ : List[str] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowerCAmelCase_ : List[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowerCAmelCase_ : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowerCAmelCase_ : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowerCAmelCase_ : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowerCAmelCase_ : str = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowerCAmelCase_ : List[str] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowerCAmelCase_ : Any = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowerCAmelCase_ : int = True break if attribute.isdigit(): lowerCAmelCase_ : Tuple = model[int(__UpperCamelCase )] lowerCAmelCase_ : Tuple = old_model[int(__UpperCamelCase )] else: lowerCAmelCase_ : Optional[int] = getattr(__UpperCamelCase , __UpperCamelCase ) if old_attribute == "": lowerCAmelCase_ : Tuple = old_model else: if not hasattr(__UpperCamelCase , __UpperCamelCase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowerCAmelCase_ : List[Any] = getattr(__UpperCamelCase , __UpperCamelCase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
161
0
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def _a ( *a :Union[str, Any] ) -> List[str]: if not isinstance(snake_case__ , snake_case__ ): a = list(snake_case__ ) for i in range(len(snake_case__ ) ): a = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def _a ( a :int ) -> bool: a = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(snake_case__ , snake_case__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def _a ( a :Dict = None , a :int = 128 ) -> Optional[Any]: if function is None: return functools.partial(snake_case__ , starting_batch_size=snake_case__ ) a = starting_batch_size def decorator(*a :Tuple , **a :Union[str, Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() a = list(inspect.signature(snake_case__ ).parameters.keys() ) # Guard against user error if len(snake_case__ ) < (len(snake_case__ ) + 1): a = ''', '''.join([F"""{arg}={value}""" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F"""Batch size was passed into `{function.__name__}` as the first argument when called.""" F"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(snake_case__ , *snake_case__ , **snake_case__ ) except Exception as e: if should_reduce_batch_size(snake_case__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
0
"""simple docstring""" def a__ ( __UpperCamelCase , __UpperCamelCase ): if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) SCREAMING_SNAKE_CASE_ = str(bin(__UpperCamelCase ) ) binary_number += "0" * shift_amount return binary_number def a__ ( __UpperCamelCase , __UpperCamelCase ): if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) SCREAMING_SNAKE_CASE_ = str(bin(__UpperCamelCase ) )[2:] if shift_amount >= len(__UpperCamelCase ): return "0b0" SCREAMING_SNAKE_CASE_ = binary_number[: len(__UpperCamelCase ) - shift_amount] return "0b" + shifted_binary_number def a__ ( __UpperCamelCase , __UpperCamelCase ): if number >= 0: # Get binary representation of positive number SCREAMING_SNAKE_CASE_ = "0" + str(bin(__UpperCamelCase ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number SCREAMING_SNAKE_CASE_ = len(bin(__UpperCamelCase )[3:] ) # Find 2's complement of number SCREAMING_SNAKE_CASE_ = bin(abs(__UpperCamelCase ) - (1 << binary_number_length) )[3:] SCREAMING_SNAKE_CASE_ = ( "1" + "0" * (binary_number_length - len(__UpperCamelCase )) + binary_number ) if shift_amount >= len(__UpperCamelCase ): return "0b" + binary_number[0] * len(__UpperCamelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__UpperCamelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
365
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : Union[str, Any] = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class lowerCamelCase (unittest.TestCase ): """simple docstring""" @classmethod def __A ( cls : Any ) -> Dict: SCREAMING_SNAKE_CASE_ = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def __A ( cls : Optional[int] ) -> Tuple: try: delete_repo(token=cls._token , repo_id="test-model-flax" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-model-flax-org" ) except HTTPError: pass def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) model.push_to_hub("test-model-flax" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="test-model-flax" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__magic_name__ , repo_id="test-model-flax" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) def __A ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) model.push_to_hub("valid_org/test-model-flax-org" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-model-flax-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __magic_name__ , repo_id="valid_org/test-model-flax-org" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = flatten_dict(modela.params ) SCREAMING_SNAKE_CASE_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: SCREAMING_SNAKE_CASE_ = False return models_are_equal @require_flax class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : str ) -> Dict: SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) ) with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def __A ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) , max_shard_size="10KB" ) with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def __A ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE_ = "bert" SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def __A ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ = "bert" SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ )
305
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=2 , lowerCAmelCase_=24 , lowerCAmelCase_=16 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=10 , lowerCAmelCase_=0.02 , lowerCAmelCase_=None , lowerCAmelCase_=2 , lowerCAmelCase_=2 , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = patch_size _snake_case = max_length _snake_case = num_mel_bins _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = scope _snake_case = frequency_stride _snake_case = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _snake_case = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _snake_case = (self.max_length - self.patch_size) // self.time_stride + 1 _snake_case = frequency_out_dimension * time_out_dimension _snake_case = num_patches + 2 def lowerCamelCase ( self ): """simple docstring""" _snake_case = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, input_values, labels def lowerCamelCase ( self ): """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = ASTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() _snake_case = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() ( _snake_case ) = config_and_inputs _snake_case = {'''input_values''': input_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) __lowercase = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) __lowercase = False __lowercase = False __lowercase = False __lowercase = False def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def lowerCamelCase ( self ): """simple docstring""" _snake_case = ASTModelTester(self ) _snake_case = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(SCREAMING_SNAKE_CASE__ ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''input_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = ASTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( ) -> str: _snake_case = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' ) _snake_case = torchaudio.load(a_ ) return audio, sampling_rate @require_torch @require_torchaudio class __UpperCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ): """simple docstring""" return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.default_feature_extractor _snake_case = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(SCREAMING_SNAKE_CASE__ ) _snake_case = self.default_feature_extractor _snake_case = prepare_audio() _snake_case = audio.squeeze().numpy() _snake_case = feature_extractor(SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): _snake_case = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits _snake_case = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) _snake_case = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
42
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : str = '''beit''' def __init__( self ,SCREAMING_SNAKE_CASE__=81_92 ,SCREAMING_SNAKE_CASE__=7_68 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=30_72 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=1E-12 ,SCREAMING_SNAKE_CASE__=2_24 ,SCREAMING_SNAKE_CASE__=16 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=[3, 5, 7, 11] ,SCREAMING_SNAKE_CASE__=[1, 2, 3, 6] ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=0.4 ,SCREAMING_SNAKE_CASE__=2_56 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=2_55 ,**SCREAMING_SNAKE_CASE__ ,) -> Optional[Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = vocab_size __SCREAMING_SNAKE_CASE :Dict = hidden_size __SCREAMING_SNAKE_CASE :Union[str, Any] = num_hidden_layers __SCREAMING_SNAKE_CASE :List[str] = num_attention_heads __SCREAMING_SNAKE_CASE :Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE :Optional[int] = hidden_act __SCREAMING_SNAKE_CASE :Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE :Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :Optional[Any] = initializer_range __SCREAMING_SNAKE_CASE :str = layer_norm_eps __SCREAMING_SNAKE_CASE :int = image_size __SCREAMING_SNAKE_CASE :Tuple = patch_size __SCREAMING_SNAKE_CASE :Any = num_channels __SCREAMING_SNAKE_CASE :Any = use_mask_token __SCREAMING_SNAKE_CASE :Union[str, Any] = use_absolute_position_embeddings __SCREAMING_SNAKE_CASE :Union[str, Any] = use_relative_position_bias __SCREAMING_SNAKE_CASE :Union[str, Any] = use_shared_relative_position_bias __SCREAMING_SNAKE_CASE :List[str] = layer_scale_init_value __SCREAMING_SNAKE_CASE :Optional[Any] = drop_path_rate __SCREAMING_SNAKE_CASE :str = use_mean_pooling # decode head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE :Dict = out_indices __SCREAMING_SNAKE_CASE :Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE :Optional[int] = use_auxiliary_head __SCREAMING_SNAKE_CASE :Union[str, Any] = auxiliary_loss_weight __SCREAMING_SNAKE_CASE :Dict = auxiliary_channels __SCREAMING_SNAKE_CASE :Optional[int] = auxiliary_num_convs __SCREAMING_SNAKE_CASE :List[str] = auxiliary_concat_input __SCREAMING_SNAKE_CASE :List[Any] = semantic_loss_ignore_index class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : List[Any] = version.parse('''1.11''' ) @property def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _UpperCamelCase ( self ) -> float: """simple docstring""" return 1E-4
191
0
from math import pi, sqrt, tan def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float ) -> float: if side_length < 0: raise ValueError("""surface_area_cube() only accepts non-negative values""" ) return 6 * side_length**2 def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float: if length < 0 or breadth < 0 or height < 0: raise ValueError("""surface_area_cuboid() only accepts non-negative values""" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float ) -> float: if radius < 0: raise ValueError("""surface_area_sphere() only accepts non-negative values""" ) return 4 * pi * radius**2 def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float ) -> float: if radius < 0: raise ValueError("""surface_area_hemisphere() only accepts non-negative values""" ) return 3 * pi * radius**2 def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float: if radius < 0 or height < 0: raise ValueError("""surface_area_cone() only accepts non-negative values""" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( """surface_area_conical_frustum() only accepts non-negative values""" ) __lowerCAmelCase : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float: if radius < 0 or height < 0: raise ValueError("""surface_area_cylinder() only accepts non-negative values""" ) return 2 * pi * radius * (height + radius) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float: if torus_radius < 0 or tube_radius < 0: raise ValueError("""surface_area_torus() only accepts non-negative values""" ) if torus_radius < tube_radius: raise ValueError( """surface_area_torus() does not support spindle or self intersecting tori""" ) return 4 * pow(SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float: if length < 0 or width < 0: raise ValueError("""area_rectangle() only accepts non-negative values""" ) return length * width def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float ) -> float: if side_length < 0: raise ValueError("""area_square() only accepts non-negative values""" ) return side_length**2 def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float: if base < 0 or height < 0: raise ValueError("""area_triangle() only accepts non-negative values""" ) return (base * height) / 2 def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("""area_triangle_three_sides() only accepts non-negative values""" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("""Given three sides do not form a triangle""" ) __lowerCAmelCase : List[str] = (sidea + sidea + sidea) / 2 __lowerCAmelCase : Dict = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float: if base < 0 or height < 0: raise ValueError("""area_parallelogram() only accepts non-negative values""" ) return base * height def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float: if basea < 0 or basea < 0 or height < 0: raise ValueError("""area_trapezium() only accepts non-negative values""" ) return 1 / 2 * (basea + basea) * height def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float ) -> float: if radius < 0: raise ValueError("""area_circle() only accepts non-negative values""" ) return pi * radius**2 def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float: if radius_x < 0 or radius_y < 0: raise ValueError("""area_ellipse() only accepts non-negative values""" ) return pi * radius_x * radius_y def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError("""area_rhombus() only accepts non-negative values""" ) return 1 / 2 * diagonal_a * diagonal_a def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :float ) -> float: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( """area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides""" ) elif length < 0: raise ValueError( """area_reg_polygon() only accepts non-negative values as \ length of a side""" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(f'''Rectangle: {area_rectangle(10, 20) = }''') print(f'''Square: {area_square(10) = }''') print(f'''Triangle: {area_triangle(10, 10) = }''') print(f'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(f'''Parallelogram: {area_parallelogram(10, 20) = }''') print(f'''Rhombus: {area_rhombus(10, 20) = }''') print(f'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(f'''Circle: {area_circle(20) = }''') print(f'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(f'''Cube: {surface_area_cube(20) = }''') print(f'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(f'''Sphere: {surface_area_sphere(20) = }''') print(f'''Hemisphere: {surface_area_hemisphere(20) = }''') print(f'''Cone: {surface_area_cone(10, 20) = }''') print(f'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(f'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(f'''Torus: {surface_area_torus(20, 10) = }''') print(f'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(f'''Square: {area_reg_polygon(4, 10) = }''') print(f'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
365
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _UpperCAmelCase = { 'google/pegasus-xsum': 512, } _UpperCAmelCase = logging.get_logger(__name__) class snake_case_ ( __lowercase ): A_ = VOCAB_FILES_NAMES A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Union[str, Any]="<pad>" , _snake_case : int="</s>" , _snake_case : Any="<unk>" , _snake_case : Union[str, Any]="<mask_2>" , _snake_case : Any="<mask_1>" , _snake_case : Optional[int]=None , _snake_case : List[str]=103 , _snake_case : Optional[Dict[str, Any]] = None , **_snake_case : Optional[int] , )->None: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = offset if additional_special_tokens is not None: if not isinstance(_snake_case , _snake_case ): raise TypeError( F'''additional_special_tokens should be of type {type(_snake_case )}, but is''' F''' {type(_snake_case )}''' ) __lowerCAmelCase : List[str] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(_snake_case ) , self.offset - 1 ) ] if len(set(_snake_case ) ) != len(_snake_case ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) __lowerCAmelCase : Dict = additional_special_tokens_extended else: __lowerCAmelCase : Tuple = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2 , self.offset )] __lowerCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_snake_case , unk_token=_snake_case , mask_token=_snake_case , pad_token=_snake_case , mask_token_sent=_snake_case , offset=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) __lowerCAmelCase : Optional[Any] = mask_token_sent __lowerCAmelCase : Any = vocab_file __lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) # add special tokens to encoder dict __lowerCAmelCase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __lowerCAmelCase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def UpperCAmelCase__ ( self : str )->int: '''simple docstring''' return len(self.sp_model ) + self.offset def UpperCAmelCase__ ( self : Dict )->Dict[str, int]: '''simple docstring''' __lowerCAmelCase : Tuple = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] )->str: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self.__dict__.copy() __lowerCAmelCase : Union[str, Any] = None return state def __setstate__( self : Any , _snake_case : str )->Any: '''simple docstring''' __lowerCAmelCase : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCAmelCase : Any = {} __lowerCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : Dict , _snake_case : str )->List[str]: '''simple docstring''' return self.sp_model.encode(_snake_case , out_type=_snake_case ) def UpperCAmelCase__ ( self : Tuple , _snake_case : str )->int: '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __lowerCAmelCase : Any = self.sp_model.piece_to_id(_snake_case ) return sp_id + self.offset def UpperCAmelCase__ ( self : List[Any] , _snake_case : int )->str: '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __lowerCAmelCase : Optional[int] = self.sp_model.IdToPiece(index - self.offset ) return token def UpperCAmelCase__ ( self : Union[str, Any] , _snake_case : Optional[int] )->List[str]: '''simple docstring''' __lowerCAmelCase : Any = [] __lowerCAmelCase : Dict = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_snake_case ) + token __lowerCAmelCase : int = [] else: current_sub_tokens.append(_snake_case ) out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def UpperCAmelCase__ ( self : Optional[int] , _snake_case : Dict=False )->int: '''simple docstring''' return 1 def UpperCAmelCase__ ( self : Tuple , _snake_case : Tuple )->str: '''simple docstring''' __lowerCAmelCase : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def UpperCAmelCase__ ( self : List[str] , _snake_case : List , _snake_case : Optional[List] = None , _snake_case : bool = False )->List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(_snake_case ) elif token_ids_a is None: return self._special_token_mask(_snake_case ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCAmelCase__ ( self : Any , _snake_case : Union[str, Any] , _snake_case : Tuple=None )->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Any , _snake_case : str , _snake_case : Optional[str] = None )->Tuple[str]: '''simple docstring''' if not os.path.isdir(_snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCAmelCase : Optional[int] = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , """wb""" ) as fi: __lowerCAmelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
232
0